Under review as a conference paper at ICLR 2025

NEAR-CERTAIN REASONING: BRIDGING THE
FORMALIZATION GAP BETWEEN LANGUAGE MODELS
AND LOGICAL SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Robustness of reasoning remains a challenging problem for large language mod-
els, and addressing it is crucial for advancing the reliability and practical appli-
cation of Al-driven reasoning systems. We introduce Semantic Self-Verification
(SSV), a novel approach that addresses the key challenge in combining language
models with the rigor of logical solvers: to accurately formulate the reasoning
problem from natural language to the formal language of the solver. SSV pro-
duces strong abstract formalizations of problems by verifying and refining them
against concrete instantiations that are generated by the model and verified by the
solver. In addition to significantly advancing the overall reasoning accuracy over
the state-of-the-art, a key novelty that this approach presents is a feature of ver-
ification that has near-perfect precision over a significant coverage of cases, as
we demonstrate on open reasoning benchmarks. We propose such near-certain
reasoning as a new approach to reduce the need for manual verification in many
cases, taking us closer to more dependable and autonomous Al reasoning systems.

1 INTRODUCTION

Logical reasoning remains an open challenge for large language models (LLMs). While such models
have exhibited reasoning ability in various domains, the reasoning is often fragile and error-prone,
especially as tasks get more complex. Many recent approaches have made notable advancements in
this active area of research. Chain-of-thought (CoT) prompting has demonstrated how the quality of
reasoning can be improved by prompting the model to explicitly generate the steps of reasoning in
natural language before arriving at the final answer (Wei et al.| (2022)). Variants of CoT and other
related prompting and fine-tuning approaches have shown further improvements (Zhou et al.|(2023);
Wang et al.| (2023); [Yu et al.| (2024); Weng et al.| (2023); |Creswell et al.| (2023)). To address the
logical inconsistencies that can arise in such natural language based approaches, another interesting
direction is to incorporate LLMs with logical solvers or automated reasoning tools (Pan et al.[(2023));
Ye et al.|(2023)). Rather than directly attempting reasoning with the LLM, these approaches use the
LLM to infer a formal representation of the problem as a program that can be executed by the solver,
as such automated reasoning tools guarantee logically sound inference by construction.

While these approaches have demonstrated relative improvements in accuracy, we are still far from
achieving robustness and reliability of reasoning. For instance, Figure[Ia]shows an example reason-
ing problem from the Law School Admissions Test on analytical reasoning (Zhong et al.| (2022)).
On tasks of such complexity, the best reported accuracy, achieved by a solver-augmented system,
is only 43% (Pan et al.| (2023))). Such lack of reliability especially hinders the practical usability
of existing approaches: for example, if a system demonstrates 70% accuracy on benchmarks, then
in practice the user can only be 70% confident that the answer is correct on an arbitrary new task.
Hence the burden of verifying correctness is always on the user, which can be especially difficult and
error-prone for complex reasoning tasks. Therefore, having a reliable signal of correctness with high
confidence can be hugely beneficial to help reduce the overall manual effort and cost of verification.

In this work, we propose a new approach to addressing deductive reasoning problems called Se-
mantic Self-Verification (SSV), which offers two key benefits: (1) it improves the overall accu-
racy of reasoning significantly over SoTA, and (2) it provides a novel feature of verification that

Under review as a conference paper at ICLR 2025

technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
In a repair facility, there are exactly six techni- machines = [radios, televisions, VCRs]

A q repairs = Function('repairs’, technicians_sort, machines_sort, BoolSort()
cians: Stacy, Urma, Wim, Xena, Yolanda, and P ' (‘rep ’ - ’ - *)

Zane. Each technician repairs machines of at pre_conditions = []

X ' pre_conditions.append(Foral1([t], Sum([If(repairs(t, m), 1, @) for m in
least one of the following three types—radios, machines]) 3= 1))
televisions, and VCRs—and no other types. The
CONSTRAINT: Xena and exactly three other technicians repair radios.

following conditions apply: Xena and exactly pre_conditions.append(And(repairs(Xena, radios), Sum([If(And(t != Xena, repairs
P q q t, radios)), 1, @) for t in technicians]) == 3)
three other technicians repair radios. Yolanda (= RIS])
repairs both televisions and VCRs. Stacy does # CONSTRAINT: Yolanda repairs both televisions and VCRs.
. . pre_conditions.append(And(repairs(Yolanda, televisions), repairs(Yclanda,
not repair any type of machine that Yolanda re- VCRs)))

pairs. Zane repairs more types of machines than
. . . # CONSTRAINT: Stacy does not repair any type of machine that Yolanda repairs.
Yolanda repairs. Wim does not repair any type of pre_conditions.append(ForAll([m], Not{And(repairs(Stacy, m), repairs(Yolanda,
machine that Stacy repairs. Urma repairs exactly m)n
two types of machines. Which one of the follow- # CONSTRAINT: Zane repairs more types of machines than Yolanda repairs.

. . . . pre_conditions.append(Sum([Lf(repairs(Zane, m), 1, @) for m in machines]) > Sum
ing pairs of technicians could repair all and only ([If(repairs(Yolanda, m), 1, @) for m in machines]))

the same types of machines as each other?
CONSTRAINT: Wim does not repair any type of machine that Stacy repairs.

pre_conditions.append(Forall([m], Implies(repairs(Stacy, m), Not(repairs(Wim,
(A) Stacy & Urma mY))

(B) Urma & Yolanda
CONSTRAINT: Urma repairs exactly two types of machines.

(C) Urma & Xena pre_conditions.append(Sum([If(repairs(Urma, m), 1, @) for m in machines]) == 2)
(D) Wim & Xena # OPTION A:
(E) Xena & Yolanda if is_sat(And(Forfll([m], repairs(Stacy, m) == repairs(Urma, m)))): print('(A)")

OPTIONS B to E stated similarly ...

(a) Sample reasoning problem (b) Problem formalization as a Z3 solver program

Figure 1: Sample question from the Law School Admissions Test dataset on analytical reasoning
tasks (AR-LSAT), and its formalization as code in the Z3 theorem prover language

has near-perfect precision. In our problem formulation, in addition to producing an answer to
a given question, the system also indicates if it was able to verify the correctness of the answer:
Question — (Answer, isVerified). This problem formulation is similar to confidence estimation in
machine learning, where the system provides a score of confidence in addition to the answer. How-
ever, similar to selective classification (Chow|(1970)), in our case the isVerified indicator is a boolean
rather than continuous value: if true, it indicates a “near certain” confidence in the correctness of
the answer, and otherwise there is no specific indication of confidence. The goal is to provide a high
confidence verification mechanism that can be used to reduce the need for manual checking in the
cases where verification succeeds.

At its core, our approach addresses the key challenge in combining large language models with the
robust reasoning of logical solvers: the formulation of a problem from informal natural language
(NL) to the formal representation that is a program executable by the solver. For example, Figure
[TB] shows the formal representation of the problem expressed in natural language in Figure[Tal In
this case the formalization is expressed as code in the language of the Z3 SMT solver (de Moura &
Bjgrner| (2008))), which is a state-of-the-art industrial strength theorem prover that can produce the
correct answer when given these correctly-expressed formal constraints. The crucial task, therefore,
is for the LLLM to correctly translate the NL problem description to such a formal representation, and
this is where language models can make significant errors, especially for tasks of such complexity.

Hence the main goal of the SSV approach is to verify that the formal representation is true to the
original problem. This notion of verification is inspired by how humans often create formalizations
of problems expressed in natural language. For instance, when school students are solving math
word problems, they need to first create the right algebraic equation that represents the problem,
before they can solve it to get the answer. To ensure that their translation to an abstract equation
represents the problem correctly, they are encouraged to consider various concrete instances of the
problem and to check that the abstract equation consistently satisfies those instances so that it all
“makes sense”. In the same way, in the SSV approach, rather than just doing a single abstract
translation from NL to a formal representation, we also use the LLM to additionally generate various
concrete instantiations, or examples, of the general constraint, which are used as test cases to check
the correctness of the abstract formalization. Using the logical solver, we verify that each of these

Under review as a conference paper at ICLR 2025

instantiations is consistently satisfied by the formal representation. If all of these distinct semantic
relationships consistently hold, then verification passes.

We note that any notion of verification from natural to formal language cannot provide formal cor-
rectness guarantees, since natural language itself is inherently informal and often ambiguous. How-
ever, as we demonstrate empirically, a passing verification in our case indicates a near certain con-
fidence in the answer correctness since multiple independent semantic relationships are consistently
satisfied. In this respect, our approach is akin to a consensus-based ensemble as it is based on agree-
ment between multiple independent predictors (Zhou| (2012)). However, rather than all predictors
addressing the same task, we have a semantic ensemble of predictors that are addressing differ-
ent but semantically related tasks (making abstract and concrete inferences) and the logical solver
verifies the formal consistency between these. We also note that unlike standard proposer-verifier
approaches, in our case there does not exist a verifier that can check correctness of a proposed solu-
tion (a formalization). Thus our proposer model proposes both a solution and the test cases and the
verifier can only check consistency between these rather than correctness of the solution.

Moreover, having such a high precision verification mechanism also allows us to improve the for-
malization itself, in two different respects. Firstly, any failing instantiation can be used as concrete
guidance to refine the formalization further, as it can hint at potential errors in the formalization.
This is similar to error-based refinement in code generation techniques (Chen et al.|(2024)), except
that here we are guided by semantic errors inferred from the instantiations rather than just syntac-
tic execution errors in the code. Secondly, given a high precision verifier, we can also explore the
search space more extensively until we find a formalization that can pass verification. We show how
creating multiple candidate formalizations at different LLM temperatures and choosing the ones that
pass our verification yields a higher overall accuracy.

Our evaluation demonstrates how the SSV ap-
proach achieves a significant increase in over- 21.7% verified cases
all accuracy, as well as a near-perfect precision m
(or selective accuracy) on the verified cases. w
Figure [2] highlights the results for the most
challenging AR-LSAT law school tests dataset.
Though better than direct LLM inference and

Ssv

CoT, the accuracy of the best performing exist-
ing system (the solver-augmented LOGIC-LM 0
approach by [Pan et al.|(2023))) is at 43%, while °

Standard Col Logic-LM Human

Accuracy (%)

SSV achieves a significantly higher accuracy of

71.3%, which also surpasses the average human Figure 2: Towards near-perfect reasoning: SSV
performance. Moreover, the precision (or se- achieves new SoTA accuracy and 100% verifica-
lective accuracy) of the 21.7% of cases thatitis tjon precision on the AR-LSAT law school tests

able to verify is 100%. This means thata21.7% qataset (all systems using GPT-4 as base LLM).
reduction in manual verification effort can po-

tentially be made on tasks of such high complexity. In our full evaluation we also show higher
accuracy and coverage of verified cases on other open reasoning datasets.

In summary, we make the following contributions in this work: (1) We propose the problem for-
mulation of returning a boolean high-confidence verification indication in addition to the answer,
which can be used to reduce manual cost of verification. (2) We present the novel technique of se-
mantic self-verification, which uses concrete instantiations to verify the correctness of the problem
formalization. (3) We show how SSV can also improve the formalization itself through instantiation-
guided refinement and exploration of multiple candidate formalizations. (4) We present an extensive
evaluation on five open benchmarks that shows a significant increase in overall accuracy over SoTA,
as well as near-perfect selective accuracy over a significant coverage of verified cases.

2 INFERRING THE RIGHT FORMALIZATION: A MOTIVATING EXAMPLE

Let us consider the third constraint from the technicians problem in Figure [Tb] which requires that
“Stacy does not repair any type of machine that Yolanda repairs”. Figure [3]illustrates how the SSV
approach works in this case. A direct translation using the LLM may produce an incorrect abstract
formalization of this constraint as shown in Figure[3a] where the constraint is asserted only for some

Under review as a conference paper at ICLR 2025

Solver Solver
And(verifies Stac
repairs(Stacy, radios),

epairs And(verifies
Yolanda repairs(Stacy, radios),
repairs(Yolanda, TVs)) repairs TVs repairs(Yolanda, TVs))

Stacy an

Yolanda cannot

Not(And(
repairs(Stacy, TVs),

oth repair TVs” repairs(Yolanda, TVs)))
Solver Solver
verification fails verifies
“Stacy does not repair Exists([m], “Stacy does not repair BEE([m],
any type of machine Not(And(repairs(Stacy, any type of machine Not(And(repairs(Stacy,
that Yolanda repairs” m), repairs(Yolanda, m)))) that Yolanda repairs” m), repairs(Yolanda, m))))
General NL constraint Abstract formalization General NI constraint Abstract formalization
(a) Incorrect formalization (uses Exists quantifier) (b) Correct formalization (uses ForAll quantifier)

Figure 3: Semantic self-verification of a general constraint: one concrete instantiation fails for the
wrong formalization in (a), while both instantiations are verified for the correct formalization in (b)

machine rather than for all machines because the Exists quantifier is incorrectly used. However,
in the SSV approach, we use the LLM to also infer simple concrete instantiations, or examples, of
the general NL constraint. For instance, a concrete positive example is that Stacy repairs radios and
Yolanda repairs TVs. A concrete negative example is that Stacy and Yolanda cannot both repair TVs.
After inferring these examples in NL, we also use the LLM to translate them to formal expressions
in the language of the solver. We then use the logical solver to check that each of these expressions
is satisfiable under the abstract formalization. In Figure [3a] we see that the second instantiation fails
verification because the abstract formalization does not assert the condition for all machine types,
so it still allows for the possibility that Stacy and Yolanda can both repair TVs.

However, with the correct formalization in Figure [3b] that uses the ForAll quantifier, we see that
both instantiations pass the solver verification, since the abstract formalization correctly disallows
that any machine can be repaired by both Stacy and Yolanda. In the same way, SSV verifies all of
the constraints identified in the full program by inferring concrete instantiations for them using the
LLM. For instance, for the first constraint in Figure [Tb] it may infer a positive example that Xena,
Urma, Wim and Stacy repair radios, and a negative example that only Xena and Urma repair radios.

3 SEMANTIC SELF-VERIFICATION

In this section we describe the seman-

tic self-verification approach for solving Require: Q // the question
reasoning problems, which is based on Require: LLM // the language model
generating programs that are verified and Require: Solver // the logical solver

refined by concrete instantiations. The Require: Temperatures // LLM temperatures to try
main algorithm is shown in Figure [E] Require: MaxRepairs //maximum repair attempts
which shows the top-level flow and key 11 Avest ¢ &

components of the approach. As dis- 2: for each T' € Temperatures do

cussed before, in our problem formula- 3: P ¢ GenProgram(LLY, T’ Solver,Q)

tion, the algorithm takes as input a ques- 4: while P * & and under MaxRepairs do

tion (Q), such as the technicians problem 5: A < ExecuteProgram(Solver, P)

from Figure[Ta] and outputs a pair of val- 6 if Apest = < then
7.
8

ues which are the answer to the question Apest < A o
and a boolean flag that indicates if ver- 7 + GenInstantiations(LLM, T, P)

ification has succeeded. Figure [] also % Ipait < Verify(Solver,Z, P)

shows the other configuration parameters 10: if Itsi = @ and IsWellFormed(P) then
that the algorithm takes: the particular 11: return (A, True)

LLM and solver to use, as well as the 12t P < RepairProgram(LLM, 7, Q, P, Ita)

temperature values for the LLM to ex- 13: if Apest = & then

plore and the maximum number of repair 14: Abest ¢~ InferLLMAnswer(LLM, Q)
attempts. We shall first describe the gen- 15: return (Apest, False)

eral algorithm outline and then discuss
the key phases in more detail. Figure 4: The Semantic Self-Verification Algorithm

Under review as a conference paper at ICLR 2025

For each temperature value to be explored, the algorithm begins by using the LLM to infer a program
P that can be executed by the solver to answer the question Q, such as the program from Figure
for the technicians problem. If an executable program is successfully generated (P # &), then we
enter the verification loop (line 4). Here, we first execute the program using the solver to obtain
an answer. Then to perform verification, we first infer concrete instantiations Z, which are test
cases for each of the different constraints and options that the program P contains, such as the six
constraints and five options in the technicians program from Figure [Ib] We attempt to verify that
each of these instantiations is formally satisfiable using the solver and return any failing instantiation
Ity For example, for the third constraint in the technicians program, we may infer the instantiations
as in Figure [3a and obtain the failing instantiation “Stacy and Yolanda cannot both repair TVs”.
If there is no failing instantiation found (which would be the case in Figure and the program
P also satisfies some general well-formedness properties, then we return its answer A along with
verification success (line 11).

