Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

UNRAVELING ARITHMETIC IN LARGE LANGUAGE
MODELS: THE ROLE OF ALGEBRAIC STRUCTURES

Fu-Chieh Chang

MediaTek Research, Taipei, Taiwan

Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
d09942015@ntu.edu.tw

You-Chen Lin
Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
r13921A30@ntu.edu.tw

Pei-Yuan Wu
Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan
peiyuanwulntu.edu.tw

ABSTRACT

The reasoning abilities of large language models (LLMs) have improved with chain-
of-thought (CoT) prompting, allowing models to solve complex tasks stepwise.
However, training CoT capabilities requires detailed reasoning data, which is often
scarce. The self-taught reasoner (STaR) framework addresses this by using rein-
forcement learning to automatically generate reasoning steps, reducing reliance on
human-labeled data. Although STaR and its variants have demonstrated empirical
success, a theoretical foundation explaining these improvements is lacking. Large
language models (LLMs) have demonstrated remarkable mathematical capabilities,
largely driven by chain-of-thought (CoT) prompting, which decomposes complex
reasoning into step-by-step solutions. This approach has enabled significant ad-
vancements, as evidenced by performance on benchmarks like GSM8K and MATH.
However, the mechanisms underlying LLMs’ ability to perform arithmetic in a
single step of CoT remain poorly understood. Existing studies debate whether
LLM:s encode numerical values or rely on symbolic reasoning, while others explore
attention and multi-layered processing in arithmetic tasks. In this work, we propose
that LLMs learn arithmetic by capturing algebraic structures, such as commutativity
and identity properties. Since these structures are observable through input-output
relationships, they can generalize to unseen data. We empirically demonstrate that
LLMs can learn algebraic structures using a custom dataset of arithmetic problems,
as well as providing theoretical evidence showing that, under specific configura-
tions of weights and biases, the transformer-based LLMs can generate embeddings
that remain invariant to both permutations of input tokens and the presence of
identity elements. Our findings indicate that leveraging algebraic structures can
enhance the LLMSs’ arithmetic capabilities, offering insights into improving their
arithmetic performance.

1 INTRODUCTION

With the advancement of large-language models (LLMs), their mathematical capabilities have
become a crucial factor in their success. This progress is largely attributed to chain-of-thought (CoT)
prompting [Wei et al. (2022), which enables LLMs to move beyond pattern matching and tackle
complex reasoning problems through step-by-step guidance. The mathematical prowess of LLMs is
demonstrated by several commercial models OpenAll (2024)); /Anthropic| (2024)) that have achieved
notable success on benchmarks such as GSM8K |Cobbe et al.|(2021) and MATH Hendrycks et al.
(2021)).

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Despite their achievements in solving arithmetic problems, the underlying mechanisms through which
LLMs learn arithmetic operations from training data remain unclear. Although CoT explains how
breaking down tasks into smaller steps facilitates mathematical problem solving, how LLMs process
arithmetic tokens and execute arithmetic operations within individual steps of CoT are not yet well
understood. Some studies |[Fangwei Zhu| (2024); Levy & Geva| (2024) suggest that LLMs encode
numerical values, while others |Deng et al.|(2024) propose that LLMs learn symbolic relationships
between numbers rather than directly encoding their values. Furthermore, studies such as|Gorceix
et al.| (2024) suggest that LLMs can learn mathematical rules. However, no consensus has been
reached on how or why LLMs are capable of arithmetic reasoning. A detailed literature review is
shown in Sec[Al

In this work, we provide a novel point of view on how LLMs acquire arithmetic abilities, suggesting
that such skills stem from the learning of algebraic structures such as commutativity and identity.
Since LLMs only observe input and output tokens rather than explicit numerical values, direct
token-to-number mapping is challenging. Instead, LLMs infer algebraic structures by examining
the relationship between inputs and outputs. Previous work [Karjol et al.| (2023} |2024); |Yang et al.
(2023)) has demonstrated that machine learning methods can learn symmetric structures from training
data; however, these studies have not yet connected such findings to arithmetic learning in LLMs. In
this work, we present both empirical and theoretical support showing that LLMs can learn algebraic
structures from training data, generalizing these structures to unseen inputs. Our main contributions
are as follows.

* Empirical Evidence: By constructing a dataset of arithmetic problems and splitting it
into training and testing sets, we demonstrate that LLMs can learn and generalize the
commutativity and identity properties to unseen inputs.

* Theoretical Construction: We provide a constructive proof illustrating how transformer-
based models, with specific weight and bias configurations, can preserve hidden-state
invariance under token permutations and the insertion of identity elements.

Overall, these findings suggest that LLMs can internalize algebraic structures, providing a foundation
for designing strategies to further enhance their arithmetic capabilities.

2 METHODOLOGY

2.1 PROBLEM SETTINGS

We demonstrate that LLMs can learn algebraic structures from training samples and generalize
to previously unseen instances. To keep our focus clear, we concentrate on arithmetic problems
represented by numeric and operator symbols, rather than natural language or real-world contexts.
Moreover, our study is set within a finite Abelian group (see Sec[A.T). A well-known example of
a finite Abelian group is Z,,, the set of integers modulo n under addition modulo n. For example,
in Zs, the elements are {0,1,2,3,4}, and the group operation is defined as a + b mod 5. The
identity element of this group is 0, and every element a € Z,, has an inverse b € Z,, such that
a + b = 0mod 5. In this work, we analyze the group operation properties of commutativity and
identity in Z,.

2.2 DATASET FOR COMMUTATIVITY AND IDENTITY

In this work, we show that LLMs can acquire the concepts of commutativity and identity purely from
the dataset we provide, rather than relying on any preexisting, pre-trained knowledge. To validate
this, we construct a dataset of addition problems in Z,,. Each element in Z,, is denoted as z;, where
20 =0,21 =1,..., 2,1 =n— 1. The dataset consists of addition problems with M terms, formally
expressed as:

Ziq + Zi 4+ -+ Ziy = Z(i1+i2+---+iM) mod n’ (1)
where 0 < 4y,%9,...,i3y < n. Here, mod denotes the modulo operator. For each problem,
“2i, + 2ip, + -+ 2, = 7 serves as input tokens, while the label is z< . Thus,

11+i2+~~~+iM) mod n

the LLM must predict the correct element “z (” given the inputs. In addition, we

i1+712+~-~+iM) mod n

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Training, for Operator “+” Testing, for Operator “+”
Commutativity Identity Commutativity Identity
23+ 24+ 25 + 25+ 25 + 26 = 20 20+ 24 +23+25+23+21=22 20 + 25 + 22 + 25 + 22 + 23 = 23
24 + 25+ 23 + 25 + 25 + 26 z4 + 20+ 23+ 25 +23+21 =22 t zo }
z3 + 25 + 25 + 26 + 24 +25 = 20 24 +23+z20+25+23+21 =22 z5 + 22 + 20 + 25 + 22 + 23
z4+ 25 + 25 + 26 + 23 + 2 24+ 23+ 25+ 20+ 23+21 =22 } 0+ 22
26 + 25 + 25 + 23 + 2 Z4 + 23+ 25 +23+z20+21 =22 +2z2+25 +22+20+ 23 =23
z3+z4+25+ 25+ 26 + 25 zat+ 23+ 25+ 23+ 21+ 20 =22 t } 0
23+ 26 +24+25+ 25 +25 =20 z4 + 23+ 25 +23 +21 =22
5+ 22 ,)+ ozg =
Training, for Operator & Testing, for Operator &
Commutativity Identity Commutativity Identity

20024 23D 25 D23 Dz =71 20

3@ 25 D23B21 =71 z5 @ z(20 B z5 D zo B 23 =15

=71 25 @22 @B 25 DzoB22®23 =15
=r 5 2 5 2 0 3 = T5

=71 25 @20 D25 D22 @23 B 20 =75

Testing, for Operator ©

208240 2

©23021=3 200250220025 O 20O 23 =2

24 © 20 © 2 5023021 =3 25 ¢ > 5 2o 3)

24623020025 023021 =4 25 © 22 © 20

Figure 1: Illustration of dataset for operator “+”, & and ©. Notice that the same set of tokens is
maintained across all operators to ensure that certain token combinations appear exclusively either in
the training set or the testing set, as required.

focus on the scenario that the model must directly predict the label from the input without performing
any intermediate CoT reasoning. Fig.[I]and Appendix [A.4]provide examples of both the training
and testing sets for Z7. In the subsequent sections, we explain how the datasets are constructed
so as to test whether LLMs genuinely learn and generalize the underlying algebraic properties of
commutativity and identity.

