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Abstract

Alchemy is a new meta-learning environment rich enough to contain interesting1

abstractions, yet simple enough to make fine-grained analysis tractable. Further,2

Alchemy provides an optional symbolic interface that enables meta-RL research3

without a large compute budget. In this work, we take the first steps toward using4

Symbolic Alchemy to identify design choices that enable deep-RL agents to learn5

various types of abstraction. Then, using a variety of behavioral and introspective6

analyses we investigate how our trained agents use and represent abstract task7

variables, and find intriguing connections to the neuroscience of abstraction. We8

conclude by discussing the next steps for using meta-RL and Alchemy to better9

understand the representation of abstract variables in the brain.10

1 Introduction11

Humans display the remarkable ability to use abstractions to guide their behavior. They are able to12

abstract over the sensorimotor details of a situation to derive the general principles involved, and13

to use those principles to behave effectively. A classic example is the use of abstract knowledge14

to guide behavior in a restaurant; for example, people know that they must pay at the end, even15

though they have never seen that exact restaurant or paid for that specific meal (Wallis et al., 2001).16

Neuroscientific studies have made progress in understanding how the brain might represent abstract17

rules (Mansouri et al., 2020), establishing that prefrontal cortex plays a significant role (Milner, 1963),18

with more recent work implicating the hippocampus as well (Samborska et al., 2021). One limitation19

of these studies is that they use extremely simple tasks, where optimal behavior can be derived as a20

nearly trivial function of the inputs. As a result, there is a large gap between the abstractions studied21

in the experiments and the richness at play in human life.22

A recent development presents an opportunity to begin to bridge this gap. The Alchemy benchmark23

was proposed by Wang et al. (2021) to make fine-grained analysis and interpretation of meta-RL24

agents possible while maintaining the complexity needed for more interesting conceptual abstractions25

to be learnt. In the present work, we use a biologically inspired model on the symbolic version of26

the Alchemy benchmark (Wang et al., 2021) to investigate the learning and representation of more27

complex abstractions than those studied previously in neuroscience. Our model builds on the meta-RL28

framework of Wang et al. (2018) who showed that by considering the prefrontal cortex (PFC) as its29

own meta-RL system, that is driven by dopamine-based synaptic learning, one can account for a wide30

range of behavioral and neurophysiological findings. Our model builds on that by extending their31

core recurrent network with an episodic memory via a modified transformer block to represent the32

hippocampus, similarly to (Ritter et al., 2018).33

The main contributions of the paper can be summarized as follows: (1) we show a way in which34

researchers can achieve high performance in Symbolic Alchemy – albeit with some tricks – without35

having access to vast computational resources as is usually required for deep-RL research. To be36
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specific, all experiments done for this paper were run on a single-GPU (Tesla T4) machine. (2) We37

propose a hypothesis based on empirical results into why previous agents failed to solve Symbolic38

Alchemy despite being much more powerful than the one used in this work. (3) We release a tool39

for visualizing the chemistry and latent space of any given episode in Symbolic Alchemy to better40

help researchers debug the behavior of their agents. (4) We present a new kind of behavioral analysis41

that can be done on Alchemy to test whether the agent succeeded or failed in acquiring specific42

pieces of abstract knowledge. (5) Finally, we demonstrate that, just as in animals (Wallis et al., 2001;43

Wallis and Miller, 2003; Muhammad et al., 2006), single-units of the LSTM and transformer encode44

abstract task variables. Moreover, single-unit analyses revealed evidence for distinct functional roles45

for LSTM and transformers units. We draw a connection between this observation and the differential46

roles of PFC and hippocampus observed in recent neuroscience experiments (Samborska et al., 2021).47

2 Methods48

2.1 Symbolic Alchemy49

The Alchemy benchmark was proposed by Wang et al. (2021) to make fine-grained analysis and50

interpretation of meta-RL agents possible while maintaining the complexity needed for interesting51

conceptual abstractions to be learnt. Unlike other meta-RL task distributions, Alchemy’s accessibility52

allows us to compare our model’s performance against a Bayesian learner referred to as an ‘Ideal53

