
Test-Time Adaptation with State-Space Models

Mona Schirmer 1 Dan Zhang 2 Eric Nalisnick 3

Abstract

Distribution shifts between training and test data
are all but inevitable over the lifecycle of a de-
ployed model and lead to performance decay.
Adapting the model can hopefully mitigate this
drop in performance. Yet, adaptation is challeng-
ing since it must be unsupervised: we usually do
not have access to any labeled data at test time. In
this paper, we propose a probabilistic state-space
model that can adapt a deployed model subjected
to distribution drift. Our model learns the dynam-
ics induced by distribution shifts on the last set
of hidden features. Without requiring labels, we
infer time-evolving class prototypes that serve as
a dynamic classification head. Moreover, our ap-
proach is lightweight, modifying only the model’s
last linear layer. In experiments on real-world
distribution shifts and synthetic corruptions, we
demonstrate that our approach performs competi-
tively with methods that require back-propagation
and access to the model backbone. Our model
especially excels in the case of small test batches—
the most difficult setting.

1. Introduction
Predictive models often have an ‘expiration date.’ Real-
world applications tend to exhibit distribution drift, meaning
that the data points seen at test time are drawn from a distri-
bution that is different than the training data’s. Moreover,
the test distribution usually becomes more unlike the train-
ing distribution as time goes on. An example of this is with
recommendation systems: trends change, new products are
released, old products are discontinued, etc. Unless a model
is updated, its ability to make accurate predictions will ex-
pire, requiring the model to be taken offline and re-trained.
Every iteration of this model life-cycle can be expensive and

1UvA-Bosch Delta Lab, University of Amsterdam 2Bosch Cen-
ter for AI & University of Tübingen 3Johns Hopkins University.
Correspondence to: Mona Schirmer <m.c.schirmer@uva.nl>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

time consuming. Allowing models to remain ‘fresh’ for as
long as possible is thus an open and consequential problem.

In this work, we propose State-space Test-time ADaptation
(STAD), a method that delays the failure of a deployed
model by performing unsupervised adaptation at test time.
We perform this updating by modeling the dynamics of the
parameters at a neural network’s final layer, making our ap-
proach widely applicable and computationally lightweight.
Specifically, we use a state-space model (SSM) to track
how the weight vectors in the final layer—where each vec-
tor corresponds to a class—evolve under distribution drift.
To generate predictions for the newly-acquired batch of
test points, we use the SSM’s fitted cluster means as the
model’s updated parameters. We focus on natural data shifts
caused by a gradually changing environment rather than
noise-based shift, which has been the focus of previous
work (Wang et al., 2021; 2022). Our contributions are as
follows,

• In Section 3.2, we present STAD, a state-space model
to learn the dynamics of how a classifier’s last-layer
weights evolve under distribution shift, without access
to any labels. No previous work has explicitly modeled
these dynamics, which we demonstrate is crucial via
an ablation study.

• In Sections 3.2 and 3.3, we provide two implementa-
tions of STAD—one using Gaussian distributions and
one using von Mises-Fisher distributions. Each repre-
sents a different assumption about the geometry of the
model’s last-layer representations.

• In Section 5, we apply STAD to real-world (or ‘natu-
ral’) shifts, showing improvements over state-of-the-art
adaptation methods such as TENT (Wang et al., 2021)
and CoTTA (Wang et al., 2022). Previous work has
mostly focused on synthetic noise-based shifts, and our
method is competitive on this task as well.

2. Problem Setting
Data & Model We focus on the traditional setting of
multi-label classification, where X ⊆ RD denotes the input
(feature) space and Y ⊆ {1, . . . ,K} denotes the label space.
Let x and y be random variables and P(x, y) = P(x) P(y|x)
the unknown source data distribution. We assume x ∈

1

Test-Time Adaptation with State-Space Models

X and y ∈ Y are realisations of x and y. The goal of
classification is to find a mapping fθ, with parameters θ,
from the input space to the label space fθ : X → Y . Fitting
the classifier fθ is usually accomplished by minimizing an
appropriate loss function (e.g. log loss). Yet, our method is
agnostic to how fθ is trained and therefore easy to use with,
for instance, a pre-trained model that has been downloaded
from the web.

Distribution Drift and Unsupervised Adaptation In pre-
dictive modeling, a classifier will almost always become
‘stale,’ as the test conditions inevitably change from those
observed during training. In fact, the model’s presence in
the world can cause this change: a model that predicts when
someone is likely to be infected with a contagious disease
will, if effective and widely adopted, reduce the prevalence
of that disease. Thus, we want our models to be ‘fresh’ for as
long as possible and continue to make accurate predictions,
in spite of data drift. More formally, let the data at test-time
t be sampled from a distribution Qt(x, y) = Qt(x)Qt(y|x)
such that Qt(x, y) ̸= P(x, y) ∀t > 0. Of course, we
do not observe labels at test time, and hence we observe
only a batch of features Xt = {x1,t, . . . ,xN,t}, where
xn,t ∼ Qt(x) (i.i.d.). Given the t-th batch of features Xt,
the goal is to adapt fθ, forming a new set of parameters θt
such that fθt has better predictive performance on Xt than
fθ would have. Since we can only observe features, we as-
sume that the distribution shift must at least take the form of
covariate shift: Qt(x) ̸= P(x) ∀t > 0. Qt(y|x) could shift
as well, but this will be impossible to detect in our assumed
setting. If Qt(y|x) does shift, it must do so modestly, as the
classifier will become completely invalid if the relationship
between features and labels changes to a severe degree. This
setting is known as continual test-time adaptation (CTTA)
(Wang et al., 2022; Gong et al., 2022; Press et al., 2024a;
Niu et al., 2022; Song et al., 2023; Döbler et al., 2023).

3. Modelling the Dynamics of Distribution
Shifts in Representation Space

We now present our method: the core idea is that CTTA
can be done by tracking how distribution shift affect the
model’s representations. We employ linear state-space mod-
els (SSMs) to capture how test points evolve and drift. The
SSM’s cluster representations then serve as an adaptive
classification head that evolves with the non-stationarity of
the distribution drift. In Section 3.2, we first introduce the
general model and then in Section 3.3, we propose an imple-
mentation that leverages the von-Mises-Fisher distribution
to model hyperspherical features.

w
t+2,2

wt+1,2

wt,
2

wt+
2,1

wt+1,1

w
t,1

Ht|Ct

Ht+1|Ct+1

Ht+2|Ct+2

Ht|Ct

Ht+1|Ct+1

Ht+2|Ct+2

Figure 1. Illustration for the 2D Unit Sphere: Fashion trends and
demographic changes lead to a shift in the representations H.
STAD adapts to the distribution shift by inferring dynamic class
prototypes wt+2,1 and wt+2,2 for test time point t+ 2 observing
only neural representations Ht+2 and no labels.