Commutativity: To demonstrate that LLMs can learn the commutative property, we begin by
selecting a sequence (2, Zi,, - - - ; Ziy,) from Zy,, where z;, < z;, < -+ < z,, and z;, > 0,
and generate sequences in the form of Eq. equation [[] Next, we sample several permutations of
(%iy» Zig» - - - %y,)» denoting each permutation as (2j,, 2j,, - -, 2j,,)» and generate sequences as
in Eq. equation |1| accordingly. For any given sequence (zi1 s Rigy oo ,ziM), to allow the model to

recognize the element z,) in the first place, at least one permutation of each
(11+12+"‘+1NI) mod n

sequence in testsing set appears in the training set. However, if more than one permutations are
included in the training set, all other permutations of this same sequence are excluded from the training
set and placed in the testing set. This ensures that the model must generalize the commutativity
property, i.e. it must infer correct outputs for unseen permutations in the testing set, based on the only
one permutation learned during training. As shown in the upper row of Fig.[I] every permutation
of (23, 24, 25, 25, 25, 26) is included in the training set (highlighted in red). Meanwhile, the testing
set contains a different permutation sequences of Eq. equation|l} (22, 23, 23, 25, 25, 26), highlighted
in orange. However, one permutation of that sequence—(zg, 23, 25, 23, 25, 22)—does appear in the
training set, ensuring that the model is exposed to at least one variant of the same element sum.

Identity: In Z,, the identity element for addition is zy. To verify whether LLMs learn this identity
property, we first pick M — 1 variables, (2, ..., zi,,_,) from Z,, and insert zo among them in all

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

possible positions. Substituting each arrangement into Eq. equation [T] yields M distinct equations:

zo+tzi, tzi, o+ 2iy = Z(i1+i2+...+iM,1> mod n’

Ziq + 20+ Zio + Zing—1 = Z(i1+i2+---+iM—1) mod n’

Ziy T Zip + 0+ Zig_, 20 = Z(¢1+i2+-~+¢M_1) odm”
To ensure that the model does not merely exploit permutation invariance, we assign all possible
insertions of zy in the sequence (zil ey ziMfl) exclusively to either the training set or the testing

set. Moreover, because the value of z(l iyt) mod should be established using the equation
1 L2 M—1

without the identity element, the following base equation without zy must be included in the training
set:

PR e = Z(i1+i2+...+mfl) mod n’

In the first row of Fig.[I] we illustrate how identity elements appear in both the training and testing
sets. The training set includes the base equation, z4 + z3 + 25 + 23 + 21 = 29, along with variants
where 2z is inserted into every possible position (highlighted in blue). In contrast, the equation
zo + 25 + 22 + 25 + 22 + 23 = z3 and its variants with z; inserted in different positions are placed
in the testing set (highlighted in cyan). However, the base equation z5 + 29 + 25 + 22 + 23 = 23
appears in the training set, ensuring that the model can infer zg + 25 + 22 + 25 + 22 + 23 = 23 when
recognizing z, as the identity element.

2.3 DATASET TO EXCLUDE NUMERICAL CALCULATION

Training on the dataset introduced in Sec.[2.2]leaves the possibility that LLMs might exploit numerical
relationships inherent in the indices. Specifically, an LLM could potentially identify the input
token indices and rely on computing the modulo sum of these indices to derive results, bypassing
the application of commutativity and identity principles. For example, in Fig. (1} the dataset for
commutativity contains zg+ 23+ 25+ 23+ 25+ 22 = z3 in training set and 2o+ 23+ 23+ 25+25+26 =
z3 in testing set. When answering the test equation, we anticipate that LLMs are able to leverage
commutativity to infer z3 from the training equation. Nonetheless, we cannot entirely rule out the
possibility that an LLM could deduce the numerical value of the index (2, 3, 3,5, 5, 6) and use the
sum (2+3+3+5+5+6) mod 7 = 3. To prevent this, we introduce a new operator & which takes
the same inputs as “+” but produces outputs unrelated to the inputs in a numerical sense. Specifically,
given any sequence (zil s Zigy ey ziM) in Z,, where z;, < z;, <--- < z;,, and z;; > 0, the result of
applying @ to this sequence (or any permutation of it) is a randomly selected element r; from the set
{ro,71,...,7n—1}, Wwhose elements lie outside Z,,. Hence, & is invariant under input permutations.
Namely,

2iy @2, B D 2ipyy =Ty 2,020, DBz =T, 0, Ziy B2y, DBz =T
Besides, @ is invariant under insertion of the identity element z(at any position such that
20D 7, Dz, D Dziy, =T, 0y 2y D2i, DD ziy, Do =14

Hence, for LLMs to perform well on this dataset, they cannot rely on the numerical relationship of
the index; rather, they must learn the commutative property and identity property of &. We include
a corresponding dataset involving & in both training and testing. As shown in the second row of
Fig.[I] we replace “+” with & and adjust the resulting values accordingly. By comparing how “+”
and & perform on commutativity and identity tasks under the same training and test inputs in Z,,, we
can discern whether the performance of “+” benefits from numerical computation or purely from
algebraic structures.

2.4 DATASET TO AVOID TRIVIAL SOLUTIONS

In this work, our goal is for LLMs to learn the commutative and identity properties specifically for the
“4+” and @ operator. If the model were trained only on the dataset described in the previous sections,
it could adopt a trivial solution in which commutativity and identity trivially apply to all tokens z;

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

regardless of the existence of the operator “+” or @. For instance, by setting all position embeddings
to zero (see Sec.[2.3)). To prevent this, we include an additional dataset that features operators that
lack commutativity and identity properties. Specifically, we introduce three new operators, ©, <, and
. Details of these operators are provided as follows.

Operator © : Counts of Encountering 2, along the Cyclic Group Z,,. It is straightforward to
show that Z,, is a cyclic group, as illustrated below:

25 24 z3 z2

]

Sy Zp] —— 2 —— 21

We define & : Z,, X Z,, — N as an operator that counts the number of times z; is encountered.
Concretely, for any z;, z; € Zy, 2; © z; equals the number of occurrences of zy when traveling from
z; to z; around the cyclic group.

Zi =7 Z(i+1) mod n ~7 Z(i+2) modn ~7 *** 7 Z(j—1) mod n ~7 Zj-

For example, in Z5, z3 © 21 = 1 because traveling from z3 — z4 — 2y — 21 encounters z; once.
Similarly, zo © z5 = 0 because zo — 23 — z4 — 25 does not pass through zo. We set z; © z; = 1
because one must traverse all elements of Z,, to return to the same element. We also define z; © z; © 2,
as the total number of zg encounters when traveling from z; to z;, then continuing to 2y, such that

Zi@Zj Oz = (Zz @Zj)+ (Zj @Zk)

For instance, in Zs, 24 © 22 © z1 = 2. Besides, it is straightforward to verify that © does not satisfy
commutativity, nor is zo an identity element, because z; © z; # z; © z; (forall i # j with ¢, j > 0),
and z; © z; # 2; © 20 © z; (for all i < j with 4, j > 0). We add a dataset involving the & operator
to the training set and testing set. As shown in Fig.[I] we replace “4” with © and update the resulting
values accordingly. Note that the output of & is a natural number in N rather than an element of Z,,.

Operators < and > : Left-Hand Side and Right-Hand Side Elements. Alongside the & operator,
we introduce two additional operators, < and >, which also lack commutativity and identity elements.
These operators simply return the left-hand-side or right-hand-side argument, respectively:

] and 2; 4z = Zj.

It is straightforward to see that these operators do not satisfy commutativity and that z; is not an
identity element for either. However, they satisfy associative, so expressions such as z; > z; > 2y,
produce a unique result. We add a dataset that includes these operators in both the training and
testing sets. An example of the whole dataset, which includes all operators “+”, ®, &, < and > is
shown in Sec. In the following section, we discuss how LLMs can learn the underlying algebraic
structures from these datasets.

Zi + L + Zin —
+ + + + 1
€iy,1 €42 €4 2M—2 Cing,2M—1 €=2M
- - - - -
(e=1) (e-1) (e—1) (e-1) (£-1)
51 52 Sam—2 Sam-1 Sam
| | I I |
Wabg, Wibi, Wo by Wabg, Wibi, Wo by Wb s Wibi, W by Wa,bgs Wi bi, W by W bas Wi bk, Wo by
~ ~ ~ ~ ~
q1, k1,01 G2, k2, v2 Gar—2,kan—2,vam -2 Gan—1, kan—1, van—1 Gam s k2, vanm

\ +
) _ —2M gy ki ,
Son = Dic1 U(Efg a ks i

~+
Z(iy+iz+--+ir) mod n

Figure 2: Illustration of the symbols defined for the hidden states of tokens and the variables for the
attnetion layers

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2.5 How Do LLMS LEARN ALGEBRAIC STRUCTURE?

