
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEAR-CERTAIN REASONING: BRIDGING THE
FORMALIZATION GAP BETWEEN LANGUAGE MODELS
AND LOGICAL SOLVERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Robustness of reasoning remains a challenging problem for large language mod-
els, and addressing it is crucial for advancing the reliability and practical appli-
cation of AI-driven reasoning systems. We introduce Semantic Self-Verification
(SSV), a novel approach that addresses the key challenge in combining language
models with the rigor of logical solvers: to accurately formulate the reasoning
problem from natural language to the formal language of the solver. SSV pro-
duces strong abstract formalizations of problems by verifying and refining them
against concrete instantiations that are generated by the model and verified by the
solver. In addition to significantly advancing the overall reasoning accuracy over
the state-of-the-art, a key novelty that this approach presents is a feature of ver-
ification that has near-perfect precision over a significant coverage of cases, as
we demonstrate on open reasoning benchmarks. We propose such near-certain
reasoning as a new approach to reduce the need for manual verification in many
cases, taking us closer to more dependable and autonomous AI reasoning systems.

1 INTRODUCTION

Logical reasoning remains an open challenge for large language models (LLMs). While such models
have exhibited reasoning ability in various domains, the reasoning is often fragile and error-prone,
especially as tasks get more complex. Many recent approaches have made notable advancements in
this active area of research. Chain-of-thought (CoT) prompting has demonstrated how the quality of
reasoning can be improved by prompting the model to explicitly generate the steps of reasoning in
natural language before arriving at the final answer (Wei et al. (2022)). Variants of CoT and other
related prompting and fine-tuning approaches have shown further improvements (Zhou et al. (2023);
Wang et al. (2023); Yu et al. (2024); Weng et al. (2023); Creswell et al. (2023)). To address the
logical inconsistencies that can arise in such natural language based approaches, another interesting
direction is to incorporate LLMs with logical solvers or automated reasoning tools (Pan et al. (2023);
Ye et al. (2023)). Rather than directly attempting reasoning with the LLM, these approaches use the
LLM to infer a formal representation of the problem as a program that can be executed by the solver,
as such automated reasoning tools guarantee logically sound inference by construction.

While these approaches have demonstrated relative improvements in accuracy, we are still far from
achieving robustness and reliability of reasoning. For instance, Figure 1a shows an example reason-
ing problem from the Law School Admissions Test on analytical reasoning (Zhong et al. (2022)).
On tasks of such complexity, the best reported accuracy, achieved by a solver-augmented system,
is only 43% (Pan et al. (2023)). Such lack of reliability especially hinders the practical usability
of existing approaches: for example, if a system demonstrates 70% accuracy on benchmarks, then
in practice the user can only be 70% confident that the answer is correct on an arbitrary new task.
Hence the burden of verifying correctness is always on the user, which can be especially difficult and
error-prone for complex reasoning tasks. Therefore, having a reliable signal of correctness with high
confidence can be hugely beneficial to help reduce the overall manual effort and cost of verification.

In this work, we propose a new approach to addressing deductive reasoning problems called Se-
mantic Self-Verification (SSV), which offers two key benefits: (1) it improves the overall accu-
racy of reasoning significantly over SoTA, and (2) it provides a novel feature of verification that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In a repair facility, there are exactly six techni-

cians: Stacy, Urma, Wim, Xena, Yolanda, and

Zane. Each technician repairs machines of at

least one of the following three types—radios,

televisions, and VCRs—and no other types. The

following conditions apply: Xena and exactly

three other technicians repair radios. Yolanda

repairs both televisions and VCRs. Stacy does

not repair any type of machine that Yolanda re-

pairs. Zane repairs more types of machines than

Yolanda repairs. Wim does not repair any type of

machine that Stacy repairs. Urma repairs exactly

two types of machines. Which one of the follow-

ing pairs of technicians could repair all and only

the same types of machines as each other?

(A) Stacy & Urma

(B) Urma & Yolanda

(C) Urma & Xena

(D) Wim & Xena

(E) Xena & Yolanda

(a) Sample reasoning problem (b) Problem formalization as a Z3 solver program

Figure 1: Sample question from the Law School Admissions Test dataset on analytical reasoning
tasks (AR-LSAT), and its formalization as code in the Z3 theorem prover language

has near-perfect precision. In our problem formulation, in addition to producing an answer to
a given question, the system also indicates if it was able to verify the correctness of the answer:
Question → (Answer, isVerified). This problem formulation is similar to confidence estimation in
machine learning, where the system provides a score of confidence in addition to the answer. How-
ever, similar to selective classification (Chow (1970)), in our case the isVerified indicator is a boolean
rather than continuous value: if true, it indicates a “near certain” confidence in the correctness of
the answer, and otherwise there is no specific indication of confidence. The goal is to provide a high
confidence verification mechanism that can be used to reduce the need for manual checking in the
cases where verification succeeds.

At its core, our approach addresses the key challenge in combining large language models with the
robust reasoning of logical solvers: the formulation of a problem from informal natural language
(NL) to the formal representation that is a program executable by the solver. For example, Figure
1b shows the formal representation of the problem expressed in natural language in Figure 1a. In
this case the formalization is expressed as code in the language of the Z3 SMT solver (de Moura &
Bjørner (2008)), which is a state-of-the-art industrial strength theorem prover that can produce the
correct answer when given these correctly-expressed formal constraints. The crucial task, therefore,
is for the LLM to correctly translate the NL problem description to such a formal representation, and
this is where language models can make significant errors, especially for tasks of such complexity.

Hence the main goal of the SSV approach is to verify that the formal representation is true to the
original problem. This notion of verification is inspired by how humans often create formalizations
of problems expressed in natural language. For instance, when school students are solving math
word problems, they need to first create the right algebraic equation that represents the problem,
before they can solve it to get the answer. To ensure that their translation to an abstract equation
represents the problem correctly, they are encouraged to consider various concrete instances of the
problem and to check that the abstract equation consistently satisfies those instances so that it all
“makes sense”. In the same way, in the SSV approach, rather than just doing a single abstract
translation from NL to a formal representation, we also use the LLM to additionally generate various
concrete instantiations, or examples, of the general constraint, which are used as test cases to check
the correctness of the abstract formalization. Using the logical solver, we verify that each of these

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

instantiations is consistently satisfied by the formal representation. If all of these distinct semantic
relationships consistently hold, then verification passes.

We note that any notion of verification from natural to formal language cannot provide formal cor-
rectness guarantees, since natural language itself is inherently informal and often ambiguous. How-
ever, as we demonstrate empirically, a passing verification in our case indicates a near certain con-
fidence in the answer correctness since multiple independent semantic relationships are consistently
satisfied. In this respect, our approach is akin to a consensus-based ensemble as it is based on agree-
ment between multiple independent predictors (Zhou (2012)). However, rather than all predictors
addressing the same task, we have a semantic ensemble of predictors that are addressing differ-
ent but semantically related tasks (making abstract and concrete inferences) and the logical solver
verifies the formal consistency between these. We also note that unlike standard proposer-verifier
approaches, in our case there does not exist a verifier that can check correctness of a proposed solu-
tion (a formalization). Thus our proposer model proposes both a solution and the test cases and the
verifier can only check consistency between these rather than correctness of the solution.

Moreover, having such a high precision verification mechanism also allows us to improve the for-
malization itself, in two different respects. Firstly, any failing instantiation can be used as concrete
guidance to refine the formalization further, as it can hint at potential errors in the formalization.
This is similar to error-based refinement in code generation techniques (Chen et al. (2024)), except
that here we are guided by semantic errors inferred from the instantiations rather than just syntac-
tic execution errors in the code. Secondly, given a high precision verifier, we can also explore the
search space more extensively until we find a formalization that can pass verification. We show how
creating multiple candidate formalizations at different LLM temperatures and choosing the ones that
pass our verification yields a higher overall accuracy.

Figure 2: Towards near-perfect reasoning: SSV
achieves new SoTA accuracy and 100% verifica-
tion precision on the AR-LSAT law school tests
dataset (all systems using GPT-4 as base LLM).

Our evaluation demonstrates how the SSV ap-
proach achieves a significant increase in over-
all accuracy, as well as a near-perfect precision
(or selective accuracy) on the verified cases.
Figure 2 highlights the results for the most
challenging AR-LSAT law school tests dataset.
Though better than direct LLM inference and
CoT, the accuracy of the best performing exist-
ing system (the solver-augmented LOGIC-LM
approach by Pan et al. (2023)) is at 43%, while
SSV achieves a significantly higher accuracy of
71.3%, which also surpasses the average human
performance. Moreover, the precision (or se-
lective accuracy) of the 21.7% of cases that it is
able to verify is 100%. This means that a 21.7%
reduction in manual verification effort can po-
tentially be made on tasks of such high complexity. In our full evaluation we also show higher
accuracy and coverage of verified cases on other open reasoning datasets.

In summary, we make the following contributions in this work: (1) We propose the problem for-
mulation of returning a boolean high-confidence verification indication in addition to the answer,
which can be used to reduce manual cost of verification. (2) We present the novel technique of se-
mantic self-verification, which uses concrete instantiations to verify the correctness of the problem
formalization. (3) We show how SSV can also improve the formalization itself through instantiation-
guided refinement and exploration of multiple candidate formalizations. (4) We present an extensive
evaluation on five open benchmarks that shows a significant increase in overall accuracy over SoTA,
as well as near-perfect selective accuracy over a significant coverage of verified cases.

2 INFERRING THE RIGHT FORMALIZATION: A MOTIVATING EXAMPLE

Let us consider the third constraint from the technicians problem in Figure 1b, which requires that
“Stacy does not repair any type of machine that Yolanda repairs”. Figure 3 illustrates how the SSV
approach works in this case. A direct translation using the LLM may produce an incorrect abstract
formalization of this constraint as shown in Figure 3a, where the constraint is asserted only for some

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Incorrect formalization (uses Exists quantifier) (b) Correct formalization (uses ForAll quantifier)

Figure 3: Semantic self-verification of a general constraint: one concrete instantiation fails for the
wrong formalization in (a), while both instantiations are verified for the correct formalization in (b)

machine rather than for all machines because the Exists quantifier is incorrectly used. However,
in the SSV approach, we use the LLM to also infer simple concrete instantiations, or examples, of
the general NL constraint. For instance, a concrete positive example is that Stacy repairs radios and
Yolanda repairs TVs. A concrete negative example is that Stacy and Yolanda cannot both repair TVs.
After inferring these examples in NL, we also use the LLM to translate them to formal expressions
in the language of the solver. We then use the logical solver to check that each of these expressions
is satisfiable under the abstract formalization. In Figure 3a we see that the second instantiation fails
verification because the abstract formalization does not assert the condition for all machine types,
so it still allows for the possibility that Stacy and Yolanda can both repair TVs.

However, with the correct formalization in Figure 3b that uses the ForAll quantifier, we see that
both instantiations pass the solver verification, since the abstract formalization correctly disallows
that any machine can be repaired by both Stacy and Yolanda. In the same way, SSV verifies all of
the constraints identified in the full program by inferring concrete instantiations for them using the
LLM. For instance, for the first constraint in Figure 1b it may infer a positive example that Xena,
Urma, Wim and Stacy repair radios, and a negative example that only Xena and Urma repair radios.

3 SEMANTIC SELF-VERIFICATION

Require: Q // the question
Require: LLM // the language model
Require: Solver // the logical solver
Require: Temperatures // LLM temperatures to try
Require: MaxRepairs // maximum repair attempts

1: Abest ← ∅
2: for each T ∈ Temperatures do
3: P ← GenProgram(LLM, T, Solver, Q)
4: while P ̸= ∅ and under MaxRepairs do
5: A← ExecuteProgram(Solver, P)
6: if Abest = ∅ then
7: Abest ← A
8: I ← GenInstantiations(LLM, T, P)
9: Ifail ← Verify(Solver, I, P)

10: if Ifail = ∅ and IsWellFormed(P) then
11: return (A,True)
12: P ← RepairProgram(LLM, T, Q, P, Ifail)
13: if Abest = ∅ then
14: Abest ← InferLLMAnswer(LLM, Q)
15: return (Abest,False)

Figure 4: The Semantic Self-Verification Algorithm

In this section we describe the seman-
tic self-verification approach for solving
reasoning problems, which is based on
generating programs that are verified and
refined by concrete instantiations. The
main algorithm is shown in Figure 4,
which shows the top-level flow and key
components of the approach. As dis-
cussed before, in our problem formula-
tion, the algorithm takes as input a ques-
tion (Q), such as the technicians problem
from Figure 1a, and outputs a pair of val-
ues which are the answer to the question
and a boolean flag that indicates if ver-
ification has succeeded. Figure 4 also
shows the other configuration parameters
that the algorithm takes: the particular
LLM and solver to use, as well as the
temperature values for the LLM to ex-
plore and the maximum number of repair
attempts. We shall first describe the gen-
eral algorithm outline and then discuss
the key phases in more detail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

For each temperature value to be explored, the algorithm begins by using the LLM to infer a program
P that can be executed by the solver to answer the question Q, such as the program from Figure 1b
for the technicians problem. If an executable program is successfully generated (P ̸= ∅), then we
enter the verification loop (line 4). Here, we first execute the program using the solver to obtain
an answer. Then to perform verification, we first infer concrete instantiations I, which are test
cases for each of the different constraints and options that the program P contains, such as the six
constraints and five options in the technicians program from Figure 1b. We attempt to verify that
each of these instantiations is formally satisfiable using the solver and return any failing instantiation
Ifail. For example, for the third constraint in the technicians program, we may infer the instantiations
as in Figure 3a and obtain the failing instantiation “Stacy and Yolanda cannot both repair TVs”.
If there is no failing instantiation found (which would be the case in Figure 3b) and the program
P also satisfies some general well-formedness properties, then we return its answer A along with
verification success (line 11).

If verification fails, then we attempt to repair the program P using the LLM and any failing instanti-
ation found, as this instantiation can provide information about why the constraint that it instantiates
may be implemented incorrectly. For example, the failing instantiation from Figure 3a may guide the
LLM to infer that the condition should be asserted for all machine types using the forall quantifier as
shown in Figure 3b. After obtaining the repaired program, we repeat the verification loop. If none of
the answers could be verified at any of the temperatures in any repair attempts, then we exit the outer
loop at line 13. If no answer was found at all so far (i.e. no executable program could be inferred),
then we fall back to an answer by direct inference using the LLM with a chain-of-thought prompt,
as done in prior work (Pan et al. (2023)). We then return the best answer along with verification
failure. We next discuss some of the key phases of the algorithm in more detail.

Program generation. The GenProgram function in Figure 4 uses the LLM to generate a program
that can be executed by the solver to address the given problem. A basic implementation of this
could just be to use a direct LLM prompt to generate the solver code. However, we also utilize some
effective techniques from the code generation literature to optimize the code quality. Firstly, we
use error-based refinement, where if the generated program produces any syntax or execution errors
then these are fed back to the LLM to repair the errors and obtain an executable program. This is
a common approach to code generation with LLMs (Chen et al. (2024)), and has also been applied
to reasoning domains (Pan et al. (2023)). Secondly, when direct code-generation fails to produce
executable code, we also attempt a compositional approach (Khot et al. (2023); Pourreza & Rafiei
(2024)), where the program is generated incrementally for each of the constraints identified from
the original problem. Such approaches provide for better code generation to obtain executable code
as compared to direct LLM prompting alone, which can produce code with syntax errors, etc. Our
compositional code generation and refinement prompts are shown in Appendix A.1.