If verification fails, then we attempt to repair the program P using the LLM and any failing instanti-
ation found, as this instantiation can provide information about why the constraint that it instantiates
may be implemented incorrectly. For example, the failing instantiation from Figure[3ajmay guide the
LLM to infer that the condition should be asserted for all machine types using the forall quantifier as
shown in Figure[3b] After obtaining the repaired program, we repeat the verification loop. If none of
the answers could be verified at any of the temperatures in any repair attempts, then we exit the outer
loop at line 13. If no answer was found at all so far (i.e. no executable program could be inferred),
then we fall back to an answer by direct inference using the LLM with a chain-of-thought prompt,
as done in prior work (Pan et al.| (2023)). We then return the best answer along with verification
failure. We next discuss some of the key phases of the algorithm in more detail.

Program generation. The GenProgram function in Figure |4 uses the LLM to generate a program
that can be executed by the solver to address the given problem. A basic implementation of this
could just be to use a direct LLM prompt to generate the solver code. However, we also utilize some
effective techniques from the code generation literature to optimize the code quality. Firstly, we
use error-based refinement, where if the generated program produces any syntax or execution errors
then these are fed back to the LLM to repair the errors and obtain an executable program. This is
a common approach to code generation with LLMs (Chen et al.| (2024)), and has also been applied
to reasoning domains (Pan et al.| (2023))). Secondly, when direct code-generation fails to produce
executable code, we also attempt a compositional approach (Khot et al.| (2023); |Pourreza & Rafiei
(2024)), where the program is generated incrementally for each of the constraints identified from
the original problem. Such approaches provide for better code generation to obtain executable code
as compared to direct LLM prompting alone, which can produce code with syntax errors, etc. Our
compositional code generation and refinement prompts are shown in Appendix [A.T]

Semantic verification. While the above code generation approaches help to obtain an executable
solver program, they do not address any semantic issues that may be present in the program: whether
it accurately implements the intended constraints from the original problem. This is the main issue
that SSV addresses by first generating concrete instantiations of the various constraints specified
in the problem and then verifying that these instantiations are satisfied by the generated program.
The GenInstantiations function first parses the generated program P to extract each of the con-
straints as well as their NL descriptions. Our program generation phase creates programs with an
explicit structure Pj,;; + C... + Cn + O1 + ...O)y, where there is an initial definitions segment
P;,it, followed by the constraints and options that are demarcated in explicit segments along with
their NL descriptions stated as comments (e.g. “#CONSTRAINT:” and “#OPTION:” comments in
Figure[Ib). This structure is utilized to parse the constraints along with their respective NL descrip-
tions from the program. For each NL description of a constraint, we use the LLM to infer concrete
instantiations for it. Although in general we can generate an arbitrary number of instantiations for
a given constraint, in our particular implementation prompt we ask the LLM to generate one pos-
itive example (where the constraint is satisfied) and one negative example (where the constraint is
violated). Each of these examples is also translated as expressions in the language of the solver (as
shown in Figure [3). The prompt for generating instantiations is shown in Appendix[A.2]

Once we obtain the list of all instantiations Z, we next verify if each of them is consistent with
its respective constraint. For each instantiation, given the initial definitions code segment of the
program P;,;;, the constraint code C', and the instantiation expression I, the Verify function cre-
ates and executes a solver program P;,;; + C' + I that checks if the combination of the constraint

Under review as a conference paper at ICLR 2025

and instantiation is logically satisfiable. If verification fails, it returns the first failing instantiation
Ity € Z. Apart from checking the concrete instantiations, we also check some general logical
well-formedness properties of the program (IsWellFormed function). These include (1) structural
checks to ensure the program is generated according to the format described above, (2) that the
program returns some answer and does not return multiple answers, and (3) checks for degenerate
expressions in the program that are logical tautologies or vacuously true implications, which tend to
be redundancies or over-simplifications in the problem formalization.

Semantic program repair. If semantic verification fails and we have found a failing instantiation
Iy, the RepairProgram function uses the failing instantiation to attempt to repair the original
program P using the LLM if no answer has yet been found. This is similar to error-based program
repair with LLMs, except that in this case it is a semantic repair based on the instantiation inferred
by the LLM itself, rather than a syntactic or execution error in the program. In our repair prompt, we
provide the initial definitions code, the constraint code and its NL description, and the instantiation
expression that failed verification. We prompt the LLM to first analyse if the error is in the initial
definitions, the constraint code or the instantiation itself (in a chain of thought fashion) and then to
infer the corrected code. The prompt used for semantic program repair is shown in Appendix[A.3]

4 EVALUATION

We present an evaluation of our SSV technique on existing open benchmarks for logical reasoning.
The main goal of our evaluation is to determine the effectiveness of SSV with respect to two key
aspects: (1) Improving the general accuracy of reasoning over existing baselines and (2) Providing a
high quality verification mechanism: the correctness of verification (precision) and how many cases
can be verified (coverage).

Datasets. We use five common datasets for evaluating logical reasoning tasks. To help in a direct
comparison with the relevant baselines, we use the same datasets that were used inPan et al.[(2023).
All datasets exist in a standard multiple-choice format, where each task comprises of a problem
statement, a question, and potential answer options, as in the example shown in Figure

PrOntoQA is a dataset of synthetic deductive reasoning tasks for testing LLMs (Saparov & He
(2023))). We use the most challenging version of the fictional characters dataset as identified in that
work, which are tasks requiring 5 hops of reasoning. This is a total of 500 tasks in the test set with 2
answer options (True or False). ProofWriter is a widely used dataset for logical reasoning (Tafjord
et al.[(2021)) which, in contrast to PrOntoQA, has problems that are framed in a more naturalistic
language. We use the open-world assumption subset with the most challenging tasks requiring 5
hops of reasoning. We use the same set used in [Pan et al.| (2023)), where the test set contains 600
tasks that have 3 answer options (True, False or Unknown). FOLIO is an expert-crafted dataset
designed for logical reasoning (Han et al.|(2022))). The problems are closely aligned with real-world
knowledge and are also phrased in highly natural language, requiring complex first-order logic rea-
soning for their solutions. We evaluate using the entire FOLIO test set, which contains 204 examples
that have 3 answer options (True, False or Unknown). LogDeduction is another reasoning dataset
from the BigBench collaborative benchmark (Srivastava et al.| (2023)). The tasks mainly involve
deducing the sequence order of objects based on a given set of arbitrary conditions. We evaluate
using the complete test set, which consists of 300 tasks, each with 3,5 or 7 options for answers.
AR-LSAT is a dataset that is created from a compilation of all analytical reasoning questions from
the Law School Admission Test (LSAT) administered between 1991 and 2016 (Zhong et al.| (2022)).
This is a particularly challenging dataset, where even state-of-the-art models have only achieved
performance that is a little better than random guessing (Pan et al.| (2023); [Liang et al.|(2023))). The
test set consists of 230 questions with each question having 5 possible answer options.

Baselines. We compare our technique against three baselines, which represent approaches of rea-
soning using the LLM alone, as well as the combination of formal logical solvers with LLMs. Each
of these baselines and our own system is parametric in the LLM used, and in our experiments we
investigate all systems with both the GPT-4 model (a current best general LLM for reasoning) as
well as the weaker GPT-3.5 model from Open Al We use the baselines and their results for these
models as reported in|Pan et al.|(2023). The baselines are as follows.

Under review as a conference paper at ICLR 2025

Dataset General Accuracy SSV Verification
Standard CoT Logic-LM SSv Coverage Precision
AR-LSAT 333 35.1 43.0 71.3 21.7 94.0 (100.0)
FOLIO 69.1 70.6 78.9 80.9 25.0 98.0 (100.0)
LogDeduction 71.3 75.3 87.6 89.7 43.7 100.0
PrOntoQA 77.4 98.8 83.2 100.0 66.0 100.0
ProofWriter 52.7 68.1 79.7 98.0 75.2 98.7 (100.0)

Figure 5: General accuracy of SSV approach and baselines, and the precision/coverage of SSV
verification. Results shown are for GPT-4 used as the underlying model for all systems. Precision
values in brackets in green are the actual values in the corrected datasets.

Standard is the direct approach of prompting the LLM, which leverages in-context learning to
directly answer the question. CoT is the Chain-of-Thought technique (Wei et al.| (2022))), which
adopts a step-by-step problem-solving approach, using the LLM to first generate explanations before
providing the final answer. Logic-LM is a state-of-the-art technique for combining LLMs with
formal logical solvers to improve the robustness of reasoning (Pan et al. (2023)). The LLM is
prompted to produce a representation of the problem as a formal solver program, which is then
executed to produce the final answer. Finally, SSV is the implementation of our semantic self-
verification technique, as shown in Figure 4| In our concrete implementation, we use the Z3 SMT
solver as the logical solver (de Moura & Bjgrner (2008)). The exact same prompts are used for
both models, where 1-4 few shot examples were chosen from across the training datasets for each
prompt (prompts shown in the Appendices). In the full implementation we set the SSV algorithm
parameters MaxRepairs = 2 and Temperatures = [0,0.3,0.4,0.5] (exploring the lowest and
mid-range temperatures), and also report on variations of these parameters in the ablation analysis.

4.1 RESULTS

Main results The main results are shown in Figure [5] where all systems have been run with the
GPT-4 model as the underlying LLM. The figure shows both the general accuracy of all systems
as well as the precision and coverage of verification provided by our SSV technique. The general
accuracy refers to the percentage of correct answers achieved by the system among all cases in the
dataset. For SSV verification, the precision refers to the percentage of cases where the answer is
correct among all cases which the SSV technique signalled as verified. The coverage refers to the
percentage of cases that are signalled as verified by SSV among all cases in the dataset. We make
the following key observations from these results:

1. SSV outperforms all baselines in terms of general accuracy. Our technique achieves a higher gen-
eral accuracy over all baseline systems across all datasets. We especially note the drastic increase of
28.3% over the current best Logic-LM system on the most difficult AR-LSAT dataset. This shows
the strong effectiveness of our technique in producing robust problem formalizations in contrast to
just a direct LLM translation from the natural language description to the solver program.

2. SSV verification shows perfect empirical precision across all datasets. With the underlying GPT-
4 model, we have found that the precision of verification with SSV is 100% on all of the datasets.
Interestingly, on three of the datasets (AR-LSAT, FOLIO and ProofWriter), our verification mecha-
nism actually discovered a few erroneous cases that we have checked were assigned wrong answers
in the datasets. However, for consistent comparison to all baselines, in Figure [5] we have stated all
numbers according to the original datasets (with the slightly lower precision values due to the incor-
rectly labelled cases). We provide explanations for the few correction cases in Appendix [A.4] (for
the AR-LSAT cases, we were able to also verify that our corrections are consistent with the original
test question answers El) Such empirically perfect precision on these datasets demonstrates the very
high level of confidence that SSV verification can provide for complex reasoning problems.

3. SSV verification shows significant coverage across all datasets. Although the precision is very
high, we know that SSV verification does not always succeed. However, we find that the coverage

'https://img.cracklsat.net/Isat/pt/pt80.pdf

https://img.cracklsat.net/lsat/pt/pt80.pdf

Under review as a conference paper at ICLR 2025

80 80

70 — 70 ‘/.—_o"‘—"
&0 /—’ 60 // —e—Accuracy

50 50

40 10
—+—Program

30 30 Accuracy

20 — 20
—a—\erification
10 10

Coverage

0 1 2 3 4 0 0.3 0.4 0.5 0.6
Semantic repair attempts Temperatures (cumulative)

Figure 6: Semantic repair attempts and temperature variations on AR-LSAT

is significant across all datasets, with the lowest coverage of 21.7% on the most difficult AR-LSAT
dataset. As expected, we find the coverage increases on the relatively easier datasets, with a ver-
ification coverage of up to 75.2% on ProofWriter. This significant coverage of verification shows
that the SSV approach can help in avoiding manual human verification in a significant proportion of
cases to reduce overall cost and effort.

Effect of semantic repair and temperature exploration Figure[6illustrates the effects of varying
the number of semantic repair attempts (MaxRepairs) and temperatures (Temperatures) on the
AR-LSAT dataset. We examined the effects on the three metrics of overall accuracy, the program
accuracy (how often program generation was successful rather than fall-back to direct LLM answer),
and the coverage of cases where verification succeeds.

In total there was a 6.1% gain in accuracy with semantic repairs, and 10.0% with all temperature
explorations. The total gain in verification coverage was 5.2% for repair and more than doubled for
temperature explorations, with a gain of 12.2% over the initial 10.9% coverage. In general, we found
that for both repair attempts and temperature explorations, the gains were initially higher and then
started to diminish, for both accuracy and verification coverage. For repair in particular, there was
no improvement in any metric after 3 attempts, while temperature explorations continued to show
some gains up to temperature 0.6. The gap between program accuracy and overall accuracy also
reduced as repair attempts and temperature explorations increased (dropping from 9.8% to 5.2% on
average), showing that program generation starts contributing more with these features.

Dataset General Accuracy SSV Verification
Standard CoT Logic-LM SSv Coverage | Precision
AR-LSAT 20.3 17.3 26.4 28.3 0 -
FOLIO 45.1 57.4 62.7 59.3 1.5 100.0
LogDeduction 40.0 423 65.7 48.3 0 -
PrOntoQA 474 67.8 61.0 72.8 4.2 95.2
ProofWriter 35.5 49.2 58.3 72.5 16.2 94.8 (95.9)

Figure 7: Results for GPT-3.5 model: general accuracy of all systems and SSV precision/coverage.
Precision values in brackets in green are the actual values in the corrected datasets.

Evaluation on GPT-3.5 We also evaluated our system and all baselines using GPT-3.5 as the
underlying LLM. The results are shown in Figure[7] Firstly, we note that while the general accuracy
of all systems drops significantly with this weaker model, our SSV system still performs best overall,
with an average accuracy of 56.2%. However, Logic-LM performs better than SSV on FOLIO and
LogDeduction (this could be partly due to differences in the code generation quality for the different
solver languages that Logic-LM uses for these datasets).

Secondly, we observe that while the coverage of SSV verification also drops significantly, with two
of the more difficult datasets (AR-LSAT and LogDeduction) having no coverage at all, the precision
of SSV is very minimally affected. On the three datasets where there is coverage, we still see an
average precision of 97%. This demonstrates an important property of reliability of SSV verification:

Under review as a conference paper at ICLR 2025

even for weaker models, if verification succeeds then it is still very reliable (and much more reliable
than general accuracy), though it may succeed much less often. In practical terms, such reliability
could even allow one to adopt a tiered strategy to optimize costs: trying weaker (cheaper) models
for tasks first and fall-back on more expensive models if verification fails.

Runtime performance The median runtime per task was 152 seconds (first quartile: 108s, third
quartile: 267s) and mean 249s over a sample of 250 cases. More details and a discussion of potential
optimizations to the SSV algorithm can be found in Appendix

5 LIMITATIONS AND FUTURE DIRECTIONS

Since natural language is informal and ambiguous, any verification approach with NL specifications
cannot guarantee full correctness. Although SSV verification provides near-perfect empirical pre-
cision (100% with GPT-4), we discuss here the kinds of errors that are possible in SSV, which are
illustrated by the few failing cases we found with GPT-3.5. In total, we found one case in PrOntoQA
and four cases in Proof Writer that passed verification with an incorrect answer.

1. Concrete instantiations are insufficient. Since the approach is based on verification with respect
to concrete examples (test cases), these may not test all aspects of the general constraint, especially
all corner cases. Two questions failed for this reason with GPT-3.5. For example, in one case there
were two separate conditions “Gary is nice” and “Gary is kind” in the original problem that were
conflated to use the same predicate “is_kind(Gary)” in the formalization. If a concrete instantiation
were generated that asserted “Gary is nice but not kind” then this would have detected the error.

2. Concrete instantiation and program are both mutually consistent but wrong. This is the unlikely
case where both the program and the test case have the same error and therefore pass verification.
We found only one such case which was a rather confusingly trivial error: for some reason the
constraint “Fiona is quiet” was translated as its negation “Not(is_quiet(Fiona))” in both the program
and the concrete instantiation independently generated by GPT-3.5.

3. Missing or superfluous constraints. In such cases the LLM may miss adding some constraints or
add new constraints to the program that are not specified in the problem. Since our approach depends
on the constraints being explicitly demarcated and parsed from the LLM-generated program, any
errors by the LLM here can lead to potential failures in the verification. Two of the GPT-3.5 failure
cases were caused by superfluous constraints being added. For example, in one case, the condition
that was to be checked in the question was itself added as a constraint in the program.

In general, as we have found in our evaluation, such errors are rare and more likely in weaker LLMs,
and can be expected to reduce further as LLMs mature. Errors such as (1) and (2) can also be reduced
with a more exhaustive examples inference strategy, as in our implementation we took the simple
approach of generating only 1 positive and 1 negative example per constraint. Class (3) errors stem
from issues in the very basic structural consistency that is expected that the constraints expressed in
the program match those from the original problem. While such basic consistency checks are less of
an issue in mature LLMs such as GPT-4, one can also consider training simple specialized modules
to check these core structural properties with high accuracy.

Another interesting direction is reasoning with missing background knowledge, which SSV does not
handle as it focuses on pure deductive reasoning. Using LLMs to infer missing information before
applying SSV can both enhance inference and also highlight missing assumptions to the user.