In this section, we provide theoretical evidence that LLMs composed of attention layers can be
constructed to compute addition under commutativity and identity. We present an example using
Zy, with M input elements as an illustrative example (see Fig.[2). The input sequence intersperses
elements z; € Z,, with the symbols “+” and “=", resulting in a total length of 2)/. We denote e;,
where ¢ € {0, ...,n — 1} as the embedding for z; € Z,, and let e, and e_ represent the embeddings
for the “+ and “=" tokens, respectively. If z; appears in position m where 1 < m < 2M, its
embedding is e; ,,,. Analogously, if a “4-” or “=" symbol appears at position m, its embedding is
€4,m Or e— ,,,. These embeddings consist of word embedding w; and position embedding p,y,, as
€im = [wi,pm]" fori € {0,1,...,n —1}U{+,=}. We assume that all the vectors w; and p,,
are mutually orthogonal. In the following section, we illustrate how a language model can enforce
commutativity for the “+” operator by providing a proof through construction. Specifically, we assign
explicit values to the model’s weights and biases, assuming that these parameters can be learned
from training. In the /-th attention layer, we denote sgﬁfl) as the hidden state at position m from the
previous attention layer. Let W, Wy, W, and by, by, b, denote the attention weights and biases that
produce the query, key, and value, respectively, and let g,,,, k., and v, denote the query, key, and

value vectors at position m in the /-th attention layer, respectively. Furthermore, we define sgl;\)/l as

T ok
the hidden state in position 2 after ¢ attention layers. Namely, 55?4 =M a(%)vi.
j=142M"J]
The following theorem demonstrates that LLM can learn hidden states to achieve comrjnutativity.
Theorem 2.1 (Commutativity—Invariant to the Input Permutations). Given the LLMs’ settings
mentioned in Sec. there exists a special assignment of the weights and biases Wq, Wy, W, and
bq, bi, by and specific assignment of embeddings €; ,, fori € {0,1,...,n — 1} U {+, =}, such that

¢
551\)4 could be invariant to the permutation of input elements z;, , zi,, " - , %i,, € Ly. However, this

invariance holds only when the input contains commutative operators.

Proof. The proof can be found in Sec.[A.3.1] O

With the invariance of the hidden states 5(2?1, the subsequent layers of the transformer could serve as

a classifier, mapping sg?[to the token 2(;, i, 4-..4+inr) mod n» and hence endow the addition operation

with commutativity. In addition to commutativity, we present a theorem demonstrating how an LLM
can produce hidden states that remain essentially unchanged under the insertion of identity elements.

Theorem 2.2 (Identity—Invariant to the Insertion of Identity Tokens). Under the LLM settings in

Sec. let sél;v)[/ where M' = M + 1 denote the hidden state after inserting an identity token zg
and an operator’s token into the input sequence. There exists a specific assignment of weights and
biases Wy, Wi, W, and by, by, by, together with particular embeddings e; ,,, fori € {0,1,...,n —

1} U {4+, =}, such that sé[;\)m is equal to sg?/[. However, this property is valid only when the input

includes operators for which zq serves as the identity element.

Proof. The proof can be found in Sec. O

With this theorem, a classifier can interpret sgt;a[, as s%ej, which is already learned from base equation
in the training set. This ensures that the appending zy does not alter the outcome, thus reflecting the

identity property.

Remark 2.3 (Non-uniqueness of Weights and Bias Assignments). Note that the weights, biases, and
embeddings described in the proof of these theorems represent only one possible configuration to
achieve commutativity and identity; many others could also be valid. However, it is critical that these
properties be triggered specifically by operators with the properties of commutativity and ideneity,
rather than by the operand tokens themselves.

Here we discuss a solution in which commutativity and identity arise without the existence of
operators’ embeddings.

Remark 2.4 (Trivial Solution of Embeddings). Language models may converge to a trivial embedding
solution to achieve commutativity and identity. For instance, one might assign all non-identity tokens
{#1,22,...,2n—1, +, =} zero-valued position embeddings: €; n, = [w;,0]" fori € {1,2,...,n —

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

1} U {+,=}, and give the identity token zo zero-valued word and position embeddings: eg ., =
[0, 0]T. While this setup indeed satisfies both commutativity and identity, these properties are
no longer tied to the operator itself. Consequently, the model fails to produce correct outputs for
operators lacking commutativity and identity—such as &, <, and >—when using these same trivial
embeddings.

1 S e Training: +’s commutativity and identity
Testing: +’s commutativity
g‘ - — — Testing: +’s identity
§ 0.5 |~ Training: @’s commutativity and identity
E Il At [[ECEECCEeS Testing: B’s commutativity
L L w\-‘ ;'-‘ ---------- Testing: @’s identity
0 """""""""‘"“""T - """‘ o] Training: 6, < and >, no commutativity and identity
101 102 103 104" Testing: ©, no commutativity and identity
= Testing: < and >, no commutativity and identity
steps
1 [;jyl&.-;fﬂ._*,\u 1 [e e 1 [T e)
. : PR e B
. 4 B - s, o
Q — Q' 0.8 — Q0.8 [~ —
5 £ £
B — 5 0.6 — 8 0.6 v o —
< < <
- 0.4 — 0.4 —
LTl Lol 1l Ll il
102 103 10t K 102 108 10t K 102 108 10t K

Figure 3: Plots of training and testing accuracy. The first row is the training dynamics for Z7 given
the scale of training set &' = 3000. The second row are the accuracies for Z~ (left), Z1; (middle),
7,3 (right) with varying K of training set.

3 EXPERIMENTS

Settings: We conduct our experiments using the datasets described in Sec. Sec.[2.3|and[2.4]

which encompass addition problems that test for commutativity and identity of operator “+” and 6,
as well as operations involving ©, <, and >. We set n = 7,11 and 13 for Z,, and the number of input
elements M = 6. For the language model, we choose GPT-2|Radford et al.|(2019)) but reinitialize its
weights before training to strip away any pre-existing knowledge, ensuring that the model acquires its
understanding of algebraic structures solely from our data. In addition, we customize the tokenizer so
that each element is represented as a single token (e.g., z19 becomes the token [z10] rather than
several character-based tokens). For reproducibility, we have made our experimental code publicly
availabldl]

Dataset Construction: We construct both training and testing sets by first choosing a scale K,
which determines the number of examples. Each training set or testing set with scale K contains
10K instances, including

* 4K instances: Operators with commutativity and identity, including +’s commutativity, +’s
identity, ®’s commutativity, and &’s identity. Each of them contains K instances.

* 6K instances: Operator without commutativity and identity, including &, <, and . Each of
them contains 2K instances.

An example illustrating both training and testing with K = 50 appears in Sec. Throughout
subsequent experiments, we fix the K = 1000 for the testing set, while K ranges from 100 to 30,000
for training set.

'https://github.com/d09942015ntu/unraveling_llm_algebra

https://github.com/d09942015ntu/unraveling_llm_algebra

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

3.1 RESULTS

3.1.1 TRAINING DYNAMICS

We investigate how the training progresses for the case Z; when K = 3000 for the training set. The
upper row of Fig. [3]tracks the evolution of training and test accuracy over the course of training. We
observe that the model ultimately achieves 100% accuracy in the training set, indicating that it has
memorized all training instances. However, for the commutativity property of “+4” or “@” operators,
it does not achieve high accuracy in testing set. A plausible explanation is that the scale of the training
set is still insufficient. In the next experiment, we examine the testing accuracy for multiple training
scales to investigate this further.

3.1.2 VARYING THE TRAINING SET’S SCALE.

We vary the size of the training set from /' = 100 to K = 30,000 and measure testing accuracy once
both the training and testing accuracy have plateaued. The results, depicted in the second row of
Fig.[3] yield the following observations.

All Tasks Achieve Over 99% Testing Accuracy: We find that < and > are the most easily learned,
each achieving 99% testing accuracy with relatively few training samples. Next are & and the identity
properties of “+” and &, which converge to 100% at around K = 1000. The most challenging part
is learning the commutative properties of “+” and @, which requires K between 10,000 and 20,000
to reach over 99% testing acuracy. Despite these differences, all tasks ultimately achieve over 99%
accuracy, suggesting that commutativity and identity learning is indeed operator-driven rather than a
trivial result of embeddings.

Generalization of Commutative Operations. Despite the number of training instances required
to achieve high accuracy appears large, it is still much smaller than the full combinatorial space of
expressions like 2;, + 2;, + - - - + 2;,, which, for instance, includes (7 — 1) = 46,656 possibilities in
Z7 and (13 — 1)® = 2,985,984 in Z;3. Thus, LLMs can actually learn and generalize commutativity
for both “+”” and & without enumerating all possible permutations.

No Reliance on Numerical Computation We observe that “+4” does not exceed ¢ in performance,
indicating that LLMs learn commutativity and identity rather than relying on a direct numerical
calculation. It also provides evidence that LLMs could not acquire computation skills for numerical
values if the numerical values are not explicitly specified in the input.

12345678910111213 12345678910111213 12345678910111213
100
300
1000
3000 3000

[] N
1000 NN 10000

12345678910111213 12345678910111213

100 M 100 [0
300]
1000 (55 I ||

| [O]
1000 T
3000 3000
10000, | | |

100
300
1000
3000
10000)

10000)

Figure 4: Visualization of S’ and S, where 1 < ¢ < 13. The upper row displays the values
of Sfom(+,0), Stom(+,<), and S, (+,>) and the lower row displays the values of Sk, (+,©),

S (+,<) and Sf, (+,>). The numbers in the left axis represent K € {100, 300, - - - , 10000}. For
clarity, non-negative values are highlighted in green and yellow.