Semantic verification. While the above code generation approaches help to obtain an executable
solver program, they do not address any semantic issues that may be present in the program: whether
it accurately implements the intended constraints from the original problem. This is the main issue
that SSV addresses by first generating concrete instantiations of the various constraints specified
in the problem and then verifying that these instantiations are satisfied by the generated program.
The GenInstantiations function first parses the generated program P to extract each of the con-
straints as well as their NL descriptions. Our program generation phase creates programs with an
explicit structure Pinit + C1... + CN + O1 + ...OM , where there is an initial definitions segment
Pinit, followed by the constraints and options that are demarcated in explicit segments along with
their NL descriptions stated as comments (e.g. “#CONSTRAINT:” and “#OPTION:” comments in
Figure 1b). This structure is utilized to parse the constraints along with their respective NL descrip-
tions from the program. For each NL description of a constraint, we use the LLM to infer concrete
instantiations for it. Although in general we can generate an arbitrary number of instantiations for
a given constraint, in our particular implementation prompt we ask the LLM to generate one pos-
itive example (where the constraint is satisfied) and one negative example (where the constraint is
violated). Each of these examples is also translated as expressions in the language of the solver (as
shown in Figure 3). The prompt for generating instantiations is shown in Appendix A.2.

Once we obtain the list of all instantiations I, we next verify if each of them is consistent with
its respective constraint. For each instantiation, given the initial definitions code segment of the
program Pinit, the constraint code C, and the instantiation expression I , the Verify function cre-
ates and executes a solver program Pinit + C + I that checks if the combination of the constraint

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and instantiation is logically satisfiable. If verification fails, it returns the first failing instantiation
Ifail ∈ I. Apart from checking the concrete instantiations, we also check some general logical
well-formedness properties of the program (IsWellFormed function). These include (1) structural
checks to ensure the program is generated according to the format described above, (2) that the
program returns some answer and does not return multiple answers, and (3) checks for degenerate
expressions in the program that are logical tautologies or vacuously true implications, which tend to
be redundancies or over-simplifications in the problem formalization.

Semantic program repair. If semantic verification fails and we have found a failing instantiation
Ifail, the RepairProgram function uses the failing instantiation to attempt to repair the original
program P using the LLM if no answer has yet been found. This is similar to error-based program
repair with LLMs, except that in this case it is a semantic repair based on the instantiation inferred
by the LLM itself, rather than a syntactic or execution error in the program. In our repair prompt, we
provide the initial definitions code, the constraint code and its NL description, and the instantiation
expression that failed verification. We prompt the LLM to first analyse if the error is in the initial
definitions, the constraint code or the instantiation itself (in a chain of thought fashion) and then to
infer the corrected code. The prompt used for semantic program repair is shown in Appendix A.3.

4 EVALUATION

We present an evaluation of our SSV technique on existing open benchmarks for logical reasoning.
The main goal of our evaluation is to determine the effectiveness of SSV with respect to two key
aspects: (1) Improving the general accuracy of reasoning over existing baselines and (2) Providing a
high quality verification mechanism: the correctness of verification (precision) and how many cases
can be verified (coverage).

Datasets. We use five common datasets for evaluating logical reasoning tasks. To help in a direct
comparison with the relevant baselines, we use the same datasets that were used in Pan et al. (2023).
All datasets exist in a standard multiple-choice format, where each task comprises of a problem
statement, a question, and potential answer options, as in the example shown in Figure 1a.

PrOntoQA is a dataset of synthetic deductive reasoning tasks for testing LLMs (Saparov & He
(2023)). We use the most challenging version of the fictional characters dataset as identified in that
work, which are tasks requiring 5 hops of reasoning. This is a total of 500 tasks in the test set with 2
answer options (True or False). ProofWriter is a widely used dataset for logical reasoning (Tafjord
et al. (2021)) which, in contrast to PrOntoQA, has problems that are framed in a more naturalistic
language. We use the open-world assumption subset with the most challenging tasks requiring 5
hops of reasoning. We use the same set used in Pan et al. (2023), where the test set contains 600
tasks that have 3 answer options (True, False or Unknown). FOLIO is an expert-crafted dataset
designed for logical reasoning (Han et al. (2022)). The problems are closely aligned with real-world
knowledge and are also phrased in highly natural language, requiring complex first-order logic rea-
soning for their solutions. We evaluate using the entire FOLIO test set, which contains 204 examples
that have 3 answer options (True, False or Unknown). LogDeduction is another reasoning dataset
from the BigBench collaborative benchmark (Srivastava et al. (2023)). The tasks mainly involve
deducing the sequence order of objects based on a given set of arbitrary conditions. We evaluate
using the complete test set, which consists of 300 tasks, each with 3,5 or 7 options for answers.
AR-LSAT is a dataset that is created from a compilation of all analytical reasoning questions from
the Law School Admission Test (LSAT) administered between 1991 and 2016 (Zhong et al. (2022)).
This is a particularly challenging dataset, where even state-of-the-art models have only achieved
performance that is a little better than random guessing (Pan et al. (2023); Liang et al. (2023)). The
test set consists of 230 questions with each question having 5 possible answer options.

Baselines. We compare our technique against three baselines, which represent approaches of rea-
soning using the LLM alone, as well as the combination of formal logical solvers with LLMs. Each
of these baselines and our own system is parametric in the LLM used, and in our experiments we
investigate all systems with both the GPT-4 model (a current best general LLM for reasoning) as
well as the weaker GPT-3.5 model from Open AI. We use the baselines and their results for these
models as reported in Pan et al. (2023). The baselines are as follows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Dataset General Accuracy SSV Verification
Standard CoT Logic-LM SSV Coverage Precision

AR-LSAT 33.3 35.1 43.0 71.3 21.7 94.0 (100.0)
FOLIO 69.1 70.6 78.9 80.9 25.0 98.0 (100.0)

LogDeduction 71.3 75.3 87.6 89.7 43.7 100.0
PrOntoQA 77.4 98.8 83.2 100.0 66.0 100.0
ProofWriter 52.7 68.1 79.7 98.0 75.2 98.7 (100.0)

Figure 5: General accuracy of SSV approach and baselines, and the precision/coverage of SSV
verification. Results shown are for GPT-4 used as the underlying model for all systems. Precision
values in brackets in green are the actual values in the corrected datasets.

Standard is the direct approach of prompting the LLM, which leverages in-context learning to
directly answer the question. CoT is the Chain-of-Thought technique (Wei et al. (2022)), which
adopts a step-by-step problem-solving approach, using the LLM to first generate explanations before
providing the final answer. Logic-LM is a state-of-the-art technique for combining LLMs with
formal logical solvers to improve the robustness of reasoning (Pan et al. (2023)). The LLM is
prompted to produce a representation of the problem as a formal solver program, which is then
executed to produce the final answer. Finally, SSV is the implementation of our semantic self-
verification technique, as shown in Figure 4. In our concrete implementation, we use the Z3 SMT
solver as the logical solver (de Moura & Bjørner (2008)). The exact same prompts are used for
both models, where 1-4 few shot examples were chosen from across the training datasets for each
prompt (prompts shown in the Appendices). In the full implementation we set the SSV algorithm
parameters MaxRepairs = 2 and Temperatures = [0, 0.3, 0.4, 0.5] (exploring the lowest and
mid-range temperatures), and also report on variations of these parameters in the ablation analysis.

4.1 RESULTS

Main results The main results are shown in Figure 5, where all systems have been run with the
GPT-4 model as the underlying LLM. The figure shows both the general accuracy of all systems
as well as the precision and coverage of verification provided by our SSV technique. The general
accuracy refers to the percentage of correct answers achieved by the system among all cases in the
dataset. For SSV verification, the precision refers to the percentage of cases where the answer is
correct among all cases which the SSV technique signalled as verified. The coverage refers to the
percentage of cases that are signalled as verified by SSV among all cases in the dataset. We make
the following key observations from these results:

1. SSV outperforms all baselines in terms of general accuracy. Our technique achieves a higher gen-
eral accuracy over all baseline systems across all datasets. We especially note the drastic increase of
28.3% over the current best Logic-LM system on the most difficult AR-LSAT dataset. This shows
the strong effectiveness of our technique in producing robust problem formalizations in contrast to
just a direct LLM translation from the natural language description to the solver program.

2. SSV verification shows perfect empirical precision across all datasets. With the underlying GPT-
4 model, we have found that the precision of verification with SSV is 100% on all of the datasets.
Interestingly, on three of the datasets (AR-LSAT, FOLIO and ProofWriter), our verification mecha-
nism actually discovered a few erroneous cases that we have checked were assigned wrong answers
in the datasets. However, for consistent comparison to all baselines, in Figure 5 we have stated all
numbers according to the original datasets (with the slightly lower precision values due to the incor-
rectly labelled cases). We provide explanations for the few correction cases in Appendix A.4 (for
the AR-LSAT cases, we were able to also verify that our corrections are consistent with the original
test question answers 1). Such empirically perfect precision on these datasets demonstrates the very
high level of confidence that SSV verification can provide for complex reasoning problems.

3. SSV verification shows significant coverage across all datasets. Although the precision is very
high, we know that SSV verification does not always succeed. However, we find that the coverage

1https://img.cracklsat.net/lsat/pt/pt80.pdf

7

https://img.cracklsat.net/lsat/pt/pt80.pdf

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Semantic repair attempts and temperature variations on AR-LSAT

is significant across all datasets, with the lowest coverage of 21.7% on the most difficult AR-LSAT
dataset. As expected, we find the coverage increases on the relatively easier datasets, with a ver-
ification coverage of up to 75.2% on ProofWriter. This significant coverage of verification shows
that the SSV approach can help in avoiding manual human verification in a significant proportion of
cases to reduce overall cost and effort.

Effect of semantic repair and temperature exploration Figure 6 illustrates the effects of varying
the number of semantic repair attempts (MaxRepairs) and temperatures (Temperatures) on the
AR-LSAT dataset. We examined the effects on the three metrics of overall accuracy, the program
accuracy (how often program generation was successful rather than fall-back to direct LLM answer),
and the coverage of cases where verification succeeds.

In total there was a 6.1% gain in accuracy with semantic repairs, and 10.0% with all temperature
explorations. The total gain in verification coverage was 5.2% for repair and more than doubled for
temperature explorations, with a gain of 12.2% over the initial 10.9% coverage. In general, we found
that for both repair attempts and temperature explorations, the gains were initially higher and then
started to diminish, for both accuracy and verification coverage. For repair in particular, there was
no improvement in any metric after 3 attempts, while temperature explorations continued to show
some gains up to temperature 0.6. The gap between program accuracy and overall accuracy also
reduced as repair attempts and temperature explorations increased (dropping from 9.8% to 5.2% on
average), showing that program generation starts contributing more with these features.

Dataset General Accuracy SSV Verification
Standard CoT Logic-LM SSV Coverage Precision

AR-LSAT 20.3 17.3 26.4 28.3 0 -
FOLIO 45.1 57.4 62.7 59.3 1.5 100.0

LogDeduction 40.0 42.3 65.7 48.3 0 -
PrOntoQA 47.4 67.8 61.0 72.8 4.2 95.2
ProofWriter 35.5 49.2 58.3 72.5 16.2 94.8 (95.9)

Figure 7: Results for GPT-3.5 model: general accuracy of all systems and SSV precision/coverage.
Precision values in brackets in green are the actual values in the corrected datasets.

Evaluation on GPT-3.5 We also evaluated our system and all baselines using GPT-3.5 as the
underlying LLM. The results are shown in Figure 7. Firstly, we note that while the general accuracy
of all systems drops significantly with this weaker model, our SSV system still performs best overall,
with an average accuracy of 56.2%. However, Logic-LM performs better than SSV on FOLIO and
LogDeduction (this could be partly due to differences in the code generation quality for the different
solver languages that Logic-LM uses for these datasets).

Secondly, we observe that while the coverage of SSV verification also drops significantly, with two
of the more difficult datasets (AR-LSAT and LogDeduction) having no coverage at all, the precision
of SSV is very minimally affected. On the three datasets where there is coverage, we still see an
average precision of 97%. This demonstrates an important property of reliability of SSV verification:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

even for weaker models, if verification succeeds then it is still very reliable (and much more reliable
than general accuracy), though it may succeed much less often. In practical terms, such reliability
could even allow one to adopt a tiered strategy to optimize costs: trying weaker (cheaper) models
for tasks first and fall-back on more expensive models if verification fails.

Runtime performance The median runtime per task was 152 seconds (first quartile: 108s, third
quartile: 267s) and mean 249s over a sample of 250 cases. More details and a discussion of potential
optimizations to the SSV algorithm can be found in Appendix A.6.

5 LIMITATIONS AND FUTURE DIRECTIONS

Since natural language is informal and ambiguous, any verification approach with NL specifications
cannot guarantee full correctness. Although SSV verification provides near-perfect empirical pre-
cision (100% with GPT-4), we discuss here the kinds of errors that are possible in SSV, which are
illustrated by the few failing cases we found with GPT-3.5. In total, we found one case in PrOntoQA
and four cases in ProofWriter that passed verification with an incorrect answer.

1. Concrete instantiations are insufficient. Since the approach is based on verification with respect
to concrete examples (test cases), these may not test all aspects of the general constraint, especially
all corner cases. Two questions failed for this reason with GPT-3.5. For example, in one case there
were two separate conditions “Gary is nice” and “Gary is kind” in the original problem that were
conflated to use the same predicate “is kind(Gary)” in the formalization. If a concrete instantiation
were generated that asserted “Gary is nice but not kind” then this would have detected the error.

2. Concrete instantiation and program are both mutually consistent but wrong. This is the unlikely
case where both the program and the test case have the same error and therefore pass verification.
We found only one such case which was a rather confusingly trivial error: for some reason the
constraint “Fiona is quiet” was translated as its negation “Not(is quiet(Fiona))” in both the program
and the concrete instantiation independently generated by GPT-3.5.

3. Missing or superfluous constraints. In such cases the LLM may miss adding some constraints or
add new constraints to the program that are not specified in the problem. Since our approach depends
on the constraints being explicitly demarcated and parsed from the LLM-generated program, any
errors by the LLM here can lead to potential failures in the verification. Two of the GPT-3.5 failure
cases were caused by superfluous constraints being added. For example, in one case, the condition
that was to be checked in the question was itself added as a constraint in the program.

In general, as we have found in our evaluation, such errors are rare and more likely in weaker LLMs,
and can be expected to reduce further as LLMs mature. Errors such as (1) and (2) can also be reduced
with a more exhaustive examples inference strategy, as in our implementation we took the simple
approach of generating only 1 positive and 1 negative example per constraint. Class (3) errors stem
from issues in the very basic structural consistency that is expected that the constraints expressed in
the program match those from the original problem. While such basic consistency checks are less of
an issue in mature LLMs such as GPT-4, one can also consider training simple specialized modules
to check these core structural properties with high accuracy.

Another interesting direction is reasoning with missing background knowledge, which SSV does not
handle as it focuses on pure deductive reasoning. Using LLMs to infer missing information before
applying SSV can both enhance inference and also highlight missing assumptions to the user.

6 RELATED WORK

Reasoning with LLMs. Improving the robustness of reasoning in large language models is a very
active area of research, and many recent approaches have made significant advancements. One
direction of work has been to fine-tune or train specialized models that show improved reasoning
ability (Tafjord et al. (2022); Clark et al. (2020); Yang et al. (2022)). Another direction has been to
develop sophisticated prompting strategies to elicit better reasoning from LLMs. Chain-of-thought
prompting (Wei et al. (2022)) has shown how the quality of reasoning can be improved by prompting
the model to explicitly generate the steps of reasoning in natural language before arriving at the final
answer. Other examples of prompting approaches include chain-of-thought with self-consistency

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(Wang et al. (2023)), analogical reasoning (Yu et al. (2024)), and various modular approaches to
address complex problems by decomposition to simpler sub-problems (Zhou et al. (2023); Khot et al.
(2023); Creswell et al. (2023)). While these approaches show relative improvements in accuracy,
the reasoning is still based on informal natural language and is prone to errors made by the LLMs
in the steps of reasoning. In contrast, we follow the approach of off-loading the reasoning task to
a formal solver that can guarantee correctness of the reasoning steps, and our particular focus is on
the key challenge of ensuring that the correct formalization of the problem is sent to the solver.