6 RELATED WORK

Reasoning with LLMs. Improving the robustness of reasoning in large language models is a very
active area of research, and many recent approaches have made significant advancements. One
direction of work has been to fine-tune or train specialized models that show improved reasoning
ability (Tafjord et al.|(2022);|Clark et al.|(2020); |Yang et al.|(2022)). Another direction has been to
develop sophisticated prompting strategies to elicit better reasoning from LLMs. Chain-of-thought
prompting (Wei et al.[(2022)) has shown how the quality of reasoning can be improved by prompting
the model to explicitly generate the steps of reasoning in natural language before arriving at the final
answer. Other examples of prompting approaches include chain-of-thought with self-consistency

Under review as a conference paper at ICLR 2025

(Wang et al.| (2023)), analogical reasoning (Yu et al.[(2024))), and various modular approaches to
address complex problems by decomposition to simpler sub-problems (Zhou et al.|(2023)); | Khot et al.
(2023)); |Creswell et al.[(2023))). While these approaches show relative improvements in accuracy,
the reasoning is still based on informal natural language and is prone to errors made by the LLMs
in the steps of reasoning. In contrast, we follow the approach of off-loading the reasoning task to
a formal solver that can guarantee correctness of the reasoning steps, and our particular focus is on
the key challenge of ensuring that the correct formalization of the problem is sent to the solver.

Tool-augmented reasoning. Integrating LLMs with specialized tools for performing various tasks
is becoming increasingly common (Schick et al.| (2023)). This approach has also been adopted to
improve the reasoning quality by augmenting the LLM with logical solvers or automated reasoning
tools (Pan et al.|(2023); Ye et al.|(2023); |[Nye et al.[(2021))). The key challenge with these approaches
is to ensure that the LLM correctly translates the reasoning problem from NL to the formal language
of the solver. This is the main focus of our work, where we show how verification and refinement
with respect to concrete instantiations generated by the LLM can improve the translation accuracy
and also provide a near-perfect precision of verification. Tool-augmented approaches have also
been explored in the related areas of planning (Kambhampati et al|(2024); |Guan et al.| (2024))) and
auto-formalization (Wu et al.| (2022); Jiang et al.| (2023); |He-Yueya et al.| (2023))), where informal
mathematical proofs are translated to formal specifications defined in theorem provers like Isabelle
(Paulson| (1994)) and Lean (de Moura et al.| (2015))). While our focus in this work has been on the
general problem of logical reasoning, the core principle of verifying and refining formalizations with
respect to concrete instantiations is also potentially applicable in these other domains.

Self-verification approaches. Many related works have also explored the notion of self-verification
by LLMs (Weng et al.| (2023)); [Madaan et al.| (2023); Xie et al.| (2023); [Ling et al.| (2023)); Miao
et al.| (2024)). The general idea is that using the LLM to inspect and verify its own reasoning can
show improvements, though in some domains self-critiquing has also shown diminished perfor-
mance (Valmeekam et al.| (2023)). Our approach of verification is different: instead of asking the
LLM to verify the abstract chain of reasoning, we only ask it to generate concrete examples of the
general constraints in the problem. The task of verification is then totally on the logical solver to
formally check that these examples are consistent with the abstract formalization. Thus apart from
not relying purely on the LLM for verification, we also avoid the more complex task of verifying an
abstract chain of reasoning which can itself be highly error-prone. We instead perform both abstract
and concrete inference and check consistency between them. We have shown how this approach
can provide a very high precision verification, as opposed to the above approaches which provide
relative improvements in accuracy. Our approach of inferring concrete instantiations is also similar
to automated test case generation and verification in code generation approaches (Chen et al.[(2024);
Schafer et al.| (2024)). While our instantiations are similar to test cases, in general they can be ar-
bitrary implications, and our focus is on logical expressions rather than code. Our approach also
leverages compositionality as we infer instantiations for independent constraints identified from the
problem, which can be seen as analogous to unit test generation in the code generation domain.

7 CONCLUSION

We have presented the Semantic Self-Verification approach, which substantially advances the robust-
ness of Al reasoning systems by inferring verified problem formalizations through a novel combina-
tion of LLMs and logical solvers. Apart from boosting overall accuracy beyond the state-of-the-art,
this approach introduces a novel verification feature that has near-perfect empirical precision.

As LLMs continue to evolve at a rapid pace, their reasoning abilities are becoming increasingly
powerful. However, this general trend of improvement focuses on relative gains in answer accuracy
on benchmarks, and when such benchmarks become saturated, more complex ones are introduced.
While this ongoing progress is crucial, it does not inherently address the need for confidence of
correctness on any arbitrary reasoning task. This is a key contribution of the SSV approach, which
provides a complementary verification mechanism that is orthogonal to the underlying reasoning
power of the particular LLM, and can hence be similarly applicable to more powerful models. As
LLMs grow more capable, such a focus on near-certain reasoning through precise verification would
be an important complimentary direction to general accuracy improvement—especially as we strive
towards Al systems capable of super-human levels of reasoning.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. In ICLR. OpenReview.net, 2024. URL http://dblp.uni-trier.de/db/
conf/iclr/iclr2024.html#ChenLSz24.

C. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information
Theory, 16(1):41-46, 1970. doi: 10.1109/TIT.1970.1054406.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over lan-
guage. In Christian Bessiere (ed.), IJCAI pp. 3882-3890. ijcai.org, 2020. URL http:
//dblp.uni-trier.de/db/conf/ijcai/ijcai2020.html#ClarkTR20. Sched-
uled for July 2020, Yokohama, Japan, postponed due to the Corona pandemic.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In ICLR. OpenReview.net, 2023. URL
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#CreswellSH23.

Leonardo Mendong¢a de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In C. R. Ramakr-
ishnan and Jakob Rehof (eds.), TACAS, volume 4963 of Lecture Notes in Computer Science, pp.
337-340. Springer, 2008. ISBN 978-3-540-78799-0. URL http://dblp.uni-trier.de/
db/conf/tacas/tacas2008.html#MouraB08.

Leonardo Mendonga de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middel-
dorp (eds.), CADE, volume 9195 of Lecture Notes in Computer Science, pp. 378-388. Springer,
2015. ISBN 978-3-319-21400-9. URL http://dblp.uni-trier.de/db/conf/cade/
cade2015.html#MouraKADR15.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, NIPS *23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy
Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian
Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq R.
Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir
Radev. Folio: Natural language reasoning with first-order logic. CoRR, abs/2209.00840,
2022. URL http://dblp.uni-trier.de/db/journals/corr/corr2209.html#
abs—2209-00840.

Joy He-Yueya, Gabriel Poesia, Rose Wang, and Noah Goodman. Solving math word problems
by combining language models with symbolic solvers. In The 3rd Workshop on Mathematical
Reasoning and Al at NeurIPS’23, 2023. URL https://openreview.net/forum?id=
m7/ml4acWQi.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In /CLR. OpenReview.net, 2023. URL http://dblp.
uni-trier.de/db/conf/iclr/iclr2023.html#JiangWZLOLJLW2 3.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks. In Forty-first International Conference on Machine Learning, 2024.
URLhttps://openreview.net/forum?id=Th8JPEmH4 z.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
In ICLR. OpenReview.net, 2023. URL http://dblp.uni-trier.de/db/conf/iclr/
1clr2023.html#KhotTFFOCS23L

11

http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#ChenLSZ24
http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#ChenLSZ24
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2020.html#ClarkTR20
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2020.html#ClarkTR20
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#CreswellSH23
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-00840
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-00840
https://openreview.net/forum?id=m7m14acWQi
https://openreview.net/forum?id=m7m14acWQi
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#JiangWZL0LJLW23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#JiangWZL0LJLW23
https://openreview.net/forum?id=Th8JPEmH4z
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#KhotTFF0CS23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#KhotTFF0CS23

Under review as a conference paper at ICLR 2025

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana
Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yiiksekgoniil, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tat-
sunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen
Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. Trans.
Mach. Learn. Res., 2023, 2023. URL http://dblp.uni-trier.de/db/journals/
tmlr/tmlr2023.html#LiangBLTSYZNWKN2 3.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao
Su. Deductive verification of chain-of-thought reasoning. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), NeurIPS, 2023. URL http:
//dblp.uni-trier.de/db/conf/nips/neurips2023.html#LingFLHLMS23.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=5S37h0erQLB.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using LLMs to zero-shot check their
own step-by-step reasoning. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=pTHfApDakA.

Maxwell 1. Nye, Michael Henry Tessler, Joshua B. Tenenbaum, and Brenden M. Lake. Improv-
ing coherence and consistency in neural sequence models with dual-system, neuro-symbolic
reasoning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), NeurIPS, pp. 25192-25204, 2021. URL http://dblp.
uni-trier.de/db/conf/nips/neurips2021.html#NyeTTL21.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-Im: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), EMNLP (Findings), pp. 3806-3824. Association for Computational
Linguistics, 2023. ISBN 979-8-89176-061-5. URL |http://dblp.uni-trier.de/db/
conf/emnlp/emnlp2023f.html#PanAWW2 3l

Lawrence C Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. ISBN 3540582444.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: decomposed in-context learning of text-to-
sql with self-correction. In Proceedings of the 37th International Conference on Neural Informa-
tion Processing Systems, NIPS *23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In ICLR. OpenReview.net, 2023. URL http://dblp.uni-trier.de/
db/conf/iclr/iclr2023.html#Saparov023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, M. Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools, 2 2023. URL https://www.semanticscholar.org/paper/
53d128ea815bcc0526856eb5a9c42cc97/cb3ba’l.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. /[EEE Transactions on Software Engineering,
50(1):85-105, 2024. doi: 10.1109/TSE.2023.3334955.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, Agnieszka Kluska,

12

http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#LiangBLTSYZNWKN23
http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#LiangBLTSYZNWKN23
http://dblp.uni-trier.de/db/conf/nips/neurips2023.html#LingFLHLMS23
http://dblp.uni-trier.de/db/conf/nips/neurips2023.html#LingFLHLMS23
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=pTHfApDakA
http://dblp.uni-trier.de/db/conf/nips/neurips2021.html#NyeTTL21
http://dblp.uni-trier.de/db/conf/nips/neurips2021.html#NyeTTL21
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#PanAWW23
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#PanAWW23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#Saparov023
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#Saparov023
https://www.semanticscholar.org/paper/53d128ea815bcc0526856eb5a9c42cc977cb36a7
https://www.semanticscholar.org/paper/53d128ea815bcc0526856eb5a9c42cc977cb36a7

Under review as a conference paper at ICLR 2025

Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders An-
dreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmiiller, Andrew M. Dai, Andrew
La, Andrew K. Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Bartlomiej Bojanowski, Batuhan Ozyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramirez, Chandan Singh,
Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
Daniel Mosegui Gonzdlez, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliz-
abeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut
Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan J. Jerzak, Ethan Kim, Eunice En-
gefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martinez-Plumed,
Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Ger-
ard de Melo, German Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang,
Gonzalo Jaimovitch-Lépez, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah
Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schiitze,
Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernindez Fisac, James B. Si-
mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosin-
ski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse H.
Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jorg Frohberg, Jos Rozen,
José Herndndez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakr-
ishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras
Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
Luheng He, Luis Oliveros Col6n, Luke Metz, Liitfi Kerem Senel, Maarten Bosma, Maarten
Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan,
Marco Marelli, Marco Maru, Maria José Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli,
Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Matyds Schubert, Medina
Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
Michael 1. Ivanitskiy, Michael Starritt, Michael Strube, Michal Swedrowski, Michele Bevilac-
qua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T.,
Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff,
Nitish Shirish Keskar, Niveditha Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Milkowski, Piyush
Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaél Milliere, Rhythm
Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Ro-
han Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui
Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang,

13

Under review as a conference paper at ICLR 2025

Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman,
Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwa-
tra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian
Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivas-
tava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shub-
ham Toshniwal, Shyam Upadhyay, Shyamolima (Shammie) Debnath, Siamak Shakeri, Simon
Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene,
Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kir-
itchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,
Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkiny-
ili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala
Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai,
Vikas Raunak, Vinay V. Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Sriku-
mar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong,
Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yu-
fang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and
Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. Trans. Mach. Learn. Res., 2023, 2023. URL http://dblp.uni-trier.de/db/
journals/tmlr/tmlr2023.html#SrivastavaRRSAF23.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), ACL/IJCNLP (Findings), volume ACL/IJCNLP 2021 of Findings of ACL, pp.
3621-3634. Association for Computational Linguistics, 2021. ISBN 978-1-954085-54-1. URL
http://dblp.uni-trier.de/db/conf/acl/acl2021f.html#TafjordDC21.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Entailer: Answering questions with faith-
ful and truthful chains of reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), EMNLP, pp. 2078-2093. Association for Computational Linguistics, 2022. URL http:
//dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#TafjordMC22.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language mod-
els really improve by self-critiquing their own plans? In NeurIPS 2023 Foundation Mod-
els for Decision Making Workshop, 2023. URL |https://openreview.net/forum?id=
gGQOfkybOKL.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In /ICLR. OpenReview.net, 2023. URL http://dblp.uni-trier.de/db/conf/
1clr/i1clr2023.html#0002WSLCNCZ2 3.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), NeurIPS, 2022. ISBN 9781713871088. URL http://dblp.uni-trier.de/db/
conf/nips/neurips2022.html#Wei0SBIXCLZ22.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), EMNLP (Findings), pp. 2550-2575. Association for Computational
Linguistics, 2023. ISBN 979-8-89176-061-5. URL |http://dblp.uni-trier.de/db/
conf/emnlp/emnlp2023f.html#WengZX0HLSLZ23!l

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jam-
nik, and Christian Szegedy. Autoformalization with large language models. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), NeurlPS,
2022. ISBN 9781713871088. URL http://dblp.uni-trier.de/db/conf/nips/
neurips2022.html#WuJLRSJS22,

14

http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#SrivastavaRRSAF23
http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#SrivastavaRRSAF23
http://dblp.uni-trier.de/db/conf/acl/acl2021f.html#TafjordDC21
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#TafjordMC22
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#TafjordMC22
https://openreview.net/forum?id=gGQfkyb0KL
https://openreview.net/forum?id=gGQfkyb0KL
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#0002WSLCNCZ23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#0002WSLCNCZ23
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#WengZX0HLSLZ23
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#WengZX0HLSLZ23
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#WuJLRSJS22
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#WuJLRSJS22

Under review as a conference paper at ICLR 2025

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Bw82hwg503

Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-guided
search. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), EMNLP, pp. 89—105. As-
sociation for Computational Linguistics, 2022. URL http://dblp.uni-trier.de/db/
conf/emnlp/emnlp2022.html#Yang0C22

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatLM: Satisfiability-aided language models
using declarative prompting. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=TqW5PL1Poi.

Junchi Yu, Ran He, and Zhitao Ying. Thought propagation: an analogical approach to complex
reasoning with large language models. In /CLR. OpenReview.net, 2024. URL http://dblp.
uni-trier.de/db/conf/iclr/iclr2024.html#Yu0Y24l

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai Wang, Jian
Yin, Ming Zhou, and Nan Duan. Analytical reasoning of text. In Marine Carpuat, Marie-
Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Findings of the Association for
Computational Linguistics: NAACL 2022, pp. 2306-2319, Seattle, United States, July 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.177. URL
https://aclanthology.org/2022.findings—-naacl.177.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting en-
ables complex reasoning in large language models. In JCLR. OpenReview.net, 2023. URL http:
//dblp.uni-trier.de/db/conf/iclr/iclr2023.html#ZhouSHWSOSCBLC23.

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, Ist edi-
tion, 2012. ISBN 1439830037.

A APPENDIX

A.1 CoOMPOSITIONAL CODE GENERATION AND REFINEMENT PROMPTS
A.1.1 PROBLEM DECOMPOSITION PROMPT

Given a problem description, please decompose it into an initial
context and a list of independent constraints. If there is no
explicit initial context given and only constraints are given,
then just state "None" for initial context. Some examples are
given below.

Problem:

The bald eagle eats the cow. The bald eagle is red. The bald
eagle needs the cow. The bear needs the rabbit. The cow is kind.
The cow is red. The cow needs the bald eagle. The rabbit eats

the bear. The rabbit eats the cow. The rabbit sees the cow. If
something needs the bald eagle then it needs the rabbit. If the
bald eagle is nice and the bald eagle is young then the bald eagle

sees the cow. If the rabbit needs the cow then the cow sees the
rabbit. If something eats the cow and the cow is nice then it
needs the bald eagle. If something needs the rabbit then it is
nice. If something sees the rabbit then it is red. If something
needs the bald eagle then it eats the bald eagle.

Initial Context:

None

Constraints:

The bald eagle eats the cow.

15

https://openreview.net/forum?id=Bw82hwg5Q3
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#Yang0C22
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#Yang0C22
https://openreview.net/forum?id=TqW5PL1Poi
http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#Yu0Y24
http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#Yu0Y24
https://aclanthology.org/2022.findings-naacl.177
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#ZhouSHWS0SCBLC23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#ZhouSHWS0SCBLC23

Under review as a conference paper at ICLR 2025

#4#4#

The bald eagle is red.