3.2 VISUALIZATION OF HIDDEN STATES

Commutative: ~As pointed out in Sec. 23] when the operator preserves commutativity, the hidden
states remain invariant under permuting the inputs. In practice, however, these states need not
be identical; it suffices that hidden states from different permutations be recognized as the same
category. Consequently, given a set of input tokens, we expect slight variation (that is, a small

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

standard deviation) in the hidden states across different permutations. For example, assume that
the inputs are z;,, 2i,, - - , 2i,, and the output is y. Let © denote an operator. Then, considering all
permutations, we have

Y1 =2 Oz, O O2,, Yz2=2i, Oz O OZy, -, Un=2=%, O Oz, 0Oz;.

m

If we define s; € RP as the hidden state of each y; where D is the size of hidden states,
then for a commutative operator ®, we would have y; = y2 = --- = y,,. Consequently,
$1,82,...,5m should also be similar. The sum of their element-wise standard-deviation is de-
fined by Sga(51, -+, 8m; @) = Zszl std({s1}k,- - {Sm}x), where std(z1, - , zp,) denotes the
standard deviation among x1, - - - , T, {1} denotes the k-th element of s1, and ® indicates that
the hidden states are produced by the operator ®. For a non-commutative operator @', these hidden
states would differ more substantially, resulting in a higher value of Sgq(s1, ..., Sm; ®'). The left
column of Fig. E] shows the differences in Sgq between the “+” operator and various non-commutative
operators, denoted as:

Sgﬁzn(—i—, o) = Ssm(s?), sOiy - Sstd(s§£)7 ..,s0: &), where @ € {8,<,p}.

Here, ¢ denotes the layer index (GPT-2 has 13 layers), and each column of the heat map in Fig.
corresponds to one of these layers. As the scale of the training set increases and the accuracy of
the model in commutative operations improves, Sgq for the commutative operator “+”” becomes
noticeably smaller compared to that of the non-commutative operators and consequently Scom(+, ®’)
become more negative.

Identity: We consider non-identity tokens 21, 22, - - - , 2, and an identity token zg to show the
hidden states when the operator ® remains invariant in the presence of an identity element. Concretely,
we compare the outputs

J=21020" 02, Y1 =200210220 - O2Zm, =+, Yn =21 0220 - O 2m O 2.
where 7 is the result without z5. We denote s and sq, s3, ..., S, as the hidden states of ¢ and
Y1, Y2, - - - » Ym, respectively. If y; for i € {1,...,m} and § the same under the insertion of identity

elements. Then, the distance between 5 and any of s; for ¢ € {1, ...,m} should be small. The sum
of their distances is defined by Sgisi(5, 51, - - -, Sm; @) = Zszl Yo H{site — {5}k], where {s;}x
denotes the k-th element of s;, and ® indicates that the hidden states are produced by the operator
@®. For an operator without an identity element, denoted as @, the distance between these two
hidden states would be substantially larger, resulting in a larger value of Sgist(3, S1, - - - , Sm; @’). The
right column of Fig. d|shows the differences in Sgis between the “+” operator and various operators
without identity elements, denoted as:

Sl((fe)(+’ @l) - Sdist(g(e)v SSZ)a LR S%)a +) - Sdist(g(e)v Sgg)v ey 35,?; @l)y where @l € {@7 <, [>}'

As more training data is used and the model becomes better at identity-invariant operations, the value
of Sgis for the “+” operator decreases significantly compared to operators without identity elements,
leading to more negative values of Sige(+, ®’).

4 LIMITATIONS

In this work, we assume our problem scope is limited to a finite Abelian group Zs, focusing
exclusively on commutativity and identity. Other properties such as inverse and associativity, remain
to be verified. Furthermore, real-world mathematical problems often involve real numbers and diverse
forms of descriptions including natural language. Despite these limitations, we believe that our
research takes the first step toward unraveling the mystery of the mathematical capabilities of LLMs.
On the other hand, we tested only a relatively small LLM, GPT-2. Nevertheless, we hypothesize that
larger models, with greater expressive power, are also capable of capturing algebraic structures within
training data.

5 CONCLUSION

We have demonstrated that LLMs can learn and internalize fundamental algebraic properties, espe-
cially commutativity and identity, purely from training data. Our strategy involved constructing a

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

dataset of finite Abelian group expressions, ensuring that both commutative and identity instances
appear in training and are held out for testing. Using a reinitialized GPT-2, we observed successful
generalization to unseen tasks. Furthermore, We also provided a constructive proof showing how
transformer-based models preserve invariance under permutations and identity insertion. Hidden-state
visualizations revealed that operators preserving commutativity and identity produced more uniform
internal representations compared to those that did not. Although our experiments centered on finite
Abelian groups and basic algebraic properties, these results indicate the potential for LLMs to acquire
and generalize more intricate algebraic structures directly from data. Extensions to larger systems,
real numbers, advanced group properties, and more natural language settings remain promising
directions for future research.

ACKNOWLEDGMENT

This work was supported in part by the Asian Office of Aerospace Research & Development
(AOARD) under Grant NTU-112HT911020, National Science and Technology Council of Taiwan
under Grant NSTC-112-2221-E-002-204- and NSTC-113-2221-E-002-208-, Ministry of Education
(MOE) of Taiwan under Grant NTU-113L891406, and Ministry of Environment under Grant NTU-
113BT911001

REFERENCES

Anthropic. Claude 3 haiku: our fastest model yet. https://www.anthropic.com/news/
claude—3-haikul, 2024. Accessed: 2024-10-21.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Chunyuan Deng, Zhiqi Li, Roy Xie, Ruidi Chang, and Hanjie Chen. Language models are symbolic
learners in arithmetic. arXiv preprint arXiv:2410.15580, 2024.

Zhifang Sui Fangwei Zhu, Damai Dai. Language models know the value of numbers, 2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: a theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Antoine Gorceix, Bastien Le Chenadec, Ahmad Rammal, Nelson Vadori, and Manuela Veloso.
Learning mathematical rules with large language models, 2024. URL https://arxiv.org/
abs/2410.16973l

Pei Guo, Wanglie You, Juntao Li, Yan Bowen, and Min Zhang. Exploring reversal mathematical
reasoning ability for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Findings of the Association for Computational Linguistics: ACL 2024, pp. 13671-13685,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Shima Imani and Hamid Palangi. Exploring group and symmetry principles in large language models.
arXiv preprint arXiv:2402.06120, 2024.

Pavan Karjol, Rohan Kashyap, and AP Prathosh. Neural discovery of permutation subgroups. In
International Conference on Artificial Intelligence and Statistics, pp. 4668—4678. PMLR, 2023.

10

https://www.anthropic. com/news/claude-3-haiku
https://www.anthropic. com/news/claude-3-haiku
https://arxiv.org/abs/2410.16973
https://arxiv.org/abs/2410.16973

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Pavan Karjol, Rohan Kashyap, Aditya Gopalan, and AP Prathosh. A unified framework for discover-
ing discrete symmetries. In International Conference on Artificial Intelligence and Statistics, pp.
793-801. PMLR, 2024.

Junyu Lai, Jiahe Xu, Yao Yang, Yunpeng Huang, Chun Cao, and Jingwei Xu. Executing arithmetic:
Fine-tuning large language models as turing machines. arXiv preprint arXiv:2410.20124, 2024.

Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representations in
base 10. arXiv preprint arXiv:2410.11781, 2024.

Tiedong Liu and Bryan Kian Hsiang Low. Goat: Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201, 2023.

Yixin Liu, Avi Singh, C. Daniel Freeman, John D. Co-Reyes, and Peter J. Liu. Improving large
language model fine-tuning for solving math problems. arXiv preprint arXiv:2310.10047, 2023.

Zitao Liu, Ying Zheng, Zhibo Yin, Jiahao Chen, Tiangiao Liu, Mi Tian, and Weiqi Luo. Arithmeticgpt:
Empowering small-size large language models with advanced arithmetic skills. Machine Learning,
114:24, 2025.

Bohan Lyu, Yadi Cao, Duncan Watson-Parris, Leon Bergen, Taylor Berg-Kirkpatrick, and Rose
Yu. Adapting while learning: Grounding llms for scientific problems with intelligent tool usage
adaptation. arXiv preprint arXiv:2411.00412, 2024.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114, 2021.

OpenAl. Chatgpt. https://chatgpt.com/|, 2024. Accessed: 2024-10-21.

Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems, 36, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical report, OpenAl, 2019.

Eli Schwartz, Leshem Choshen, Joseph Shtok, Sivan Doveh, Leonid Karlinsky, and Assaf Ar-
belle. Numerologic: Number encoding for enhanced llms’ numerical reasoning. arXiv preprint
arXiv:2404.00459, 2024.

Si Shen, Peijun Shen, and Danhao Zhu. Revorder: A novel method for enhanced arithmetic in
language models. arXiv preprint arXiv:2402.03822, 2024.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A mechanistic interpretation of
arithmetic reasoning in language models using causal mediation analysis, 2023. URL https:
//arxiv.org/abs/2305.15054.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint arXiv:2403.02884, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Changnan Xiao and Bing Liu. A theory for length generalization in learning to reason. arXiv preprint
arXiv:2404.00560, 2024.