Tool-augmented reasoning. Integrating LLMs with specialized tools for performing various tasks
is becoming increasingly common (Schick et al. (2023)). This approach has also been adopted to
improve the reasoning quality by augmenting the LLM with logical solvers or automated reasoning
tools (Pan et al. (2023); Ye et al. (2023); Nye et al. (2021)). The key challenge with these approaches
is to ensure that the LLM correctly translates the reasoning problem from NL to the formal language
of the solver. This is the main focus of our work, where we show how verification and refinement
with respect to concrete instantiations generated by the LLM can improve the translation accuracy
and also provide a near-perfect precision of verification. Tool-augmented approaches have also
been explored in the related areas of planning (Kambhampati et al. (2024); Guan et al. (2024)) and
auto-formalization (Wu et al. (2022); Jiang et al. (2023); He-Yueya et al. (2023)), where informal
mathematical proofs are translated to formal specifications defined in theorem provers like Isabelle
(Paulson (1994)) and Lean (de Moura et al. (2015)). While our focus in this work has been on the
general problem of logical reasoning, the core principle of verifying and refining formalizations with
respect to concrete instantiations is also potentially applicable in these other domains.

Self-verification approaches. Many related works have also explored the notion of self-verification
by LLMs (Weng et al. (2023); Madaan et al. (2023); Xie et al. (2023); Ling et al. (2023); Miao
et al. (2024)). The general idea is that using the LLM to inspect and verify its own reasoning can
show improvements, though in some domains self-critiquing has also shown diminished perfor-
mance (Valmeekam et al. (2023)). Our approach of verification is different: instead of asking the
LLM to verify the abstract chain of reasoning, we only ask it to generate concrete examples of the
general constraints in the problem. The task of verification is then totally on the logical solver to
formally check that these examples are consistent with the abstract formalization. Thus apart from
not relying purely on the LLM for verification, we also avoid the more complex task of verifying an
abstract chain of reasoning which can itself be highly error-prone. We instead perform both abstract
and concrete inference and check consistency between them. We have shown how this approach
can provide a very high precision verification, as opposed to the above approaches which provide
relative improvements in accuracy. Our approach of inferring concrete instantiations is also similar
to automated test case generation and verification in code generation approaches (Chen et al. (2024);
Schäfer et al. (2024)). While our instantiations are similar to test cases, in general they can be ar-
bitrary implications, and our focus is on logical expressions rather than code. Our approach also
leverages compositionality as we infer instantiations for independent constraints identified from the
problem, which can be seen as analogous to unit test generation in the code generation domain.

7 CONCLUSION

We have presented the Semantic Self-Verification approach, which substantially advances the robust-
ness of AI reasoning systems by inferring verified problem formalizations through a novel combina-
tion of LLMs and logical solvers. Apart from boosting overall accuracy beyond the state-of-the-art,
this approach introduces a novel verification feature that has near-perfect empirical precision.

As LLMs continue to evolve at a rapid pace, their reasoning abilities are becoming increasingly
powerful. However, this general trend of improvement focuses on relative gains in answer accuracy
on benchmarks, and when such benchmarks become saturated, more complex ones are introduced.
While this ongoing progress is crucial, it does not inherently address the need for confidence of
correctness on any arbitrary reasoning task. This is a key contribution of the SSV approach, which
provides a complementary verification mechanism that is orthogonal to the underlying reasoning
power of the particular LLM, and can hence be similarly applicable to more powerful models. As
LLMs grow more capable, such a focus on near-certain reasoning through precise verification would
be an important complimentary direction to general accuracy improvement—especially as we strive
towards AI systems capable of super-human levels of reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In ICLR. OpenReview.net, 2024. URL http://dblp.uni-trier.de/db/
conf/iclr/iclr2024.html#ChenLSZ24.

C. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information
Theory, 16(1):41–46, 1970. doi: 10.1109/TIT.1970.1054406.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over lan-
guage. In Christian Bessiere (ed.), IJCAI, pp. 3882–3890. ijcai.org, 2020. URL http:
//dblp.uni-trier.de/db/conf/ijcai/ijcai2020.html#ClarkTR20. Sched-
uled for July 2020, Yokohama, Japan, postponed due to the Corona pandemic.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. In ICLR. OpenReview.net, 2023. URL
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#CreswellSH23.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakr-
ishnan and Jakob Rehof (eds.), TACAS, volume 4963 of Lecture Notes in Computer Science, pp.
337–340. Springer, 2008. ISBN 978-3-540-78799-0. URL http://dblp.uni-trier.de/
db/conf/tacas/tacas2008.html#MouraB08.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middel-
dorp (eds.), CADE, volume 9195 of Lecture Notes in Computer Science, pp. 378–388. Springer,
2015. ISBN 978-3-319-21400-9. URL http://dblp.uni-trier.de/db/conf/cade/
cade2015.html#MouraKADR15.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy
Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian
Wong, Malcolm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq R.
Joty, Alexander R. Fabbri, Wojciech Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir
Radev. Folio: Natural language reasoning with first-order logic. CoRR, abs/2209.00840,
2022. URL http://dblp.uni-trier.de/db/journals/corr/corr2209.html#
abs-2209-00840.

Joy He-Yueya, Gabriel Poesia, Rose Wang, and Noah Goodman. Solving math word problems
by combining language models with symbolic solvers. In The 3rd Workshop on Mathematical
Reasoning and AI at NeurIPS’23, 2023. URL https://openreview.net/forum?id=
m7m14acWQi.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothée Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In ICLR. OpenReview.net, 2023. URL http://dblp.
uni-trier.de/db/conf/iclr/iclr2023.html#JiangWZL0LJLW23.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=Th8JPEmH4z.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks.
In ICLR. OpenReview.net, 2023. URL http://dblp.uni-trier.de/db/conf/iclr/
iclr2023.html#KhotTFF0CS23.

11

http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#ChenLSZ24
http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#ChenLSZ24
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2020.html#ClarkTR20
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2020.html#ClarkTR20
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#CreswellSH23
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08
http://dblp.uni-trier.de/db/conf/tacas/tacas2008.html#MouraB08
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-00840
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-00840
https://openreview.net/forum?id=m7m14acWQi
https://openreview.net/forum?id=m7m14acWQi
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#JiangWZL0LJLW23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#JiangWZL0LJLW23
https://openreview.net/forum?id=Th8JPEmH4z
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#KhotTFF0CS23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#KhotTFF0CS23

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan,
Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana
Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong,
Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tat-
sunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen
Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. Holistic evaluation of language models. Trans.
Mach. Learn. Res., 2023, 2023. URL http://dblp.uni-trier.de/db/journals/
tmlr/tmlr2023.html#LiangBLTSYZNWKN23.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic, and Hao
Su. Deductive verification of chain-of-thought reasoning. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), NeurIPS, 2023. URL http:
//dblp.uni-trier.de/db/conf/nips/neurips2023.html#LingFLHLMS23.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using LLMs to zero-shot check their
own step-by-step reasoning. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=pTHfApDakA.

Maxwell I. Nye, Michael Henry Tessler, Joshua B. Tenenbaum, and Brenden M. Lake. Improv-
ing coherence and consistency in neural sequence models with dual-system, neuro-symbolic
reasoning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan (eds.), NeurIPS, pp. 25192–25204, 2021. URL http://dblp.
uni-trier.de/db/conf/nips/neurips2021.html#NyeTTL21.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), EMNLP (Findings), pp. 3806–3824. Association for Computational
Linguistics, 2023. ISBN 979-8-89176-061-5. URL http://dblp.uni-trier.de/db/
conf/emnlp/emnlp2023f.html#PanAWW23.

Lawrence C Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. ISBN 3540582444.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: decomposed in-context learning of text-to-
sql with self-correction. In Proceedings of the 37th International Conference on Neural Informa-
tion Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates Inc.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In ICLR. OpenReview.net, 2023. URL http://dblp.uni-trier.de/
db/conf/iclr/iclr2023.html#Saparov023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, M. Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools, 2 2023. URL https://www.semanticscholar.org/paper/
53d128ea815bcc0526856eb5a9c42cc977cb36a7.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
50(1):85–105, 2024. doi: 10.1109/TSE.2023.3334955.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,

12

http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#LiangBLTSYZNWKN23
http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#LiangBLTSYZNWKN23
http://dblp.uni-trier.de/db/conf/nips/neurips2023.html#LingFLHLMS23
http://dblp.uni-trier.de/db/conf/nips/neurips2023.html#LingFLHLMS23
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=pTHfApDakA
http://dblp.uni-trier.de/db/conf/nips/neurips2021.html#NyeTTL21
http://dblp.uni-trier.de/db/conf/nips/neurips2021.html#NyeTTL21
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#PanAWW23
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#PanAWW23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#Saparov023
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#Saparov023
https://www.semanticscholar.org/paper/53d128ea815bcc0526856eb5a9c42cc977cb36a7
https://www.semanticscholar.org/paper/53d128ea815bcc0526856eb5a9c42cc977cb36a7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders An-
dreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew
La, Andrew K. Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Bartlomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, Cèsar Ferri Ramı́rez, Chandan Singh,
Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
Daniel Moseguı́ González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliz-
abeth Donoway, Ellie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut
Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan J. Jerzak, Ethan Kim, Eunice En-
gefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martı́nez-Plumed,
Francesca Happé, François Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Ger-
ard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang,
Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah
Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze,
Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Si-
mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosin-
ski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse H.
Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden,
John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen,
José Hernández-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum,
Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakr-
ishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi,
Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle
Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras
Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt,
Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten
Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan,
Marco Marelli, Marco Maru, Marı́a José Ramı́rez-Quintana, Marie Tolkiehn, Mario Giulianelli,
Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina
Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu,
Michael I. Ivanitskiy, Michael Starritt, Michael Strube, Michal Swedrowski, Michele Bevilac-
qua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker,
Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T.,
Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff,
Nitish Shirish Keskar, Niveditha Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Milkowski, Piyush
Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Ro-
han Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui
Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman,
Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwa-
tra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian
Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivas-
tava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shub-
ham Toshniwal, Shyam Upadhyay, Shyamolima (Shammie) Debnath, Siamak Shakeri, Simon
Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene,
Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kir-
itchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto,
Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkiny-
ili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala
Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai,
Vikas Raunak, Vinay V. Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Sriku-
mar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong,
Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yu-
fang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and
Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. Trans. Mach. Learn. Res., 2023, 2023. URL http://dblp.uni-trier.de/db/
journals/tmlr/tmlr2023.html#SrivastavaRRSAF23.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), ACL/IJCNLP (Findings), volume ACL/IJCNLP 2021 of Findings of ACL, pp.
3621–3634. Association for Computational Linguistics, 2021. ISBN 978-1-954085-54-1. URL
http://dblp.uni-trier.de/db/conf/acl/acl2021f.html#TafjordDC21.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Entailer: Answering questions with faith-
ful and truthful chains of reasoning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), EMNLP, pp. 2078–2093. Association for Computational Linguistics, 2022. URL http:
//dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#TafjordMC22.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language mod-
els really improve by self-critiquing their own plans? In NeurIPS 2023 Foundation Mod-
els for Decision Making Workshop, 2023. URL https://openreview.net/forum?id=
gGQfkyb0KL.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR. OpenReview.net, 2023. URL http://dblp.uni-trier.de/db/conf/
iclr/iclr2023.html#0002WSLCNCZ23.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), NeurIPS, 2022. ISBN 9781713871088. URL http://dblp.uni-trier.de/db/
conf/nips/neurips2022.html#Wei0SBIXCLZ22.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), EMNLP (Findings), pp. 2550–2575. Association for Computational
Linguistics, 2023. ISBN 979-8-89176-061-5. URL http://dblp.uni-trier.de/db/
conf/emnlp/emnlp2023f.html#WengZX0HLSLZ23.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jam-
nik, and Christian Szegedy. Autoformalization with large language models. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), NeurIPS,
2022. ISBN 9781713871088. URL http://dblp.uni-trier.de/db/conf/nips/
neurips2022.html#WuJLRSJS22.

14

http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#SrivastavaRRSAF23
http://dblp.uni-trier.de/db/journals/tmlr/tmlr2023.html#SrivastavaRRSAF23
http://dblp.uni-trier.de/db/conf/acl/acl2021f.html#TafjordDC21
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#TafjordMC22
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#TafjordMC22
https://openreview.net/forum?id=gGQfkyb0KL
https://openreview.net/forum?id=gGQfkyb0KL
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#0002WSLCNCZ23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#0002WSLCNCZ23
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#Wei0SBIXCLZ22
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#WengZX0HLSLZ23
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2023f.html#WengZX0HLSLZ23
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#WuJLRSJS22
http://dblp.uni-trier.de/db/conf/nips/neurips2022.html#WuJLRSJS22

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-Yen Kan, Junxian He, and Qizhe Xie. Self-
evaluation guided beam search for reasoning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=Bw82hwg5Q3.

Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-guided
search. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), EMNLP, pp. 89–105. As-
sociation for Computational Linguistics, 2022. URL http://dblp.uni-trier.de/db/
conf/emnlp/emnlp2022.html#Yang0C22.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SatLM: Satisfiability-aided language models
using declarative prompting. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=TqW5PL1Poi.

Junchi Yu, Ran He, and Zhitao Ying. Thought propagation: an analogical approach to complex
reasoning with large language models. In ICLR. OpenReview.net, 2024. URL http://dblp.
uni-trier.de/db/conf/iclr/iclr2024.html#Yu0Y24.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai Wang, Jian
Yin, Ming Zhou, and Nan Duan. Analytical reasoning of text. In Marine Carpuat, Marie-
Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Findings of the Association for
Computational Linguistics: NAACL 2022, pp. 2306–2319, Seattle, United States, July 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.177. URL
https://aclanthology.org/2022.findings-naacl.177.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting en-
ables complex reasoning in large language models. In ICLR. OpenReview.net, 2023. URL http:
//dblp.uni-trier.de/db/conf/iclr/iclr2023.html#ZhouSHWS0SCBLC23.

Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, 1st edi-
tion, 2012. ISBN 1439830037.

A APPENDIX

A.1 COMPOSITIONAL CODE GENERATION AND REFINEMENT PROMPTS

A.1.1 PROBLEM DECOMPOSITION PROMPT

Given a problem description, please decompose it into an initial
context and a list of independent constraints. If there is no
explicit initial context given and only constraints are given,
then just state "None" for initial context. Some examples are
given below.

Problem:
The bald eagle eats the cow. The bald eagle is red. The bald
eagle needs the cow. The bear needs the rabbit. The cow is kind.
The cow is red. The cow needs the bald eagle. The rabbit eats
the bear. The rabbit eats the cow. The rabbit sees the cow. If
something needs the bald eagle then it needs the rabbit. If the
bald eagle is nice and the bald eagle is young then the bald eagle
sees the cow. If the rabbit needs the cow then the cow sees the
rabbit. If something eats the cow and the cow is nice then it
needs the bald eagle. If something needs the rabbit then it is
nice. If something sees the rabbit then it is red. If something
needs the bald eagle then it eats the bald eagle.
InitialContext:
None
Constraints:
The bald eagle eats the cow.

15

https://openreview.net/forum?id=Bw82hwg5Q3
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#Yang0C22
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2022.html#Yang0C22
https://openreview.net/forum?id=TqW5PL1Poi
http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#Yu0Y24
http://dblp.uni-trier.de/db/conf/iclr/iclr2024.html#Yu0Y24
https://aclanthology.org/2022.findings-naacl.177
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#ZhouSHWS0SCBLC23
http://dblp.uni-trier.de/db/conf/iclr/iclr2023.html#ZhouSHWS0SCBLC23

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

###
The bald eagle is red.
###
The bald eagle needs the cow.
###
The bear needs the rabbit.
###
The cow is kind.
###
The cow is red.
###
The cow needs the bald eagle.
###
The rabbit eats the bear.
###
The rabbit eats the cow.
###
The rabbit sees the cow.
###
If something needs the bald eagle then it needs the rabbit.
###
If the bald eagle is nice and the bald eagle is young then the
bald eagle sees the cow.
###
If the rabbit needs the cow then the cow sees the rabbit.
###
If something eats the cow and the cow is nice then it needs the
bald eagle.
###
If something needs the rabbit then it is nice.
###
If something sees the rabbit then it is red.
###
If something needs the bald eagle then it eats the bald eagle.