3.1. Modeling Shift in Representation Space

Whereas previous work has mostly attempted to adapt all
levels of a neural network, we take the alternative approach
of adapting only the last layer. Let the classifier fθ be a
neural network having L total layers. We will treat the
first L − 1 as a black box, assuming they transform the
original feature vector x into a new (lower dimensional)
representation, which we denote as h. The original clas-
sifier then maps these representations to the classes as:
E[y|h] = softmaxy (W0h), where softmaxy (·) de-
notes the dimension of the softmax’s output corresponding
to the y-th label index and W0 are the last-layer weights.
As W0 will only be valid for representations that are similar
to the training data, we will discard these parameters when
performing CTTA, learning new parameters Wt for the t-th
time step. These new parameters will be used to gener-
ate the adapted predictions through the same link function:
E[y|h] = softmaxy (Wth).

In the setting of CTTA, we observe a batch of features Xt.
Passing them through the model yields corresponding rep-
resentations Ht, and this will be the ‘data’ used for the
probabilistic model we will describe below. Specifically,
we will model how the representations change from Ht to
Ht+1. Operating on this last set of hidden representations
has several benefits. Firstly, test-time adaptation is fast as
Ht is relatively low dimensional and no backpropagation
is necessary. Secondly, Ht could be provided by a founda-
tion model accessed through a black-box API. Lastly, recall
that we do not have the labels necessary to fit a complex
classifier on Ht directly. In turn, for Ht to be useful, these
representations must exhibit a clear structure (e.g. cluster-
ing) that reflects the classes. This assumption can lead to
diagnostics that determine if we should perform CTTA or
not, as we will see in the experiments.

2

Test-Time Adaptation with State-Space Models

ct−1,n ct,n

ht−1,n ht,n

wt−1,k wt,k

πt−1,k πt,k

ψtrans

ψemsN1 N2

K

Figure 2. Graphical model: Representations are modeled with a
dynamic mixture model. Latent class prototypes wt,k evolve at
each time step, cluster assignments ct,n determine class member-
ship of each neural representations ht,n.

3.2. A Probabilistic Model of Shift Dynamics

We now describe our general method for adaptive last-layer
parameters. We assume that, while the representations H
are changing, they are still maintaining some class structure
in the form of clusters. Our model will seek to track this
structure as it evolves over time. Using latent variables wt,k,
we will assume each representation is drawn conditioned
on K latent vectors: ht,n ∼ p (ht|wt,1, . . . ,wt,K), where
K is equal to the number of classes in the prediction task.
After fitting the unsupervised model, the K latent vectors
will be stacked to create Wt, the last-layer weights of the
adapted predictive model (as introduced in 3.1). For the
intuition of the approach, see Figure 1. The blue and red
clusters represent each class of a binary problem. As the
distribution shifts from time step t to t + 1, both classes
migrate downward, towards the equator of the circle. Our
SSM aims to track this movement so that classification
performance can still be preserved. Why the representations
are restricted to the sphere will become clear in Section 3.3.
We now move on to a technical description.

Notation and Variables Let Ht = (ht,1, . . . ,ht,Nt) ∈
RD×Nt denote the neural representations for Nt data points
at test time t. Let Wt = (wt,1, . . . ,wt,K) ∈ RD×K denote
the K weight vectors at test time t. As discussed above, the
weight vector wt,k can be thought of as a latent prototype for
class k at time t. We denote with Ct = (ct,1, . . . , ct,Nt) ∈
{0, 1}K×Nt the Nt one-hot encoded latent class assign-
ment vectors ct,n ∈ {0, 1}K at time t. The k-th position
of ct,n is denoted with ct,n,k and is 1 if ht,n belongs to
class k and 0 otherwise. Like in standard (static) mixture
models (Bishop and Nasrabadi, 2006), the prior of the la-
tent class assignments p(ct,n) is a categorical distribution,
p(ct,n) = Cat(πt) with πt = (πt,1, . . . , πt,K) ∈ [0, 1]K

and
∑K

k=1 πt,k = 1. The mixing coefficient πt,k gives the a
priori probability of class k at time t and can be interpreted
as the class proportions.

Dynamics Model We model the evolution of the K proto-
types Wt = (wt,1, . . . ,wt,K) withK independent Markov
processes. The resulting transition model is then:

p(Wt|Wt−1, ψ
trans) =

K∏
k=1

p(wt,k|wt−1,k, ψ
trans), (1)

where ψtrans denote the parameters of the transition density,
notably the transition noise. At each time step, the feature
vectors Ht are generated by a mixture distribution over the
K classes,

p(Ht|Wt, ψ
ems) =

Nt∏
n=1

K∑
k=1

πt,k · p(ht,n|wt,k, ψ
ems).

(2)
where ψems are the emission parameters. We thus assume
at each time step a standard mixture model over the K
classes where the class prototype wt,k defines the latent
class center and πt,k the mixture weight for class k. The
joint distribution of representations, prototypes and class
assignments can be factorised as follows,

p(H1:T ,W1:T ,C1:T)

= p(W1)

T∏
t=1

p(Ct)p(Ht|Wt,Ct, ψ
ems)

T∏
t=2

p(Wt|Wt−1, ψ
trans)

=

K∏
k=1

p(w1,k)

T∏
t=1

Nt∏
n=1

p(ct,n)

K∏
k=1

p(ht,n|wt,k, ψ
ems)ct,n,k

T∏
t=2

K∏
k=1

p(wt,k|wt−1,k, ψ
trans).

(3)

We use the notation H1:T = {Ht}Tt=1 to denote the repre-
sentation vectors Ht for all time steps T and analogously
for W1:T and C1:T . The model’s plate diagram is depicted
in Figure 2. The representation H1:T are the observed
variables and are determined by the latent class prototypes
W1:T and the latent class assignments C1:T .

Posterior Inference & Adapted Predictions The pri-
mary goal is to update the class prototypes Wt with the
information obtained by the Nt representations of test time
t. At each test time t, we are thus interested in the pos-
terior distribution of the prototypes p(Wt|H1:t). Once
p(Wt|H1:t) is known, we can update the classification

3

Test-Time Adaptation with State-Space Models

weights with the new posterior mean. The class weights
Wt and class assignments Ct can be inferred using the
Expectation-Maximization (EM) algorithm. In the E-step,
we compute p(W1:TC1:T |H1:T). In the M-Step, we maxi-
mize the expected complete-data log likelihood with respect
to the model parameters:

ϕ∗ = argmax
ϕ

Ep(W,C|H)

[
log p(H1:T ,W1:T ,C1:T)

]
,

(4)
where ϕ denotes the parameters of the transition and emis-
sion density as well as the mixing coefficients, ϕ =
{ψtrans, ψems,π1:T }. After one optimization step, we col-
lect the K class prototypes into a matrix Wt. Using the
same hidden representations used to fit Wt, we generate the
predictions using the original predictive model’s softmax
parameterization:

yt,n ∼ Cat
(
yt,n; softmax(Wtht,n)

)
(5)

where yt,n denotes a prediction sampled for the representa-
tion vector ht,n. Note that adaptation can be performed in
an online fashion by optimizing Equation (4) incrementally
considering points up to point t. To omit computing the
complete-data log likelihood for an increasing sequence as
time goes on, we employ a sliding window approach.