Jianke Yang, Nima Dehmamy, Robin Walters, and Rose Yu. Latent space symmetry discovery. arXiv
preprint arXiv:2310.00105, 2023.

11

https://chatgpt.com/
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2305.15054

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

David S. Yin and Xiaoxin Yin. Scaffolding learning: From specific to generic with large language
models. PLOS ONE, 19(9):e0310409, 2024. URL https://doi.org/10.1371/journall
pone.03104009.

Wei Zhang, Wan Chaoqun, Yonggang Zhang, Yiu Ming Cheung, Xinmei Tian, Xu Shen, and Jieping
Ye. Interpreting and improving large language models in arithmetic calculation. In Proceedings of
the 41st International Conference on Machine Learning, volume 235 of PMLR, pp. 59932-59950,
2024.

Yongwei Zhou and Tiejun Zhao. Dual instruction tuning with large language models for mathematical
reasoning. arXiv preprint arXiv:2403.18295, 2024.

12

https://doi.org/10.1371/journal.pone.0310409
https://doi.org/10.1371/journal.pone.0310409

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A APPENDIX

A.1 RELATED WORKS

Theory of Chain-of-thought Reasoning in LLMs: Chain-of-Thought (CoT) techniques Wei
et al.| (2022) empower large language models (LLMs) to tackle complex mathematical reasoning
tasks by breaking solutions into sequential steps, making them essential for solving mathematical
problems. Recent studies shed light on CoT’s theoretical underpinnings. For example, Prystawski
et al.| (2024) models CoT with Bayesian networks, where questions, answers, and reasoning steps form
interconnected nodes, demonstrating that structured reasoning improves LLM performance. | X1ao
& Liu/ (2024)) introduces the concept of length generalization, showing that LLMs can extrapolate
from simple examples to address more complex problems. Expanding the PAC learning framework,
Malach|(2023)) shows that auto-regressive learners can effectively learn linear threshold circuits when
CoT steps are provided. Additionally, Feng et al.| (2024)) proves that CoT enables transformers to
handle dynamic programming problems, even with polynomially increasing complexity. Although
these studies establish a theoretical basis for CoT, which decomposes complex mathematical problems
into manageable steps, they rarely address how LLMs solve mathematical problems within a single
step of CoT reasoning.

Enhancing mathematical reasoning in LLMs: Several recent works have developed different
fine-tuning strategies to improve LLMs’ mathematical reasoning. First, |Guo et al.| (2024) mainly
focuses on improving the “reversal curse” by introducing a reverse training task, thereby enhancing
logical consistency. Similarly, Zhou & Zhao| (2024) enhances the CoT ability by introducing two
auxiliary tasks, including Intermediate Reasoning State Prediction and Instruction Reconstruction
task, which model mathematical reasoning from both forward and reverse direction. Moreover, Liu
et al. (2023)) provides three fine-tuning methods to improve the LLMs’ performance on mathematical
problems. By utilizing the supervision signal of the evaluation tasks, these methods effectively
improve the model performance in generating solutions for math problems. Meanwhile, |Yin & Yin
(2024) proposes Scaffolding Learning, which first allows the model to master arithmetic operations
and then fine-tunes it efficiently on the more general task of solving word math problems. Futhermore,
Lyu et al.|(2024) provides a two-component fine-tuning method, consisting of World Knowledge
Distillation (WKD) and Tool Usage Adaptation (TUA). By leveraging these two components, the
model surpasses state-of-the-art models such as GPT-40 in mathematical problem-solving. Finally,
Tang et al.|(2024) proposes a method called MathScale, which is used to construct the fine-tuning
dataset MathScaleQA to enhance mathematical reasoning capabilities. Additionally, MWPBENCH is
introduced as a benchmark to systematically evaluate performance. Although mathematical reasoning
in these works has been enhanced, the underlying principles behind the reasoning process remain
unknown. This gap suggests the need for further exploration in how LLMs solve such problems. To
better understand these mechanism, we should start with the fundamental aspects, such as arithmetic,
to uncover their underlying principles.

Improving Arithmetic ability in LLMs: The LLMs have demonstrated their power in natural
language process tasks. However, they still exhibit limitations when it comes to performing arithmetic
calculations. Recent studies have explored the application based on fine-tuning techniques to enhance
the arithmetic capabilities of LLMs. For example, Liu et al.| (2025)) propose ArithemticGPT, which
enhances advanced arithmetic calculation, such as exponentiation, logarithms, and trigonometric
functions. Similarly, Liu & Low|(2023) propose supervised fine-tuning, mainly focuses on large-
number arithmetic problem, particularly improving addition and developing decomposition strategies
for multiplication and division. Nye et al.|(2021)) applied scratchpads fine-tuning, enabling the model
to generalize to unseen 9-digit addition. In a different approach, [Zhang et al.| (2024)) examines the
inner component responsible for arithmetic calculations and uses the precise fine-tuning to enhance
the attention head values and MLPs within the associated components. While [Lai et al.| (2024)
fine-tunes LL.Ms to imitate Turing machine behavior, enabling step-by-step arithmetic calculations
and enhancing their computational capability. Beyond fine-tuning, alternative methods have been
proposed, |Shen et al.| (2024) apply RevOrder, a technique that reverses the arithmetic output order,
to fine-tune LLMs, leading to a significant reduction in calculation errors. [Schwartz et al.| (2024)
incorporates digit length information as a prefix, enabling the model to better understand numerical
magnitude, thereby improving its arithmetic performance. Despite these improvements, these studies
primarily aim to enhance arithmetic capabilities, rather than understanding the fundamental principle

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

of how LLMs could acquire arithematic ability. Consequently, a deeper investigation into how LLMs
internalize and generalize arithmetic concepts is still needed.

How Arithmetic Abilities Arise in LLMs: The mechanisms behind LLMs’ arithmetic abilities
remain debated. Some studies suggest that LLMs encode numerical values internally. [Fangwei Zhu
(2024) demonstrates this by using linear probes on addition problems, showing that number values are
encoded across layers and can be extracted. On the other hand, Levy & Geva) (2024) finds that LLM
errors are distributed across digits rather than numeric values, revealing that numbers are represented
with per-digit circular structures in base 10. In addition, other works argue that LLMs rely on
symbolic reasoning. |Deng et al.|(2024) shows LLMs learn simple patterns at the edges of a sequence
of numbers faster than in the middle of the numbers of a sequence, indicating an easy-to-hard learning
approach and symbolic arithmetic processing. [Hanna et al.| (2024)) explores GPT-2 small’s mechanism
for predicting valid end years in date-related tasks, identifying a circuit responsible for “greater-than”
comparisons that generalize across contexts. Additionally, [Stolfo et al.| (2023) demonstrates that
LLMs transmit query-relevant information through attention mechanisms and process results with
MLP modules, integrating them into the residual stream. Despite these insights, there is no consensus
on whether LLMs primarily encode numerical values or rely on symbolic reasoning, highlighting the
need for further research to clarify their mathematical processing mechanisms.

Machine Learning for Symmetric Discovery: The ability to discover symmetries enables machine
learning models to uncover algebraic structures from training data. Karjol et al.|(2023)) demonstrate
that sub-groups can be identified through a neural network with a specially designed architecture,
supported by a general theorem. They validate their approach with numerical experiments on tasks
such as image-digit sum and symmetric polynomial regression. Similarly, |[Karjol et al.| (2024)
present a unified framework for discovering symmetries across various subgroups, including locally
symmetric, dihedral, and cyclic subgroups. Their architecture combines linear, matrix-valued, and
non-linear functions to systematically capture invariance. [Yang et al.| (2023) introduce Latent LiecGAN
(LaLiGAN), a generative model that maps data to a latent space where nonlinear symmetries become
linear. LaLiGAN simultaneously learns the mapping and the latent space symmetries, theoretically
proving its ability to express nonlinear symmetries under specific group action conditions. However,
these works do not explore the connection between symmetry learning and large language models’
(LLMs) arithmetic capabilities. While Imani & Palangi| (2024)) reveals that LLMs struggle with
fundamental group properties and exhibit vulnerabilities in arithmetic reasoning, it does not investigate
whether LLMs are possible to learn algebraic structures from training data. In contrast, our work
demonstrates that LLMs can learn algebraic structures from training instances and generalize to solve
unseen arithmetic problems.

LLMs can Learn Mathematical Rules: The work most closely related to ours is|Gorceix et al.
(2024), where the authors propose that LLLMs can learn mathematical rules, such as distributivity
or equation simplification. Although distributivity is also a type of algebraic structure, our work
still has significant difference from them. First, our research demonstrates that LLMs can learn
algebraic structures by training from scratch, showing that these rules are learned solely from the
arithmetic equations we provide. We also rule out the possibility that LLMs learn these roles without
any numerical computation. This differs from their approach, which relies on pre-trained models and
cannot rule out the possibility that these rules were acquired from external materials or numerical
computations. Additionally, our work further provides theoretical evidences of how transformers
learn algebraic structures and providing an analysis of the hidden states of transformers, aspects that
are not addressed in their study.