Problem:
On Tuesday Vladimir and Wendy each eat exactly four separate
meals: breakfast, lunch, dinner, and a snack. The following
is all that is known about what they eat during that day: At no
meal does Vladimir eat the same kind of food as Wendy. Neither
of them eats the same kind of food more than once during the
day. For breakfast, each eats exactly one of the following: hot
cakes, poached eggs, or omelet. For lunch, each eats exactly
one of the following: fish, hot cakes, macaroni, or omelet. For
dinner, each eats exactly one of the following: fish, hot cakes,
macaroni, or omelet. For a snack, each eats exactly one of the
following: fish or omelet. Wendy eats an omelet for lunch.
InitialContext:
On Tuesday Vladimir and Wendy each eat exactly four separate
meals: breakfast, lunch, dinner, and a snack.
Constraints:
At no meal does Vladimir eat the same kind of food as Wendy.
###
Neither of them eats the same kind of food more than once during
the day.
###
For breakfast, each eats exactly one of the following: hot cakes,
poached eggs, or omelet.
###

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For lunch, each eats exactly one of the following: fish, hot
cakes, macaroni, or omelet.
###
For dinner, each eats exactly one of the following: fish, hot
cakes, macaroni, or omelet.
###
For a snack, each eats exactly one of the following: fish or
omelet.
###
Wendy eats an omelet for lunch.

Problem:
In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types-radios,
televisions, and VCRs-and no other types. The following
conditions apply: Xena and exactly three other technicians repair
radios. Yolanda repairs both televisions and VCRs. Stacy does
not repair any type of machine that Yolanda repairs. Zane repairs
more types of machines than Yolanda repairs. Wim does not repair
any type of machine that Stacy repairs. Urma repairs exactly two
types of machines.
InitialContext:
In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types-radios,
televisions, and VCRs-and no other types.
Constraints:
Xena and exactly three other technicians repair radios.
###
Yolanda repairs both televisions and VCRs.
###
Stacy does not repair any type of machine that Yolanda repairs.
###
Zane repairs more types of machines than Yolanda repairs.
###
Wim does not repair any type of machine that Stacy repairs.
###
Urma repairs exactly two types of machines.

A.1.2 INCREMENTAL CODE GENERATION PROMPT

Given a z3 program that models a particular problem and a new
constraint described in natural language, please provide the
z3 code to augment the program with the new constraint. Please
provide only the z3 program code in the output and no other
markdown formatting or explanatory text.

ExistingProgram:
On Tuesday Vladimir and Wendy each eat exactly four separate
meals: breakfast, lunch, dinner, and a snack.
from z3 import *
people sort, (Vladimir, Wendy) = EnumSort(’people’, [’Vladimir’,
’Wendy’])
meals sort, (breakfast, lunch, dinner, snack) = EnumSort(’meals’,
[’breakfast’, ’lunch’, ’dinner’, ’snack’])
foods sort, (fish, hot cakes, macaroni, omelet, poached eggs) =

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

EnumSort(’foods’, [’fish’, ’hot cakes’, ’macaroni’, ’omelet’,
’poached eggs’])
people = [Vladimir, Wendy]
meals = [breakfast, lunch, dinner, snack]
foods = [fish, hot cakes, macaroni, omelet, poached eggs]
eats = Function(’eats’, people sort, meals sort, foods sort)

pre conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food
as Wendy.
m = Const(’m’, meals sort)
pre conditions.append(ForAll([m], eats(Vladimir, m) != eats(Wendy,
m)))

NewConstraint:
Neither of them eats the same kind of food more than once during
the day.
NewConstraintCode:
m = Const(’m’, meals sort)
p = Const(’p’, people sort)
f = Const(’f’, foods sort)
pre conditions.append(ForAll([p, f], Sum([eats(p, m) == f for m in
meals]) <= 1))

ExistingProgram:
In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types|radios,
televisions, and VCRs|and no other types.
from z3 import *
technicians sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)
= EnumSort(’technicians’, [’Stacy’, ’Urma’, ’Wim’, ’Xena’,
’Yolanda’, ’Zane’])
machines sort, (radios, televisions, VCRs) = EnumSort(’machines’,
[’radios’, ’televisions’, ’VCRs’])
technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
machines = [radios, televisions, VCRs]
repairs = Function(’repairs’, technicians sort, machines sort,
BoolSort())

pre conditions = []
t = Const(’t’, technicians sort)
pre conditions.append(ForAll([t], Sum([repairs(t, m) for m in
machines]) >= 1))

NewConstraint:
Xena and exactly three other technicians repair radios.
NewConstraintCode:
t = Const(’t’, technicians sort)
pre conditions.append(And(repairs(Xena, radios), Sum([And(t !=
Xena, repairs(t, radios)) for t in technicians]) == 3))

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.1.3 OPTIONS CODE GENERATION PROMPT

Given a problem with multiple answer options and an existing
z3 program that models the problem, please provide the z3 code
that checks each option and prints the correct answer. For
each option, first create the check property for the option by
substituting the option values appropriately in the question
statement, as well as a full comment describing what the
check property is stating. Then use only the following custom
functions (is unsat(), is sat() and is valid()) to check if the
check property is unsatisfiable, satisfiable or valid (depending
on the question). Please structure the code with comments
exactly as shown in the few shot examples below. Please provide
only the options code and its comments in the output (not the
full program), and no other surrounding markdown formatting or
explanatory text. Please create independently executable code
for each option (even if the option is not satisfiable) and do not
share code between different options.

def is unsat(option constraints):
solver = Solver()
solver.add(pre conditions)
solver.add(option constraints)
return solver.check() == unsat

def is sat(option constraints):
solver = Solver()
solver.add(pre conditions)
return solver.check() == sat

def is valid(option constraints):
return is sat(option constraints) and is unsat(Not(option constraints))

>>> Problem:
On Tuesday Vladimir and Wendy each eat exactly four separate
meals: breakfast, lunch, dinner, and a snack.
>>> ExistingProgram:
from z3 import *
people sort, (Vladimir, Wendy) = EnumSort(’people’, [’Vladimir’,
’Wendy’])
meals sort, (breakfast, lunch, dinner, snack) = EnumSort(’meals’,
[’breakfast’, ’lunch’, ’dinner’, ’snack’])
foods sort, (fish, hot cakes, macaroni, omelet, poached eggs) =
EnumSort(’foods’, [’fish’, ’hot cakes’, ’macaroni’, ’omelet’,
’poached eggs’])
people = [Vladimir, Wendy]
meals = [breakfast, lunch, dinner, snack]
foods = [fish, hot cakes, macaroni, omelet, poached eggs]
eats = Function(’eats’, people sort, meals sort, foods sort)

pre conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food
as Wendy.
m = Const(’m’, meals sort)
pre conditions.append(ForAll([m], eats(Vladimir, m) != eats(Wendy,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

m)))

CONSTRAINT: Neither of them eats the same kind of food more than
once during the day.
m = Const(’m’, meals sort)
p = Const(’p’, people sort)
f = Const(’f’, foods sort)
pre conditions.append(ForAll([p, f], Sum([eats(p, m) == f for m in
meals]) <= 1))

>>> Question:
Vladimir cannot eat which one of the following foods?
>>> Options:
(A) fish
(B) hot cakes
(C) macaroni
(D) omelet
(E) poached eggs
>>> OptionsCode:

CHECK TYPE: question says "cannot" so will check for validity
using is valid() to ensure that the negated statement is true in
all possible models.

OPTION A:
CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: fish.
m = Const(’m’, meals sort)
check property = ForAll([m], eats(Vladimir, m) != fish)
if is valid(check property): print(’(A)’)

OPTION B:
CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: hot cakes.
m = Const(’m’, meals sort)
check property = ForAll([m], eats(Vladimir, m) != hot cakes)
if is valid(check property): print(’(B)’)

OPTION C:
CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: macaroni.
m = Const(’m’, meals sort)
check property = ForAll([m], eats(Vladimir, m) != macaroni)
if is valid(check property): print(’(C)’)

OPTION D:
CHECK PROPERTY: Vladimir cannot eat which one of the following
foods? ANSWER: omelet.
m = Const(’m’, meals sort)
check property = ForAll([m], eats(Vladimir, m) != omelet)
if is valid(check property): print(’(D)’)

OPTION E:
CHECK PROPERTY: Vladimir cannot eat which one of the following

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

foods? ANSWER: poached eggs.
m = Const(’m’, meals sort)
check property = ForAll([m], eats(Vladimir, m) != poached eggs)
if is valid(check property): print(’(E)’)

>>> Problem:
In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
equipment of at least one of the following three types|radios,
televisions, and VCRs|and no other types.
>>> ExistingProgram:
from z3 import *
technicians sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)
= EnumSort(’technicians’, [’Stacy’, ’Urma’, ’Wim’, ’Xena’,
’Yolanda’, ’Zane’])
equipment sort, (radios, televisions, VCRs) =
EnumSort(’equipment’, [’radios’, ’televisions’, ’VCRs’])
technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
equipment = [radios, televisions, VCRs]
repairs = Function(’repairs’, technicians sort, equipment sort,
BoolSort())

pre conditions = []
t = Const(’t’, technicians sort)
pre conditions.append(ForAll([t], Sum([repairs(t, e) for e in
equipment]) >= 1))

CONSTRAINT: Xena and exactly three other technicians repair
radios.
t = Const(’t’, technicians sort)
pre conditions.append(And(repairs(Xena, radios), Sum([And(t !=
Xena, repairs(t, radios)) for t in technicians]) == 3))

>>> Question:
Which one of the following can be a complete and accurate list of
the technicians that repair televisions?
>>> Options:
(A) Stacy, Wim, Zane
(B) Urma, Wim, Xena, Yolanda
(C) Xena, Yolanda
(D) Stacy, Urma, Wim, Xena, Yolanda, Zane
(E) Urma
>>> OptionsCode:

CHECK TYPE: question says "can be" so will check for satisfiable
using is sat()

OPTION A:
CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Stacy, Wim and Zane.
e = Const(’e’, equipment sort)
check property = And(repairs(Stacy, televisions),
repairs(Wim, televisions), repairs(Wim, televisions),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Not(repairs(Urma, televisions)), Not(repairs(Xena, televisions)),
Not(repairs(Yolanda, televisions)))
if is sat(check property): print(’(A)’)

OPTION B:
CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Urma, Wim, Xena and Yolanda.
e = Const(’e’, equipment sort)
check property = And(repairs(Urma, televisions), repairs(Wim,
televisions), repairs(Xena, televisions), repairs(Yolanda,
televisions), Not(repairs(Stacy, televisions)), Not(repairs(Zane,
televisions)))
if is sat(check property): print(’(B)’)

OPTION C:
CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Xena and Yolanda.
e = Const(’e’, equipment sort)
check property = And(repairs(Xena, televisions), repairs(Yolanda,
televisions), Not(repairs(Stacy, televisions)), Not(repairs(Urma,
televisions)), Not(repairs(Wim, televisions)), Not(repairs(Zane,
televisions)))
if is sat(check property): print(’(C)’)

OPTION D:
CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Stacy, Urma, Wim, Xena, Yolanda and Zane.
e = Const(’e’, equipment sort)
check property = And(repairs(Stacy, televisions), repairs(Urma,
televisions), repairs(Wim, televisions), repairs(Xena,
televisions), repairs(Yolanda, televisions), repairs(Zane,
televisions))
if is sat(check property): print(’(D)’)

OPTION E:
CHECK PROPERTY: Which one of the following can be a complete and
accurate list of the technicians that repair televisions? ANSWER:
Urma.
e = Const(’e’, equipment sort)
check property = And(repairs(Urma, televisions),
Not(repairs(Stacy, televisions)), Not(repairs(Wim, televisions)),
Not(repairs(Xena, televisions)), Not(repairs(Yolanda,
televisions)), Not(repairs(Zane, televisions)))
if is sat(check property): print(’(E)’)

A.1.4 ERROR-BASED CODE REFINEMENT PROMPT

We are given a z3 program and an error message obtained from
running it. First, please provide an analysis that investigates
what may be the problem in the program that may be causing the
error. Then, based on this analysis, please provide the corrected
program where the issue is fixed - please make sure to retain any

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

comments from the original code in the repaired code (especially
the "CONSTRAINT", "QUESTION" or "OPTION" comments which demarcate
special code segments - please do not remove, change or add
any new such comments). If there is a general issue in the
formulation, then please consider an alternative reformulation
so that the program can execute without errors. A couple of
sample cases are shown below for illustration. Please produce
output in exactly the format shown in these samples, with the ">>>
CorrectedProgram:" label clearly demarcating the corrected code,
and do not use any other markdown formatting.

>>> ExistingProgram:
from z3 import *
people sort, (Vladimir, Wendy) = EnumSort(’people’, [’Vladimir’,
’Wendy’])
meals sort, (breakfast, lunch, dinner, snack) = EnumSort(’meals’,
[’breakfast’, ’lunch’, ’dinner’, ’snack’])
foods sort, (fish, hot cakes, macaroni, omelet, poached eggs) =
EnumSort(’foods’, [’fish’, ’hot cakes’, ’macaroni’, ’omelet’,
’poached eggs’])
people = [Vladimir, Wendy]
meals = [breakfast, lunch, dinner, snack]
foods = [fish, hot cakes, macaroni, omelet, poached eggs]
eats = Function(’eats’, people sort, meals sort, foods sort)

pre conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food
as Wendy.
pre conditions.append(ForAll([m], eats(Vladimir, m) != eats(Wendy,
m)))
>>> ErrorMessage:
"NameError: name ’m’ is not defined"
>>> ProblemDiscussion:
This program defines three enumerations for people, meals, and
foods. It then specifies that Vladimir and Wendy are people, and
lists the available meals and foods. It also creates a function
eats which represents the food each person eats at each meal.
Finally, it tries to add a constraint to ensure that Vladimir and
Wendy do not eat the same kind of food at any meal. However, as
the error message indicates, the constraint code uses a variable
’m’ that has not been previously declared. Hence the correct fix
to this issue would be to first explicitly declare the variable
’m’ as a new const of meal sort.
>>> CorrectedProgram:
from z3 import *
people sort, (Vladimir, Wendy) = EnumSort(’people’, [’Vladimir’,
’Wendy’])
meals sort, (breakfast, lunch, dinner, snack) = EnumSort(’meals’,
[’breakfast’, ’lunch’, ’dinner’, ’snack’])
foods sort, (fish, hot cakes, macaroni, omelet, poached eggs) =
EnumSort(’foods’, [’fish’, ’hot cakes’, ’macaroni’, ’omelet’,
’poached eggs’])
people = [Vladimir, Wendy]
meals = [breakfast, lunch, dinner, snack]
foods = [fish, hot cakes, macaroni, omelet, poached eggs]
eats = Function(’eats’, people sort, meals sort, foods sort)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

pre conditions = []

CONSTRAINT: At no meal does Vladimir eat the same kind of food
as Wendy.
m = Const(’m’, meals sort)
pre conditions.append(ForAll([m], eats(Vladimir, m) != eats(Wendy,
m)))

A.2 INSTANTIATION GENERATION PROMPT

Given a problem scenario, some Z3 initialization code that
defines the data structures, and a list of constraints, please
provide positive and negative examples for each constraint. Each
positive example should have a description and an expression of
concrete assignments that satisfy the constraint, while each
negative example should have a description and an expression
of concrete assignments that contradict the constraint. If a
constraint or its examples cannot be expressed by the given
data structures or definitions, then please state "NONE" for the
example description and "pass" for the assignments code. Please
provide the completion to the prompt in exactly the same format as
the example given below.