#H#4

The bald eagle needs the cow.
#H#4

The bear needs the rabbit.
#4#4#

The cow is kind.

#i#4#

The cow is red.

#H#4

The cow needs the bald eagle.
#4#4#

The rabbit eats the bear.

#i#4#

The rabbit eats the cow.

#H#4

The rabbit sees the cow.

#4#4#

If something needs the bald eagle then it needs the rabbit.

#H#

If the bald eagle is nice and the bald eagle is young then the
bald eagle sees the cow.

#H4#

If the rabbit needs the cow then the cow sees the rabbit.

#H4

If something eats the cow and the cow is nice then it needs the
bald eagle.

#H4

If something needs the rabbit then it is nice.

#H#

If something sees the rabbit then it is red.

#H#

If something needs the bald eagle then it eats the bald eagle.
Problem:

On Tuesday Vladimir and Wendy each eat exactly four separate
meals: Dbreakfast, lunch, dinner, and a snack. The following

is all that is known about what they eat during that day: At no
meal does Vladimir eat the same kind of food as Wendy. Neither
of them eats the same kind of food more than once during the
day. For breakfast, each eats exactly one of the following: hot
cakes, poached eggs, or omelet. For lunch, each eats exactly
one of the following: fish, hot cakes, macaroni, or omelet. For
dinner, each eats exactly one of the following: fish, hot cakes,
macaroni, or omelet. For a snack, each eats exactly one of the
following: fish or omelet. Wendy eats an omelet for lunch.
Initial Context:

On Tuesday Vladimir and Wendy each eat exactly four separate
meals: Dbreakfast, lunch, dinner, and a snack.

Constraints:

At no meal does Vladimir eat the same kind of food as Wendy.

#44

Neither of them eats the same kind of food more than once during

the day.

###

For breakfast, each eats exactly one of the following: hot cakes,
poached eggs, or omelet.

###

16

Under review as a conference paper at ICLR 2025

For lunch, each eats exactly one of the following: fish, hot
cakes, macaroni, or omelet.

#4#

For dinner, each eats exactly one of the following: fish, hot
cakes, macaroni, or omelet.

#H4#

For a snack, each eats exactly one of the following: fish or
omelet.

#H#

Wendy eats an omelet for lunch.

Problem:

In a repair facility there are exactly six technicians: Stacy,

Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types-radios,
televisions, and VCRs—-and no other types. The following
conditions apply: Xena and exactly three other technicians repair
radios. Yolanda repairs both televisions and VCRs. Stacy does
not repair any type of machine that Yolanda repairs. Zane repairs
more types of machines than Yolanda repairs. Wim does not repair
any type of machine that Stacy repairs. Urma repairs exactly two
types of machines.

Initial Context:

In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types-radios,
televisions, and VCRs-and no other types.

Constraints:

Xena and exactly three other technicians repair radios.

#H#

Yolanda repairs both televisions and VCRs.

#44

Stacy does not repair any type of machine that Yolanda repairs.
#H##

Zane repairs more types of machines than Yolanda repairs.

#H#

Wim does not repair any type of machine that Stacy repairs.

#44

Urma repairs exactly two types of machines.

A.1.2 INCREMENTAL CODE GENERATION PROMPT

Given a z3 program that models a particular problem and a new
constraint described in natural language, please provide the

z3 code to augment the program with the new constraint. Please
provide only the z3 program code in the output and no other
markdown formatting or explanatory text.

ExistingProgram:

On Tuesday Vladimir and Wendy each eat exactly four separate
meals: Dbreakfast, lunch, dinner, and a snack.

from z3 import =

people_sort, (Vladimir, Wendy) = EnumSort ('people’, [’'Vladimir’,
"Wendy’ 1)

meals_sort, (breakfast, lunch, dinner, snack) = EnumSort ('meals’,
["breakfast’, ’lunch’, ’'dinner’, ’'snack’])

foods_sort, (fish, hot_cakes, macaroni, omelet, poached.eggs) =

17

Under review as a conference paper at ICLR 2025

EnumSort (' foods’, [’fish’, ’"hot_cakes’, ’'macaroni’, ’'omelet’,
"poached_eggs’])

people = [Vladimir, Wendy]

meals = [breakfast, lunch, dinner, snack]

foods = [fish, hot_cakes, macaroni, omelet, poached_eggs]
eats = Function(’eats’, people_sort, meals_sort, foods_sort)

pre_conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food
as Wendy.

m = Const(’'m’, meals_sort)

pre_conditions.append(ForAll ([m], eats(Vliadimir, m) != eats (Wendy,
m)))

NewConstraint:

Neither of them eats the same kind of food more than once during
the day.

NewConstraintCode:

m = Const(’'m’, meals_sort)

p = Const ('p’, people_sort)

f = Const (’f’, foods_sort)

pre_conditions.append (ForAll ([p, f], Sum([eats(p, m) == f for m in
meals]) <= 1))
ExistingProgram:
In a repair facility there are exactly six technicians: Stacy,

Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types|radios,
televisions, and VCRs|and no other types.

from z3 import =*

technicians_sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)

= EnumSort (' technicians’, [’Stacy’, ’'Urma’, 'Wim’, ’Xena’,
"Yolanda’, ’Zane’])

machines_sort, (radios, televisions, VCRs) = EnumSort ('machines’,
["radios’, ’'televisions’, ’'VCRs’])

technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]

machines = [radios, televisions, VCRs]

repairs = Function (’repairs’, technicians_sort, machines_sort,
BoolSort ())

pre_conditions = []

t = Const(’t’, technicians_sort)
pre_conditions.append (ForAll ([t], Sum([repairs(t, m) for m in
machines]) >= 1))

NewConstraint:
Xena and exactly three other technicians repair radios.
NewConstraintCode:

t = Const(’t’, technicians_sort)
pre_conditions.append (And (repairs (Xena, radios), Sum([And(t !=
Xena, repairs(t, radios)) for t in technicians]) == 3))

18

Under review as a conference paper at ICLR 2025

A.1.3 OPTIONS CODE GENERATION PROMPT

Given a problem with multiple answer options and an existing
z3 program that models the problem, please provide the z3 code
that checks each option and prints the correct answer. For
each option, first create the check_property for the option by
substituting the option values appropriately in the question
statement, as well as a full comment describing what the
check_property is stating. Then use only the following custom

functions (is_unsat (), is_sat () and is_valid()) to check if the
check_property is unsatisfiable, satisfiable or wvalid (depending
on the question). Please structure the code with comments

exactly as shown in the few shot examples below. Please provide
only the options code and its comments in the output (not the

full program), and no other surrounding markdown formatting or
explanatory text. Please create independently executable code

for each option (even if the option is not satisfiable) and do not
share code between different options.

def is_unsat (option_constraints) :
solver = Solver ()

solver.add (pre_conditions)
solver.add (option_constraints)
return solver.check () == unsat

def is_sat (option_constraints):
solver = Solver ()

solver.add (pre_conditions)
return solver.check() == sat

def is_valid(option_constraints):

return is_sat (option_constraints) and is_unsat (Not (option_constraints))

>>> Problem:

On Tuesday Vladimir and Wendy each eat exactly four separate
meals: Dbreakfast, lunch, dinner, and a snack.

>>> ExistingProgram:

from z3 import =*

people_sort, (Vliadimir, Wendy) = EnumSort (’people’, [’Vladimir’,
"Wendy’ 1)
meals_sort, (breakfast, lunch, dinner, snack) = EnumSort ('meals’,

["breakfast’, ’'lunch’, ’"dinner’, ’'snack’])

foods_sort, (fish, hot_cakes, macaroni, omelet, poached_eggs) =
EnumSort (’ foods’, [’fish’, ’"hot_cakes’, ’'macaroni’, ’'omelet’,
"poached_eggs’])

people = [Vladimir, Wendy]

meals = [breakfast, lunch, dinner, snack]

foods = [fish, hot_cakes, macaroni, omelet, poached_eggs]
eats = Function (’eats’, people_sort, meals_sort, foods_sort)

pre_conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food

as Wendy.
m = Const(’'m’, meals_sort)
pre_conditions.append (ForAll ([m], eats(Vladimir, m) != eats (Wendy,

19

Under review as a conference paper at ICLR 2025

m)))

CONSTRAINT: Neither of them eats the same kind of food more than
once during the day.

m = Const(’'m’, meals_sort)

p = Const ('p’, people_sort)

f = Const(’'f’, foods_sort)

pre_conditions.append (ForAll ([p, f], Sum([eats(p, m) == f for m in
meals]) <= 1))

>>> Question:

Vladimir cannot eat which one of the following foods?
>>> Options:

(A) fish
(B) hot cakes
(C) macaroni

(D) omelet

(E) poached eggs
>>> OptionsCode:

CHECK TYPE: question says "cannot" so will check for validity
using is_valid() to ensure that the negated statement is true in
all possible models.

OPTION A:
CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: fish.

m = Const(’'m’, meals_sort)

check_property = ForAll([m], eats(Vliadimir, m) != fish)
if is_valid(check property): print(’ (A)’)

OPTION B:

CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: hot cakes.

m = Const('m’, meals_sort)

check _property = ForAll ([m], eats(Vladimir, m) != hot_cakes)
if is_valid(check property): print(’ (B)’)

OPTION C:

CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: macaroni.

m = Const(’'m’, meals_sort)

check property = ForAll([m], eats(Vliadimir, m) != macaroni)
if is_valid(check_property): print(’ (C)’)

OPTION D:

CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: omelet.

m = Const(’'m’, meals_sort)
check property = ForAll ([m], eats(Vladimir, m) != omelet)
if is_valid(check property): print(’ (D)’)

OPTION E:
CHECK PROPERTY: Vladimir cannot eat which one of the following

20

Under review as a conference paper at ICLR 2025

foods? ANSWER: poached eggs.

m = Const(’'m’, meals_sort)
check property = ForAll ([m], eats(Vliadimir, m) != poached_eggs)
if is_valid(check_property): print(’ (E)’)

>>> Problem:

In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
equipment of at least one of the following three types|radios,
televisions, and VCRs|and no other types.

>>> ExistingProgram:

from z3 import =*

technicians_sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)

= EnumSort (' technicians’, [’Stacy’, 'Urma’, 'Wim’, ’'Xena’,
"Yolanda’, ’Zane’])

equipment_sort, (radios, televisions, VCRs) =
EnumSort (' equipment’, [’radios’, ’'televisions’, ’'VCRs’])

technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
equipment = [radios, televisions, VCRs]

repairs = Function(’repairs’, technicians_sort, equipment_sort,
BoolSort ())

pre_conditions = []

t = Const(’t’, technicians_sort)
pre_conditions.append(ForAll ([t], Sum([repairs(t, e) for e in
equipment]) >= 1))

CONSTRAINT: Xena and exactly three other technicians repair
radios.

t = Const(’t’, technicians_sort)
pre_conditions.append (And (repairs (Xena, radios), Sum([And(t !=
Xena, repairs(t, radios)) for t in technicians]) == 3))

>>> Question:

Which one of the following can be a complete and accurate list of
the technicians that repair televisions?

>>> Options:

(A) Stacy, Wim, Zane

(B) Urma, Wim, Xena, Yolanda

(C) Xena, Yolanda

(D) Stacy, Urma, Wim, Xena, Yolanda, Zane
(E) Urma

>>> OptionsCode:

CHECK TYPE: question says "can be" so will check for satisfiable
using is_sat ()

OPTION A:

CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Stacy, Wim and Zane.

e = Const(’'e’, equipment_sort)

check property = And(repairs(Stacy, televisions),

repairs (Wim, televisions), repairs(Wim, televisions),

21

Under review as a conference paper at ICLR 2025

Not (repairs (Urma, televisions)), Not (repairs (Xena, televisions)),
Not (repairs (Yolanda, televisions)))
if is_sat (check_property): print(’ (A)’)

OPTION B:

CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Urma, Wim, Xena and Yolanda.

e = Const('e’, equipment_sort)

check_property = And(repairs (Urma, televisions), repairs (Wim,
televisions), repairs(Xena, televisions), repairs(Yolanda,
televisions), Not (repairs(Stacy, televisions)), Not (repairs(Zane,
televisions)))

if is_sat (check_property): print(’ (B)’)

OPTION C:

CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Xena and Yolanda.

e = Const('e’, equipment_sort)

check_property = And(repairs (Xena, televisions), repairs(Yolanda,
televisions), Not (repairs(Stacy, televisions)), Not (repairs (Urma,
televisions)), Not (repairs (Wim, televisions)), Not (repairs(Zane,
televisions)))

if is_sat (check_property): print(’ (C)’)

OPTION D:

CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Stacy, Urma, Wim, Xena, Yolanda and Zane.

e = Const('e’, equipment_sort)

check property = And(repairs(Stacy, televisions), repairs (Urma,
televisions), repairs (Wim, televisions), repairs (Xena,
televisions), repairs(Yolanda, televisions), repairs(Zane,
televisions))

if is_sat (check_property): print(’ (D)’)

OPTION E:

CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Urma.

e = Const('e’, equipment_sort)

check_property = And(repairs(Urma, televisions),

Not (repairs (Stacy, televisions)), Not (repairs(Wim, televisions)),
Not (repairs (Xena, televisions)), Not (repairs(Yolanda,
televisions)), Not (repairs (Zane, televisions)))

if is_sat (check_property): print(’ (E)’)

A.1.4 ERROR-BASED CODE REFINEMENT PROMPT

We are given a z3 program and an error message obtained from
running it. First, please provide an analysis that investigates
what may be the problem in the program that may be causing the
error. Then, based on this analysis, please provide the corrected
program where the issue is fixed - please make sure to retain any

22

Under review as a conference paper at ICLR 2025

comments from the original code in the repaired code (especially
the "CONSTRAINT", "QUESTION" or "OPTION" comments which demarcate
special code segments - please do not remove, change or add

any new such comments). If there is a general issue in the
formulation, then please consider an alternative reformulation

so that the program can execute without errors. A couple of
sample cases are shown below for illustration. Please produce
output in exactly the format shown in these samples, with the ">>>
CorrectedProgram:" label clearly demarcating the corrected code,
and do not use any other markdown formatting.

>>> ExistingProgram:

from z3 import =

people_sort, (Vliadimir, Wendy) = EnumSort (' people’, [’Vladimir’,
"Wendy’ 1)
meals_sort, (breakfast, lunch, dinner, snack) = EnumSort ('meals’,

["breakfast’, ’'lunch’, ’'dinner’, ’'snack’])

foods_sort, (fish, hot_cakes, macaroni, omelet, poached._eggs) =
EnumSort (' foods’, [’fish’, ’"hot_cakes’, ’'macaroni’, ’'omelet’,
"poached_eggs’])

people = [Vladimir, Wendy]

meals = [breakfast, lunch, dinner, snack]

foods = [fish, hot_cakes, macaroni, omelet, poached_eggs]
eats = Function(’eats’, people_sort, meals_sort, foods_sort)

pre_conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food

as Wendy.

pre_conditions.append (ForAll ([m], eats(Vliadimir, m) != eats (Wendy,
m)))

>>> ErrorMessage:

"NameError: name 'm’ is not defined"

>>> ProblemDiscussion:

This program defines three enumerations for people, meals, and
foods. It then specifies that Vladimir and Wendy are people, and
lists the available meals and foods. It also creates a function
eats which represents the food each person eats at each meal.
Finally, it tries to add a constraint to ensure that Vladimir and
Wendy do not eat the same kind of food at any meal. However, as
the error message indicates, the constraint code uses a variable
"m’ that has not been previously declared. Hence the correct fix
to this issue would be to first explicitly declare the wvariable
"m’ as a new const of meal_sort.

>>> CorrectedProgram:

from z3 import =

people_sort, (Vliadimir, Wendy) = EnumSort (' people’, [’'Vladimir’,
"Wendy’ 1)
meals_sort, (breakfast, lunch, dinner, snack) = EnumSort ('meals’,

["breakfast’, ’'lunch’, ’"dinner’, ’'snack’])

foods_sort, (fish, hot_cakes, macaroni, omelet, poached_eggs) =
EnumSort (/! foods’, [’ fish’, ’"hot_cakes’, ’'macaroni’, ’'omelet’,
"poached_eggs’])

people = [Vladimir, Wendy]

meals = [breakfast, lunch, dinner, snack]

foods = [fish, hot_cakes, macaroni, omelet, poached_eggs]
eats = Function (’eats’, people_sort, meals_sort, foods_sort)

23

Under review as a conference paper at ICLR 2025

pre_conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food

as Wendy.

m = Const(’'m’, meals_sort)

pre_conditions.append (ForAll ([m], eats(Vladimir, m) != eats (Wendy,
m)))

A.2 INSTANTIATION GENERATION PROMPT

Given a problem scenario, some Z3 initialization code that
defines the data structures, and a list of constraints, please
provide positive and negative examples for each constraint. Each
positive example should have a description and an expression of
concrete assignments that satisfy the constraint, while each
negative example should have a description and an expression

of concrete assignments that contradict the constraint. If a
constraint or its examples cannot be expressed by the given

data structures or definitions, then please state "NONE" for the
example description and "pass" for the assignments code. Please
provide the completion to the prompt in exactly the same format as
the example given below.