Observer’. Wang et al. (2021) also develop a ‘Random Heuristic’ that we use as a reference for54

evaluating our agent’s understanding of specific abstract principles. The task itself is divided into55

episodes, each of which consists of 10 trials. In our experiments, the number of timesteps per trial56

was set to 15 to speedup training.57

Stones and Potions The goal of the agent within each trial is to transform three stones into a more58

valuable form – the value of which is tied to the stone’s perceptual features – by applying a sequence59

of different potions on each of them. The agent can then collect the reward associated with a stone60

by dropping it into a central cauldron. The stone’s appearance can change along only one of three61

dimensions at a time: size, color and shape. Each potion on the other hand is characterized by one of62

6 hues that dictates the transformative effect it has on a specific stone according to some ‘chemistry’63

that is sampled from a structured generative process at the beginning of each episode. There are 1264

potions in each trial, each of which is consumed (i.e. can not be re-used) once applied on a stone.65

Chemistry The chemistry dictates the causal structure that governs each episode as well as the66

possible set of stone perceptual features that can occur. It can be visualized as a cube, where each67

vertex correspond to a specific stone value in the latent space, which can be one of (-3, -1, +1, +15),68

or a specific appearance in the perceptual space. The potion effects run along the edges of the cube as69

shown in Figure 1. Edges can be missing, creating a bottleneck that the agent must pass through to70

reach a high rewarding state. This may require passing through intermediate lower value states first.71

Abstract Principles There are certain rules and constraints that span across episodes which makes72

Alchemy a meta-learning benchmark. The agent is expected to learn to identify and exploit those73

regularities in order to achieve high performance in the task. This includes:74

• Consistency: Potions of the same color will always have the same effect on stones with the75

same visual features within an episode.76

• Parallelism: Each potion color has the same direction of effect regardless of the other77

features (e.g. a red potion will always change the color of a stone from blue to purple78

irrespective of the size and shape of that stone).79

• Missing Edges: Overlaid on that parallelism, some edges can be disabled for an episode.80

Therefore once discovered the agent shouldn’t attempt to traverse that missing edge.81

• Potion Pairs: Potions come in pairs with opposite effects (red/green, yellow/orange,82

pink/turquoise). The agent should know those pairs since they are consistent across all83

episodes. For example, if the effect of the orange potion is to increase the size of a stone,84

then the effect of the yellow potion will be to decrease the size of the stone.85

2



State and Action Spaces In the input representation, each stone is represented by its three percep-86

tual features, its reward in the current latent state and whether it has been deposited into the cauldron87

or not. For the potions, we use a modified representation from the one proposed by Wang et al. (2021);88

instead of representing the state of each of the 12 potions as elements of a single vector, we represent89

the remaining number of potions per hue. Therefore the state space is comprised of a 21-dimensional90

vector. The action space is also modified in a similar manner, where the agent chooses which color91

to apply to which stone, or whether to deposit a specific stone to the cauldron. When a specific92

stone-color combination is chosen, a wrapper then randomly selects one of the available potions93

with that color and apply it to the selected stone. Alternatively a no-op action can be chosen, which94

makes the number of possible actions 22.95

Rewards and Penalties In addition to the rewards the agent receives whenever depositing a stone96

into the cauldron, we found that penalizing the agent in three specific scenarios sped up the rate of97

convergence considerably. Specifically, we gave a reward of −0.2 if the action taken results in a null98

transition (i.e. does not have any effect on the stone) but given that it is not a no-op action. In the99

second case, the agent was penalized with a reward of −1 whenever it chose to use a potion hue that100

is not available (i.e. it should learn to never use a hue when its corresponding entry is zero in the input101

representation) or a stone that has already been cached in the cauldron. Finally, an additional penalty102

of −1 was given when the agent chose the same potion color consecutively on the same stone.103

2.2 Visualizing the Latent Space104

In order to simplify the process of qualitatively debugging the agent’s behavior, we developed and105

are releasing1 a tool for Symbolic Alchemy that visualizes the topology of the underlying causal106

graph for a given episode. Overlaid on it are the positions of the stones in the latent space along with107

arrows indicating the direction of effect of the available potions. The Ideal Observer’s belief about a108

particular potion color or edge is also indicated using the opacity of the corresponding object. That109

way we can evaluate the agent’s actions with respect to the belief state of an agent that has perfect110

understanding of the structure of the task.111

Figure 1: Visualizations of chemistries created using the Symbolic Alchemy Visualization Tool,
which we are releasing for public use. The coordinates on the cube’s vertices indicate the latent state
and thus reward of the stone in that position. Translucent arrows indicate that the agent has not yet
discovered the effect of that color. The stones are represented by a red, blue and green spheres. The
available potions are shown floating above the cube with their corresponding color, and when a potion
is consumed it will no longer be visible. In some chemistries, edges of the graph may be missing as
can be seen in the 2nd and 3rd snapshots.