>>> Scenario:
None
>>> InitializationCode:
from z3 import *
creature sort = DeclareSort(’creature’)
Stella = Const(’Stella’, creature sort)
Jay = Const(’Jay’, creature sort)
is tumpus = Function(’is tumpus’, creature sort, BoolSort())
is rompus = Function(’is rompus’, creature sort, BoolSort())
is numpus = Function(’is numpus’, creature sort, BoolSort())
is yumpus = Function(’is yumpus’, creature sort, BoolSort())
is zumpus = Function(’is zumpus’, creature sort, BoolSort())
is impus = Function(’is impus’, creature sort, BoolSort())
is dumpus = Function(’is dumpus’, creature sort, BoolSort())
is vumpus = Function(’is vumpus’, creature sort, BoolSort())
is jompus = Function(’is jompus’, creature sort, BoolSort())
is wumpus = Function(’is wumpus’, creature sort, BoolSort())
is angry = Function(’is angry’, creature sort, BoolSort())
is bright = Function(’is bright’, creature sort, BoolSort())
is luminous = Function(’is luminous’, creature sort, BoolSort())
is transparent = Function(’is transparent’, creature sort,
BoolSort())
is bitter = Function(’is bitter’, creature sort, BoolSort())
is red = Function(’is red’, creature sort, BoolSort())
is happy = Function(’is happy’, creature sort, BoolSort())
is large = Function(’is large’, creature sort, BoolSort())

pre conditions = []
>>> Constraints:
Each dumpus is a vumpus.
###
Vumpuses are bright.
###

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Every vumpus is a zumpus.
###
Zumpuses are not luminous.
>>> ConstraintExamples:
Constraint:
Each dumpus is a vumpus.
PositiveExampleDescription:
Stella is a dumpus and is also a vumpus.
PositiveExampleCode:
And(is dumpus(Stella) == True, is vumpus(Stella) == True)
NegativeExampleDescription:
Stella is a dumpus but is not a vumpus.
NegativeExampleCode:
And(is dumpus(Stella) == True, is vumpus(Stella) == False)
Constraint:
Vumpuses are bright.
PositiveExampleDescription:
Jay is a vumpus and is bright.
PositiveExampleCode:
And(is vumpus(Jay) == True, is bright(Jay) == True)
NegativeExampleDescription:
Jay is a vumpus and is not bright.
NegativeExampleCode:
And(is vumpus(Jay) == True, is bright(Jay) == False)
Constraint:
Every vumpus is a zumpus.
PositiveExampleDescription:
Jay is a vumpus and a zumpus.
PositiveExampleCode:
And(is vumpus(Jay) == True, is zumpus(Jay) == True)
NegativeExampleDescription:
Jay is a vumpus but not a zumpus.
NegativeExampleCode:
And(is vumpus(Jay) == True, is zumpus(Jay) == False)
Constraint:
Zumpuses are not luminous.
PositiveExampleDescription:
Stella is a zumpus and is not luminous.
PositiveExampleCode:
And(is zumpus(Stella) == True, is luminous(Stella) == False)
NegativeExampleDescription:
Stella is a zumpus and is luminous.
NegativeExampleCode:
And(is zumpus(Stella) == True, is luminous(Stella) == True)

>>> Scenario:
On Tuesday Vladimir and Wendy each eat exactly two separate meals:
breakfast and dinner.
>>> InitializationCode:
from z3 import *

people sort, (Vladimir, Wendy) = EnumSort(’people’, [’Vladimir’,
’Wendy’])
meals sort, (breakfast, dinner) = EnumSort(’meals’, [’breakfast’,
’dinner’])
foods sort, (fish, hot cakes, macaroni, omelet, poached eggs) =
EnumSort(’foods’, [’fish’, ’hot cakes’, ’macaroni’, ’omelet’,
’poached eggs’])

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

people = [Vladimir, Wendy]
meals = [breakfast, dinner]
foods = [fish, hot cakes, macaroni, omelet, poached eggs]
eats = Function(’eats’, people sort, meals sort, foods sort)

pre conditions = []
>>> Constraints:
At no meal does Vladimir eat the same kind of food as Wendy.
###
Neither of them eats the same kind of food more than once during
the day.
###
For breakfast, each eats hot cakes.
>>> ConstraintExamples:
Constraint:
At no meal does Vladimir eat the same kind of food as Wendy.
PositiveExampleDescription:
Vladimir and Wendy eat different foods at each meal: Vladimir
has fish for breakfast while Wendy has hot cakes, and for dinner,
Vladimir eats macaroni while Wendy has omelet.
PositiveExampleCode:
And(eats(Vladimir, breakfast) == fish, eats(Wendy, breakfast) ==
hot cakes,
eats(Vladimir, dinner) == macaroni, eats(Wendy, dinner) == omelet)
NegativeExampleDescription:
At dinner, both Vladimir and Wendy eat the same food, macaroni.
NegativeExampleCode:
And(eats(Vladimir, dinner) == macaroni, eats(Wendy, dinner) ==
macaroni)
Constraint:
Neither of them eats the same kind of food more than once during
the day.
PositiveExampleDescription:
Vladimir eats different foods for breakfast and dinner: fish for
breakfast and hot cakes for dinner. Wendy also eats different
foods for both meals: hot cakes for breakfast and omelet for
dinner.
PositiveExampleCode:
And(eats(Vladimir, breakfast) == fish, eats(Vladimir, dinner) ==
hot cakes,
eats(Wendy, breakfast) == hot cakes, eats(Wendy, dinner) ==
omelet)
NegativeExampleDescription:
Vladimir eats fish for both breakfast and dinner.
NegativeExampleCode:
And(eats(Vladimir, breakfast) == fish, eats(Vladimir, dinner) ==
fish)
Constraint:
For breakfast, each eats hot cakes.
PositiveExampleDescription:
Vladimir and Wendy both eat hot cakes for breakfast.
PositiveExampleCode:
And(eats(Vladimir, breakfast) == hot cakes, eats(Wendy, breakfast)
== hot cakes)
NegativeExampleDescription:
Vladimir eats macaroni for breakfast.
NegativeExampleCode:
eats(Vladimir, breakfast) == macaroni

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

>>> Scenario:
In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types|radios,
televisions, and VCRs|and no other types.
>>> InitializationCode:
from z3 import *
technicians sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)
= EnumSort(’technicians’, [’Stacy’, ’Urma’, ’Wim’, ’Xena’,
’Yolanda’, ’Zane’])
machines sort, (radios, televisions, VCRs) = EnumSort(’machines’,
[’radios’, ’televisions’, ’VCRs’])
technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
machines = [radios, televisions, VCRs]
repairs = Function(’repairs’, technicians sort, machines sort,
BoolSort())

pre conditions = []
t = Const(’t’, technicians sort)
pre conditions.append(ForAll([t], Sum([repairs(t, m) for m in
machines]) >= 1))

>>> Constraints:
Xena and exactly three other technicians repair radios.
###
Stacy needs help repairing VCRs.
###
Urma and Zane repair the same type of machine.
>>> ConstraintExamples:
Constraint:
Xena and exactly three other technicians repair radios.
PositiveExampleDescription:
Only Xena, Wim, Yolanda, and Zane repair radios and no one else.
PositiveExampleCode:
And(repairs(Stacy, radios) == False, repairs(Urma, radios) ==
False, repairs(Wim, radios) == True, repairs(Xena, radios) ==
True, repairs(Yolanda, radios) == True, repairs(Zane, radios) ==
True)
NegativeExampleDescription:
Only Xena and Yolanda repair radios and no one else.
NegativeExampleCode:
And(repairs(Stacy, radios) == False, repairs(Urma, radios) ==
False, repairs(Wim, radios) == False, repairs(Xena, radios) ==
True, repairs(Yolanda, radios) == True, repairs(Zane, radios) ==
False)
Constraint:
Stacy needs help repairing VCRs.
PositiveExampleDescription:
NONE
PositiveExampleCode:
pass
NegativeExampleDescription:
NONE
NegativeExampleCode:
pass
Constraint:
Urma and Zane repair the same type of machine.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

PositiveExampleDescription:
Urma and Zane both repair VCRs.
PositiveExampleCode:
And(repairs(Urma, VCRs) == True, repairs(Zane, VCRs) == True)
NegativeExampleDescription:
Urma repairs televisions, while Zane repairs radios.
NegativeExampleCode:
And(repairs(Urma, televisions) == True, repairs(Zane, radios) ==
True)

A.3 SEMANTIC REPAIR PROMPT

We are given a scenario description, some initial z3 code that
sets up basic definitions, a constraint in natural language,
and a code snippet that implements that constraint. We are also
given some code that should implement a positive example to the
constraint, which should be satisfiable under that constraint, but
it is not. First, please provide an analysis that investigates
what may be the problem in either the initial code, the constraint
code or the example. Then, based on this analysis, please repair
the relevant code segments (initial code, constraint code, or
example code) so that the positive example becomes satisfiable
(state ’NONE’ if no repair is required to a code segment). If
multiple segments are incorrect due to a general formulation
problem, then please reformulate the whole solution approach in
the initial code and produce appropriate code for all segments. A
couple of sample cases are shown below for illustration. Please
produce output in exactly the format shown in these samples, and
do not use any other markdown formatting.

Scenario:
On Tuesday Vladimir and Wendy each eat exactly four separate
meals: breakfast, lunch, dinner, and a snack.
InitialCode:
from z3 import *
people sort, (Vladimir, Wendy) = EnumSort(’people’, [’Vladimir’,
’Wendy’])
meals sort, (breakfast, lunch, dinner, snack) = EnumSort(’meals’,
[’breakfast’, ’lunch’, ’dinner’, ’snack’])
foods sort, (fish, hot cakes, macaroni, omelet, poached eggs) =
EnumSort(’foods’, [’fish’, ’hot cakes’, ’macaroni’, ’omelet’,
’poached eggs’])
people = [Vladimir, Wendy]
meals = [breakfast, lunch, dinner, snack]
foods = [fish, hot cakes, macaroni, omelet, poached eggs]
eats = Function(’eats’, people sort, meals sort, foods sort)

pre conditions = []

ConstraintDescription:
At some meal Vladimir eats the same kind of food as Wendy.
ConstraintCode:
m = Const(’m’, meals sort)
pre conditions.append(ForAll([m], eats(Vladimir, m) != eats(Wendy,
m)))
PositiveExampleCode:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

And(eats(Vladimir, breakfast) == fish, eats(Wendy, breakfast) ==
fish)
ProblemDiscussion:
The scenario describes foods that Vladimir and Wendy eat at
various meals during the day. The initial code defines the
main data structures and the eats function which indicates the
food each person eats on every meal. The constraint requires
that there is at least one meal where they both eat the same
food. The constraint code asserts that for all meals, the food
that Vladimir eats is different from what Wendy eats. But this
contradicts the intended constraint. The positive example code
states that at breakfast, both Vladimir and Wendy eat fish, and
this is consistent with the requirements of the constraint. Hence
there is no issue in the initial code and the example code, but
the constraint code wrongly implements the constraint. It should
be repaired to assert that for some meal, both Vladimir and Wendy
eat the same food.
RepairedInitialCode:
NONE
RepairedConstraintCode:
m = Const(’m’, meals sort)
pre conditions.append(Exists([m], eats(Vladimir, m) == eats(Wendy,
m)))
RepairedPositiveExampleCode:
NONE

Scenario:
In a repair facility there are exactly six technicians: Stacy,
Urma, Wim, Xena, Yolanda, and Zane. Each technician repairs
machines of at least one of the following three types|radios,
televisions, and VCRs|and no other types.
InitialCode:
from z3 import *
technicians sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)
= EnumSort(’technicians’, [’Stacy’, ’Urma’, ’Wim’, ’Xena’,
’Yolanda’, ’Zane’])
machines sort, (radios, televisions, VCRs) = EnumSort(’machines’,
[’radios’, ’televisions’, ’VCRs’])
technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
machines = [radios, televisions, VCRs]
repairs = Function(’repairs’, technicians sort, machines sort,
BoolSort())

pre conditions = []
t = Const(’t’, technicians sort)
pre conditions.append(ForAll([t], Sum([repairs(t, m) for m in
machines]) <= 1))
ConstraintDescription:
Urma repairs radios and VCRs
ConstraintCode:
pre conditions.append(And(repairs(Urma, radios), repairs(Urma,
VCRs)))
PositiveExampleCode:
And(repairs(Urma, radios) == True, repairs(Urma, VCRs) == True)
ProblemDiscussion:
The scenario describes types of machines that technicians repair
at a repair facility, where each technician repairs at least
one type of machine. The initial code defines the main data

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

structures and the repairs function which indicates the type of
machine repaired by each technician. It also adds the general
condition that each technician can repair at most one type of
machine, which is an incorret interpretation of the scenario
statement that each technician must repair AT LEAST one type of
machine. The constraint requires that Urma repairs both VCRs and
radios. The constraint code correctly asserts this requirement,
and the positive example code also states this correctly. Hence
there is no issue in the constraint code and the example code, but
the initial code wrongly prevents any technician from repairing
two kinds of machines. It should be repaired to assert that each
technician must repair at least one kind of machine.
RepairedInitialCode:
from z3 import *
technicians sort, (Stacy, Urma, Wim, Xena, Yolanda, Zane)
= EnumSort(’technicians’, [’Stacy’, ’Urma’, ’Wim’, ’Xena’,
’Yolanda’, ’Zane’])
machines sort, (radios, televisions, VCRs) = EnumSort(’machines’,
[’radios’, ’televisions’, ’VCRs’])
technicians = [Stacy, Urma, Wim, Xena, Yolanda, Zane]
machines = [radios, televisions, VCRs]
repairs = Function(’repairs’, technicians sort, machines sort,
BoolSort())

pre conditions = []
t = Const(’t’, technicians sort)
pre conditions.append(ForAll([t], Sum([repairs(t, m) for m in
machines]) >= 1))
RepairedConstraintCode:
NONE
RepairedPositiveExampleCode:
NONE

A.4 DATASET CORRECTION CASES

We found a small number of cases in three of the datasets where the answers have been labelled
incorrectly. Our SSV system (with GPT-4 base model) detected these cases in its verification, and
we describe the corrections that should be made to the datasets below.

A.4.1 AR-LSAT CORRECTIONS

Three cases in the AR-LSAT dataset were verified correctly by our system, but were labelled with
the wrong answers in the dataset. These three cases are ar lsat 201612 3-G 2 6 (correct answer
should be D but incorrectly labelled C), ar lsat 201612 3-G 1 4 (correct answer should be E but
incorrectly labelled A) and ar lsat 201612 3-G 2 8 (correct answer should be B but is incorrectly
labelled A). For all three of these cases, we were able to check the reasoning and also that the
answers in the original source LSAT Test (https://img.cracklsat.net/lsat/pt/pt80.pdf) are consistent
with the answers that were generated by our system. Hence we submit that these are errors in the
AR-LSAT dataset collection process.

A.4.2 FOLIO CORRECTIONS

In the FOLIO dataset, we found one case that was correctly verified by our system, but we find is
labelled with the wrong answer in the dataset. This is case FOLIO dev 27:

All aliens are extraterrestrial. If someone is from Mars, then they are aliens. No extraterrestrial is
human. Everyone from Earth is a human. Marvin cannot be from Earth and from Mars. If Marvin is

30

https://img.cracklsat.net/lsat/pt/pt80.pdf

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

not from Earth, then Marvin is an extraterrestrial. Based on the above information, is the following
statement true, false, or uncertain? Marvin is an alien.

We submit that the correct answer is C (unknown) but it is labelled B (false) in the dataset. Reason-
ing: If Marvin is from Earth, he is not an alien. If Marvin is not from Earth: If he is from Mars, he
is an alien, otherwise, we cannot be certain he is an alien. Hence both outcomes are possible.

We suspect the error in the dataset may stem from an incorrect formalization of the problem in
the original FOLIO dataset source:https://github.com/Yale-LILY/FOLIO/blob/main/data/v0.0/folio-
validation.txt. In this source we see that the constraint “Marvin cannot be from Earth and from Mars”
is incorrectly formalized as ¬FromEarth(marvin)∧¬FromMars(marvin) in first order logic,
which asserts that Marvin is neither from Earth nor from Mars.

A.4.3 PROOFWRITER CORRECTIONS

In the ProofWriter dataset, we found 6 cases that were correctly verified by our system, but we find
are labelled with the wrong answer in the dataset. In all 6 cases, the answers in the dataset have been
labelled as unknown when they can be proven to be either true or false as we show below.