Gaussian Model The simplest parametric form for the
transition and emissions models is Gaussian. The resulting
model can be seen as a mixture of K Kalman filters (KFs).
For posterior inference, thanks to the linearity and Gaus-
sian assumptions, the posterior expectation Ep(W,C|H)[·] in
Equation (4) can be computed analytically using the well
known KF predict, update and smoothing equations (Cal-
abrese and Paninski, 2011; Bishop and Nasrabadi, 2006).
However, the closed-form computations come at a cost as
they involve matrix inversions of dimensionality D × D.
Moreover, the parameter size scales K ×D2, risking over-
fitting and consuming substantial memory. These are lim-
itations of the Gaussian formulation making it costly for
high-dimensional feature spaces and impractical in low re-
source environments requiring instant predictions. In the
next section, we discuss a model for spherical features that
elegantly circumvents the limitations of a fully parameter-
ized Gaussian formulation.

3.3. Von Mises-Fisher Model for Hyperspherical
Features

Choosing Gaussian densities for the transition and emission
models, as discussed above, assumes the representation
space follows an Euclidean geometry. However, prior work
has shown that assuming the hidden representations lie on
the unit hypersphere results in a better inductive bias for
OOD generalization (Mettes et al., 2019; Bai et al., 2024).
This is due to the norms of the representations being biased

by in-domain information such as class balance, making
angular distances a more reliable signal of class membership
in the presence of distribution shift (Mettes et al., 2019; Bai
et al., 2024). We too employ the hyperspherical assumption
by normalizing the hidden representations such that ||h||2 =
1 and modeling them with the von Mises-Fisher (vMF)
distribution (Mardia and Jupp, 2009),

vMF(h;µk, κ) = CD(κ) exp
{
κ · µT

k h
}

(6)

where µk ∈ RD with ||µk||2 = 1 denotes the mean direc-
tion of class k, κ ∈ R+ the concentration parameter, and
CD(κ) the normalization constant. High values of κ imply
larger concentration around µk. The vMF distribution is pro-
portional to a Gaussian distribution with isotropic variance
and unit norm. While previous work (Mettes et al., 2019;
Ming et al., 2023; Bai et al., 2024) has mainly explored
training objectives to encourage latent representations to
be vMF-distributed, we apply Equation (6) to model the
evolving representations.

Hyperspherical State-Space Model Returning to the
SSM given above, we specify both transition and emission
models as vMF distributions,

p(Wt|Wt−1) =

K∏
k=1

vMF(wt,k|wt−1,k, κ
trans) (7)

p(Ht|Wt) =

Nt∏
n=1

K∑
k=1

πt,kvMF(ht,n|wt,k, κ
ems) (8)

The parameter size of the vMF formulation only scales
linearly with the feature dimension, i.e. O(DK) instead of
O(D2K) as for the Gaussian case. The noise parameters,
κtrans, κems are scalar values, and we shall use the reduced
parameter size to experiment with class conditioned noise
parameters κtransk , κems

k , k = 1, . . . ,K in Section 5.

Posterior Inference Unlike in the linear Gaussian case,
the vMF distribution is not closed under marginalization.
Consequentially, the posterior distribution required for the
expectation in Equation (4), p(W1:TC1:T |H1:T), cannot be
obtained in closed form. We employ a variational EM objec-
tive, approximating the posterior with mean-field variational
inference, following Gopal and Yang (2014):

q(wt,k) = vMF(· ;ρt,k, γt,k) q(cn,t) = Cat(· ;λn,t)
(9)

The variational distribution q(W,C) factorizes over
n, t, k and the objective from Equation (4) becomes
argmaxϕ Eq(W,C)

[
log p(H1:T ,W1:T ,C1:T)

]
. More de-

tails as well as the full maximisation steps for ϕ =
{κtrans, κems, {πt,k}Tt=1}Kk=1} can be found in Appendix B.
Notably, posterior inference for this model is much more
scalable than the Gaussian case, having operations that are
linear in the dimensionality rather than cubic.

4

Test-Time Adaptation with State-Space Models

Recovering the Softmax Predictive Distribution In addi-
tion to the inductive bias that is beneficial under distribution
shift, using the vMF distribution has an additional desirable
property: classification via the cluster assignments is equiv-
alent to the original softmax-parameterized classifier. The
equivalence is exact under the assumption of equal class
proportions and sharing κ across classes:

p(ct,n,k = 1|ht,n,wt,1, . . . ,wt,K , κ
ems)

=
vMF(ht,n;wt,k, κ

ems)∑K
j=1 vMF(ht,n;wt,j , κems)

=
CD(κems) exp

{
κems ·wT

t,kht,n

}
∑K

j=1 CD(κems) exp
{
κems ·wT

t,jht,n

}
= softmax

(
κems ·WT

t ht,n

)
,

(10)

which is equivalent to a softmax with temperature-
scaled logits, with the temperature set to 1/κems.
Temperature scaling only affects the probabilities, not
the modal class prediction. If using class-specific
κems values and assuming imbalanced classes, then
these terms show up as class-specific bias terms:
p(ct,n,k = 1|ht,n,wt,1, . . . ,wt,K , κ

ems
1 , . . . , κems

K) ∝
exp

{
κems
k ·wT

t,kht,n + logCD(κems
k) + log πt,k

}
where

CD(κems
k) is the vMF’s normalization constant and πt,k

is the mixing weight.

4. Related Work
Filtering for Deep Learning Traditional filtering models,
and the Kalman filter (Kalman, 1960) in particular, have
recently found use in deep learning as a principled way of
updating a latent state with new information. In sequence
modelling, filter-based architectures are used to learn the
latent state of an observation trajectory in both discrete (Kr-
ishnan et al., 2015; Karl et al., 2017; Fraccaro et al., 2017;
Becker et al., 2019) and continuous time (Schirmer et al.,
2022; Ansari et al., 2023; Zhu et al., 2023). However, here,
the filtering model mimics the dynamics of individual ob-
servation sequences while we are interested in modeling
the dynamics of the data stream as a whole. Chang et al.
(2023) and Titsias et al. (2023) employ Kalman filters in a
supervised online learning setting to update neural network
weights to a non-stationary data stream. Like our method,
Titsias et al. (2023) infers the evolution of the linear classi-
fication head. However, (Chang et al., 2023; Titsias et al.,
2023) rely on labels to update the latent state of the weights
after prediction. In contrast, our weight adaptation is en-
tirely label-free.