2.3 Agent Architecture112

We use a biologically inspired architecture that maps to functions and neural structures in the brain.113

Specifically, we build on the work of Wang et al. (2018) in which the prefrontal cortex (PFC) is114

conceptualized as forming a gated recurrent neural network (characterized as an LSTM (Hochreiter115

and Schmidhuber, 1997)) and augment it with an episodic memory which is connected to the LSTM116

via a single modified transformer block from Ritter et al. (2020) (see Figure 2).117

1https://github.com/username/repo
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Figure 2: In the center of the architecture is an LSTM that takes as input the action and reward of
the previous timestep, an encoded version of the current state, and a distilled representation of the
relevant memory entries. The encoder is just a two-layered MLP. The episodic memory stores the
features of the stone being transformed s̃t, a one-hot encoding of the applied potion color pt, and the
resultant features of the stone after transformation s̃t+1. The transformer block architecture is fully
described in Section 2.3. The output of the LSTM is finally given to the policy and value networks,
each of which is a linear layer, to generate an action and the value estimate respectively.

The LSTM, which has been shown to have analogies with prefrontal gating theories (Chatham and118

Badre, 2015), takes as input on each time-step an encoded version of the current state, the reward119

and action it had taken at the preceding time-step and a compressed representation of the previous120

memories experienced in the current episode. Since the LSTM learns to distill that information over121

the course of an episode in its hidden state, it can be considered as a form of working-memory (Lara122

and Wallis, 2015).123

On the other hand, the transformer architecture takes as input the current state st and the entries of124

the episodic memory {mi}ti=0 on each time-step. The state st is then concatenated to each mi. This125

matrix is then transformed feature-wise by a shared linear layer, before being passed to the planner126

module of Ritter et al. (2020) described using the following equations: s∗t = ReLU(x+ φ(x)) where127

x = {[mi, st]}ti=0 and φ(x) = MHA(LayerNorm(x)) where MHA is the multi-head dot-product128

self-attention mechanism described by Vaswani et al. (2017) with layer-normalization (Ba et al.,129

2016) applied to the input. The output is an attended view of the agent’s past relevant experience130

in the episode given the current state. This is then passed to a two-layer shared MLP, the output of131

which is pooled using a feature-wise max operation. We refer to our agent as A2C EPN.132

2.4 Experimental Setup133

The agent is trained using the synchronous version of the Advantage Actor-Critic (A2C) RL algorithm134

(Mnih et al., 2016) with a batch-size of 8. The value coefficient was set to βV = 0.5 and the initial135

entropy coefficient to βE = 0.1 which was decayed in a linear fashion throughout training. The136

encoder is a stack of 2 affine layers with 32 units each, and an ELU non-linearity in-between (Clevert137

et al., 2016). The LSTM has 256 hidden units, while the transformer block contains 4 attention heads138

with a dimensionality of 64. The MLP is similarly a stack of two affine layers with 64 units each,139

with an ELU non-linearity in-between. The episodic memory operated with a maximum size of140

150 entries, and was reset after each episode. We used the Adam optimizer (Kingma and Ba, 2014)141

with an initial learning rate of 7.5e − 4. The learning rate was decayed linearly from the start of142

training. The gradient was clipped at a maximum norm of 100. We found that starting with a small143

discount factor of γ = 0.7 worked best. The resultant model was then finetuned using a higher value144

(γ = 0.95) after convergence. The number of unroll steps is 20. The code is made open-source2.145

2https://github.com/username/repo
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Figure 3: Top: Behavioral results showing the agent’s lack of understanding of several abstract
principles that span across episodes. In each plot, we report the number of times the agent took
a null transition that it should have avoided if it understood the corresponding concept. The Ideal
Observer is zero in all cases demonstrating perfect understanding of each principle. Our agent
performs significantly better than the Random Heuristic but still takes a lot of actions where it could
know better in the Parallelism and Potion Pairs analyses. Bottom-left: The average episode score as
a function of the number of missing edges for each agent. Bottom-right: The percentage of episodes
where the Idea Observer scores more than the A2C EPN agent at a given trial.