>>> Scenario:

None

>>> InitializationCode:

from z3 import =

creature_sort = DeclareSort ('creature’)

Stella = Const (’'Stella’, creature_sort)

Jay = Const (’Jay’, creature_sort)

is_tumpus = Function(’is_tumpus’, creature_sort, BoolSort ())
is_rompus = Function(’is_rompus’, creature_sort, BoolSort())
is_numpus = Function (’is_numpus’, creature_sort, BoolSort())
is_yumpus = Function (’is_yumpus’, creature_sort, BoolSort ())
is_zumpus = Function (’is_zumpus’, creature_sort, BoolSort())
is_impus = Function(’is_impus’, creature_sort, BoolSort())
is_dumpus = Function (’is_dumpus’, creature_sort, BoolSort ())
is_vumpus = Function (’is_vumpus’, creature_sort, BoolSort())
is_jompus = Function(’is_jompus’, creature_sort, BoolSort())
is_wumpus = Function (’is_wumpus’, creature_sort, BoolSort ())
is_angry = Function(’is_angry’, creature_sort, BoolSort ())
isbright = Function(’is_bright’, creature_sort, BoolSort())
is_luminous = Function (’is_luminous’, creature_sort, BoolSort())
is_transparent = Function (’is_transparent’, creature_sort,
BoolSort ())

isbitter = Function(’is_bitter’, creature_sort, BoolSort())
is_red Function (’is_red’, creature_sort, BoolSort ())

is_happy = Function(’is_happy’, creature_sort, BoolSort())
is_large = Function(’is_large’, creature_sort, BoolSort ())

pre_conditions = []

>>> Constraints:

Each dumpus is a vumpus.
#H4#

Vumpuses are bright.

#H#

24

Under review as a conference paper at ICLR 2025

Every vumpus 1is a zumpus.

#H4#

Zumpuses are not luminous.

>>> ConstraintExamples:

Constraint:

Each dumpus is a vumpus.

PositiveExampleDescription:

Stella is a dumpus and is also a vumpus.
PositiveExampleCode:

And (is_dumpus (Stella) == True, is_vumpus (Stella) == True)
NegativeExampleDescription:

Stella is a dumpus but is not a vumpus.
NegativeExampleCode:

And (is_dumpus (Stella) == True, is_vumpus (Stella) == False)
Constraint:

Vumpuses are bright.

PositiveExampleDescription:

Jay 1is a vumpus and is bright.

PositiveExampleCode:

And (is_vumpus (Jay) == True, is_bright (Jay) == True)
NegativeExampleDescription:

Jay is a vumpus and is not bright.

NegativeExampleCode:

And (is_vumpus (Jay) == True, is_bright (Jay) == False)
Constraint:

Every vumpus 1is a zumpus.

PositiveExampleDescription:

Jay 1is a vumpus and a zumpus.

PositiveExampleCode:

And (is_vumpus (Jay) == True, is_zumpus (Jay) == True)
NegativeExampleDescription:

Jay is a vumpus but not a zumpus.

NegativeExampleCode:

And (is_vumpus (Jay) == True, is_zumpus (Jay) == False)
Constraint:

Zumpuses are not luminous.

PositiveExampleDescription:

Stella is a zumpus and is not luminous.
PositiveExampleCode:

And (is_zumpus (Stella) == True, is_luminous(Stella) == False)
NegativeExampleDescription:

Stella is a zumpus and is luminous.

NegativeExampleCode:

And (is_zumpus (Stella) == True, is_luminous (Stella) == True)
>>> Scenario:

On Tuesday Vladimir and Wendy each eat exactly two separate meals:
breakfast and dinner.

>>> InitializationCode:

from z3 import «*

people_sort, (Vladimir, Wendy) = EnumSort ('people’, [’Vladimir’,
"Wendy’ 1)
meals_sort, (breakfast, dinner) = EnumSort ('meals’, [’'breakfast’,
"dinner’])

foods_sort, (fish, hot_cakes, macaroni, omelet, poached.eggs) =
EnumSort (' foods’, [’fish’, ’"hot_cakes’, ’'macaroni’, ’'omelet’,
"poached_eggs’])

25

Under review as a conference paper at ICLR 2025

people = [Vladimir, Wendy]

meals = [breakfast, dinner]

foods = [fish, hot_cakes, macaroni, omelet, poached_eggs]
eats = Function (’eats’, people_sort, meals_sort, foods_sort)
pre_conditions = []

>>> Constraints:

At no meal does Vladimir eat the same kind of food as Wendy.

#H#

Neither of them eats the same kind of food more than once during
the day.

#H#

For breakfast, each eats hot cakes.

>>> ConstraintExamples:

Constraint:

At no meal does Vladimir eat the same kind of food as Wendy.
PositiveExampleDescription:

Vladimir and Wendy eat different foods at each meal: Vladimir
has fish for breakfast while Wendy has hot cakes, and for dinner,
Vladimir eats macaroni while Wendy has omelet.
PositiveExampleCode:

And (eats (Vladimir, breakfast) == fish, eats(Wendy, breakfast) ==
hot_cakes,
eats (Vladimir, dinner) == macaroni, eats(Wendy, dinner) == omelet)

NegativeExampleDescription:

At dinner, both Vladimir and Wendy eat the same food, macaroni.
NegativeExampleCode:

And (eats (Vladimir, dinner) == macaroni, eats(Wendy, dinner) ==
macaroni)

Constraint:

Neither of them eats the same kind of food more than once during
the day.

PositiveExampleDescription:

Vladimir eats different foods for breakfast and dinner: fish for
breakfast and hot cakes for dinner. Wendy also eats different
foods for both meals: hot cakes for breakfast and omelet for
dinner.

PositiveExampleCode:

And (eats (Vladimir, breakfast) == fish, eats(Vliadimir, dinner) ==
hot_cakes,

eats (Wendy, breakfast) == hot_cakes, eats(Wendy, dinner) ==
omelet)

NegativeExampleDescription:

Vladimir eats fish for both breakfast and dinner.
NegativeExampleCode:

And (eats (Vladimir, breakfast) == fish, eats(Vladimir, dinner) ==
fish)

Constraint:

For breakfast, each eats hot cakes.

PositiveExampleDescription:

Vladimir and Wendy both eat hot cakes for breakfast.
PositiveExampleCode:

And(eats (Vladimir, breakfast) == hot_cakes, eats (Wendy, breakfast)
== hot_cakes)

NegativeExampleDescription:

Vladimir eats macaroni for breakfast.

NegativeExampleCode:

eats (Vladimir, breakfast) == macaroni

26

Under review as a conference paper at ICLR 2025

>>> Scenario:

In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types|radios,
televisions, and VCRs|and no other types.

>>> InitializationCode:

from z3 import =*

technicians_sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)

= EnumSort (' technicians’, [’Stacy’, ’'Urma’, 'Wim’, ’Xena’,
"Yolanda’, ’Zane’])

machines_sort, (radios, televisions, VCRs) = EnumSort (’machines’,
["radios’, ’'televisions’, ’'VCRs’])

technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]

machines = [radios, televisions, VCRs]

repairs = Function (’repairs’, technicians_sort, machines_sort,
BoolSort ())

pre_conditions = []

t = Const(’t’, technicians_sort)
pre_conditions.append (ForAll ([t], Sum([repairs(t, m) for m in
machines]) >= 1))

>>> Constraints:

Xena and exactly three other technicians repair radios.
#44

Stacy needs help repairing VCRs.

#H4#

Urma and Zane repair the same type of machine.

>>> ConstraintExamples:

Constraint:

Xena and exactly three other technicians repair radios.
PositiveExampleDescription:

Only Xena, Wim, Yolanda, and Zane repair radios and no one else.
PositiveExampleCode:

And (repairs(Stacy, radios) == False, repairs(Urma, radios) ==
False, repairs(Wim, radios) == True, repairs (Xena, radios) ==
True, repairs(Yolanda, radios) == True, repairs(Zane, radios) ==
True)

NegativeExampleDescription:
Only Xena and Yolanda repair radios and no one else.
NegativeExampleCode:

And (repairs (Stacy, radios) == False, repairs(Urma, radios) ==
False, repairs(Wim, radios) == False, repairs(Xena, radios) ==
True, repairs(Yolanda, radios) == True, repairs(Zane, radios) ==
False)

Constraint:

Stacy needs help repairing VCRs.
PositiveExampleDescription:

NONE

PositiveExampleCode:

pass

NegativeExampleDescription:

NONE

NegativeExampleCode:

pass

Constraint:

Urma and Zane repair the same type of machine.

27

Under review as a conference paper at ICLR 2025

PositiveExampleDescription:

Urma and Zane both repair VCRs.

PositiveExampleCode:

And (repairs (Urma, VCRs) == True, repairs(Zane, VCRs) == True)
NegativeExampleDescription:

Urma repairs televisions, while Zane repairs radios.
NegativeExampleCode:

And (repairs (Urma, televisions) == True, repairs(Zane, radios) ==
True)

A.3 SEMANTIC REPAIR PROMPT

We are given a scenario description, some initial z3 code that
sets up basic definitions, a constraint in natural language,

and a code snippet that implements that constraint. We are also
given some code that should implement a positive example to the
constraint, which should be satisfiable under that constraint, but
it is not. First, please provide an analysis that investigates
what may be the problem in either the initial code, the constraint
code or the example. Then, based on this analysis, please repair
the relevant code segments (initial code, constraint code, or
example code) so that the positive example becomes satisfiable
(state '"NONE’ if no repair is required to a code segment). If
multiple segments are incorrect due to a general formulation
problem, then please reformulate the whole solution approach in
the initial code and produce appropriate code for all segments. A
couple of sample cases are shown below for illustration. Please
produce output in exactly the format shown in these samples, and
do not use any other markdown formatting.

Scenario:

On Tuesday Vladimir and Wendy each eat exactly four separate
meals: Dbreakfast, lunch, dinner, and a snack.

InitialCode:

from z3 import =*

people_sort, (Vladimir, Wendy) = EnumSort ('people’, [’Vladimir’,
"Wendy' 1)

meals_sort, (breakfast, lunch, dinner, snack) = EnumSort ('meals’,

["breakfast’, ’'lunch’, ’"dinner’, ’'snack’])

foods_sort, (fish, hot_cakes, macaroni, omelet, poached_eggs) =
EnumSort (’ foods’, [’fish’, ’"hot_cakes’, ’'macaroni’, ’'omelet’,
"poached_eggs’])

people = [Vladimir, Wendy]

meals = [breakfast, lunch, dinner, snack]

foods = [fish, hot_cakes, macaroni, omelet, poached_eggs]
eats = Function (’eats’, people_sort, meals_sort, foods_sort)

pre_conditions = []

ConstraintDescription:
At some meal Vladimir eats the same kind of food as Wendy.

ConstraintCode:

m = Const(’'m’, meals_sort)

pre_conditions.append(ForAll ([m], eats(Vliadimir, m) != eats (Wendy,
m)))

PositiveExampleCode:

28

Under review as a conference paper at ICLR 2025

And (eats (Vladimir, breakfast) == fish, eats (Wendy, breakfast) ==
fish)

ProblemDiscussion:

The scenario describes foods that Vladimir and Wendy eat at
various meals during the day. The initial code defines the

main data structures and the eats function which indicates the
food each person eats on every meal. The constraint requires
that there is at least one meal where they both eat the same
food. The constraint code asserts that for all meals, the food
that Vladimir eats is different from what Wendy eats. But this
contradicts the intended constraint. The positive example code
states that at breakfast, both Vladimir and Wendy eat fish, and
this is consistent with the requirements of the constraint. Hence
there is no issue in the initial code and the example code, but
the constraint code wrongly implements the constraint. It should
be repaired to assert that for some meal, both Vladimir and Wendy
eat the same food.

RepairedInitialCode:

NONE

RepairedConstraintCode:

m = Const(’'m’, meals_sort)

pre_conditions.append (Exists([m], eats(Vliadimir, m) == eats (Wendy,
m)))

RepairedPositiveExampleCode:

NONE

Scenario:

In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types|radios,
televisions, and VCRs|and no other types.

InitialCode:

from z3 import =

technicians_sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)

= EnumSort (' technicians’, [’Stacy’, 'Urma’, 'Wim’, ’'Xena’,
"Yolanda’, ’Zane’])

machines_sort, (radios, televisions, VCRs) = EnumSort ('machines’,
["radios’, ’'televisions’, ’'VCRs’])

technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]

machines = [radios, televisions, VCRs]

repairs = Function(’repairs’, technicians_sort, machines_sort,
BoolSort ())

pre_conditions = []

t = Const(’t’, technicians_sort)
pre_conditions.append (ForAll ([t], Sum([repairs(t, m) for m in
machines]) <= 1))

ConstraintDescription:

Urma repairs radios and VCRs

ConstraintCode:

pre_conditions.append (And(repairs (Urma, radios), repairs (Urma,
VCRs)))

PositiveExampleCode:

And (repairs (Urma, radios) == True, repairs(Urma, VCRs) == True)
ProblemDiscussion:

The scenario describes types of machines that technicians repair
at a repair facility, where each technician repairs at least
one type of machine. The initial code defines the main data

29

Under review as a conference paper at ICLR 2025

structures and the repairs function which indicates the type of
machine repaired by each technician. It also adds the general
condition that each technician can repair at most one type of
machine, which is an incorret interpretation of the scenario
statement that each technician must repair AT LEAST one type of
machine. The constraint requires that Urma repairs both VCRs and
radios. The constraint code correctly asserts this requirement,
and the positive example code also states this correctly. Hence
there is no issue in the constraint code and the example code, but
the initial code wrongly prevents any technician from repairing

two kinds of machines. It should be repaired to assert that each
technician must repair at least one kind of machine.
RepairedInitial Code:

from z3 import =

technicians_sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)
= EnumSort (' technicians’, [’Stacy’, ’'Urma’, 'Wim’, ’Xena’,
"Yolanda’, ’Zane’])

machines_sort, (radios, televisions, VCRs) = EnumSort ('machines’,
["radios’, ’'televisions’, ’'VCRs’])

technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]

machines = [radios, televisions, VCRs]

repairs = Function(’repairs’, technicians_sort, machines_sort,
BoolSort ())

pre_conditions = []

t = Const(’t’, technicians_sort)
pre_conditions.append (ForAll ([t], Sum([repairs(t, m) for m in
machines]) >= 1))

RepairedConstraintCode:

NONE

RepairedPositiveExampleCode:

NONE

A.4 DATASET CORRECTION CASES

We found a small number of cases in three of the datasets where the answers have been labelled
incorrectly. Our SSV system (with GPT-4 base model) detected these cases in its verification, and
we describe the corrections that should be made to the datasets below.

A.4.1 AR-LSAT CORRECTIONS

Three cases in the AR-LSAT dataset were verified correctly by our system, but were labelled with
the wrong answers in the dataset. These three cases are ar_lsat_201612_3-G_2_6 (correct answer
should be D but incorrectly labelled C), ar_Isat 201612 _3-G_1_4 (correct answer should be E but
incorrectly labelled A) and ar_Isat_ 201612_3-G_2_8 (correct answer should be B but is incorrectly
labelled A). For all three of these cases, we were able to check the reasoning and also that the
answers in the original source LSAT Test (https://img.cracklsat.net/Isat/pt/pt80.pdf) are consistent
with the answers that were generated by our system. Hence we submit that these are errors in the
AR-LSAT dataset collection process.

A.4.2 FOLIO CORRECTIONS

In the FOLIO dataset, we found one case that was correctly verified by our system, but we find is
labelled with the wrong answer in the dataset. This is case FOLIO _dev_27:

All aliens are extraterrestrial. If someone is from Mars, then they are aliens. No extraterrestrial is
human. Everyone from Earth is a human. Marvin cannot be from Earth and from Mars. If Marvin is

30

https://img.cracklsat.net/lsat/pt/pt80.pdf

Under review as a conference paper at ICLR 2025

not from Earth, then Marvin is an extraterrestrial. Based on the above information, is the following
statement true, false, or uncertain? Marvin is an alien.

We submit that the correct answer is C (unknown) but it is labelled B (false) in the dataset. Reason-
ing: If Marvin is from Earth, he is not an alien. If Marvin is not from Earth: If he is from Mars, he
is an alien, otherwise, we cannot be certain he is an alien. Hence both outcomes are possible.