A.2 BACKGROUND KNOWLEDGE

Definition A.1. A finite Abelian group is a set G with a binary operation o that satisfies the following
properties:

* Closure: For any a,b € G, the results of a o b are in G.
* Associativity: For any a,b,c € G, (aob)oc=ao (boc).

o Commutativity: For any a,b € G,aocb=boa.

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

* Identity: There exists an element e € G such that forany a € G,aoe =eoa = a.

* Inverse: For each a € G, there exists an element a—! € Gsuchthataoa ! =a loa =e.

A.3 PROOF OF THEOREMS

A.3.1 PROOF OF THEOREM[2.1]

Proof. Here, we prove this theorem by constructing a concrete example. In this example, the layer

index ¢ = 1, and hence the hidden state of the previous layer sV at position m is the input

embedding e; ,,,. We choose W, to be the identity matrix, so the value vector at position m is simply:
Um = eri,m = €i,m-

To enforce commutativity for “+”, we assign the embedding of “+” at position m as

)

T
C+m = [’LU+, _OO]

where —oo represents the smallest floating-point value. Additionally, we set both W, and W, to zero
matrices and make the biases b, and by, all ones. We assume that the context window size of attention
is L, where L > 2M and the remaining positions 2M < m < L are padded with zero embeddings

em =10,0]" forall2M < m < L.
Under these settings, the attention weights in the first layer become uniform across positions, i.e.,
mki 1
a(Lqmiz) =— foralll <i,m<L.
Zj:l q;;k;j L

Thus, the hidden state of the “=" token at position 2 after the first attention layer, denoted sg&, is

0 2M ok 2M | M -

§ 2M ™V § E

S2M = G(T)”i = *ei,m — [* ’qujm7 —OO:| .
i=1 Ej:l Goprk; m=1 L L m=1

Since [% anl\il w;, foo] is invariant to the position embeddings of e;, , . . ., e;,, relative to e,
this hidden state does not depend on the order of the input tokens z;,, ..., z;,,. O

A.3.2 PROOF OF THEOREM 2.2

Proof. Building on the setup from the previous section, let each non-identity token z; (i # 0) at
position m have the embedding

Cim = [wi,0,pm] T for i€ {1,2,...,n—1},

where w; and p,,, are mutually orthogonal vectors. We then define the embedding of the identity
token zq at position m as

€o,m = [Owaapm}T
and the embedding of the addition operator “+ at position m as

)

eq.m = [0,—00, —00] .

EL)

When we append z with an extra “+ operator to the sequence of input tokens, the position of “=
become 2M’ = 2M + 2, and the hidden state after the attention layer at position 2M’ is

T

)

oM oM

1) Dmei Cim T eronmy1 Heoamy2 1

Somr = L - Z E Wiy, , —00, =00
m=1

and the hidden states before inserting z is

oM oM

1 Do €im 1 T 1

sé]& = 72 = [Z Z wim,—oo,—oo] = sé]&
m=1

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.4 EXAMPLE OF DATASET FOR Z7 WITH K = 50

Training, for Operator +’s Commutativity

zotz2otzat2z3+26+24 =20
26+ 22+ 2z3+2z2+24+24 =20
Z6 t+ 22+ 24+ 22+ 24+ 23 =20
zetzat+zotz2+23+24 =20
24+ 26+ 22+ 23+ 26+ 24 = 24
Za+ 24+ 26+ 22+ 23+ 26 = 24
zetz3t+zatzat+z6+22=24
zstz2+23+25+26+23 =23
z3+2z5+ 25 +22+ 23+ 26 =23
zetz2t+2z3+2z3+25+25 =23
25+ 25+ 25+ 23+ 25 +22 = 24
25+ 22+ 25+ 25 +23+25 = 24
25+ 25+ 23+ 25+ 25+ 22 =24
Zot+ 25+ 23+ 25 +25 25 = 24
25 + 26 + 23 + 22 + 25 + 26 = 26
zetz2+23+25+26+21= 22
25+ 24+ 25 + 25 + 24+ 22 = 24

Z4+z3t+z6tzat22+22=2
zot 23+ za+ 22+ 26+ 24 =20
Za+zo+z6+22+23+24= 20
26+ 26+ 24+ 24+ 22+ 23 = 24
Za+zo+ 26+ 24+ 26+ 23 =24
26+ 23+ za+26+24+22 =24
26+ 22+ 24+ 24+ 23+ 26 =24
26+ 2z2+23+25+23+25 =23
25 +26+23+22+23+25 =23
z3+ 25+ 23+ 26+ 25 +22 =23
Zs+ 25+ 22+ 25+ 23+ 25 =24
Zs+ 23+ 22+ 25+ 25+ 25 = 24
Z5+ 25+ 25+ 23t 22+ 25 = 2
26 + 26 + 22+ 25 + 25 + 23 = 26
25 + 23+ 224+ 26 + 26 + 25 = %6
Za+ 26+ 22+ 22+ 24+ 25 = 22

zatzit+z1+zatzs+21 =22

Testing, for Operator +’s Commutativity

zZatzat+zstz6t+22+21 =21
z6tz2t+z1tztzatza==n
Zat+zstzatzet+21+22=21
26+ 21+ 26 +22+23+ 25 = 22
zet+2z2+ 25 +21+ 23+ 26 = 22
25+ 21+ 26+ 23+ 26+ 22 = 22
22+ 24+ 25 + 22+ 24 + 26 = 22
Z5 t 22+ 26+ 24+ 22+ 24 = 22
Za+ 22+ 24+ 25+ 26+ 22 = 22
Z2t+2z1+ 26+ 25+ 25 +23 =21
z3+z6+21+25+22+25 =21
z3tzet+zstz2t+zs+z21=21
Z2+ 25+ 25+ 25+ 24+ 24 = 24
Z2+ 25+ 24+ 25+ 25+ 24 = 24
25t 24+ 22+25+ 25 +24 = 24
zZatz1tzatzst+2z1+21 = 22
zat+z1+ 21+ 25 +24+ 21 =22

Zat+z2+26+ 2 +2zat21 =2
26 tza+21+tza+22+25 =21
2z tzst+z1tzatz2tza=2n
Zo+ 25+ 23+ 21+ 26+ 26 = 22
26+ 26+ 23+25 t2z2+21 =22
Z5s + 26 + 26 + 23+ 21+ 22 = 22
24+ 25+ 24+ 22+ 22+ 26 = 22
Z5 + 24+ 26 + 22+ 24+ 22 =22
22+ 24+ 25 + 26 + 24 + 22 = 2
26+ 25 + 23+ 21+ 25+ 22 =21
zstz2t2zs+21+26+23=21
Z6 + 25 +21+23+ 22+ 25 = 21
Z4+ 25+ 25 + 22+ 25 +24 = 24
Zs 24+ 25 +25 + 22+ 24 = 24
Zs+2a+ 25+ 22+ 25+ 20 =24
21+ 25 +2at21+ 21+ 24 = 22

z1+tzst+z1+za+t2z1+ 24 =22

Training, for Operator +’s Identity

Zo+ 24+ 23+ 25 +23+21 =22
Za+ 23+ 25+ 20+ 23+ 21 =22
Z4+ 23+ 25+ 23+ 21 = 22

zZ1+ 25+ 20+ 26 +26+21=25
21 +25+ 26+ 26+ 21+ 20 = 25
zstzo+z2+2z5+22+23 =23
25+ 22+ 25 + 22+ 20 + 23 = 23
zotz3t+z1tz2+22+22 =23
z3+z1+2z2+z20+22+22=23
zz3tz1t+z2tz2+22 =23

Zotzat+zot+za+2z3+24=23
Zot+za+za+ 23+ 24+ 20 = 23
zZ1+tz20+2z4a+z6+ 25+ 22 =24
zit+zatzet+25+20+ 22 =21
za+zo+t 24+ 26+ 23 =25

26+ 21+ 22+ 25 +24 = 24

24+ 24+ 21+ 22+ 22 = 26

Za+ 20+ 23+ 25+ 23+ 21 =22
Za+2z3+t25+23+20+21 =22
zo+ 21+ 25+ 2+ 26 21 = 25
21+ 25 + 26 + 20 + 26 + 21 = 25
21+ 25+ 26+ 26 + 21 = 25
z5 + 22+ 20+ 25 + 22+ 23 = 23
z5s+ 22+ 25 + 22+ 23+ 20 = 23
z3+ 20+ 21 +22+ 22+ 22 =23
z3+ 21+ 22+ 22+ 20+ 22 =23
20+t 22+ 24+ 24+ 23+ 24 =23
Z2+ 24+ 2a+ 20+ 23+ 24 = 23
Z2+ 24+ 24+ 23+ 24 =23
Z1+24+ 20+ 26+ 25 +22 = 24
21+ 24+ 26+ 25 +22 = 24
Zzs+z1+z1+2z5+23 =21
21 +2z4+ 26 +21+ 23 =21
zotzitz3t+zstza==