Test-Time Adaptation Maintaining reliable predictions
under distribution shift at test time has driven several re-
search directions such as continual learning (De Lange et al.,

2021) and domain adaptation (Patel et al., 2015; Wilson and
Cook, 2020). Our setting falls into test-time adaptation,
where the goal is to adapt the source-trained model given
only access to the unlabeled target data (Liang et al., 2023;
Yu et al., 2023). A simple yet effective approach is to keep
updating the batch normalization (BN) statistics at test time
(Schneider et al., 2020; Nado et al., 2020). Based on this
insight, a common strategy is to learn the parameters of
the BN layer during test time (Schneider et al., 2020; Nado
et al., 2020; Wang et al., 2021; Gong et al., 2022; Niu et al.,
2022; Press et al., 2024a). For instance, TENT (Wang et al.,
2021) learns the BN parameters by minimizing entropy on
the predicted target labels. A variation of the setting arises
when the test distribution itself changes over time, a more
realistic scenario studied by continual test-time adaptation.
The main challenge in this paradigm is to ensure adaptabil-
ity while preventing catastrophic forgetting of the source
distribution. To mitigate this trade off, strategies involve
episodic resetting to the source parameters (Wang et al.,
2022; Press et al., 2024a) or test sample selection (Niu et al.,
2022). Nonetheless, it has been observed that many strate-
gies still experience performance degradation after extended
periods of adaptation (Niu et al., 2022; Gong et al., 2022;
Wang et al., 2022; Press et al., 2024a).

5. Experiments
Our experimental goal is to demonstrate that STAD effec-
tively models natural temporal drifts in the test-time co-
variates. This distinguishes our work from previous CTTA
methods, which focus on domain shifts or shifts induced
by corruption noise but do not consider natural evolution of
time. Precisely, our setting of interest comprises (1) real-
world shifts that (2) occur gradually over time and (3) lead
to performance decay. Though ubiquitous in practice, sys-
tematic evaluation procedures for natural temporal drifts
have only been considered fairly recently (Yao et al., 2022).
We use the evaluation protocol of the Wild-Time benchmark
suite (Yao et al., 2022) to assess the adaptation performance
of our model in this setting of natural shifts. In Section 5.1,
we demonstrate that our method excels on natural temporal
drifts yielding significant performance improvements in set-
tings in which existing CTTA methods collapse. We show
the importance of explicitly modeling shift dynamics via
an ablation study in Section 5.2. Finally, in Section 5.3,
we investigate limitations of our model and show how to
diagnose failures ahead of time.

Datasets We consider two image classification datasets
exposed to natural temporal drifts. In addition to our main
setting of interest, we also present results on a classic cor-
ruption dataset.

• Yearbook (Ginosar et al., 2015): a dataset of portraits

5

Test-Time Adaptation with State-Space Models

of American high school students taken across eight
decades. Data shift in the students’ visual appearance is
introduced by changing beauty standards, group norms,
fashion trends, and demographic changes. We use the
Wild-Time (Yao et al., 2022) pre-processing and evalua-
tion procedure resulting into 33,431 images from 1930
to 2013. Each 32× 32 pixel, grey-scaled image is asso-
ciated with the student’s gender as a binary target label.
Images from 1930 to 1969 are used for training; the
remaining years from 1970 to 2013 for testing.

• FMoW-Time: the functional map of the world (FMoW)
dataset (Koh et al., 2021) maps 224 × 224 RGB satellite
images to one of 62 land use categories. Distribution
shift is introduced by technical advancement and eco-
nomic growth changing how humans make use of land
over time. FMoW-Time (Yao et al., 2022) is an adap-
tation from FMoW-WILDS (Koh et al., 2021; Christie
et al., 2018) that splits a total of 141,696 images into
a training time period (2002 - 2012) and a testing time
period (2013 - 2017).

• CIFAR-10-C: a dataset derived from CIFAR-10, to
which 15 corruption / noise types are applied with 5
severity levels to introduce gradual distribution shift
(Hendrycks and Dietterich, 2019). We increase the cor-
ruption severity starting from the lowest level (severity
1) to the most sever corruption (severity 5). This results
in a test stream of 5×10, 000 images for each corruption
type. Since our goal is mimicking gradual distribution
shifts, we are not interested in switching between images
of different corruption types, as previous work has done
(Wang et al., 2022; 2021).

Source Architectures We use a variety of source archi-
tectures to demonstrate the model-agnostic nature of our
method. They vary in parameter counts, backbone architec-
ture and dimensionality of the representation space.

• CNN: We employ the four-block convolutional neural
network trained by (Yao et al., 2022) to perform the
binary gender prediction on the yearbook dataset. Pre-
sented results are averages over three different random
training seeds. The dimension of the latent representa-
tion space is 32.

• DenseNet: For FMoW-Time, we follow the backbone
choice of (Koh et al., 2021; Yao et al., 2022) and use
DenseNet121 (Huang et al., 2017) for the land use clas-
sification task. Weights for three random trainings seeds
are provided by (Yao et al., 2022). The latent representa-
tion dimension is 1024.

• WideResNet: For the CIFAR-10 experiment, we fol-
low (Song et al., 2023; Wang et al., 2021) and use the
pre-trained WideResNet-28 (Zagoruyko and Komodakis,
2016) model from RobustBench (Croce et al., 2021).
The latent representation have 512 dimensions.

Baselines Despite the source model, we compare against
three baselines suitable for an unsupervised, continuously-
changing test stream. These baselines cover the most domi-
nant paradigms in CTTA: collecting and adapting normal-
ization statistics, entropy minimization and anti-collapse
mechanics.

• Source Model: the un-adapted original model.
• BatchNorm (BN) Adaptation (Schneider et al., 2020;

Nado et al., 2020): aims to adapt the source model to
distributions shift by collecting normalization statistics
(mean and variance) of the test data.

• Test Entropy Minimization (TENT) (Wang et al.,
2021): goes one step further and optimizes the BN trans-
formation parameters (scale and shift) by minimizing
entropy on test predictions.

• Continual Test-Time Adaptation (CoTTA) (Wang
et al., 2022): takes a different approach by optimizing
all model parameters with an entropy objective on aug-
mentation averaged predictions and combines it with
stochastic weight restore to prevent catastrophic forget-
ting.