3 Results146

The results and analyses presented in this section have all been done on the 1000 held-out evaluation147

episodes provided by the benchmark using the agent described in Section 2.3.148

3.1 Performance149

The A2C EPN agent achieves an average episode score of 267.01 with the modified representations,150

which is significantly higher than the much more powerful VMPO agent with a gated transformer151

XL network (Song et al., 2020; Parisotto et al., 2019) used by Wang et al. (2021). In an attempt to152

identify which aspects contributed to this leap in performance, we re-trained our agent but using the153

canonical representation in each of the input, output and memory separately as shown in Table 1154

(more details about each in the Appendix A.2). The results show a significant drop to almost the same155

performance reported by Wang et al. (2021) when using the canonical action space. Interestingly,156

evaluating the same agent but without committing anything into the episodic memory led to the same157

performance (see Score w/o Memory column in Table 1), indicating that the model was not making158

use of its long-term history to appraise the value of future actions.159

This inability to exploit the memory can be largely attributed to the notion of positional output,160

where the agent is required to choose an instance of the potion and not the abstract color that causes161

the transformative effect. Since each potion slot can have more than one color across different162

trials, the same action will have different effects within the same episode. For instance, action a2163

in trial k can be a pink potion while in another trail can correspond to an orange potion. In order164

to have an appropriate mapping between each instance and its abstract color one will need a more165

suitable architecture that would be able to recapitulate the information we gave to the system via the166

custom encoding. The series of experiments we presented show where such an architecture search167

could begin. Specifically, an architecture design that gets the right information into the memory168

and provides sufficiently flexible neural networks to process the memories in order to reproduce the169

information contained in our modified representation. In this work we used the custom encoding170

since it enabled us to pinpoint where the architectural problem lies and perform interesting analyses171

that we present in the following sections with a small compute budget.172

5



Table 1: Evaluation episode scores comparing the effect of the canonical representation (indicated by
an ‘o’) proposed by the Alchemy benchmark to the modified one (indicated by an ‘x’) described in
Section 2.1. The VMPO result taken from (Wang et al., 2021). The no bottleneck column indicate
the average score of the evaluation episodes with no missing edges.

Agent Input Output Mem Score ± SEM Score
(w/o Mem)

No
Bottleneck

A2C EPN

x x x 267.01 ± 1.84 160.73 308.48
o x x 243.83 ± 2.21 171.59 300.79
o o x 156.34 ± 1.57 156.70 181.41
o o o 158.91 ± 1.60 153.40 182.10

VMPO o o - 155.40 ± 1.60 - -
Random Heuristic - - - 146.07 ± 1.55 - 172.11
Ideal Observer - - - 284.42 ± 1.59 - 313.31

To measure the effect of reward shaping on the final performance, we evaluated the A2C EPN agent173

without giving it any additional rewards or penalties. This achieved a score of 228.08± 2.15, which174

suggests that exploration is a bottleneck. In other words, the problem does not really have to do much175

with learning from examples to represent abstract variables, but instead is just about having a data176

distribution that’s sufficiently broad.177

We found it useful as well to compare the results with respect to the number of missing edges in the178

graph (see Figure 3), since the A2C EPN agent’s performance approached that of the Ideal Observer179

in the case where there are no bottlenecks. In an effort to bridge this gap, we found that this difference180

is more pronounced in earlier trials. It is especially visible in the first trial in the case where there are181

no missing edges as shown in Figure 3, where the A2C EPN agent performs similar to or better than182

the Ideal Observer in far more number of episodes after the first trial. This can be mitigated in future183

work by incorporating more advanced exploration methods.184

Action Types Similar to the analysis done in Wang et al. (2021), Figure 4 shows the number of185

times, throughout the first and last trial, the agent applied a potion that worsened, improved or had no186

effect on the value of the stone and the number of times the agent deposited a stone into the central187

cauldron as a function of its reward. It can be seen that the A2C EPN agent almost never deposits a188

negative reward stone and more importantly, it adapts its strategy throughout the course of the episode.189