We suspect the error in the dataset may stem from an incorrect formalization of the problem in
the original FOLIO dataset source:https://github.com/Yale-LILY/FOLIO/blob/main/data/v0.0/folio-
validation.txt. In this source we see that the constraint “Marvin cannot be from Earth and from Mars”
is incorrectly formalized as = F'romEarth(marvin) A —=FromM ars(marvin) in first order logic,
which asserts that Marvin is neither from Earth nor from Mars.

A.4.3 PROOFWRITER CORRECTIONS

In the ProofWriter dataset, we found 6 cases that were correctly verified by our system, but we find
are labelled with the wrong answer in the dataset. In all 6 cases, the answers in the dataset have been
labelled as unknown when they can be proven to be either true or false as we show below.

ProofWriter RelNeg-OWA-D5-450_Q22 (Correct answer should be B (false), but labelled C (un-
known)).

The bald eagle chases the lion. The bald eagle is not green. The bald eagle is round. The bald
eagle likes the lion. The dog is red. The lion does not chase the dog. The lion is round. The lion
is not young. The rabbit chases the dog. The rabbit eats the lion. If something chases the dog then
it likes the rabbit. If something is red and it chases the lion then the lion likes the bald eagle. If
something is big then it chases the rabbit. If something is round and it chases the bald eagle then
the bald eagle does not like the dog. If something likes the lion then it is red. If something is red
and round then it does not chase the bald eagle. If something is red and young then it chases the
bald eagle. If something likes the bald eagle and the bald eagle chases the lion then it likes the lion.
If something eats the bald eagle then the bald eagle is red. Based on the above information, is the
following statement true, false, or unknown? The bald eagle is young.

Reasoning:

From Fact 4 and Rule 5:

The bald eagle likes the lion. Therefore, the bald eagle is red.
From Fact 3:

The bald eagle is round. Applying Rule 6 to the bald eagle:

The bald eagle is red and round. Therefore, the bald eagle does not chase itself. Assuming the bald
eagle is young:

The bald eagle is red and young. Applying Rule 7 to the bald eagle:

The bald eagle is red and young. Therefore, the bald eagle chases itself. Contradiction:
From step 3, the bald eagle does not chase itself.

From step 5, the bald eagle chases itself.

This is a contradiction.

Conclusion: The assumption that the bald eagle is young leads to a contradiction. Therefore, the
bald eagle cannot be young.

ProofWriter _AttNeg-OWA-D5-471_Q14 (Correct answer should be A (true), but labelled C (un-
known)).

Anne is white. Charlie is cold. Charlie is round. Charlie is young. Gary is kind. Gary is nice. Gary
is round. Gary is white. Gary is young. Harry is blue. Harry is cold. Harry is kind. Harry is white.
Harry is young. White, kind things are blue. If something is white then it is kind. Nice things are
kind. All blue, nice things are young. All blue, white things are nice. If something is round and

31

https://github.com/Yale-LILY/FOLIO/blob/main/data/v0.0/folio-validation.txt
https://github.com/Yale-LILY/FOLIO/blob/main/data/v0.0/folio-validation.txt

Under review as a conference paper at ICLR 2025

not nice then it is not cold. Blue, young things are cold. Based on the above information, is the
following statement true, false, or unknown? Charlie is kind.

Reasoning:

Relevant facts: Charlie is cold. Charlie is round. Charlie is young.
Relevant Rules:

If something is round and not nice, then it is not cold. (Rule 6)
Nice things are kind. (Rule 3)

Assuming Charlie is not nice:

Since Charlie is round and not nice, according to Rule 6, Charlie should not be cold. However, this
contradicts the fact that Charlie is cold. Therefore, our assumption that Charlie is not nice must be
false.

Conclusion from the contradiction: Charlie must be nice.
Applying Rule 3:

Since nice things are kind, and Charlie is nice, it follows that Charlie is kind.

ProofWriter AttNeg-OWA-D5-112_Q20 (Correct answer should be B (false), but labelled C (un-
known)).

Charlie is kind. Charlie is nice. Charlie is quiet. Dave is rough. Dave is white. Erin is nice. Gary
is not white. If something is cold then it is not furry. If Charlie is quiet then Charlie is nice. Kind
things are white. Nice things are kind. If something is rough then it is kind. Cold, quiet things are
rough. All cold things are quiet. If something is white and nice then it is cold. If Erin is cold then
Erin is nice. Based on the above information, is the following statement true, false, or unknown?
Gary is nice.

Reasoning:

Gary is not white. (rule 1)
Nice things are kind. (rule 2)
Kind things are white. (rule 3)

If Gary were nice, then by rule 2, he would also be kind. If Gary is kind, then by rule 3, he must
be white. However, rule 1 tells us that Gary is not white. This creates a contradiction because Gary
cannot be both not white and white at the same time.

Given that Gary is not white, he cannot be kind, and therefore, he cannot be nice. Thus, the statement
“Gary is nice” is false.

ProofWriter AttNeg-OWA-D5-850_Q14 (Correct answer should be B (false), but labelled C (un-
known)).

Anne is red. Anne is smart. Bob is kind. Bob is not nice. Fiona is furry. Fiona is rough. Gary is
not green. Gary is kind. Gary is nice. Gary is rough. If someone is nice then they are red. Smart
people are green. If someone is smart and red then they are not kind. All rough, green people are
nice. Green people are rough. If someone is red and green then they are rough. If someone is furry
and green then they are smart. All rough, furry people are smart. Furry, rough people are smart.
Based on the above information, is the following statement true, false, or unknown? Bob is smart.

Reasoning:
Bob is kind. Bob is not nice.
Rule: Smart people are green. So, if Bob were smart, he would be green.

Rule: Green people are rough. Therefore, if Bob were green (and thus rough), we can use the next
rule.

32

Under review as a conference paper at ICLR 2025

Rule: All rough, green people are nice. If Bob were rough and green, he would be nice, but we
know Bob is not nice.

Conclusion: Bob cannot be green because it would contradict the fact that he is not nice. Since Bob
is not green, and smart people are green, Bob cannot be smart.

ProofWriter AttNeg-OWA-D5-219_Q13 (Correct answer should be A (true), but labelled C (un-
known)).

Charlie is not quiet. Dave is big. Dave is furry. Erin is cold. Erin is not green. Erin is not kind.
Fiona is quiet. Big things are young. Young, cold things are big. Quiet things are big. All young
things are cold. If something is big and not furry then it is cold. If something is cold then it is not
kind. If something is cold and big then it is quiet. If Fiona is cold and Fiona is not quiet then Fiona
is kind. If something is quiet and not kind then it is green. Based on the above information, is the
following statement true, false, or unknown? Charlie is not big.

Reasoning:

Charlie is not quiet.

Assume for contradiction that Charlie is big.

Big things are young: Therefore, Charlie is young.

All young things are cold: Therefore, Charlie is cold.

If something is cold, then it is not kind: Therefore, Charlie is not kind.
If something is cold and big, then it is quiet: Therefore, Charlie is quiet.

This contradicts the given fact that Charlie is not quiet. Therefore, Charlie is not big.

ProofWriter _AttNeg-OWA-D5-94_Q18 (Correct answer should be B (false), but labelled C (un-
known))

Bob is smart. Charlie is kind. Charlie is not smart. Fiona is blue. Fiona is rough. Fiona is smart.
Gary is kind. All cold, quiet people are smart. If someone is cold then they are smart. If someone is
red and kind then they are smart. If someone is quiet then they are blue. If someone is blue then they
are quiet. If someone is kind then they are rough. If Gary is kind and Gary is rough then Gary is
quiet. All blue, smart people are red. Blue, rough people are red. Based on the above information,
is the following statement true, false, or unknown? Charlie is blue.

Reasoning:

Charlie is kind.

If someone is kind, then they are rough

Therefore, Charlie is rough.

Assume for contradiction that Charlie is blue.

Blue, rough people are red. Since Charlie is both blue (assumed) and rough, Charlie must be red.
If someone is red and kind, then they are smart.

Since Charlie is red (from step 4) and kind (from step 1), Charlie must be smart.

However, it’s given that Charlie is not smart (from the context).

Hence, we have a contradiction. Therefore, Charlie is not blue.

A.5 ANALYSIS OF VERIFICATION FAILURE CASES

We conducted a manual analysis over a sample of 30 cases where SSV verification failed. Here is a
summary of the failure reasons:

* code incorrect, example correct: 16 (53.3%)

33

Under review as a conference paper at ICLR 2025

* code incorrect, example incorrect: 7 (23.3%)
* code correct, example incorrect: 3 (10%)

* program not well-formed: 4 (13.3%)

We see that in most cases the code is incorrect as opposed to examples, which can be expected as
examples inference is generally simpler than abstract translation. Below is the detailed analysis of
the reasons for the verification failure for specific cases.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.

Exactly three batches of each kind of cookie are made each week
(Monday through Friday)

and each batch is made, from start to finish, on a single day.

InitialCode:
from z3 import =

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookies_sort, (oatmeal, peanut_butter, sugar) =

EnumSort ('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_number_sort = IntSort ()

make_batch = Function ('make_batch', cookies_sort,
batch_number_sort, days_sort)

pre_conditions = []

batches = range (1, 3+1) # Corrected to only three batches
days = [Monday, Tuesday, Wednesday, Thursday, Friday]
cookies = [oatmeal, peanut_butter, sugar]

for cookie in cookies:
for b in batches:
d = Const ('d', days_sort) # Declare a constant of type
days_sort
pre_conditions.append(Exists ([d], make_batch (cookie, b) ==

d))
NegExample:
And (make_batch (catmeal, 1) == Monday, make_batch (ocatmeal, 2) ==
Tuesday, make_batch (ocatmeal, 3) == Wednesday, make_batch (ocatmeal,
4) == Thursday)

NegExampleDescription:

Four batches of oatmeal cookies are made, which contradicts the
constraint that exactly three batches of each kind of cookie are
made each week.

Analysis:
Code incorrect, Example correct. It does not implement the
intended constraint that only 3 batches of each kind of cookie

should be made in a week, which the negative example correctly
tests.

34

Under review as a conference paper at ICLR 2025

InitialContext:

A loading dock consists of exactly six bays numbered 1 through 6
consecutively from one side of the dock to the other. Each bay is
holding a different one of exactly six types of cargo|fuel, grain,
livestock, machinery, produce, or textiles.

InitialCode:
from z3 import «*

bays_sort = IntSort()
cargo_sort, (fuel, grain, livestock, machinery, produce, textiles)

= EnumSort ('cargo', ['fuel', 'grain', 'livestock', 'machinery',
'produce', 'textiles'])

cargo = [fuel, grain, livestock, machinery, produce, textiles]
holding = Function('holding', bays_sort, cargo_sort)

pre_conditions = []

pre_conditions.append(Distinct ([holding(b) for b in range(l, 7)]))
pre_conditions.append(And([holding(b) != None for b in range(l,
7)1))

Condition:

The bay holding textiles is next to the bay holding produce.

ConditionCode:

b = Int('b")

pre_conditions.append (Or (holding(b) == textiles, holding(b+l) ==
produce, holding(b-1) == produce))

NegExample:

And (holding(l) == textiles, holding(4) == produce)

NegExampleDescription:
Textiles are in bay 1 and produce is in bay 4.
Analysis:

Code incorrect, Example correct. It does not correctly implement
the constraint that textiles should be right next to produce as it
is only a disjunction of the three conditions. The negative
example correctly checks this condition by allowing textiles in
bay 1 and produce in bay 4.

InitialContext:

On each of exactly seven consecutive days (day 1 though day 7), a
pet shop features exactly one of three breeds of kitten|Himalayan,
Manx, Siamese|and exactly one of three breeds of puppylGreyhound,
Newfoundland, Rottweiler.

InitialCode:

35

Under review as a conference paper at ICLR 2025

from z3 import =

days_sort, (dayl, day2, day3, day4, day5, day6, day7) =
EnumSort ('days', ['dayl', 'day2', 'day3', 'day4', 'dayb', 'dayé6',

'day7'])
kitten_breeds_sort, (Himalayan, Manx, Siamese) =
EnumSort ('kitten_breeds', ['Himalayan', 'Manx', 'Siamese'])

puppy_breeds_sort, (Greyhound, Newfoundland, Rottweiler) =
EnumSort ('puppy_breeds', ['Greyhound', 'Newfoundland',
'Rottweiler'])

days = [dayl, day2, day3, day4, day5, day6, day7]
kitten_breeds = [Himalayan, Manx, Siamese]
puppy_breeds = [Greyhound, Newfoundland, Rottweiler]

features_kitten = Function('features_kitten', days_sort,
kitten_breeds_sort, BoolSort())

features_puppy = Function ('features_puppy', days_sort,
puppy_breeds_sort, BoolSort())

pre_conditions = []

Add constraints to ensure exactly one breed of kitten and one

breed of puppy is featured each day

for day in days:
pre_conditions.append (Sum([If (features_kitten (day, breed), 1,
0) for breed in kitten_breeds]) == 1)
pre_conditions.append(Sum([If (features_puppy (day, breed), 1,
0) for breed in puppy_breeds]) == 1)

Condition:
No breed is featured on any two consecutive days.
ConditionCode:

dl = Const('dl', days_sort)

d2 = Const ('d2', days_sort)

kb Const ('kb', kitten_breeds_sort)

Pb Const ('pb', puppy_breeds_sort)
pre_conditions.append(ForAll ([dl, d2, kb],

Implies (And(features_kitten(dl, kb), features_kitten(d2, kb)), dl
== d2)))

pre_conditions.append(ForAll ([dl, d2, pbl,

Implies (And(features_puppy (dl, pb), features_puppy(d2, pb)), dl ==
dz)))

PosExample:

And (features_kitten(day2, Siamese) == True, features_kitten (day3,
Manx) == True)

PosExampleDescription:

Siamese kittens are featured on day 2 and Manx kittens are
featured on day 3.

Analysis:

36

Under review as a conference paper at ICLR 2025

Code incorrect, Example correct. The condition code does not
implement consecutiveness constraint but instead requires each
breed to only be featured on one day, which is not a requirement
and causes the positive example to fail. The positive example
correctly presents a valid instantiation of the problem.

InitialContext:

The organizer of a reading club will select at least five and at
most six works from a group of nine works. The group consists of
three French novels, three Russian novels, two French plays, and
one Russian play.

InitialCode:

from z3 import =

works_sort, (french_novell, french_novel2, french_novel3,
russian_novell, russian_novel2, russian_novel3, french_playl,
french_play2, russian_play) = EnumSort ('works', ['french_novell',
'french_novel2', 'french_novel3', 'russian_novell',
'russian_novel2', 'russian_novel3', 'french_playl',
'french_play2', 'russian_play'])

works = [french_novell, french_novel2, french_novel3,
russian_novell, russian_novel2, russian_novel3, french_playl,
french_play2, russian_play]

selected = Function('selected', works_sort, BoolSort ())

pre_conditions = []

NegExample:

And (selected (french_novell) == True, selected(french_novel2) ==
True, selected(french_novel3) == True, selected(russian_novell) ==
True, selected(russian_novel2) == True, selected(russian_novel3)
== True, selected(french_playl) == True, selected(french_play2) ==
True, selected(russian_play) == True)

NegExampleDescription:

The organizer selects all three French novels, all three Russian
novels, both French plays, and the Russian play, which exceeds the
maximum of six works.

Analysis:

Code incorrect, Example correct. The negative example correctly
violates the constraint of not exceeding 6 works, but the code
does not implement this constraint.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.

Exactly three batches of each kind of cookie are made each week
(Monday through Friday)

and each batch is made, from start to finish, on a single day.

InitialCode:

37

Under review as a conference paper at ICLR 2025

from z3 import =

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookies_sort, (oatmeal, peanut_butter, sugar) =

EnumSort ('cookies', ['oatmeal', 'peanut_butter', 'sugar'])

batch_sort = IntSort ()

make_batch = Function ('make_batch', cookies_sort, batch_sort,
days_sort, BoolSort ())

pre_conditions = []

Add constraints to ensure exactly three batches of each kind of
cookie are made each week
for cookie in [oatmeal, peanut_butter, sugar]:

pre_conditions.append (Sum([If (make_batch (cookie, i, d), 1, 0)
for i in range(l, 4) for d in [Monday, Tuesday, Wednesday,
Thursday, Friday]l]) == 3)
NegExample:
And (make_batch (ocatmeal, 1, Monday) == True, make_batch (oatmeal, 2,
Tuesday) == True, make_batch (ocatmeal, 3, Wednesday) == True,
make_batch (oatmeal, 4, Thursday) == True)

NegExampleDescription:

Four batches of oatmeal cookies are made, which contradicts the
constraint that exactly three batches of each kind of cookie are
made each week.

Analysis:
Code incorrect, Example correct. The negative example correctly

violates the constraint by enforcing 4 batches oatmeal cookies to
be made in the week.

InitialContext:

An administrator must assign parking spaces to six new employees:
Robertson, Souza, Togowa, Vaughn, Xu, and Young.