5.1. Natural Temporal Distribution Drifts

We start by evaluating the adaptation abilities of STAD to
natural temporal drifts on two image classification datasets
of the Wild-Time benchmark (Yao et al., 2022). While
only a binary problem, the Yearbook task is difficult as the
images are low-resolution (32-dimensional feature space).
FMoW-Time presents an even more challenging setting: 62
classes, high-resolution images, 1024-dimensional feature
space. For Yearbook, we report both the vMF and Gaussian
STAD variants. For FMoW-Time, the high-dimensional
representation space makes the Gaussian model too compu-
tationally costly so we evaluate just the vMF version. For
Yearbook we report results for a batch size of 2048 compris-
ing all images of a year in one batch; for FMoW, we re-use
the training batch size of 64.

Table 1. Accuracy on Wild-Time benchmarks averaged over three
random training seeds

Methods Yearbook FMoW-Time

Source Model 81.30 ± 4.18 68.94 ± 0.20

Batch Norm (BN) 84.54 ± 2.10 10.14 ± 0.04
TENT 84.53 ± 2.11 10.21 ± 0.01
CoTTA 84.35 ± 2.13 10.19 ± 0.04

STAD-vMF 85.50 ± 1.30 86.25 ± 1.18
STAD-vMF + BN 86.20 ± 1.23 9.26 ± 1.97
STAD-Gaussian 86.22 ± 0.84 -
STAD-Gaussian + BN 86.56 ± 1.08 -

6

Test-Time Adaptation with State-Space Models

Figure 3. Adaptation performance on Wild-Time benchmarks: First column: Accuracy for different batch sizes. STAD is more robust to
small batch sizes compared to baselines. Right column: Adaptation accuracy over different test time points. STAD reliably adapts to the
distribution shifts. Baselines perform similarly, which is depicted by overlaying accuracy trajectories.

STAD reliably adapts to natural shifts over time Ta-
ble 1 shows overall accuracy, averaged over all time steps
and three random seeds. Our methods best adapt to the
natural temporal shift present in both datasets, improving
upon the source model in both cases. Strikingly, traditional
CTTA methods collapse on FMoW-Time, falling well below
the source accuracy by over 58 percentage points. On the
other hand, vMF adaptation gains over 17 percentage points
on the source model. This is an example of when adapting
a powerful feature extractor such as the DenseNet (Huang
et al., 2017) pretrained on ImageNet (Deng et al., 2009) can
lead to catastrophic forgetting. On Yearbook, both Gaussian
and vMF outperform baselines with the fully parameter-
ized Gaussian model expectedly modeling the distribution
shift better than the light-weight vMF model. We also test
our last layer adaptation in combination with BN which
modifies the feature extractor. This additionally, yields a
marginal performance increase of < 1% point on Yearbook.
Figure 3 (right) displays adaptation performance over dif-
ferent timestamps. While adaptation accuracy of baseline
methods decays the more samples are seen on FMoW, our
method keeps a constant performance gain to the source
model.

STAD excels on small batch sizes Previous work (Liang
et al., 2023; Yu et al., 2023; Nado et al., 2020) has observed
that test-time adaptation methods are quite sensitive to the
size of the test batch. To assess the impact of batch sizes,
we also perform adaptation on Yearbook and FMoW using
smaller batch size values. Figure 3 shows accuracy as a
function of test batch size. Leveraging Bayesian principles,
STAD is extremely robust to the test batch size, improving

upon the source model across all batch sizes. In contrast,
BN, TENT and CoTTA harm the source model when batch
sizes are smaller than 512 on Yearbook and fail to improve
entirely for FMoW. Adapting in small-sample environments
is particularly crucial in continual domain adaptation when
the task requires that predictions be made quickly.

5.2. Ablation Study: How important is modeling the
dynamics?

We next investigate the importance of STAD’s temporal
component. STAD is proposed with the assumption that
adapting the class prototypes based on those of the previ-
ous time step facilitates both rapid and reliable adaptation.
However, one could also consider a static version of STAD
that does not have a transition model (Equation (1)). Rather,
the class prototypes are computed as a standard mixture
model (Equation (2)) and without considering previously
inferred prototypes. Table 2 presents the accuracy differ-
ences between the static and dynamic versions of STAD
in percentage points. Removing STAD’s transition com-
ponent results in a substantial performance drop of up to
28 percentage points. This supports our assumption that
state-space models are well-suited for the task of continual
adaptation.

Table 2. Difference in accuracy between dynamic and static ver-
sions of STAD (i.e. when removing the transition model). Perfor-
mance drops substantially on Wild-Time datasets.

Variant Yearbook FMoW CIFAR-10-C

STAD-vMF w/o dynamics –24.47 –17.38 –3.41
STAD-Gaussian w/o dynamics –28.43 – –

7

Test-Time Adaptation with State-Space Models

Figure 4. Analysis of cluster structure on CIFAR-10-C: Left: Dispersion in angular degrees increases with corruption severity, causing the
ground truth cluster centers to become more similar. Middle: The angular distance to the ground truth cluster centers is smaller for STAD
compared to the source model. Right: Dispersion of inferred prototypes can predict when adaptation with STAD is discouraged.

5.3. Limitation: Representations are a bottleneck

We next turn to the CIFAR-10-C dataset, which is the most
commonly used benchmark in the CTTA literature. Table 3
displays adaptation accuracy averaged across all corruption
types. STAD improves upon the source model for all sever-
ity levels, but does not outperform TENT or CoTTA. We
suspect this reversal in performance (i.e. STAD perform-
ing better than baselines on natural but worse on synthetic
shifts) is related to the quality of the source model’s repre-
sentations. Recall that, unlike TENT, CoTTA or BN, STAD
adapts only the model’s last layer. While this has benefits
for STAD’s computational efficiency and wide applicability,
it is also a limitation in that STAD can only be as good as
the last-layer representations allow.

To investigate representation quality as the cause for
this performance drop, we employ the dispersion metric
(Ming et al., 2023) developed for hyperspherical features:
dis(Wt) =

1
K

∑K
k=1

1
K−1

∑K
l ̸=k w

T
t,kwt,l, where wt,k de-

notes the class prototypes. Dispersion measures how far
apart (in angular degrees) prototypes of different classes are.
High dispersion values indicate prototypes point in different
directions and thus are desirable. Figure 4 (left) shows dis-
persion on CIFAR-10-C. As corruption severity increases
(x-axis), the dispersion of STAD’s representations (blue line)
decreases. However, this is not due to any mis-estimation
problem with STAD as the ground truth representations
(yellow line)—computed using the true test labels—also
decrease in quality. In Figure 4 (middle), we confirm that
STAD is appropriately adapting by measuring the angular
distance to the ground-truth representations. STAD (blue
line) is substantially closer to the ground truth than the
source model (gray line) is, showing that STAD well tracks
the class prototypes as they evolve.