Concretely, in the first trial it performs a lot of exploratory actions by trying out potions that do not190

have an effect on the stone (the orange area) while in the last trial it shifts towards a more exploitative191

strategy by performing more actions that improved the value of the stone as it acquired knowledge192

about the episode’s chemistry. This ability to adapt is indicative of good meta-learning performance193

and is similar in behavior to what we see from the Ideal Observer as shown in the Appendix.194

Figure 4: Comparing different action types throughout the first and last trial in a similar manner to
Wang et al. (2021). The A2C EPN agent shows analogous behavior to that of the Ideal Observer
(see Figure 6 in Appendix), indicating an ability to adapt strategies (exploration vs exploitation)
throughout the course of the episode.
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3.2 Behavioral Tests195

In the following behavioral tests we report the number of times the agent took a null transition (i.e.196

applying a potion that has no effect on a stone) that wasn’t the result of a missing edge or choosing a197

potion color or stone that was not available, but due to a lack of understanding of a specific abstract198

principle. We compare our agent’s behavior to that of the Ideal Observer and the Random Heuristic.199

To put it formally, let t : 〈x, y, z〉 p−→ 〈w, v, u〉 be a transition that the agent has observed earlier in200

the episode, where x, y and z are the color, size and shape of the stone in question respectively, p is201

the color of the potion being applied to the stone, and w, v and u are the stone perceptual features202

after applying the potion on it. Note that 〈x, y, z〉 can be equal to 〈w, v, u〉, and we call that a ‘null203

transition’. Since there are no rotated graphs in the evaluation episodes, each feature dimension can204

only take one of two values. This implies that each stone can only be in one of 23 = 8 possible205

perceptual states. Figure 3 shows the results of each tested abstract principle.206

Consistency Here we count the number of times the agent applied a potion with color p on a stone207

with features 〈x, y, z〉 after observing that t is a null transition. In other words, we have evidence that208

the agent does not understand consistency if it applied a potion on a stone after observing that this209

particular potion color has no effect on a stone with the same visual features earlier in the episode.210

Parallelism In this test, we calculate the frequency in which the agent applied a potion with color211

p on a stone with features 〈a, b, z̄〉 for the first time after it observed that t is not a null transition,212

where z̄ is the other possible shape, assuming that p is responsible for transforming the shape of the213

stone. For example, suppose the agent observed a red potion transforming a large blue round stone to214

pointy. Subsequently in the episode, it should never apply a red potion to any pointy stone, including215

small or purple stones.216

Missing Edges The agent will show a lack of understanding of missing edges if it re-applied potion217

p on a stone with the same latent state as the stone with 〈x, y, z〉 after observing that t is a null218

transition as a result of a missing edge. In other words, we compute the frequency in which the agent219

attempted to transform a stone after ‘discovering’ that this color has no effect on the current latent220

state due to a missing edge in the graph. Note that the agent does not have access to this information,221

but must identify it by experimentation.222

Potion Pairs To test whether the agent demonstrate an understanding that potions come in pairs223

with opposite effects, we count the number of steps in which the agent made a null transition as a224

result of applying a potion color p̄ that it has not seen the effect of before, but has observed the effect225

of its opposite color previously in the episode (i.e. t was not a null transition). For example, an agent226

should know that yellow potions decreases the size of stones after only observing that an orange227

potion transformed a small stone to a large one (without having to see the effect of a yellow potion228

before). Therefore, it should never apply a yellow potion to a small stone as to avoid a null transition.229

3.3 Single-Unit Activations230

Inspired by single-cell recordings in neuroscience, where single neurons are usually shown to be231

selective for a specific abstract concept (Wallis et al., 2001), we probed our model to see if it will232

give rise to similar selectivity by analysing the activations of single units in the LSTM and that of the233

transformer (specifically, the output of the feature-wise max). Figure 5 shows the activations of a few234

units averaged across all steps in the 1000 evaluation episodes. The latent and perceptual state of the235

stone that the agent chose is recorded along with the activation of each unit in each timestep. Note236

that there are 8 latent states that correspond to the 8 vertices of the cube, and 8 possible perceptual237

states as previously mentioned in all of the held-out episodes. In the plots, we denote each state using238

a single number by binarizing its features. The top row shows the activations of some LSTM units239

while the bottom row shows activations recorded from the output the transformer.240