ProofWriter RelNeg-OWA-D5-450 Q22 (Correct answer should be B (false), but labelled C (un-
known)).

The bald eagle chases the lion. The bald eagle is not green. The bald eagle is round. The bald
eagle likes the lion. The dog is red. The lion does not chase the dog. The lion is round. The lion
is not young. The rabbit chases the dog. The rabbit eats the lion. If something chases the dog then
it likes the rabbit. If something is red and it chases the lion then the lion likes the bald eagle. If
something is big then it chases the rabbit. If something is round and it chases the bald eagle then
the bald eagle does not like the dog. If something likes the lion then it is red. If something is red
and round then it does not chase the bald eagle. If something is red and young then it chases the
bald eagle. If something likes the bald eagle and the bald eagle chases the lion then it likes the lion.
If something eats the bald eagle then the bald eagle is red. Based on the above information, is the
following statement true, false, or unknown? The bald eagle is young.

Reasoning:

From Fact 4 and Rule 5:

The bald eagle likes the lion. Therefore, the bald eagle is red.

From Fact 3:

The bald eagle is round. Applying Rule 6 to the bald eagle:

The bald eagle is red and round. Therefore, the bald eagle does not chase itself. Assuming the bald
eagle is young:

The bald eagle is red and young. Applying Rule 7 to the bald eagle:

The bald eagle is red and young. Therefore, the bald eagle chases itself. Contradiction:

From step 3, the bald eagle does not chase itself.

From step 5, the bald eagle chases itself.

This is a contradiction.

Conclusion: The assumption that the bald eagle is young leads to a contradiction. Therefore, the
bald eagle cannot be young.

ProofWriter AttNeg-OWA-D5-471 Q14 (Correct answer should be A (true), but labelled C (un-
known)).

Anne is white. Charlie is cold. Charlie is round. Charlie is young. Gary is kind. Gary is nice. Gary
is round. Gary is white. Gary is young. Harry is blue. Harry is cold. Harry is kind. Harry is white.
Harry is young. White, kind things are blue. If something is white then it is kind. Nice things are
kind. All blue, nice things are young. All blue, white things are nice. If something is round and

31

https://github.com/Yale-LILY/FOLIO/blob/main/data/v0.0/folio-validation.txt
https://github.com/Yale-LILY/FOLIO/blob/main/data/v0.0/folio-validation.txt

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

not nice then it is not cold. Blue, young things are cold. Based on the above information, is the
following statement true, false, or unknown? Charlie is kind.

Reasoning:

Relevant facts: Charlie is cold. Charlie is round. Charlie is young.

Relevant Rules:

If something is round and not nice, then it is not cold. (Rule 6)

Nice things are kind. (Rule 3)

Assuming Charlie is not nice:

Since Charlie is round and not nice, according to Rule 6, Charlie should not be cold. However, this
contradicts the fact that Charlie is cold. Therefore, our assumption that Charlie is not nice must be
false.

Conclusion from the contradiction: Charlie must be nice.

Applying Rule 3:

Since nice things are kind, and Charlie is nice, it follows that Charlie is kind.

ProofWriter AttNeg-OWA-D5-112 Q20 (Correct answer should be B (false), but labelled C (un-
known)).

Charlie is kind. Charlie is nice. Charlie is quiet. Dave is rough. Dave is white. Erin is nice. Gary
is not white. If something is cold then it is not furry. If Charlie is quiet then Charlie is nice. Kind
things are white. Nice things are kind. If something is rough then it is kind. Cold, quiet things are
rough. All cold things are quiet. If something is white and nice then it is cold. If Erin is cold then
Erin is nice. Based on the above information, is the following statement true, false, or unknown?
Gary is nice.

Reasoning:

Gary is not white. (rule 1)

Nice things are kind. (rule 2)

Kind things are white. (rule 3)

If Gary were nice, then by rule 2, he would also be kind. If Gary is kind, then by rule 3, he must
be white. However, rule 1 tells us that Gary is not white. This creates a contradiction because Gary
cannot be both not white and white at the same time.

Given that Gary is not white, he cannot be kind, and therefore, he cannot be nice. Thus, the statement
“Gary is nice” is false.

ProofWriter AttNeg-OWA-D5-850 Q14 (Correct answer should be B (false), but labelled C (un-
known)).

Anne is red. Anne is smart. Bob is kind. Bob is not nice. Fiona is furry. Fiona is rough. Gary is
not green. Gary is kind. Gary is nice. Gary is rough. If someone is nice then they are red. Smart
people are green. If someone is smart and red then they are not kind. All rough, green people are
nice. Green people are rough. If someone is red and green then they are rough. If someone is furry
and green then they are smart. All rough, furry people are smart. Furry, rough people are smart.
Based on the above information, is the following statement true, false, or unknown? Bob is smart.

Reasoning:

Bob is kind. Bob is not nice.

Rule: Smart people are green. So, if Bob were smart, he would be green.

Rule: Green people are rough. Therefore, if Bob were green (and thus rough), we can use the next
rule.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Rule: All rough, green people are nice. If Bob were rough and green, he would be nice, but we
know Bob is not nice.

Conclusion: Bob cannot be green because it would contradict the fact that he is not nice. Since Bob
is not green, and smart people are green, Bob cannot be smart.

ProofWriter AttNeg-OWA-D5-219 Q13 (Correct answer should be A (true), but labelled C (un-
known)).

Charlie is not quiet. Dave is big. Dave is furry. Erin is cold. Erin is not green. Erin is not kind.
Fiona is quiet. Big things are young. Young, cold things are big. Quiet things are big. All young
things are cold. If something is big and not furry then it is cold. If something is cold then it is not
kind. If something is cold and big then it is quiet. If Fiona is cold and Fiona is not quiet then Fiona
is kind. If something is quiet and not kind then it is green. Based on the above information, is the
following statement true, false, or unknown? Charlie is not big.

Reasoning:

Charlie is not quiet.

Assume for contradiction that Charlie is big.

Big things are young: Therefore, Charlie is young.

All young things are cold: Therefore, Charlie is cold.

If something is cold, then it is not kind: Therefore, Charlie is not kind.

If something is cold and big, then it is quiet: Therefore, Charlie is quiet.

This contradicts the given fact that Charlie is not quiet. Therefore, Charlie is not big.

ProofWriter AttNeg-OWA-D5-94 Q18 (Correct answer should be B (false), but labelled C (un-
known))

Bob is smart. Charlie is kind. Charlie is not smart. Fiona is blue. Fiona is rough. Fiona is smart.
Gary is kind. All cold, quiet people are smart. If someone is cold then they are smart. If someone is
red and kind then they are smart. If someone is quiet then they are blue. If someone is blue then they
are quiet. If someone is kind then they are rough. If Gary is kind and Gary is rough then Gary is
quiet. All blue, smart people are red. Blue, rough people are red. Based on the above information,
is the following statement true, false, or unknown? Charlie is blue.

Reasoning:

Charlie is kind.

If someone is kind, then they are rough

Therefore, Charlie is rough.

Assume for contradiction that Charlie is blue.

Blue, rough people are red. Since Charlie is both blue (assumed) and rough, Charlie must be red.

If someone is red and kind, then they are smart.

Since Charlie is red (from step 4) and kind (from step 1), Charlie must be smart.

However, it’s given that Charlie is not smart (from the context).

Hence, we have a contradiction. Therefore, Charlie is not blue.

A.5 ANALYSIS OF VERIFICATION FAILURE CASES

We conducted a manual analysis over a sample of 30 cases where SSV verification failed. Here is a
summary of the failure reasons:

• code incorrect, example correct: 16 (53.3%)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• code incorrect, example incorrect: 7 (23.3%)

• code correct, example incorrect: 3 (10%)

• program not well-formed: 4 (13.3%)

We see that in most cases the code is incorrect as opposed to examples, which can be expected as
examples inference is generally simpler than abstract translation. Below is the detailed analysis of
the reasons for the verification failure for specific cases.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.
Exactly three batches of each kind of cookie are made each week
(Monday through Friday)
and each batch is made, from start to finish, on a single day.

InitialCode:

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookies_sort, (oatmeal, peanut_butter, sugar) =
EnumSort('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_number_sort = IntSort()
make_batch = Function('make_batch', cookies_sort,
batch_number_sort, days_sort)

pre_conditions = []
batches = range(1, 3+1) # Corrected to only three batches
days = [Monday, Tuesday, Wednesday, Thursday, Friday]
cookies = [oatmeal, peanut_butter, sugar]

for cookie in cookies:
for b in batches:

d = Const('d', days_sort) # Declare a constant of type
days_sort
pre_conditions.append(Exists([d], make_batch(cookie, b) ==
d))

NegExample:

And(make_batch(oatmeal, 1) == Monday, make_batch(oatmeal, 2) ==
Tuesday, make_batch(oatmeal, 3) == Wednesday, make_batch(oatmeal,
4) == Thursday)

NegExampleDescription:

Four batches of oatmeal cookies are made, which contradicts the
constraint that exactly three batches of each kind of cookie are
made each week.

Analysis:

Code incorrect, Example correct. It does not implement the
intended constraint that only 3 batches of each kind of cookie
should be made in a week, which the negative example correctly
tests.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

InitialContext:

A loading dock consists of exactly six bays numbered 1 through 6
consecutively from one side of the dock to the other. Each bay is
holding a different one of exactly six types of cargo|fuel, grain,
livestock, machinery, produce, or textiles.

InitialCode:

from z3 import *

bays_sort = IntSort()
cargo_sort, (fuel, grain, livestock, machinery, produce, textiles)
= EnumSort('cargo', ['fuel', 'grain', 'livestock', 'machinery',
'produce', 'textiles'])
cargo = [fuel, grain, livestock, machinery, produce, textiles]
holding = Function('holding', bays_sort, cargo_sort)

pre_conditions = []

pre_conditions.append(Distinct([holding(b) for b in range(1, 7)]))
pre_conditions.append(And([holding(b) != None for b in range(1,
7)]))

Condition:

The bay holding textiles is next to the bay holding produce.

ConditionCode:

b = Int('b')
pre_conditions.append(Or(holding(b) == textiles, holding(b+1) ==
produce, holding(b-1) == produce))

NegExample:

And(holding(1) == textiles, holding(4) == produce)

NegExampleDescription:

Textiles are in bay 1 and produce is in bay 4.

Analysis:

Code incorrect, Example correct. It does not correctly implement
the constraint that textiles should be right next to produce as it
is only a disjunction of the three conditions. The negative
example correctly checks this condition by allowing textiles in
bay 1 and produce in bay 4.

InitialContext:

On each of exactly seven consecutive days (day 1 though day 7), a
pet shop features exactly one of three breeds of kitten|Himalayan,
Manx, Siamese|and exactly one of three breeds of puppy|Greyhound,
Newfoundland, Rottweiler.

InitialCode:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

from z3 import *

days_sort, (day1, day2, day3, day4, day5, day6, day7) =
EnumSort('days', ['day1', 'day2', 'day3', 'day4', 'day5', 'day6',
'day7'])
kitten_breeds_sort, (Himalayan, Manx, Siamese) =
EnumSort('kitten_breeds', ['Himalayan', 'Manx', 'Siamese'])
puppy_breeds_sort, (Greyhound, Newfoundland, Rottweiler) =
EnumSort('puppy_breeds', ['Greyhound', 'Newfoundland',
'Rottweiler'])
days = [day1, day2, day3, day4, day5, day6, day7]
kitten_breeds = [Himalayan, Manx, Siamese]
puppy_breeds = [Greyhound, Newfoundland, Rottweiler]

features_kitten = Function('features_kitten', days_sort,
kitten_breeds_sort, BoolSort())
features_puppy = Function('features_puppy', days_sort,
puppy_breeds_sort, BoolSort())

pre_conditions = []

Add constraints to ensure exactly one breed of kitten and one
breed of puppy is featured each day
for day in days:

pre_conditions.append(Sum([If(features_kitten(day, breed), 1,
0) for breed in kitten_breeds]) == 1)
pre_conditions.append(Sum([If(features_puppy(day, breed), 1,
0) for breed in puppy_breeds]) == 1)

Condition:

No breed is featured on any two consecutive days.

ConditionCode:

d1 = Const('d1', days_sort)
d2 = Const('d2', days_sort)
kb = Const('kb', kitten_breeds_sort)
pb = Const('pb', puppy_breeds_sort)
pre_conditions.append(ForAll([d1, d2, kb],
Implies(And(features_kitten(d1, kb), features_kitten(d2, kb)), d1
== d2)))
pre_conditions.append(ForAll([d1, d2, pb],
Implies(And(features_puppy(d1, pb), features_puppy(d2, pb)), d1 ==
d2)))

PosExample:

And(features_kitten(day2, Siamese) == True, features_kitten(day3,
Manx) == True)

PosExampleDescription:

Siamese kittens are featured on day 2 and Manx kittens are
featured on day 3.

Analysis:

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Code incorrect, Example correct. The condition code does not
implement consecutiveness constraint but instead requires each
breed to only be featured on one day, which is not a requirement
and causes the positive example to fail. The positive example
correctly presents a valid instantiation of the problem.

InitialContext:

The organizer of a reading club will select at least five and at
most six works from a group of nine works. The group consists of
three French novels, three Russian novels, two French plays, and
one Russian play.

InitialCode:

from z3 import *

works_sort, (french_novel1, french_novel2, french_novel3,
russian_novel1, russian_novel2, russian_novel3, french_play1,
french_play2, russian_play) = EnumSort('works', ['french_novel1',
'french_novel2', 'french_novel3', 'russian_novel1',
'russian_novel2', 'russian_novel3', 'french_play1',
'french_play2', 'russian_play'])
works = [french_novel1, french_novel2, french_novel3,
russian_novel1, russian_novel2, russian_novel3, french_play1,
french_play2, russian_play]
selected = Function('selected', works_sort, BoolSort())

pre_conditions = []

NegExample:

And(selected(french_novel1) == True, selected(french_novel2) ==
True, selected(french_novel3) == True, selected(russian_novel1) ==
True, selected(russian_novel2) == True, selected(russian_novel3)
== True, selected(french_play1) == True, selected(french_play2) ==
True, selected(russian_play) == True)

NegExampleDescription:

The organizer selects all three French novels, all three Russian
novels, both French plays, and the Russian play, which exceeds the
maximum of six works.

Analysis:

Code incorrect, Example correct. The negative example correctly
violates the constraint of not exceeding 6 works, but the code
does not implement this constraint.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.
Exactly three batches of each kind of cookie are made each week
(Monday through Friday)
and each batch is made, from start to finish, on a single day.

InitialCode:

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookies_sort, (oatmeal, peanut_butter, sugar) =
EnumSort('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
make_batch = Function('make_batch', cookies_sort, batch_sort,
days_sort, BoolSort())
pre_conditions = []

Add constraints to ensure exactly three batches of each kind of
cookie are made each week
for cookie in [oatmeal, peanut_butter, sugar]:

pre_conditions.append(Sum([If(make_batch(cookie, i, d), 1, 0)
for i in range(1, 4) for d in [Monday, Tuesday, Wednesday,
Thursday, Friday]]) == 3)

NegExample:

And(make_batch(oatmeal, 1, Monday) == True, make_batch(oatmeal, 2,
Tuesday) == True, make_batch(oatmeal, 3, Wednesday) == True,
make_batch(oatmeal, 4, Thursday) == True)

NegExampleDescription:

Four batches of oatmeal cookies are made, which contradicts the
constraint that exactly three batches of each kind of cookie are
made each week.

Analysis:

Code incorrect, Example correct. The negative example correctly
violates the constraint by enforcing 4 batches oatmeal cookies to
be made in the week.

InitialContext:

An administrator must assign parking spaces to six new employees:
Robertson, Souza, Togowa, Vaughn, Xu, and Young.
Each of the six employees must be assigned one of the following
parking spaces: #1, #2, #3, #4, #5, or #6.
No two employees can be assigned the same parking space.