Dispersion measures the quality of representation, making
it a potential diagnostic tool. If dispersion is high, STAD is
all that is needed for good performance. If dispersion is low,
a full-model adaptation strategy such as BN is required. In
Figure 4 (right), we plot accuracy vs dispersion, showing

that they positively correlate. This enables real-time signal-
ing of insufficient representation quality, alerting the user to
potential adaptation risks without the need for labels. Rec-
ognizing when adaptation fails is of critical importance in
practice. Recent work has shown that most CTTA methods
eventually collapse (Press et al., 2024a;b), but understand-
ing why and when this phase transition occurs is an open
problem.

Table 3. Accuracy on CIFAR-10-C for different severity levels
averaged over all corruption types

Corruption severity
Method 1 2 3 4 5 Mean

Source 86.90 81.34 74.92 67.64 56.48 73.46

BN 90.18 88.16 86.24 83.18 79.27 85.41
TENT 90.87 89.70 88.32 85.89 83.09 87.57
CoTTA 90.62 89.42 88.55 87.28 85.27 88.23

STAD-vMF 88.21 83.68 78.42 72.19 62.44 76.99
STAD-vMF + BN 90.16 88.11 86.24 83.17 79.33 85.40

6. Conclusion
We have presented a novel test-time adaptation strategy,
State-space Test-time ADaptation (STAD), based on a prob-
abilistic state-space model. Both our Gaussian and vMF
variants of STAD track how the last-layer evolves under
distribution shift, allowing a deployed model to perform
unsupervised adaptation to the shift. Our framework out-
performs state-of-the-art competitors such as TENT and
CoTTA on Wild-Time benchmarks. Yet we also identify
points of improvement, as we found that random corrup-
tions applied to CIFAR-10 degraded the representations to
a degree that our method could be competitive with but not
outperform these baselines adapting the model backbone.
For future work, we will study diagnostics that reliably iden-
tify when the last-layer representations are suitable, more
intensive adaptation is needed or if adaptation is possible
at all. We will also investigate non-linear models of shift
dynamics.

8

Test-Time Adaptation with State-Space Models

References
A. F. Ansari, A. Heng, A. Lim, and H. Soh. Neural

continuous-discrete state space models for irregularly-
sampled time series. In International Conference on
Machine Learning, pages 926–951. PMLR, 2023.

H. Bai, Y. Ming, J. Katz-Samuels, and Y. Li. Hypo: Hyper-
spherical out-of-distribution generalization. International
Conference on Learning Representations, 2024.

A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra, and G. Ridge-
way. Clustering on the unit hypersphere using von mises-
fisher distributions. Journal of Machine Learning Re-
search, 6(9), 2005.

P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor,
and G. Neumann. Recurrent kalman networks: Factorized
inference in high-dimensional deep feature spaces. In
International Conference on Machine Learning, pages
544–552. PMLR, 2019.

C. M. Bishop and N. M. Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

A. Calabrese and L. Paninski. Kalman filter mixture model
for spike sorting of non-stationary data. Journal of neuro-
science methods, 196(1):159–169, 2011.

P. G. Chang, G. Durán-Martín, A. Shestopaloff, M. Jones,
and K. P. Murphy. Low-rank extended kalman filtering
for online learning of neural networks from streaming
data. In Proceedings of The 2nd Conference on Lifelong
Learning Agents, volume 232, pages 1025–1071. PMLR,
2023.

G. Christie, N. Fendley, J. Wilson, and R. Mukherjee. Func-
tional map of the world. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6172–6180, 2018.

F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti,
N. Flammarion, M. Chiang, P. Mittal, and M. Hein. Ro-
bustbench: a standardized adversarial robustness bench-
mark. In Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks 1,
2021.

M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia,
A. Leonardis, G. Slabaugh, and T. Tuytelaars. A contin-
ual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(7):3366–3385, 2021.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009.

M. Döbler, R. A. Marsden, and B. Yang. Robust mean
teacher for continual and gradual test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7704–7714, 2023.

M. Fraccaro, S. D. Kamronn, U. Paquet, and O. Winther. A
disentangled recognition and nonlinear dynamics model
for unsupervised learning. Advances in Neural Informa-
tion Processing Systems, 2017.

S. Ginosar, K. Rakelly, S. Sachs, B. Yin, and A. A. Efros.
A century of portraits: A visual historical record of amer-
ican high school yearbooks. In Proceedings of the IEEE
International Conference on Computer Vision Workshops,
pages 1–7, 2015.

T. Gong, J. Jeong, T. Kim, Y. Kim, J. Shin, and S.-J. Lee.
Note: Robust continual test-time adaptation against tem-
poral correlation. Advances in Neural Information Pro-
cessing Systems, 2022.

S. Gopal and Y. Yang. Von mises-fisher clustering models.
In International Conference on Machine Learning, pages
154–162. PMLR, 2014.

D. Hendrycks and T. Dietterich. Benchmarking neural net-
work robustness to common corruptions and perturba-
tions. International Conference on Learning Representa-
tions, 2019.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4700–4708, 2017.

R. E. Kalman. A new approach to linear filtering and pre-
diction problems. 1960.

M. Karl, M. Soelch, J. Bayer, and P. van der Smagt. Deep
variational bayes filters: Unsupervised learning of state
space models from raw data. International Conference
on Learning Representations, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. International Conference on Learning
Representations, 2015.

P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang,
A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips,
I. Gao, et al. Wilds: A benchmark of in-the-wild distri-
bution shifts. In International Conference on Machine
Learning, pages 5637–5664. PMLR, 2021.

R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman
filters. arXiv preprint (arXiv:1511.05121), 2015.

J. Liang, R. He, and T. Tan. A comprehensive survey on test-
time adaptation under distribution shifts. arXiv preprint
(arXiv:2303.15361), 2023.

9

Test-Time Adaptation with State-Space Models

K. V. Mardia and P. E. Jupp. Directional statistics. John
Wiley & Sons, 2009.

P. Mettes, E. Van der Pol, and C. Snoek. Hyperspherical
prototype networks. Advances in Neural Information
Processing Systems, 2019.

Y. Ming, Y. Sun, O. Dia, and Y. Li. How to exploit hyper-
spherical embeddings for out-of-distribution detection?
International Conference on Learning Representations,
2023.

Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Laksh-
minarayanan, and J. Snoek. Evaluating prediction-time
batch normalization for robustness under covariate shift.
arXiv preprint (arXiv:2006.10963), 2020.

S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and
M. Tan. Efficient test-time model adaptation without for-
getting. In International Conference on Machine Learn-
ing, pages 16888–16905. PMLR, 2022.

V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual
domain adaptation: A survey of recent advances. IEEE
signal processing magazine, 32(3):53–69, 2015.

O. Press, S. Schneider, M. Kümmerer, and M. Bethge.
Rdumb: A simple approach that questions our progress
in continual test-time adaptation. Advances in Neural
Information Processing Systems, 2024a.