Interestingly, we found distinct functional specialization between the transformer and the LSTM units.241

Specifically, 32.8% of transformer units showed some understanding of the potion pairs abstract242

concept. Specifically, each of those units had a positive activation for one potion color and a negative243

activation for its opposite color (some samples shown in Figure 5), whereas no LSTM units did. The244

LSTM units, on the other hand, were mostly selective to stone-reward combinations. For instance,245
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(a) (b) (c) (d)

Figure 5: Top: LSTM units. (a) The activation of unit 100 as a function of the latent state. This
unit is only responsive when stones 1 or 3 are in latent state 8 (the state with the highest reward).
(b) The same unit as in (a) but as a function of the stone’s perceptual state. It implies that the unit
is responsive regardless of the stones’ perceptual features. (c) The activations of unit 232 has a
magnitude proportional to the reward of its corresponding state regardless of which stone is used.
Note that states {4, 6, 7} have a reward of +1 while the rewards of states {2, 3, 5} is −1. (d) The
activations of unit 252 are positive in the states with negative reward. Bottom: Transformer units. (a)
Unit 5 has a high activation when the agent choose the orange potion while a negative activation when
it chooses its opposite color. (b) Unit 15 is the opposite of (a). (c) Unit 40 is similarly responsive
when the agent chooses potion with a specific color (here turquoise) and has a negative response
for its opposite color. (d) Unit 56 is selective when the agent chooses an action that uses stone 2
regardless of the potion color.

several units were only responsive when a specific set of stones had either a positive or negative246

reward and an opposite activation otherwise irrespective of the actual value or the stones’ visual247

features. This also shows some notion of abstraction since the agent understands which stones it248

needs to deposit to the cauldron regardless of its exact representation.249

However, there were no single units that were responsive to a particular perceptual state or any single250

visual feature, nor were there units responsive to specific latent states except to the reward associated251

with that state. This led us to conjecture that the model reduces the cubic structure of the latent space252

to a two-dimensional form (i.e. a square), where each vertex correspond to one of the four possible253

rewards. This is inline with the observation that the agent is unable to handle bottlenecks in the254

underlying causal graph.255

4 Discussion and Future Work256

In this paper, we present an agent that is capable of meta-learning a set of abstract principles that257

underpins the complexity of the Alchemy benchmark. Further, we present a battery of analytical tools258

that can be used to test for specific pieces of abstract knowledge. Our design choices were motivated259

by the fact that strong deep-RL agents were unable to solve this task (Wang et al., 2021), thus we260

gradually simplified the problem in order to identify exactly where the bottleneck lies. To that end,261

we reached some conclusions that can guide researchers in searching for better suited architectures.262

Specifically, our experiments show that more efficient outer-loop exploration and an architecture for263

handling positional output are required. We show as well that researchers with a limited compute264

budget can use Symbolic Alchemy in order to analyze their deep-RL agents in a principled manner.265

Finally, we found evidence for single-unit representations of abstract variables such as potion pairs,266

and functional dissociation between ‘cortical’ and ‘hippocampal’ units which were modeled as an267

LSTM and transformer respectively. This connects with what’s been seen in recordings from rodent268

and primate cortex (Wallis et al., 2001; Samborska et al., 2021; Mansouri et al., 2020). This opens the269

way for future work to use meta-RL to carry out more detailed simulations of classic neuroscience270

experiments to better understand the mechanisms underlying the observed results.271
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A Appendix327

A.1 Action Type for Ideal Observer and Random Heuristic328

Figure 6: The type of action that the Ideal Observer take throughout the first and last trial. It can be
seen that similar to the A2C EPN agent, it adapts its strategy across the episode.

Figure 7: The type of action that the Random Heuristic take throughout the first and last trial. The
agent’s strategy is the same in both trials demonstrating an inability to adapt strategies.

A.2 Input, Output and Memory Representations329

The canonical input and output representation are described in detail in Wang et al. (2021). The330

canonical memory representation on the other hand stores each entry as [st, at, st+1] where st is the331

current input state, at is a one-hot encoding of the executed action at timestep t and st+1 is the state332

at the following timestep that contains the transformed stone.333
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