Testing, for Operator +’s Identity

20+ 25+ 26 +21+24+24 =26
25+ 26+ 21+ 20+ 24+ 24 =26

25+ 20+ 26 +21+ 24+ 24 = 26
zs+2z6+2z1+2z4a+20+24= 26

16

23+ 26+ 24+ 24+ 22+ 22=20
zot 26+ zat+za+23+22=20
26+ 22+ 22+ 23+ 24+ 24 =20
26+ 24+ 22+ 26+ 24+ 23 =24
zetza+ 26+ 23+22+24 =24
23+ 26+ 22+ 24+ 24+ 26 =24
z5+2z5+26t22+23+23 =23
zstz2+23+23+25+26 = 23
Zo+zs+2z3+2z3+z26+25 =23
ze tz3+2z2+23+25+25 =23
z3+ 25+ 25+ 22+ 25 +25 =24
23+ 25+ 25+ 25 +22+25 =24
25+ 22+ 23+ 25+ 25+ 25 =24
26+ 26+ 25+ 22+ 25 + 23 = 26
zZetzstzatzitzatza=2z1
Z2+ 23+ 2 +21+25+25 =21

Zatzatzot+z1+26+25 =21
zstzetzatzatzetzi=2n
Zitzetzatz6+25+2z4a =21

z3+ 22+ 26 + 21+ 25 + 26 = 22
Z1+ 26 + 25 + 26 + 23+ 22 = 22
Z5 + 23+ 26 + 22 + 26 + 21 = 22
22+ 25+ 22+ 24 + 24 + 26 = 2
Z2+ 24+ 22+ 26+ 24+ 25 = 2
Zat+zst+ 22+t 22+ 24+ 26 =2
Zet+z2+25+25+21+23 =21
zz3t+z1+2z6tz2+25+25 =21
21+ 25 +25tz22tz26+23 =21
Zaot+2zs+z5tzat 25+ 240 =24
2o+ 24+ 25 +24+ 25 +25 = 24
Zs+zot+za+2z5+25+24 = 24
Zitzit+zat+ 21+ 25+ 24 = 22

za+z3+zo+ 25 +23+21 = 22
24+ 23+ 25 + 23+ 21+ 20 = 22
zi+z0+2z5+z26+26+21 =25
21+ 25+ 26+ 26+ 20+ 21 =25
Zo+ 25+ 22+ 25+ 22+ 23 =23
25+ 22+ 25+ 20+ 22+ 23 = 23
zs+ 22+ 25 + 22+ 23 = 23
z3+ 21+ 20+ 22+ 22+ 22

z3
Z3+ 21+ 22+ 22+ 22+ 20 = 23
zotzot+za+za+ 23+ 24 =23
22t 24+ 24+ 23+ 20+ 24 = 23
20+ z1+za+ 26+ 25 +22=24
Z1+2za+2z6+20+ 25 +22 = 24

zst+z6t+z1+za+24=26
zot+z1+ 22+ 26+ 22 =26
zZatz1tz2+2z4+ 26 =23

25+ 26+ 20+ 21+ 24+ 24 = 26
25+ 26+ 21+ 24+ 24+ 20 =26

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

20tzat+zetz4+26+23=

zZa+z2+ 24+ 20+ 26 + 23
20+ 25 +2z1+21+25 + 23
zs+z1+2z1+20+ 25 + 23
20tz2+z1tz2+ 26+ 22
zo+2z1+ 22+ 20+ 26 + 22
Zot+z6+2z1+22+25+ 24
Z6 + 21+ 22+ 20 + 25 + 24
20 +21+24+26+ 21+ 23
z1+2z4+ 26+ 20+ 21+ 23
Z20tzat+z1+2z2+tza+ 26
Za+ 21+ 22+ 20+ 24+ 26
20t zatza+ 21+ 22+ 22
Z4+2z4+ 21+ 20+ 22+ 22

20t z2+z1tzstzst+z2za=21

Z5
25
zZ1
21
Z6
26
Z4
Z4
21
21
Z3
Z3
Z6
Z6

Z4+zo+2z2+2z4+26+23 =25
za+ 22+ 24+ 26+ 20+ 23 =25
zstzot+tz1+zit2z5+23 =21
Zs+z1+z1+2z5+20t23 =21
Zo+zot+z1+2z2+26+22= 26
zot+z1+z2+26+20+ 22 =26
zetzot+z1+ 22+ 25 +24 =24
26+ 21+ 22+ 25+ 20+ 24 = 24
z1tzotzatzetz1it+z3=2=
z1tzat+zet+z1+z20+23 =21
za+zo+2z1+ 22+ 24+ 26 =23
za+2z1+ 22+ 24+ 20+ 26 = 23
Zyot+zot+zatz1t22+22 =26
Z4+tza+21+22+ 20+ 22 = 26

Zot+zot+tz1itzst+zst+za=21

Training, for Operator ©’s Commutativity

20D 20D 24 D23 D26 Dza =

26D 22D 23D 22D 24 D 24
26 D22 D 24D 22D 24 D 23
26D 24D 22D 22D 23D 24
24D 26 D22 D 23D 26D 24
24D 24D 26 D 22D 23D 26
26 D23D 24D 24D 26 D 22
25D 22D 23D 25 D 26 D 23
23D 25 D 25 D 22D 23 D 26
26D 2z2D 23D 23D 25D 25
25D 25 D 25 D 23 D 25 D 22
25D 22D 25 D25 D 23D 25
25 D 25 D 23 D 25 D 25 D 22
220D 25 D23 D25 D25 D25
25D 26 D 23D 22D 25 D 26
26 D 22 D 23 D 25 D 26 D 21

25 D2aD 25D 25 D2aD2za =12

T4
T4
T4
T4
5
5
s
0
To
T0
3
T3
3
T3
3
T1

24 D23 D26 D2aD22D22 =174
220D 23D 24D 22D 26 D24 =11
24D 22D 26D 22D 23Dza =174
26 D26 D24 D24 D22D2z3 =75
20 D22D26D24a D 26D 23 =75
26D 23D 24 D26 D2zaD2z2 =75
26 D220B 24 D24 B 23D 26 =75
26D 22D 23D 25D 23D 25 =70
25D 26 D 23D 22D 23D 25 =70
23D 25 D23 Dze D25 D22 =10
25D 25D 22D 2D 23Dy =13
25D 23D 22D 25D 25 D2zs =173
25D 25 D25 D23D2z2Dzs =73
26D 26 D22D 25 D25 D23 =13
25D 23 P 22D 26D 26D 25 =73

24P 26 P 22P 22D 24 D25 =

3

24D21 D21 P24 D25 D21 =14

Testing, for Operator ©’s Commutativity

24D 24D 25 D 26 D 22D 21
26D 22D 21 D25 D24 D 24
24D 25D 24 D 26 D 21 D 22
26D 21D 26 D 22D 23D 25
26 D22D 25D 21D 23D z6
25 D 21 D 26 D 23 D 26 D 22
22D 24 D 2@ 24 D 26
25 D 22 ® 4 D 22
24D 22D 24 D 25 D 26 D
220D 21D z6 D25 D25 D23
23D 26 D21 D25 D 22D 25
23D 26 D 25 D 22 D 25 D 21
20D 25D 25 D 25D 24D 24
220D 25 D24 D 25 D 25 D 24
25D 24D 22D 25D 25D 24
20D 21 D24 D25 D21 D21

Z4

20D21 D21 D25 D2zaDz1 =14

Z9 =

3
T3
3
1
r1
1
r3
T3
r3
5
s
5
T2
T2
T2
T4

20D 20D 26 D25 D2aD2z1 =73
26024 D21 DP2aD2z2D2z5s =73
2625 D21 D2zaD22D2a =173
20D 25 D 23D 21 D 26 D 26 = 71
26 D26 D 23D 25 D22P 21 =11
25 @D 26 D 26 D 23 D 21 D 22 =11
1D 25D24DP22D 22D 26 =73
25 D 26 D 22 D 24 =73
20024 D25 D26 D2zaPDz2=73
26D 25 D23 P21 D25 D22 =75
25D 22D 25 D21 DP2e D23 =75
26D 25 D21 DP23D 22D 25 =75
24D 25 D25 D22D 25 D2y =72
25D 24 D25 D25 D 2z2Dza =12
25D 24 D25 D22D 25 Dzg =12
21025 P24 D21 D21 D2a =14

21D 25D21 D24 D21 D2a=14

Training, for Operator ©’s Identity

20D 24D 23D 25D 23D 21
24D 23D 25 D 20 D 23 D 21
24D 23D 25 D 23D z1 =716
21D 25 D 20 D 26 D 26 D 21
21D 25 D 26 D 26 D 21 D 20
25D 20 D 22D 25 D 22 D 23
25 D 22 D 25 D 22 D 20 D 23
20D 23D 21 D22 D

23D 21 D22 D 20D 22D 22

z2

T6
T6

To
To
To
To
T4
T4

20D 20D 23D 25D 23D 21 =76
24D 23D 25 D 23D 20D 21 =76
20D 21 D25 D2zeDzeDz1 =710
21D 25 D 26 D 20 D 26 D 21 = 10
21D 25D 26 D2z D21 =Tr0