O. Press, R. Shwartz-Ziv, Y. LeCun, and M. Bethge. The
entropy enigma: Success and failure of entropy minimiza-
tion. arXiv preprint (arXiv:2405.05012), 2024b.

M. Schirmer, M. Eltayeb, S. Lessmann, and M. Rudolph.
Modeling irregular time series with continuous recurrent
units. In International Conference on Machine Learning,
pages 19388–19405. PMLR, 2022.

S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel,
and M. Bethge. Improving robustness against common
corruptions by covariate shift adaptation. Advances in
Neural Information Processing Systems, 2020.

J. Song, J. Lee, I. S. Kweon, and S. Choi. Ecotta: Memory-
efficient continual test-time adaptation via self-distilled
regularization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
11920–11929, 2023.

M. K. Titsias, A. Galashov, A. Rannen-Triki, R. Pascanu,
Y. W. Teh, and J. Bornschein. Kalman filter for on-
line classification of non-stationary data. arxiv preprint
(arXiv:2306.08448), 2023.

D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Dar-
rell. Tent: Fully test-time adaptation by entropy mini-
mization. International Conference on Learning Repre-
sentations, 2021.

Q. Wang, O. Fink, L. Van Gool, and D. Dai. Continual test-
time domain adaptation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7201–7211, 2022.

G. Wilson and D. J. Cook. A survey of unsupervised deep
domain adaptation. ACM Transactions on Intelligent
Systems and Technology (TIST), 11(5):1–46, 2020.

H. Yao, C. Choi, B. Cao, Y. Lee, P. W. W. Koh, and C. Finn.
Wild-time: A benchmark of in-the-wild distribution shift
over time. Advances in Neural Information Processing
Systems, 2022.

Y. Yu, L. Sheng, R. He, and J. Liang. Benchmarking test-
time adaptation against distribution shifts in image classi-
fication. arXiv preprint (arXiv:2307.03133), 2023.

S. Zagoruyko and N. Komodakis. Wide residual networks.
arXiv preprint (arXiv:1605.07146), 2016.

H. Zhu, C. Balsells-Rodas, and Y. Li. Markovian gaussian
process variational autoencoders. In International Confer-
ence on Machine Learning, pages 42938–42961. PMLR,
2023.

10

Test-Time Adaptation with State-Space Models

A. STAD-Gaussian
We use a linear Gaussian transition model to describe the weight evolution over time: For each class k, the weight vector
evolves according to a linear drift parameterized by a class-specific transition matrix Ak ∈ RD×D. This allows each class
to have independent dynamics. The transition noise follows a multivariate Gaussian distribution with zero mean and global
covariance Σtrans ∈ RD×D. The transition noise covariance matrix is a shared parameter across classes and time points to
prevent overfitting and keep parameter size at bay. Equation (11) states the Gaussian transition density.

Transition model: p(Wt|Wt−1) =

K∏
k=1

N (wt,k|Akwt−1,k,Σ
trans) (11)

Emission model: p(Ht|Wt) =

Nt∏
n=1

K∑
k=1

πt,kN (ht,n|wt,k,Σ
ems) (12)

Equation (12) gives the emission model of the observed features Ht at time t. As in Equation (2), the features at a given time
t are generated by a mixture distribution with mixing coefficient πt,k. The emission density of each of the K component is a
multivariate normal with the weight vector of class k at time t as mean and Σems ∈ RD×D as class-independent covariance
matrix. The resulting model can be seen as a mixture of K Kalman filters. Variants of it has found application in applied
statistics (Calabrese and Paninski, 2011).

Posterior inference We use the EM objective of Equation (4) to maximize for the model parameters ϕ =
{{Ak, {πt,k}Tt=1}Kk=1,Σ

trans,Σems}. Thanks to the linearity and Gaussian assumptions, the posterior expectation
Ep(W,C|H)[·] in Equation (4) can be computed analytically using the well known Kalman filter predict, update and
smoothing equations (Calabrese and Paninski, 2011; Bishop and Nasrabadi, 2006).

Complexity The closed form computations of the posterior p(Wt|H1:t) and smoothing p(Wt|H1:T) densities come at a
cost as they involve amongst others matrix inversions of dimensionality D ×D. This results in considerable computational
costs and can lead to numerical instabilities when feature dimension D is large. In addition, the parameter size scales
K ×D2 risking overfitting and consuming substantial memory. These are limitations of the Gaussian formulation making it
costly for high-dimensional feature spaces and impractical in low resource environments requiring instant predictions.

11

Test-Time Adaptation with State-Space Models

B. Inference for STAD-vMF
Complete-data log likelihood Using the von Mises-Fisher distribution as hyperspherical transition (Equation (7)) and
emission model (Equation (8)), the log of the complete-data likelihood in Equation (3) becomes

log p(H1:T ,W1:T ,C1:T) =

K∑
k

log p(w1,k) (13)

+

T∑
t=1

Nt∑
n=1

log p(ct,n) +

K∑
k=1

ct,n,k log p(ht,n|wt,k, κ
ems) (14)

+

T∑
t=2

K∑
k=1

log p(wt,k|wt−1,k, κ
trans) (15)

=

K∑
k

logCD(κ0,k) + κ0,kµ
T
0,kw1,k (16)

+

T∑
t=1

Nt∑
n=1

K∑
k=1

cn,t,k
(
log πt,k + logCD(κems) + κemswT

t,kht,n

)
(17)

+

T∑
t=2

K∑
k=1

logCD(κtrans) + κtranswT
t−1,kwt,k (18)

where κ0,k and µ0,k denote the parameters of the first time step. In practise, we set µ0,k to the source weights and
κ0,k = 100.

Variational EM objective As described in Section 3.3, we approximate the posterior p(W1:T ,C1:T |H1:T) with a
variational distribution q(W1:T ,C1:T) assuming the factorised form

q(W1:T ,C1:T) =

T∏
t=1

K∏
k=1

q(wt,k)

Nt∏
n=1

q(cn,t), (19)

where we parameterise q(wt,k) and q(cn,t) with

q(wt,k) = vMF(· ;ρt,k, γt,k) q(cn,t) = Cat(· ;λn,t) ∀t, n, k. (20)

We obtain the variational EM objective

argmax
ϕ

Eq

[
log p(H1:T ,W1:T ,C1:T)

]
, (21)

where Eq(W1:T ,C1:T) is denoted Eq to reduce clutter.