InitialCode:

from z3 import *

employees_sort, (Robertson, Souza, Togowa, Vaughn, Xu, Young) =
EnumSort('employees', ['Robertson', 'Souza', 'Togowa', 'Vaughn',
'Xu', 'Young'])
parking_spaces_sort = IntSort()
parking_space = Function('parking_space', employees_sort,
parking_spaces_sort)
pre_conditions = []

pre_conditions.append(Distinct([parking_space(e) for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

pre_conditions.append(And([parking_space(e) >= 1 for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))
pre_conditions.append(And([parking_space(e) <= 6 for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))

Condition:

If Togowa is assigned a higher-numbered parking space than Souza,
then Togowa is assigned parking space #3.

ConditionCode:

additional_constraint = parking_space(Togowa) >
parking_space(Souza)
check_property = And(additional_constraint, parking_space(Togowa)
== 3)
pre_conditions.append(check_property)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code incorrect, Example incorrect. The code does not implement the
conditional requirement but only a conjunction. A positive example
could not be inferred from the LLM or valid solver code
implementing the positive example.

InitialContext:

A panel of five scientists will be formed. The panelists will be
selected from among three botanists|F, G, and H|three chemists|K,
L, and M|and three zoologists|P, Q, and R.

InitialCode:

from z3 import *

scientist_sort = DeclareSort('scientist')
F, G, H, K, L, M, P, Q, R = Consts('F G H K L M P Q R',
scientist_sort)
botanists = [F, G, H]
chemists = [K, L, M]
zoologists = [P, Q, R]
selected = Function('selected', scientist_sort, BoolSort())

pre_conditions = []

ExampleFail:

Positive example contains undeclared free variables

Analysis:

Code incorrect, Example incorrect. Code is correct but does not
implement a constraint that exactly 5 scientists must be selected.
A valid positive example in solver code could not be generated.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

InitialContext:

At a concert, exactly eight compositions|F, H, L, O, P, R, S, and
T|are to be performed exactly once each, consecutively and one
composition at a time.

InitialCode:

from z3 import *

compositions_sort, (F, H, L, O, P, R, S, T) =
EnumSort('compositions', ['F', 'H', 'L', 'O', 'P', 'R', 'S', 'T'])
compositions = [F, H, L, O, P, R, S, T]
positions_sort = IntSort()
position = Function('position', compositions_sort, positions_sort)
pre_conditions = []

pre_conditions.append(Distinct([position(c) for c in
compositions]))
pre_conditions.append(And([position(c) >= 1 for c in
compositions]))
pre_conditions.append(And([position(c) <= 8 for c in
compositions]))

Condition:

T is performed either immediately before F or immediately after R.

ConditionCode:

pre_conditions.append(Or(position(T) + 1 == position(F),
position(T) == position(R) + 1))

NegExample:

position(T) == position(F) - 3

NegExampleDescription:

T is performed with two compositions between it and F.

Analysis:

Code correct, Example incorrect. The negative example only
requires that T is 3 positions before F, which is permitted by the
constraint as long as T is immediately after R (since it was a
disjunction).

InitialContext:

A government needs to assign new ambassadors to Venezuela, Yemen,
and Zambia. The candidates for these ambassadorships are
Jaramillo, Kayne, Landon, Novetzke, and Ong. One ambassador will
be assigned to each country, and no ambassador will be assigned to
more than one country.

InitialCode:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

from z3 import *

candidates_sort, (Jaramillo, Kayne, Landon, Novetzke, Ong) =
EnumSort('candidates', ['Jaramillo', 'Kayne', 'Landon',
'Novetzke', 'Ong'])
countries_sort, (Venezuela, Yemen, Zambia) = EnumSort('countries',
['Venezuela', 'Yemen', 'Zambia'])
candidates = [Jaramillo, Kayne, Landon, Novetzke, Ong]
countries = [Venezuela, Yemen, Zambia]
assigned_to = Function('assigned_to', candidates_sort,
countries_sort, BoolSort())

pre_conditions = []

pre_conditions.append(Distinct([assigned_to(c, country) for c in
candidates for country in countries]))
pre_conditions.append(And([Sum([If(assigned_to(c, country), 1, 0)
for country in countries]) == 1 for c in candidates]))
pre_conditions.append(And([Sum([If(assigned_to(c, country), 1, 0)
for c in candidates]) == 1 for country in countries]))

PosExample:

And(assigned_to(Jaramillo, Venezuela) == True, assigned_to(Kayne,
Yemen) == True, assigned_to(Landon, Zambia) == True,
assigned_to(Novetzke, Venezuela) == False, assigned_to(Novetzke,
Yemen) == False, assigned_to(Novetzke, Zambia) == False,
assigned_to(Ong, Venezuela) == False, assigned_to(Ong, Yemen) ==
False, assigned_to(Ong, Zambia) == False)

PosExampleDescription:

Jaramillo is assigned to Venezuela, Kayne to Yemen, and Landon to
Zambia, while Novetzke and Ong are not assigned to any country.

Analysis:

Code incorrect, Example correct. The positive example correctly
instantiates the problem context, but the code incorrectly
enforces the very strong distinctness constraint on the
assigned_to() function which has boolean return type and should
not have dictinct outputs over all possible assignments.

InitialContext:

Of the eight students|George, Helen, Irving, Kyle, Lenore, Nina,
Olivia, and Robert|in a seminar, exactly six will give individual
oral reports during three consecutive days|Monday, Tuesday, and
Wednesday. Exactly two reports will be given each day|one in the
morning and one in the afternoon.

InitialCode:

from z3 import *

students_sort, (George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert) = EnumSort('students', ['George', 'Helen', 'Irving',
'Kyle', 'Lenore', 'Nina', 'Olivia', 'Robert'])

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday) = EnumSort('days',
['Monday', 'Tuesday', 'Wednesday'])
time_sort, (morning, afternoon) = EnumSort('time', ['morning',
'afternoon'])
students = [George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert]
days = [Monday, Tuesday, Wednesday]
times = [morning, afternoon]
report = Function('report', students_sort, days_sort, time_sort,
BoolSort())

pre_conditions = []

NegExample:

And(report(George, Monday, morning) == True, report(George,
Tuesday, morning) == True)

NegExampleDescription:

George gives two reports, one on Monday morning and another on
Tuesday morning, which contradicts the constraint that each
student gives only one report.

Analysis:

Code incorrect, Example correct. It does not enforce that a
student cannot give multiple reports, so it will not be possible
for exactly 6 reports to be given by exactly 6 students as
intended. The example correctly violates the constraint by
enforcing George to give two reports in different slots.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.
Exactly three batches of each kind of cookie are made each week
(Monday through Friday)
and each batch is made, from start to finish, on a single day.

InitialCode:

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort('cookie',
['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

for cookie in [oatmeal, peanut_butter, sugar]:
pre_conditions.append(And([Exists([Const('d' + str(i),
days_sort)], made_on(cookie, i) == Const('d' + str(i),
days_sort)) for i in range(1, 4)]))
for day in [Monday, Tuesday, Wednesday, Thursday, Friday]:

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

pre_conditions.append(Sum([If(made_on(cookie, i) == day,
1, 0) for i in range(1, 4)]) <= 1)

Condition:

If no batch of cookies is made on Wednesday, then exactly three
batches of cookies are made on Tuesday.

ConditionCode:

day = Const('day', days_sort)
check_property = Sum([If(made_on(cookie, i) == Tuesday, 1, 0) for
cookie in [oatmeal, peanut_butter, sugar] for i in range(1, 4)])
== 3
pre_conditions.append(check_property)

NegExample:

And(made_on(oatmeal, 1) != Wednesday, made_on(peanut_butter, 1) !=
Wednesday, made_on(sugar, 1) != Wednesday,
made_on(oatmeal, 1) == Tuesday, made_on(peanut_butter, 2) ==
Tuesday, made_on(sugar, 3) != Tuesday)

NegExampleDescription:

No cookies are made on Wednesday, but only two batches of cookies
are made on Tuesday.

Analysis:

Code incorrect, Example incorrect. The code directly enforces that
exactly three batches are made on Tuesday, regardless of whether
any batches are made on Wednesday so it lacks the conditional
aspect "if no batch is made on Wednesday" of the intended
constraint. The negative example prevents only batch 3 of sugar
cookies on tuesday but not other batches, so it is still possible
to have three batches on tuesday.

InitialContext:

An administrator must assign parking spaces to six new employees:
Robertson, Souza, Togowa, Vaughn, Xu, and Young. Each of the six
employees must be assigned one of the following parking spaces:
#1, #2, #3, #4, #5, or #6. No two employees can be assigned the
same parking space.

InitialCode:

from z3 import *

employees_sort, (Robertson, Souza, Togowa, Vaughn, Xu, Young) =
EnumSort('employees', ['Robertson', 'Souza', 'Togowa', 'Vaughn',
'Xu', 'Young'])
parking_spaces_sort = IntSort()
parking_space = Function('parking_space', employees_sort,
parking_spaces_sort)
pre_conditions = []

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

pre_conditions.append(Distinct([parking_space(e) for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))
pre_conditions.append(And([parking_space(e) >= 1 for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))
pre_conditions.append(And([parking_space(e) <= 6 for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))

Condition:

If Young is assigned a higher-numbered parking space than Souza,
then Young is assigned parking space #2.

ConditionCode:

check_property = And(parking_space(Young) > parking_space(Souza),
parking_space(Young) == 2)
pre_conditions.append(check_property)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code incorrect, Example incorrect. The condition implemented just
enforces that Young has number 2 and is than Souza, but does not
allow for a lower number than Souza as intended. The positive
example is not inferred.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookies_sort, (oatmeal, peanut_butter, sugar) =
EnumSort('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
schedule = Function('schedule', cookies_sort, batch_sort,
days_sort)

pre_conditions = []

NegExample:

And(schedule(oatmeal, 1) == Monday, schedule(oatmeal, 2) ==
Monday, schedule(oatmeal, 3) == Monday, schedule(oatmeal, 4) ==
Monday)

NegExampleDescription:

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Four batches of oatmeal cookies are made on Monday, which
contradicts the constraint that exactly three batches of each kind
of cookie are made each week.

Analysis:

Code incorrect, Example correct. The code does not implement any
constraints that exactly 3 batches of each kind of cookie should
be made in a week.

InitialContext:

A government needs to assign new ambassadors to Venezuela, Yemen,
and Zambia. The candidates for these ambassadorships are
Jaramillo, Kayne, Landon, Novetzke, and Ong. One ambassador will
be assigned to each country, and no ambassador will be assigned to
more than one country.

InitialCode:

from z3 import *

ambassadors_sort, (Jaramillo, Kayne, Landon, Novetzke, Ong) =
EnumSort('ambassadors', ['Jaramillo', 'Kayne', 'Landon',
'Novetzke', 'Ong'])
countries_sort, (Venezuela, Yemen, Zambia) = EnumSort('countries',
['Venezuela', 'Yemen', 'Zambia'])
ambassadors = [Jaramillo, Kayne, Landon, Novetzke, Ong]
countries = [Venezuela, Yemen, Zambia]
assigned_to = Function('assigned_to', ambassadors_sort,
countries_sort, BoolSort())

pre_conditions = []
a = Const('a', ambassadors_sort)
c1 = Const('c1', countries_sort)
c2 = Const('c2', countries_sort)
pre_conditions.append(ForAll([a], Sum([If(assigned_to(a, c), 1, 0)
for c in countries]) <= 1))

Condition:

Either Kayne or Novetzke, but not both, is assigned to one of the
ambassadorships.

ConditionCode:

pre_conditions.append(Xor(Or(assigned_to(Kayne, Venezuela),
assigned_to(Kayne, Yemen), assigned_to(Kayne, Zambia)),
Or(assigned_to(Novetzke, Venezuela), assigned_to(Novetzke, Yemen),
assigned_to(Novetzke, Zambia))))

ExampleFail:

Positive example contains undeclared free variables

Analysis:

Code correct, Example incorrect. The example is not well formed
with undeclared free variables, while the code correctly
implements the constraint using exclusive OR.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort('cookie',
['oatmeal', 'peanut_butter', 'sugar'])
batches_sort = IntSort()
make_batch = Function('make_batch', cookie_sort, batches_sort,
days_sort, BoolSort())

pre_conditions = []
days = [Monday, Tuesday, Wednesday, Thursday, Friday]
cookies = [oatmeal, peanut_butter, sugar]

Constraint: Exactly three batches of each kind of cookie are
made each week
for cookie in cookies:

pre_conditions.append(Sum([If(make_batch(cookie, i, d), 1, 0)
for i in range(1, 4) for d in days]) == 3)

NegExample:

And(make_batch(oatmeal, 1, Monday), make_batch(oatmeal, 2,
Tuesday), make_batch(oatmeal, 3, Wednesday), make_batch(oatmeal,
4, Thursday))

NegExampleDescription:

Four batches of oatmeal cookies are made on Monday, Tuesday,
Wednesday, and Thursday (which contradicts the constraint that
exactly three batches of each kind of cookie are made each week).

Analysis:

Code incorrect, Example correct. The code only enforces the
constraint for batch numbers 1,2 and 3, but does not restrict any
other batch numbers from being created on a day. The negative
example uses batch number 4 which is not prevented by the code.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookies_sort, (oatmeal, peanut_butter, sugar) =
EnumSort('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
make_batch = Function('make_batch', cookies_sort, batch_sort,
days_sort)

pre_conditions = []

NegExample:

And(make_batch(oatmeal, 1) == Monday, make_batch(oatmeal, 2) ==
Monday, make_batch(oatmeal, 3) == Monday, make_batch(oatmeal, 4)
== Monday)

NegExampleDescription:

Four batches of oatmeal cookies are made on Monday, which
contradicts the constraint that exactly three batches of each kind
of cookie are made each week.

Analysis:

Code incorrect, Example correct. The code does not implement any
constraint to require exactly 3 batches of each kind of cookie in
a week.

InitialContext:

Of the eight students|George, Helen, Irving, Kyle, Lenore, Nina,
Olivia, and Robert|in a seminar,
exactly six will give individual oral reports during three
consecutive days|Monday, Tuesday, and Wednesday.
Exactly two reports will be given each day|one in the morning and
one in the afternoon.

InitialCode:

from z3 import *

students_sort, (George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert) = EnumSort('students',

['George', 'Helen', 'Irving', 'Kyle',
'Lenore', 'Nina', 'Olivia', 'Robert'])

days_sort, (Monday, Tuesday, Wednesday) = EnumSort('days',
['Monday', 'Tuesday', 'Wednesday'])
time_sort, (morning, afternoon) = EnumSort('time', ['morning',
'afternoon'])
students = [George, Helen, Irving, Kyle, Lenore, Nina, Olivia,
Robert]
days = [Monday, Tuesday, Wednesday]
times = [morning, afternoon]
report = Function('report', students_sort, days_sort, time_sort,
BoolSort())

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

pre_conditions = []

s = Const('s', students_sort)
d = Const('d', days_sort)
pre_conditions.append(ForAll([s, d], AtMost(report(s, d, morning),
report(s, d, afternoon), 1)))

for day in days:
pre_conditions.append(Sum([If(report(s, day, morning), 1, 0)
for s in students]) == 1)
pre_conditions.append(Sum([If(report(s, day, afternoon), 1, 0)
for s in students]) == 1)

pre_conditions.append(Sum([If(Or(report(s, d, morning), report(s,
d, afternoon)), 1, 0) for s in students for d in days]) == 6)

Condition:

Helen, Kyle, and Lenore, not necessarily in that order, give the
three morning reports.

ConditionCode:

helen_day = Const('helen_day', days_sort)
kyle_day = Const('kyle_day', days_sort)
lenore_day = Const('lenore_day', days_sort)
pre_conditions.append(And(

report(Helen, helen_day, morning),
report(Kyle, kyle_day, morning),
report(Lenore, lenore_day, morning),
Distinct([helen_day, kyle_day, lenore_day])

))

NegExample:

And(report(Helen, Monday, morning) == True, report(Kyle, Tuesday,
afternoon) == True)

NegExampleDescription:

Helen gives a report on Monday morning, but Kyle gives his report
in the afternoon.