Each of the six employees must be assigned one of the following
parking spaces: #1, #2, #3, #4, #5, or #6.

No two employees can be assigned the same parking space.

InitialCode:
from z3 import =

employees_sort, (Robertson, Souza, Togowa, Vaughn, Xu, Young) =

EnumSort ('employees', ['Robertson', 'Souza', 'Togowa', 'Vaughn',
'Xu', 'Young'l])

parking_spaces_sort = IntSort ()

parking_space = Function ('parking space', employees_sort,

parking_spaces_sort)
pre_conditions = []

pre_conditions.append (Distinct ([parking_space(e) for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Youngl]l]))

38

Under review as a conference paper at ICLR 2025

pre_conditions.append (And([parking_ space(e) >
[Robertson, Souza, Togowa, Vaughn, Xu, Young
pre_conditions.append (And ([parking_space (e)

[Robertson, Souza, Togowa, Vaughn, Xu, Young

— A

Condition:

If Togowa 1s assigned a higher-numbered parking space than Souza,
then Togowa is assigned parking space #3.

ConditionCode:

additional_constraint = parking_space (Togowa) >

parking_space (Souza)

check_property = And(additional_constraint, parking_space (Togowa)
== 3)

pre_conditions.append (check_property)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code incorrect, Example incorrect. The code does not implement the
conditional requirement but only a conjunction. A positive example

could not be inferred from the LLM or valid solver code
implementing the positive example.

Initial Context:
A panel of five scientists will be formed. The panelists will be
selected from among three botanists|F, G, and H|three chemists|K,

L, and M|and three zoologists|P, Q, and R.

InitialCode:

*

from z3 import

scientist_sort = DeclareSort ('scientist')
F, G, H, K, L, M, P, Q, R = Consts('F GHKLMZP Q R',
scientist_sort)

botanists = [F, G, H]
chemists = [K, L, M]
zoologists = [P, Q, RI]

selected = Function('selected', scientist_sort, BoolSort ())
pre_conditions = []

ExampleFail:

Positive example contains undeclared free variables

Analysis:

Code incorrect, Example incorrect. Code is correct but does not

implement a constraint that exactly 5 scientists must be selected.
A valid positive example in solver code could not be generated.

39

Under review as a conference paper at ICLR 2025

InitialContext:

At a concert, exactly eight compositions|F, H, L, O, P, R, S, and
T|lare to be performed exactly once each, consecutively and one
composition at a time.

InitialCode:

from z3 import =

compositions_sort, (F, H, L, O, P, R, S, T) =
EnumSort ('compositions', '#', 'W', 'n', ‘o', 'p', 'rR', 'S', 'T'])

[
compositions = [F, H, L, O, P, R, S, T]
positions_sort = IntSort ()
position = Function('position', compositions_sort, positions_sort)

pre_conditions = []

pre_conditions.append(Distinct ([position(c) for c in
compositions]))
pre_conditions.append(And([position(c) >= 1 for c in
compositions]))
pre_conditions.append (And([position(c) <= 8 for c in
compositions]))

Condition:

T is performed either immediately before F or immediately after R.

ConditionCode:

pre_conditions.append(Or (position(T) + 1 == position(F),
position(T) == position(R) + 1))

NegExample:

position(T) == position(F) - 3

NegExampleDescription:

T is performed with two compositions between it and F.

Analysis:

Code correct, Example incorrect. The negative example only
requires that T is 3 positions before F, which is permitted by the

constraint as long as T is immediately after R (since it was a
disjunction) .

InitialContext:

A government needs to assign new ambassadors to Venezuela, Yemen,
and Zambia. The candidates for these ambassadorships are
Jaramillo, Kayne, Landon, Novetzke, and Ong. One ambassador will
be assigned to each country, and no ambassador will be assigned to
more than one country.

InitialCode:

40

Under review as a conference paper at ICLR 2025

from z3 import =

candidates_sort, (Jaramillo, Kayne, Landon, Novetzke, Ong) =

EnumSort ('candidates', ['Jaramillo', 'Kayne', 'Landon',
'Novetzke', 'Ong'])

countries_sort, (Venezuela, Yemen, Zambia) = EnumSort ('countries',
['Venezuela', 'Yemen', 'Zambia'l])

candidates = [Jaramillo, Kayne, Landon, Novetzke, Ong]

countries = [Venezuela, Yemen, Zambia]

assigned_to = Function('assigned_to', candidates_sort,

countries_sort, BoolSort ())
pre_conditions = []

pre_conditions.append(Distinct ([assigned_to(c, country) for c in
candidates for country in countries]))
pre_conditions.append (And ([Sum([If (assigned_to(c, country), 1, 0)
for country in countries]) == 1 for c¢ in candidates]))
pre_conditions.append (And([Sum([If (assigned_to(c, country), 1, 0)
for ¢ in candidates]) == 1 for country in countries]))

PosExample:

And (assigned_to (Jaramillo, Venezuela) == True, assigned_to (Kayne,
Yemen) == True, assigned_to (Landon, Zambia) == True,

assigned_to (Novetzke, Venezuela) == False, assigned_to (Novetzke,
Yemen) == False, assigned_to (Novetzke, Zambia) == False,
assigned_to (Ong, Venezuela) == False, assigned_to(Ong, Yemen) ==
False, assigned_to (Ong, Zambia) == False)

PosExampleDescription:

Jaramillo is assigned to Venezuela, Kayne to Yemen, and Landon to
Zambia, while Novetzke and Ong are not assigned to any country.

Analysis:

Code incorrect, Example correct. The positive example correctly
instantiates the problem context, but the code incorrectly
enforces the very strong distinctness constraint on the
assigned_to () function which has boolean return type and should
not have dictinct outputs over all possible assignments.

InitialContext:

Of the eight students|George, Helen, Irving, Kyle, Lenore, Nina,
Olivia, and Robert|in a seminar, exactly six will give individual
oral reports during three consecutive days|Monday, Tuesday, and
Wednesday. Exactly two reports will be given each dayl|one in the
morning and one in the afternoon.

InitialCode:
from z3 import =
students_sort, (George, Helen, Irving, Kyle, Lenore, Nina, Olivia,

Robert) EnumSort ('students', ['George', 'Helen', 'Irving',
'Kyle', Lenore', 'Nina', 'Olivia', 'Robert'])

41

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday) = EnumSort ('days',
['Monday', 'Tuesday', 'Wednesday'])

time_sort, (morning, afternoon) = EnumSort('time', ['morning',
'afternoon'])

students = [George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert]

days = [Monday, Tuesday, Wednesday]

times = [morning, afternoon]

report = Function('report', students_sort, days_sort, time_sort,
BoolSort ())

pre_conditions = []

NegExample:
And (report (George, Monday, morning) == True, report (George,
Tuesday, morning) == True)

NegExampleDescription:

George gives two reports, one on Monday morning and another on
Tuesday morning, which contradicts the constraint that each
student gives only one report.

Analysis:

Code incorrect, Example correct. It does not enforce that a
student cannot give multiple reports, so it will not be possible
for exactly 6 reports to be given by exactly 6 students as
intended. The example correctly violates the constraint by
enforcing George to give two reports in different slots.

InitialContext:

A bakery makes exactly three kinds of cookiel|oatmeal, peanut
butter, and sugar.

Exactly three batches of each kind of cookie are made each week
(Monday through Friday)

and each batch is made, from start to finish, on a single day.

InitialCode:
from z3 import =

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort ('cookie',
['oatmeal', 'peanut_butter', 'sugar'])

batch_sort = IntSort ()

made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

for cookie in [ocatmeal, peanut_butter, sugar]:
pre_conditions.append (And([Exists([Const ('d' + str(i),
days_sort)], made_on(cookie, i) == Const('d' + str(i),
days_sort)) for i in range(l, 4)]))
for day in [Monday, Tuesday, Wednesday, Thursday, Friday]:

42

Under review as a conference paper at ICLR 2025

pre_conditions.append(Sum([If (made_on (cookie, i) == day,
1, 0) for i in range(l, 4)]) <= 1)

Condition:

If no batch of cookies is made on Wednesday, then exactly three
batches of cookies are made on Tuesday.

ConditionCode:

day = Const ('day', days_sort)
check_property = Sum([If (made_on (cookie, i) == Tuesday, 1, 0) for
cookie in [ocatmeal, peanut_butter, sugar] for i in range(l, 4)1])

pre_conditions.append (check_property)

NegExample:

And (made_on (oatmeal, 1) != Wednesday, made_on (peanut_butter, 1) !=
Wednesday, made_on (sugar, 1) != Wednesday,

made_on (catmeal, 1) == Tuesday, made_on (peanut_butter, 2) ==
Tuesday, made_on (sugar, 3) != Tuesday)

NegExampleDescription:

No cookies are made on Wednesday, but only two batches of cookies
are made on Tuesday.

Analysis:

Code incorrect, Example incorrect. The code directly enforces that
exactly three batches are made on Tuesday, regardless of whether
any batches are made on Wednesday so it lacks the conditional
aspect "if no batch is made on Wednesday" of the intended
constraint. The negative example prevents only batch 3 of sugar
cookies on tuesday but not other batches, so it is still possible
to have three batches on tuesday.

InitialContext:

An administrator must assign parking spaces to six new employees:
Robertson, Souza, Togowa, Vaughn, Xu, and Young. Each of the six
employees must be assigned one of the following parking spaces:
#1, #2, #3, #4, #5, or #6. No two employees can be assigned the
same parking space.

InitialCode:

from z3 import =*

employees_sort, (Robertson, Souza, Togowa, Vaughn, Xu, Young) =
EnumSort ('employees', ['Robertson', 'Souza', 'Togowa', 'Vaughn',
'Xu', 'Young'l])

parking_spaces_sort = IntSort ()

parking_space = Function ('parking_ space', employees_sort,

parking_spaces_sort)
pre_conditions = []

43

Under review as a conference paper at ICLR 2025

pre_conditions.append(Distinct ([parking_space(e) for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]])
pre_conditions.append (And([parking_space (e) >=
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]
pre_conditions.append (And ([parking_space (e) <=
[Robertson, Souza, Togowa, Vaughn, Xu, Youngl])

Condition:

If Young is assigned a higher-numbered parking space than Souza,
then Young is assigned parking space #2.

ConditionCode:

check_property = And(parking_space (Young) > parking_space (Souza),
parking_space (Young) == 2)

pre_conditions.append (check_property)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code incorrect, Example incorrect. The condition implemented Jjust
enforces that Young has number 2 and is than Souza, but does not
allow for a lower number than Souza as intended. The positive
example 1is not inferred.

InitialContext:

A bakery makes exactly three kinds of cookiel|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import =

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookies_sort, (oatmeal, peanut_butter, sugar) =

EnumSort ('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort ()

schedule = Function ('schedule', cookies_sort, batch_sort,

days_sort)

pre_conditions = []

NegExample:

And (schedule (catmeal, 1) == Monday, schedule (oatmeal, 2) ==
Monday, schedule (catmeal, 3) == Monday, schedule (oatmeal, 4) ==
Monday)

NegExampleDescription:

44

Under review as a conference paper at ICLR 2025

Four batches of oatmeal cookies are made on Monday, which
contradicts the constraint that exactly three batches of each kind
of cookie are made each week.

Analysis:

Code incorrect, Example correct. The code does not implement any
constraints that exactly 3 batches of each kind of cookie should
be made in a week.

InitialContext:

A government needs to assign new ambassadors to Venezuela, Yemen,
and Zambia. The candidates for these ambassadorships are
Jaramillo, Kayne, Landon, Novetzke, and Ong. One ambassador will
be assigned to each country, and no ambassador will be assigned to
more than one country.

InitialCode:

from z3 import =

ambassadors_sort, (Jaramillo, Kayne, Landon, Novetzke, Ong) =

EnumSort ('ambassadors', ['Jaramillo', 'Kayne', 'Landon',
'Novetzke', 'Ong'])

countries_sort, (Venezuela, Yemen, Zambia) = EnumSort ('countries',
['Venezuela', 'Yemen', 'Zambia'l])

ambassadors = [Jaramillo, Kayne, Landon, Novetzke, Ong]

countries = [Venezuela, Yemen, Zambia]

assigned_to Function('assigned_to', ambassadors_sort,
countries_sort, BoolSort ())

pre_conditions = []

a = Const('a', ambassadors_sort)

cl = Const('cl', countries_sort)

c2 = Const('c2', countries_sort)

pre_conditions.append(ForAll ([a], Sum([If(assigned_to(a, c), 1, 0)
for ¢ in countries]) <= 1))

Condition:

Either Kayne or Novetzke, but not both, is assigned to one of the
ambassadorships.

ConditionCode:

pre_conditions.append (Xor (Or (assigned_to (Kayne, Venezuela),
assigned_to (Kayne, Yemen), assigned_to (Kayne, Zambia)),

Or (assigned_to (Novetzke, Venezuela), assigned_to (Novetzke, Yemen),
assigned_to (Novetzke, Zambia))))

ExampleFail:
Positive example contains undeclared free variables
Analysis:

Code correct, Example incorrect. The example is not well formed
with undeclared free variables, while the code correctly
implements the constraint using exclusive OR.

45

Under review as a conference paper at ICLR 2025

Initial Context:

A bakery makes exactly three kinds of cookiel|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import =*

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort ('cookie',
['oatmeal', 'peanut_butter', 'sugar'])

batches_sort = IntSort ()

make_batch = Function ('make_batch', cookie_sort, batches_sort,

days_sort, BoolSort ())

pre_conditions = []
days = [Monday, Tuesday, Wednesday, Thursday, Friday]
cookies = [oatmeal, peanut_butter, sugar]

Constraint: Exactly three batches of each kind of cookie are

made each week

for cookie in cookies:
pre_conditions.append (Sum([If (make_batch(cookie, i, d), 1, 0)
for i in range(l, 4) for d in days]) == 3)

NegExample:

And (make_batch (ocatmeal, 1, Monday), make_batch (oatmeal, 2,
Tuesday), make_batch (oatmeal, 3, Wednesday), make_batch (ocatmeal,
4, Thursday))

NegExampleDescription:

Four batches of oatmeal cookies are made on Monday, Tuesday,
Wednesday, and Thursday (which contradicts the constraint that
exactly three batches of each kind of cookie are made each week).

Analysis:

Code incorrect, Example correct. The code only enforces the
constraint for batch numbers 1,2 and 3, but does not restrict any
other batch numbers from being created on a day. The negative
example uses batch number 4 which is not prevented by the code.

InitialContext:

A bakery makes exactly three kinds of cookiel|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

46

Under review as a conference paper at ICLR 2025

from z3 import =

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookies_sort, (oatmeal, peanut_butter, sugar) =

EnumSort ('cookies', ['oatmeal', 'peanut_butter', 'sugar'])

batch_sort = IntSort ()
make_batch = Function ('make_batch', cookies_sort, batch_sort,
days_sort)

pre_conditions = []

NegExample:
And (make_batch (catmeal, 1) == Monday, make_batch (oatmeal, 2) ==
Monday, make_batch (oatmeal, 3) == Monday, make_batch (ocatmeal, 4)
== Monday)

NegExampleDescription:

Four batches of oatmeal cookies are made on Monday, which
contradicts the constraint that exactly three batches of each kind
of cookie are made each week.

Analysis:
Code incorrect, Example correct. The code does not implement any

constraint to require exactly 3 batches of each kind of cookie in
a week.

InitialContext:

Of the eight students|George, Helen, Irving, Kyle, Lenore, Nina,
Olivia, and Robert|in a seminar,

exactly six will give individual oral reports during three
consecutive days|Monday, Tuesday, and Wednesday.

Exactly two reports will be given each day|one in the morning and
one in the afternoon.

InitialCode:

from z3 import =*

students_sort, (George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert) = EnumSort ('students',
['George', 'Helen', 'Irving', 'Kyle',
'Lenore', 'Nina', 'Olivia', 'Robert'])
days_sort, (Monday, Tuesday, Wednesday) = EnumSort ('days',
['Monday', 'Tuesday', 'Wednesday'])
time_sort, (morning, afternoon) = EnumSort ('time', ['morning',
'afternoon'])
students = [George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert]
days = [Monday, Tuesday, Wednesday]
times = [morning, afternoon]
report = Function('report', students_sort, days_sort, time_sort,
BoolSort ())

47

Under review as a conference paper at ICLR 2025

pre_conditions = []

s = Const('s', students_sort)

d = Const ('d', days_sort)

pre_conditions.append(ForAll ([s, d], AtMost (report (s, d, morning),
report (s, d, afternoon), 1)))

for day in days:

pre_conditions.append (Sum([If (report (s, day, morning), 1, O0)

for s in students]) == 1)

pre_conditions.append(Sum([If (report (s, day, afternoon), 1, 0)

for s in students]) == 1)
pre_conditions.append(Sum([If (Or (report(s, d, morning), report((s,
d, afternoon)), 1, 0) for s in students for d in days]) == 6)

Condition:

Helen, Kyle, and Lenore, not necessarily in that order, give the
three morning reports.