E-step Taking the expectation of the complete-data log likelihood (Equation (13)) with respect to the variational distribution
(Equation (19)) gives

Eq[log p(H1:T ,W1:T ,C1:T)] =

K∑
k

logCD(κ0,k) + κ0,kµ
T
0,kEq[w1,k] (22)

+

T∑
t=1

Nt∑
n=1

K∑
k=1

Eq[cn,t,k]
(
log πt,k + logCD(κems) + κemsEq[wt,k]

Tht,n

)
(23)

+

T∑
t=2

K∑
k=1

logCD(κtrans) + κtransEq[wt−1,k]
TEq[wt,k] (24)

12

Test-Time Adaptation with State-Space Models

Solving for the variational parameters, we obtain

λn,t,k =
βn,t,k∑K
j=1 βn,t,j

with βn,t,k = πt,kCD(κems) exp(κemsEq[wt,k]
Thn,t) (25)

ρt,k =
κtransEq[wt−1,k] + κems

∑Nt

n=1 Eq[cn,t,k]hn,t + κtransEq[wt+1,k]

γt,k
(26)

γt,k = ||ρt,k|| (27)

The expectations are given by

E[cn,t,k] = λn,t,k (28)
E[wt,k] = AD(γt,k)ρt,k, (29)

where AD(κ) =
ID/2(κ)

ID/2−1(κ)
and Iv(a) denotes the modified Bessel function of the first kind with order v and argument a.

M-step Maximizing objective (Equation (21)) with respect to the model parameters ϕ = {κtrans, κems, {πt,k}Tt=1}Kk=1}
gives

κ̂trans =
r̄transD − (r̄trans)3

1− (r̄trans)2
with r̄trans =

∥∥∥∥∥
∑T

t=2

∑K
k=1 Eq[wt−1,k]

TEq[wt,k]

(T − 1)×K

∥∥∥∥∥ (30)

κ̂ems =
r̄emsD − (r̄ems)3

1− (r̄ems)2
with r̄ems =

∥∥∥∥∥
∑T

t=2

∑K
k=1

∑Nt

n=1 Eq[cn,t,k]Eq[wt,k]
Thn,t∑T

t=1Nt

∥∥∥∥∥ (31)

πt,k =

∑Nt

n=1 E[cn,t,k]
Nt

(32)

Here we made use of the approximation from Banerjee et al. (2005) to compute an estimate for κ,

κ̂ =
r̄D − r̄3

1− r̄2
with r̄ = AD(κ̂). (33)

13

Test-Time Adaptation with State-Space Models

C. Experimental Details
We next list details on the experimental setup and hyperparameter configurations. All experiments are performed on NVIDIA
RTX 6000 Ada with 48GB memory.

C.1. Yearbook and FMoW

We follow the Eval-Fix protocol of Wild-Time to assess adaptation performance on Yearbook and FMoW. In Eval-Fix,
source models are trained on a fixed time period and evaluated on unseen, future time points. We use the models trained by
Yao et al. (2022) on the training time period and evaluate them on the test period. Yao et al. (2022) uses a range of different
training procedures. We use the checkpoints for plain empirical risk minimization. Three different random training seeds
are provided by Yao et al. (2022). All adaptation methods are continuously running without resets. Each method uses one
optimization step (via entropy minimization for TENT and CoTTA and Expectation-Maximization for STAD).

By the nature of test-time adaptation, choosing hyperparameters is difficult since one cannot assume access to a validation
set of the test distribution in practise. To ensure we report the optimal performance of baseline models, we conduct a grid
search on the test set for relevant hyperparameters and report the performance of the best setting. The hyperparameters
tested as well as other configurations are listed next.

BN (Schneider et al., 2020; Nado et al., 2020) Normalization statistics during test-time adaptation are a running estimates
of both the training data and the incoming test statistics. No hyperparameter optimization is necessary here.

TENT (Wang et al., 2021) Like in BN, the normalization statistics are based on both training and test set. As in Wang
et al. (2021), we use the same optimizer settings for test-time adaptation as used for training, except for the learning rate that
we find via grid search on {1e−3, 1e−4, 1e−5, 1e−6, 1e−7}. For both yearbook and FMoW, Adam optimizer (Kingma and
Ba, 2015) is used.

CoTTA (Wang et al., 2022) We use the same optimizer as used during training (Adam optimizer (Kingma and Ba,
2015)). For hyperparameter optimization we follow the parameter suggestions by Wang et al. (2022) and conduct a grid
search for the learning rate ({1e−3, 1e−4, 1e−5, 1e−6, 1e−7}), EMA factor ({0.99, 0.999, 0.9999}) and restoration factor
({0, 0.001, 0.01, 0.1}). We follow (Wang et al., 2022) by determining the augmentation confidence threshold as a function
of the 5 % percentile for the softmax prediction confidence on the source images from the source model. Note that this
requires access to the source data.

STAD-Gaussian We initialize the mixing coefficients with πt,k = 1
K ∀t, k, the transition covariance matrix with Σtrans =

0.01× I and the emission covariance matrix with Σems = 0.5× I. The prototypes at time t = 1 are initialized with the
source weights. We found a normalization of the representations to be also beneficial for STAD-Gaussian. Note that despite
normalization, the two models are not equivalent. STAD-Gaussian models the correlation between different dimensions of
the representations and is therefore more expressive, while STAD-vMF assumes an isotropic variance.

STAD-vMF We initialize the mixing coefficients with πt,k = 1
K ∀t, k and the prototypes at time t = 1 with the source

weights. For yearbook, we employ class specific noise parameters initialized with κtransk = 100 and κems
k = 100. For

FMoW, we found a more restricted transition noise model beneficial. We follow suggestions by Gopal and Yang (2014)
to keep noise concentration parameters fixed instead of learning them via maximum likelihood in order to maintain a
regularization term. We thus keep the noise parameters fixed at κtrans = 1000 and κems = 100.

C.2. CIFAR-10-C

For the experiments on CIFAR-10-C, we construct a gradual distribution shift setting by increasing the corruption severity
sequentially from level 1 to level 5. We adapt each model separately for each of the 15 corruption types. The source model
is a WideResNet-28 (Zagoruyko and Komodakis, 2016) from RobustBench (Croce et al., 2021). CIFAR-10-C is a well
studied benchmark in CTTA and thus we take the hyperparameter settings of baseline methods reported in previous work
(Wang et al., 2022).

14

Test-Time Adaptation with State-Space Models

BN As in Appendix C.1, normalization statistics during test-time adaptation are a running estimates of both the training
statistics and the incoming test statistics. No hyperparameter optimization is required.

TENT As in (Wang et al., 2022), we use Adam optimizer with learning rate 1e-3.

CoTTA We follow (Wang et al., 2022) and use Adam optimizer with learning rate 1e-3. The EMA factor is set to 0.999,
the restoration factor is 0.01 and the augmentation confidence threshold is 0.92.

STAD-vMF We initialize the mixing coefficients with πt,k = 1
K ∀t, k, the transition concentration parameter with

κtrans = 100, and the emission concentration parameter with κems = 100. The prototypes at time t = 1 are initialized with
the source weights.

15