Analysis:

Code incorrect, Example correct. The code lacks a constraint that
ensures each student gives at most one report during the entire
period,
so it allows Kyle to give a morning and an afternoon report. Since
this should not be allowed, the negative example correctly
violates the requirement
that Kyle gives a morning report by requiring him to give an
afternoon report on Tuesday.

InitialContext:

A loading dock consists of exactly six bays numbered 1 through 6
consecutively from one side of the dock to the other.
Each bay is holding a different one of exactly six types of
cargo|fuel, grain, livestock, machinery, produce, or textiles.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

InitialCode:

from z3 import *

bays_sort = IntSort()
cargo_sort, (fuel, grain, livestock, machinery, produce, textiles)
= EnumSort('cargo',

['fuel', 'grain', 'livestock', 'machinery',
'produce', 'textiles'])

cargo = [fuel, grain, livestock, machinery, produce, textiles]
holding = Function('holding', bays_sort, cargo_sort)

pre_conditions = []

pre_conditions.append(Distinct([holding(b) for b in range(1, 7)]))
pre_conditions.append(And([holding(b) != None for b in range(1,
7)]))

Condition:

The bay holding livestock has a higher number than the bay holding
textiles.

ConditionCode:

b1 = Const('b1', bays_sort)
b2 = Const('b2', bays_sort)
pre_conditions.append(Exists([b1], And(holding(b1) == livestock,
b1 > 0, ForAll([b2],

Implies(holding(b2) == textiles, b1 > b2)))))

NegExample:

And(holding(5) == textiles, holding(1) == livestock)

NegExampleDescription:

Textiles are in bay 5 and livestock is in bay 1.

Analysis:

Code incorrect, Example correct. The variables b1 and b2 in the
constraint code representing bay numbers are not properly
constrained
to be within the valid range of bay numbers (1 through 6). This
allows the solver to consider bay numbers outside this range,
which leads to the negative example not violating the constraint
as expected.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar.
Exactly three batches of each kind of cookie are made each week
(Monday through Friday) and each batch is made, from start to
finish, on a single day.

InitialCode:

from z3 import *

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort('cookie',
['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

for cookie in [oatmeal, peanut_butter, sugar]:
pre_conditions.append(Distinct([made_on(cookie, i) for i in
range(1, 4)]))

Condition:

Exactly three batches of each kind of cookie are made each week
(Monday through Friday) and each batch is made, from start to
finish, on a single day.

ConditionCode:

d = Const('d', days_sort)
c = Const('c', cookie_sort)
pre_conditions.append(ForAll([c], Sum([made_on(c, i) == d for i in
range(1, 4) for d in [Monday, Tuesday, Wednesday, Thursday,
Friday]]) == 3))

ExampleFail:

Positive example contains undeclared free variables

Analysis:

Code incorrect, Example incorrect. The code is incorrect as it
only enforces the condition on batch numbers 1..3, but allows any
int values for batch numbers,
so more than 3 batches can potentially be made. The example is
incorrect as it contains undeclared free variables.

InitialContext:

On each of exactly seven consecutive days (day 1 though day 7), a
pet shop features exactly one of three breeds of kitten|Himalayan,
Manx, Siamese|and exactly one of three breeds of puppy|Greyhound,
Newfoundland, Rottweiler.

InitialCode:

from z3 import *

days_sort, (day1, day2, day3, day4, day5, day6, day7) =
EnumSort('days', ['day1', 'day2', 'day3', 'day4', 'day5', 'day6',
'day7'])
kitten_breeds_sort, (Himalayan, Manx, Siamese) =
EnumSort('kitten_breeds', ['Himalayan', 'Manx', 'Siamese'])
puppy_breeds_sort, (Greyhound, Newfoundland, Rottweiler) =
EnumSort('puppy_breeds', ['Greyhound', 'Newfoundland',
'Rottweiler'])
days = [day1, day2, day3, day4, day5, day6, day7]

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

kitten_breeds = [Himalayan, Manx, Siamese]
puppy_breeds = [Greyhound, Newfoundland, Rottweiler]

featured_kitten = Function('featured_kitten', days_sort,
kitten_breeds_sort)
featured_puppy = Function('featured_puppy', days_sort,
puppy_breeds_sort)

pre_conditions = []

Add constraints to ensure exactly one breed of kitten and one
breed of puppy is featured each day
d = Const('d', days_sort)
pre_conditions.append(ForAll([d], Sum([If(featured_kitten(d) ==
breed, 1, 0) for breed in kitten_breeds]) == 1))
pre_conditions.append(ForAll([d], Sum([If(featured_puppy(d) ==
breed, 1, 0) for breed in puppy_breeds]) == 1))

Condition:

If Himalayans are not featured on day 7, then day 1 and day 3
CANNOT feature both the same breed of kitten and the same breed of
puppy.

ConditionCode:

check_property = And(featured_kitten(day1) ==
featured_kitten(day3), featured_puppy(day1) ==
featured_puppy(day3), featured_kitten(day7) != Himalayan)
pre_conditions.append(check_property)

PosExample:

And(featured_kitten(day7) != Himalayan, featured_kitten(day1) ==
Siamese, featured_puppy(day1) == Greyhound, featured_kitten(day3)
== Manx, featured_puppy(day3) == Newfoundland)

PosExampleDescription:

Himalayans are not featured on day 7, and day 1 features a Siamese
kitten and a Greyhound puppy while day 3 features a Manx kitten
and a Newfoundland puppy.

Analysis:

Code incorrect, Example correct. The code implements the condition
incorrectly by just enforcing a conjunction of constraints rather
than the conditional requirement.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import *

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort('cookie',
['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

Add constraints to ensure exactly three batches of each kind of
cookie are made each week
for cookie in [oatmeal, peanut_butter, sugar]:

i = Const('i', batch_sort)
j = Const('j', batch_sort)
pre_conditions.append(Sum([If(made_on(cookie, k) == day, 1, 0)
for k in range(1, 4) for day in [Monday, Tuesday, Wednesday,
Thursday, Friday]]) == 3)
pre_conditions.append(And([Not(Exists([i, j], And(i != j,
made_on(cookie, i) == made_on(cookie, j)))) for day in
[Monday, Tuesday, Wednesday, Thursday, Friday]]))

PosExample:

And(made_on(oatmeal, 1) == Monday, made_on(oatmeal, 2) ==
Wednesday, made_on(oatmeal, 3) == Friday,
made_on(peanut_butter, 1) == Tuesday, made_on(peanut_butter, 2) ==
Thursday, made_on(peanut_butter, 3) == Friday,
made_on(sugar, 1) == Monday, made_on(sugar, 2) == Tuesday,
made_on(sugar, 3) == Thursday)

PosExampleDescription:

Three batches of oatmeal cookies are made on Monday, Wednesday,
and Friday. Three batches of peanut butter cookies are made on
Tuesday, Thursday, and Friday. Three batches of sugar cookies are
made on Monday, Tuesday, and Thursday.

Analysis:

Code incorrect, Example correct. The code incorrectly enforces the
constraint that a cookie cannot be made on more than one day
(which is not intended).

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookie_sort, (oatmeal, peanut_butter, sugar) = EnumSort('cookie',
['oatmeal', 'peanut_butter', 'sugar'])

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

batch_sort = IntSort()
made_on = Function('made_on', cookie_sort, batch_sort, days_sort)

pre_conditions = []

NegExample:

And(made_on(oatmeal, 1) == Monday, made_on(oatmeal, 2) == Tuesday,
made_on(oatmeal, 3) == Wednesday, made_on(oatmeal, 4) == Thursday)

NegExampleDescription:

Four batches of oatmeal cookies are made, which contradicts the
constraint that exactly three batches of each kind of cookie are
made each week.

Analysis:

Code incorrect, Example correct. The code does not implement any
constraint that enforces that exactly 3 batches of each type of
cookie should be made in the week.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of
each kind of cookie are made each week (Monday through Friday) and
each batch is made, from start to finish, on a single day.

InitialCode:

from z3 import *

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
cookies_sort, (oatmeal, peanut_butter, sugar) =
EnumSort('cookies', ['oatmeal', 'peanut_butter', 'sugar'])
batch_sort = IntSort()
schedule = Function('schedule', cookies_sort, batch_sort,
days_sort)

pre_conditions = []

Constraint: Exactly three batches of each kind of cookie are
made each week
for cookie in [oatmeal, peanut_butter, sugar]:

pre_conditions.append(Sum([If(schedule(cookie, i) == day, 1,
0) for i in range(1, 4) for day in [Monday, Tuesday,
Wednesday, Thursday, Friday]]) == 3)

NegExample:

And(schedule(oatmeal, 1) == Monday, schedule(oatmeal, 2) ==
Tuesday, schedule(oatmeal, 3) == Wednesday, schedule(oatmeal, 4)
== Thursday)

NegExampleDescription:

Four batches of oatmeal cookies are made on Monday, Tuesday,
Wednesday, and Thursday (which contradicts the constraint that
exactly three batches of each kind of cookie are made each week).

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Analysis:

Code incorrect, Example correct. The code only implements the
constraint for batch numbers 1, 2, and 3, but not for any other
batch numbers.

InitialContext:

On each of exactly seven consecutive days (day 1 though day 7), a
pet shop features exactly one of three breeds of kitten|Himalayan,
Manx, Siamese|and exactly one of three breeds of puppy|Greyhound,
Newfoundland, Rottweiler.

InitialCode:

from z3 import *

days_sort = IntSort()
kitten_breeds_sort, (Himalayan, Manx, Siamese) =
EnumSort('kitten_breeds', ['Himalayan', 'Manx', 'Siamese'])
puppy_breeds_sort, (Greyhound, Newfoundland, Rottweiler) =
EnumSort('puppy_breeds', ['Greyhound', 'Newfoundland',
'Rottweiler'])

featured_kitten = Function('featured_kitten', days_sort,
kitten_breeds_sort)
featured_puppy = Function('featured_puppy', days_sort,
puppy_breeds_sort)

pre_conditions = []

pre_conditions.append(And([featured_kitten(i) != featured_kitten(i
+ 1) for i in range(1, 7)]))
pre_conditions.append(And([featured_puppy(i) != featured_puppy(i +
1) for i in range(1, 7)]))

Condition:

No breed is featured on any two consecutive days.

ConditionCode:

(Already implemented above)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code correct, Example incorrect. No example was inferred. The code
correctly implements constraints to disallow the same breeds on
any two consecutive days.

InitialContext:

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

An administrator must assign parking spaces to six new employees:
Robertson, Souza, Togowa, Vaughn, Xu, and Young. Each of the six
employees must be assigned one of the following parking spaces:
#1, #2, #3, #4, #5, or #6. No two employees can be assigned the
same parking space.

InitialCode:

from z3 import *

employees_sort, (Robertson, Souza, Togowa, Vaughn, Xu, Young) =
EnumSort('employees', ['Robertson', 'Souza', 'Togowa', 'Vaughn',
'Xu', 'Young'])
parking_spaces_sort = IntSort()
parking_space = Function('parking_space', employees_sort,
parking_spaces_sort)

pre_conditions = []

pre_conditions.append(Distinct([parking_space(e) for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))
pre_conditions.append(And([parking_space(e) >= 1 for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))
pre_conditions.append(And([parking_space(e) <= 6 for e in
[Robertson, Souza, Togowa, Vaughn, Xu, Young]]))

Condition:

If Young is assigned a higher-numbered parking space than Souza,
then Young is assigned parking space #2.

ConditionCode:

check_property = parking_space(Young) == 2
pre_conditions.append(check_property)

ExampleFail:

Positive example not inferred (NONE description)

Analysis:

Code incorrect, Example incorrect. The code does not implement the
conditional requirement but simply asserts that Young should be
assigned #2. No positive example is inferred.

InitialContext:

A bakery makes exactly three kinds of cookie|oatmeal, peanut
butter, and sugar. Exactly three batches of each kind of cookie
are made each week (Monday through Friday) and each batch is made,
from start to finish, on a single day.

InitialCode:

from z3 import *

cookies_sort, (oatmeal, peanut_butter, sugar) =
EnumSort('cookies', ['oatmeal', 'peanut_butter', 'sugar'])

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

days_sort, (Monday, Tuesday, Wednesday, Thursday, Friday) =
EnumSort('days', ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday'])
batches_sort = IntSort()
made_on = Function('made_on', cookies_sort, batches_sort,
days_sort)

pre_conditions = []

Ensure that each kind of cookie has exactly three batches made
on different days
for cookie in [oatmeal, peanut_butter, sugar]:

pre_conditions.append(Distinct([made_on(cookie, b) for b in
range(1, 4)]))

Ensure that each batch number is between 1 and 3
for cookie in [oatmeal, peanut_butter, sugar]:

for b in range(1, 4):
pre_conditions.append(And(b >= 1, b <= 3))

NegExample:

And(made_on(oatmeal, 1) == Monday, made_on(oatmeal, 2) == Tuesday,
made_on(oatmeal, 3) == Wednesday)

NegExampleDescription:

The oatmeal cookies are made on Monday, Tuesday, and Wednesday,
which violates the constraint that each kind of cookie must be
made on different days.

Analysis:

Code incorrect, Example incorrect. The negative example does not
violate the intended constraints as it simply assigns oatmeal
batches to 3 different days. The code does not prevent any batch
numbers higher than 3.

A.6 RUNTIME PERFORMANCE AND OPTIMIZATIONS

We conducted an evaluation of the runtime performance of the current system. Executing the system
over a sample of 250 data points (50 from each dataset), the median runtime per task is 152 seconds
(around 2.5 minutes), with first quartile 108s, third quartile 267s and mean 249s. This was on an
Intel Xeon Gold 6126 CPU @ 2.60 GHz with 16 cores and no hyper-threading, 62 GB of RAM, and
an HDD-based storage system (this machine has slightly lower single-threaded performance than
most modern desktops). However, there are also many potential optimizations to the SSV algorithm
that can be made to significantly reduce the run time in a practical implementation:

• The outer temperature loop (line 2 in Figure 4) can be fully parallelized as all the compu-
tations are independent for each temperature. That can yield up to 4X speed up (with 4
temperatures being tried in our current system). Side note: even with a single temperature
of 0, our algorithm still beats all baselines in terms of accuracy (as in our ablation study),
so even such an ablated system would be beneficial if computation costs are of significant
concern.

• In the verification phase (line 9 in Figure 4), the solver calls to verify each of the concrete
instantiations can be parallelized as they are checked independently. These are around 10
to 20 independent solver calls on average (2 instantiations each for around 5-10 constraints)
that can be parallelized for significant speedup.

• Caching solver verification checks between repair attempts. Currently for each repair at-
tempt in the inner loop (line 4 in Figure 4), we perform the full verification on the repaired

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

program (on all constraints). However, most of the time the repaired change is on a single
constraint for which a failing instantiation was found and all other constraints remain iden-
tical (though not always guaranteed as in some rare cases the LLM may reformulate the
whole program). Hence if we cache the solver requests for each instantiation verification,
many of these repetitive checks can be avoided in the repaired programs for the constraints
that are unaltered.

As a general side note, recent reasoning-oriented models such as Open AI’s o1 can take several
seconds or up to a few minutes on some tasks with significantly more computational resources/G-
PUs, so higher runtimes in the order of a few minutes may generally be expected to robustly address
complex reasoning problems.

57

	Introduction
	Inferring the Right Formalization: A Motivating Example
	Semantic Self-Verification
	Evaluation
	Results

	Limitations and Future Directions
	Related work
	Conclusion
	Appendix
	Compositional Code Generation and Refinement Prompts
	Problem Decomposition Prompt
	Incremental Code Generation Prompt
	Options Code Generation Prompt
	Error-based Code Refinement Prompt

	Instantiation generation prompt
	Semantic repair prompt
	Dataset correction cases
	AR-LSAT Corrections
	FOLIO Corrections
	ProofWriter corrections

	Analysis of Verification Failure Cases
	Runtime performance and optimizations