ConditionCode:

helen_day = Const ('helen_day', days_sort)
kyle_day = Const ('kyle_day', days_sort)
lenore_day = Const ('lenore_day', days_sort)
pre_conditions.append (And (

report (Helen, helen_day, morning),

report (Kyle, kyle_day, morning),

report (Lenore, lenore_day, morning),

Distinct ([helen_day, kyle_day, lenore_day])
))

NegExample:
And (report (Helen, Monday, morning) == True, report (Kyle, Tuesday,
afternoon) == True)

NegExampleDescription:

Helen gives a report on Monday morning, but Kyle gives his report
in the afternoon.

Analysis:

Code incorrect, Example correct. The code lacks a constraint that
ensures each student gives at most one report during the entire
period,

so it allows Kyle to give a morning and an afternoon report. Since
this should not be allowed, the negative example correctly
violates the requirement

that Kyle gives a morning report by requiring him to give an
afternoon report on Tuesday.

InitialContext:

A loading dock consists of exactly six bays numbered 1 through 6
consecutively from one side of the dock to the other.

Each bay is holding a different one of exactly six types of
cargo| fuel, grain, livestock, machinery, produce, or textiles.

48

Under review as a conference paper at ICLR 2025

InitialCode:

from z3 import =*

bays_sort = IntSort ()
cargo_sort, (fuel, grain, livestock, machinery, produce, textiles)
= EnumSort ('cargo',
['"fuel', 'grain', 'livestock', 'machinery',
'produce', 'textiles'])

cargo = [fuel, grain, livestock, machinery, produce, textiles]
holding = Function('holding', bays_sort, cargo_sort)
pre_conditions = []

pre_conditions.append(Distinct ([holding(b) for b in range(l, 7)]))
pre_conditions.append(And([holding(b) != None for b in range (1,
7)1))

Condition:

The bay holding livestock has a higher number than the bay holding
textiles.

ConditionCode:

bl = Const('bl', bays_sort)

b2 = Const ('b2', bays_sort)
pre_conditions.append(Exists ([bl], And(holding(bl) == livestock,
bl > 0, ForAll([b2],

Implies (holding (b2) == textiles, bl > b2)))))
NegExample:
And (holding (5) == textiles, holding(l) == livestock)

NegExampleDescription:
Textiles are in bay 5 and livestock is in bay 1.
Analysis:

Code incorrect, Example correct. The variables bl and b2 in the
constraint code representing bay numbers are not properly
constrained

to be within the valid range of bay numbers (1 through 6). This
allows the solver to consider bay numbers outside this range,
which leads to the negative example not violating the constraint
as expected.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.

Exactly three batches of each kind of cookie are made each week
(Monday through Friday) and each batch is made, from start to
finish, on a single day.

InitialCode:

from z3 import =*

49

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort ('cookie',
['oatmeal', 'peanut_butter', 'sugar'])

batch_sort = IntSort ()

made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

for cookie in [ocatmeal, peanut_butter, sugar]:
pre_conditions.append(Distinct ([made_on(cookie, i) for i in
range (1, 4)1))

Condition:

Exactly three batches of each kind of cookie are made each week
(Monday through Friday) and each batch is made, from start to
finish, on a single day.

ConditionCode:

d = Const ('d', days_sort)

c = Const('c', cookie_sort)

pre_conditions.append(ForAll ([c], Sum([made_on(c, i) == d for i in

range (1, 4) for d in [Monday, Tuesday, Wednesday, Thursday,
Fridayl]) == 3))

ExampleFail:
Positive example contains undeclared free variables
Analysis:

Code incorrect, Example incorrect. The code is incorrect as it
only enforces the condition on batch numbers 1..3, but allows any
int values for batch numbers,

so more than 3 batches can potentially be made. The example is
incorrect as it contains undeclared free variables.

InitialContext:

On each of exactly seven consecutive days (day 1 though day 7), a
pet shop features exactly one of three breeds of kitten|Himalayan,
Manx, Siamese|and exactly one of three breeds of puppyl|Greyhound,
Newfoundland, Rottweiler.

InitialCode:

from z3 import =

days_sort, (dayl, day2, day3, day4, day5, day6, day7) =
EnumSort ('days', ['dayl', 'day2', 'day3', 'day4', 'dayb', 'dayé6',

'day7'])
kitten_breeds_sort, (Himalayan, Manx, Siamese) =
EnumSort ('kitten_breeds', ['Himalayan', 'Manx', 'Siamese'])

puppy_breeds_sort, (Greyhound, Newfoundland, Rottweiler) =
EnumSort ('puppy_breeds', ['Greyhound', 'Newfoundland',
'Rottweiler'])

days = [dayl, day2, day3, day4, day5, day6, day7]

50

Under review as a conference paper at ICLR 2025

kitten_breeds = [Himalayan, Manx, Siamese]
puppy_breeds = [Greyhound, Newfoundland, Rottweiler]
featured_kitten = Function ('featured_kitten', days_sort,

kitten_breeds_sort)
featured_puppy = Function ('featured_puppy', days_sort,
puppy_breeds_sort)

pre_conditions = []

Add constraints to ensure exactly one breed of kitten and one
breed of puppy is featured each day

d = Const ('d', days_sort)

pre_conditions.append(ForAll ([d], Sum([If(featured_kitten(d) ==

breed, 1, 0) for breed in kitten_breeds]) == 1))
pre_conditions.append (ForAll ([d], Sum([If (featured_puppy(d) ==
breed, 1, 0) for breed in puppy_breeds]) == 1))

Condition:

If Himalayans are not featured on day 7, then day 1 and day 3
CANNOT feature both the same breed of kitten and the same breed of

puppy .
ConditionCode:

check_property = And(featured_kitten (dayl) ==
featured_kitten(day3), featured_puppy (dayl) ==
featured_puppy (day3), featured_kitten(day?7) != Himalayan)
pre_conditions.append (check_property)

PosExample:

And (featured_kitten(day7) != Himalayan, featured_kitten(dayl) ==
Siamese, featured_puppy (dayl) == Greyhound, featured_kitten (day3)
== Manx, featured_puppy(day3) == Newfoundland)

PosExampleDescription:

Himalayans are not featured on day 7, and day 1 features a Siamese
kitten and a Greyhound puppy while day 3 features a Manx kitten
and a Newfoundland puppy.

Analysis:

Code incorrect, Example correct. The code implements the condition
incorrectly by just enforcing a conjunction of constraints rather
than the conditional requirement.

InitialContext:
A bakery makes exactly three kinds of cookiel|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie

are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import =*

51

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort ('cookie',
['oatmeal', 'peanut_butter', 'sugar'])

batch_sort = IntSort ()

made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

Add constraints to ensure exactly three batches of each kind of
cookie are made each week
for cookie in [oatmeal, peanut_butter, sugar]:

i = Const('i', batch_sort)

J = Const('j', batch_sort)
pre_conditions.append (Sum([If (made_on (cookie, k) == day, 1, 0)
for k in range(l, 4) for day in [Monday, Tuesday, Wednesday,
Thursday, Friday]]) == 3)
pre_conditions.append (And ([Not (Exists([i, Jj], And(i != 7,
made_on (cookie, i) == made_on(cookie, 7J)))) for day in

[Monday, Tuesday, Wednesday, Thursday, Friday]ll]l))

PosExample:

And (made_on (catmeal, 1) == Monday, made_on (ocatmeal, 2) ==
Wednesday, made_on (oatmeal, 3) == Friday,

made_on (peanut_butter, 1) == Tuesday, made_on (peanut_butter, 2) ==
Thursday, made_on (peanut_butter, 3) == Friday,

made_on (sugar, 1) == Monday, made_on (sugar, 2) == Tuesday,

made_on (sugar, 3) == Thursday)

PosExampleDescription:

Three batches of oatmeal cookies are made on Monday, Wednesday,
and Friday. Three batches of peanut butter cookies are made on
Tuesday, Thursday, and Friday. Three batches of sugar cookies are
made on Monday, Tuesday, and Thursday.

Analysis:

Code incorrect, Example correct. The code incorrectly enforces the
constraint that a cookie cannot be made on more than one day
(which is not intended).

InitialContext:

A bakery makes exactly three kinds of cookieloatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import =

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort ('cookie',
['oatmeal', 'peanut_butter', 'sugar'])

52

Under review as a conference paper at ICLR 2025

batch_sort = IntSort ()
made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

NegExample:
And (made_on (catmeal, 1) == Monday, made_on (ocatmeal, 2) == Tuesday,
made_on (oatmeal, 3) == Wednesday, made_on (oatmeal, 4) == Thursday)

NegExampleDescription:

Four batches of ocatmeal cookies are made, which contradicts the
constraint that exactly three batches of each kind of cookie are
made each week.

Analysis:

Code incorrect, Example correct. The code does not implement any
constraint that enforces that exactly 3 batches of each type of
cookie should be made in the week.

InitialContext:

A bakery makes exactly three kinds of cookieloatmeal, peanut
butter, and sugar. Exactly three batches of

each kind of cookie are made each week (Monday through Friday) and
each batch is made, from start to finish, on a single day.

InitialCode:

from z3 import =*

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =

EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

cookies_sort, (ocatmeal, peanut_butter, sugar) =

EnumSort ('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort ()

schedule = Function('schedule', cookies_sort, batch_sort,

days_sort)
pre_conditions = []

Constraint: Exactly three batches of each kind of cookie are

made each week

for cookie in [ocatmeal, peanut_butter, sugar]:
pre_conditions.append(Sum([If (schedule (cookie, 1) == day, 1,
0) for i in range(l, 4) for day in [Monday, Tuesday,
Wednesday, Thursday, Friday]]) == 3)

NegExample:

And (schedule (catmeal, 1) == Monday, schedule (oatmeal, 2) ==
Tuesday, schedule (ocatmeal, 3) == Wednesday, schedule (catmeal, 4)
== Thursday)

NegExampleDescription:

Four batches of oatmeal cookies are made on Monday, Tuesday,
Wednesday, and Thursday (which contradicts the constraint that
exactly three batches of each kind of cookie are made each week).

53

Under review as a conference paper at ICLR 2025

Analysis:

Code incorrect, Example correct. The code only implements the
constraint for batch numbers 1, 2, and 3, but not for any other
batch numbers.

InitialContext:

On each of exactly seven consecutive days (day 1 though day 7), a
pet shop features exactly one of three breeds of kitten|Himalayan,
Manx, Siamese|and exactly one of three breeds of puppylGreyhound,

Newfoundland, Rottweiler.

InitialCode:
from z3 import =*

days_sort = IntSort ()

kitten_breeds_sort, (Himalayan, Manx, Siamese) =

EnumSort ('kitten_breeds', ['Himalayan', 'Manx', 'Siamese'])
puppy_breeds_sort, (Greyhound, Newfoundland, Rottweiler) =
EnumSort ('puppy_breeds', ['Greyhound', 'Newfoundland',
'Rottweiler'])

featured_kitten = Function('featured_kitten', days_sort,
kitten_breeds_sort)

featured_puppy = Function('featured_puppy', days_sort,
puppy_breeds_sort)

pre_conditions = []

pre_conditions.append(And([featured_kitten (i) != featured_ kitten(i
+ 1) for i in range(l, 7)1))
pre_conditions.append (And([featured_puppy (i) != featured_puppy (i +

1) for i in range(l, 7)1))

Condition:

No breed is featured on any two consecutive days.
ConditionCode:

(Already implemented above)

ExampleFail:

Positive example not inferred (NONE description)
Analysis:

Code correct, Example incorrect. No example was inferred. The code
correctly implements constraints to disallow the same breeds on
any two consecutive days.

InitialContext:

54

Under review as a conference paper at ICLR 2025

An administrator must assign parking spaces to six new employees:
Robertson, Souza, Togowa, Vaughn, Xu, and Young. Each of the six
employees must be assigned one of the following parking spaces:
#1, #2, #3, #4, #5, or #6. No two employees can be assigned the
same parking space.

InitialCode:
from z3 import =*

employees_sort, (Robertson, Souza, Togowa, Vaughn, Xu, Young) =

EnumSort ('employees', ['Robertson', 'Souza', 'Togowa', 'Vaughn',
'Xu', 'Young'l])

parking_spaces_sort = IntSort ()

parking_space = Function ('parking space', employees_sort,

parking_spaces_sort)

pre_conditions = []
pre_conditions.append (Distinct ([parking_space(e) for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Youngll])
pre_conditions.append (And([parking_ space (e) >=
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]
pre_conditions.append(And ([parking_space (e) <=
[Robertson, Souza, Togowa, Vaughn, Xu, Young]])

Condition:

If Young is assigned a higher—-numbered parking space than Souza,
then Young is assigned parking space #2.

ConditionCode:

check_property = parking_space (Young) == 2
pre_conditions.append (check_property)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code incorrect, Example incorrect. The code does not implement the

conditional requirement but simply asserts that Young should be
assigned #2. No positive example is inferred.

InitialContext:

A bakery makes exactly three kinds of cookieloatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import =*

cookies_sort, (ocatmeal, peanut_butter, sugar) =
EnumSort ('cookies', ['oatmeal', 'peanut_butter', 'sugar'])

55

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort ('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])

batches_sort = IntSort ()

made_on = Function ('made_on', cookies_sort, batches_sort,
days_sort)

pre_conditions = []

Ensure that each kind of cookie has exactly three batches made

on different days

for cookie in [oatmeal, peanut_butter, sugar]:
pre_conditions.append (Distinct ([made_on (cookie, b) for b in
range (1, 4)1]))

Ensure that each batch number is between 1 and 3
for cookie in [ocatmeal, peanut_butter, sugar]:
for b in range(l, 4):
pre_conditions.append(And(b >= 1, b <= 3))

NegExample:
And (made_on (catmeal, 1) == Monday, made_on (ocatmeal, 2) == Tuesday,
made_on (catmeal, 3) == Wednesday)

NegExampleDescription:

The oatmeal cookies are made on Monday, Tuesday, and Wednesday,
which violates the constraint that each kind of cookie must be
made on different days.

Analysis:

Code incorrect, Example incorrect. The negative example does not
violate the intended constraints as it simply assigns oatmeal
batches to 3 different days. The code does not prevent any batch
numbers higher than 3.

A.6 RUNTIME PERFORMANCE AND OPTIMIZATIONS

We conducted an evaluation of the runtime performance of the current system. Executing the system
over a sample of 250 data points (50 from each dataset), the median runtime per task is 152 seconds
(around 2.5 minutes), with first quartile 108s, third quartile 267s and mean 249s. This was on an
Intel Xeon Gold 6126 CPU @ 2.60 GHz with 16 cores and no hyper-threading, 62 GB of RAM, and
an HDD-based storage system (this machine has slightly lower single-threaded performance than
most modern desktops). However, there are also many potential optimizations to the SSV algorithm
that can be made to significantly reduce the run time in a practical implementation:

* The outer temperature loop (line 2 in Figure) can be fully parallelized as all the compu-
tations are independent for each temperature. That can yield up to 4X speed up (with 4
temperatures being tried in our current system). Side note: even with a single temperature
of 0, our algorithm still beats all baselines in terms of accuracy (as in our ablation study),
so even such an ablated system would be beneficial if computation costs are of significant
concern.

* In the verification phase (line 9 in Figure), the solver calls to verify each of the concrete
instantiations can be parallelized as they are checked independently. These are around 10
to 20 independent solver calls on average (2 instantiations each for around 5-10 constraints)
that can be parallelized for significant speedup.

 Caching solver verification checks between repair attempts. Currently for each repair at-
tempt in the inner loop (line 4 in Figure d)), we perform the full verification on the repaired

56

Under review as a conference paper at ICLR 2025

program (on all constraints). However, most of the time the repaired change is on a single
constraint for which a failing instantiation was found and all other constraints remain iden-
tical (though not always guaranteed as in some rare cases the LLM may reformulate the
whole program). Hence if we cache the solver requests for each instantiation verification,
many of these repetitive checks can be avoided in the repaired programs for the constraints
that are unaltered.

As a general side note, recent reasoning-oriented models such as Open AI’s ol can take several
seconds or up to a few minutes on some tasks with significantly more computational resources/G-
PUs, so higher runtimes in the order of a few minutes may generally be expected to robustly address
complex reasoning problems.

57

	Introduction
	Inferring the Right Formalization: A Motivating Example
	Semantic Self-Verification
	Evaluation
	Results

	Limitations and Future Directions
	Related work
	Conclusion
	Appendix
	Compositional Code Generation and Refinement Prompts
	Problem Decomposition Prompt
	Incremental Code Generation Prompt
	Options Code Generation Prompt
	Error-based Code Refinement Prompt

	Instantiation generation prompt
	Semantic repair prompt
	Dataset correction cases
	AR-LSAT Corrections
	FOLIO Corrections
	ProofWriter corrections

	Analysis of Verification Failure Cases
	Runtime performance and optimizations