25D 22D 20D 25 D22D 23 =70
25D 22@ 25D 22D 23D 20 =70
23D 20D 21 B 22D
23021 D

zZ2

Zo @

17

Z4+ 22+ 20 + 24+ 26 + 23
24+ 22+ 24+ 26 + 23+ 20
Z5s + 21+ 20 + 21+ 25 + 23
z5 + 21+ 21+ 25 + 23+ 20
22+ 21+ 20 + 22 + 26 + 22
z2 + 21+ 22+ 26+ 22+ 20
26 +2z1+20+22+ 25+ 24
26+ 21+ 224+ 25 + 24 + 20
21 +24+ 20+ 26+ 21+ 23

z1+tz4+26+21+23+20 =

zZa+z1t+z0+22+24+ 26
Za+ 21+ 22+ 24+ 26 + 20
24 +tza+20+21+ 22+ 22
Za4+tz4+2z1+22+ 22+ 20

23D 26 D 24 D 24 D 22 D 22
22D 26 D24 D 24D 23D 22
26D 22D 22D 23D 24 D 24
26D 24D 22D 26 D 24D 23
26 D24 D26 D23D 22D 24
23D 26 D 22D 24D 24 D 26
25 @ 25 D z6 D 22 D 23 D 23
25D 22D 23D 23D 25 D 26
20D 25D 23D 23D 26 D25
26D 23D 22D 23D 25D 25
23D 25 D25 D 22D 25 D 25
23D 25 D 25 D 25 D 22 D 25
25D 22D 23D 25D 25 D 25
26 D 26 D 25 D 22 D 25 D 23
26 D25 D24 D21 D 22D 24
20D 23D 26 D 21D 25 D 25

D 22D 21 D 26 D 25
DzaD2aD2z6D21
D 24D 26D 25D 24
D z6 D 21 D 25 D 26
@D 25D 26 D 23D 22
D 26 D 22 D z6 D 21
D22D 24D 24D 26

D z2 € b

24 D 25
5@ 22 D 22 D 24 D z6
Dz5 D25 Dz1Dzs
@D z6 D 22 D 25 D 25
D z5 D 22D 26D z3
D2z5D 24D 25D 24
Dz5 DzaDzsDzs
D 2z4aD 25D 25D 24
DzaD2z1D 25D 24

24D z3P 20D 25D 23D 21
24D 23D 25 D 23D 21 D 20
21D 20D 25 D 26 D 26 D 21
21D 25D z6 D 26D 20D 21
20D 25D 22D 25D 22D 23
25D 22D 25 D 20D 22D 23
25D 22D 25 D22 D23 =710
D 20D 22D 22¢

z2

22 D 20

T4
T4
T4
5
5
5
To
To
To
To
T3
T3
T3
T3
T3
5

T3
T3
T3
1
r1
1
r3
T3
r3
Ts5
s
Ts5
T2
T2
T2
T4

Te
Te6
70
To
To
To

T4
T4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

23021 D22 D 22Dz =14
20D 24D 20D 24D 23D 2a =12

20D 22D 24 D24 D 23D 24 =712
20D 24D 24D 20D 23D 2za =12

20D20 D24 D 23D 2aDP2o=12 20D24D24D23D 24 =172
21D 20D 24 D26 D25D22=1r1 21D2aD20D26D25D22 =11
21D24 D26 D25 D20D22=7T1 21D24D26D 25 D22 =11

24D 22D 24D 26 D 2z3 =76
2621 D22D2z5D2za =11
20 D24 D21 D22 D22 =175

Testing, for Operator @’s Ide

20D 25 D26 D21 D2aDza =76
25 D26 D 21D 20D 2a D24 =716
20D 24D 22D 24 D26 D23 =76
20D 22D zaDzoD 26 D23 =76
20D 25021 D21 D2sD2r3 =r0
25D 21 D21 D 20D 25 D23 =10
20D 22D 21 DP22B2sD22 =11
220D 21D 22D 20D 26 D22 =11
20Dz D2z1D22D 25D 24 =11
26 D21 D22D 20D 25D 2za =11
20021 D24 Dz D2z1 D23 =75
21 D24 D 26D 20D 21 D23 =715
20D 24D 21 D22D2aD2es =11
24 D21 D220D 20D 24D 26 =71
20D24D24aD21D 22D 22 =175

20D 2aD21 D20 D 22D 22 =75

20D 220D 21D 23D 25D za=710

Training, for Operator ©

25D z1 D21 D25 Dz3 =10
21 D24 D26 D21 Dzz =15
22D 21D 23D 25 Dza =10

ntity
25D 20D 26 D21 D 24D za =176
25 D26 D 21D 2zaD 20D za =176
24D 20D 22D 24D 26 D23 =%
20D 220D 24D z6D2oD 23 =76
25D 20D 21 D21 P25 D23 =710
25D21D21 D25 D2oD 23 =70
20D 20D 21DP22D2z6 D22 =11
20D 21 D2z2D 26D 20D 22 =71
26D 20D 21 D2z2D25sDza =11
2621 D 22D 25D 20D za =71
21D 20D 24D 26 D21D 23 =75
21D 24D 26D 21D20D 23 =15
20D 20D 21D 22D 24D 26 =11
20D 21D 22D 2aD 20D 26 =71
20D 20D 24D 21D 22D 22 =75

20D 24D21 D 22D 20D 22 =75
22D 20D 21D 23 D25 Dza=710

22022020023026024 =3 2402302024022 02 =4
26022002302200240240 =3 200230200200260214 =2
26020024020020023 =3 206200260200236021 =2
26020022022023024 =3 260260240240 220023 =4
200260220023026024 =2 2400200202020 23=3
24024 02602202302 =2 260230240260 240 22 =3
26023020024 026022=3 2602200240240 23026 =3
250220023025026023 =2 26022023025023025 =2
230250250220023026 =2 2502023022023025 =2
26022023023025025 =3 230250230260 25022=3
5020250230250 22=4 25025022025023025 =3
250220025025023025 =3 2502302202020 25 =4
5020230250250 22=4 250250250230 22025 =4
22025023025025025 =3 2602602202025 023 =4
250260230220025026 =2 25023022026026025 =4
2602002360250 26021 =2 2460260200200 2460 25 =2
25024025025024022=4 240210210240 25021 =3
24020023025023021 =3 2402302002023021 =4
2402302,023020021 =3 24023020230 2102 =

20021025026 026021 =2
210250260200 26021 =2
21 025026026021 =2

2502020020220 23 =3

25 © 22025 O 2202302 =
23020021022022022 =3
23021 © 2200 220 200 22 =

20020024024 0230 24 =2
22024024 020023024 =2
2020024023024 = 2

21024020026 025022 =3
21024026025022 = 2
22021022026022 = 2
2402402102022 =3

25026021024024 = 2
26021022025024 = 2

210200 25 O 26 O 26 O 21
21025 026026 O 200 21 =2
20025022025 0220 23 =2
2502020200220 23 =2

3 2502202020023 =2
~a*/17\20%7>9v’%7>:4
5 z3 O 2 O 20 =

@6%@@6@@%6%—3
220240240230 20024 =3
200210240260 25 022 =2
21024026 02 O 25 O 22 =2

18

24022024026023 = 2
21024026021023 = 1
2021023025024 =2

20D 20D 24 D24 D23 D2za =12
20D 24D 24D 23D 20D 24 = T2

200021 D24 D26 D2sDrz2 =11
21D 24D z6D20D 25 D22 =11
25D 26 D21 D24 Dza =76

22@ 21 D 22D 26D 2z2 =11

24BD21DP22D2zaBz6s =11

25D 26D 20D 21D 2aD2a =76
25D 26 D21 Dza®2aDzo =76
24D 22D 20D 24D 26D 23 =76
24D 22D 24D 26 D 23D 20 =76
25021 D 20D21 P 25D 23 =70
25D 21D 21D 25 D2z3Dzo =10
20021 D 20D 22D 26D 22 =11
220D 21D 22D 26 D22Dz0o =171
26D2z1D20D 22D 25D 24 =171
26D 21 D22D25D2zaDzo =171
21D 24D 20D 26 D21D23 =75
21D 20D 26 D21 D23Dzo =715
20D 21D 20D 22D 24D 26 =71
20D 21D 22D 24D 26 Dzo =171

20D 24D 20D 21D 22D 22 =75
20D 20D 21 D22D 22D 20 =75

230260240240 2002 =4
200260200200 23022 =4
2602020230240 24 =3
26 0240220260240 23 =4
26024026 023022024 =3
23026 0220240240 26 =2
25025026 022023023 =3
2502200230230 25 026 =2
2202502302302 O 25 =3
26 023022023025025 =3
23025025022025025 =3
23025025025 0220 25 = 3
250220023025 025025 =3
26 026 025 O22 025023 =4
26025 024021022024 =3
22023026021 025025 =2
20024023025 023021 =3
240230250200 230 21 =3

2402302023021 =3
21025020 26026021 =3
21025 026026021020 =3
25020022025 O220 23 = 2
Zr62262r622620625—3

O o fa
23 O 21 © 2

zZo O

4

V4

4

@6@@%6@@%6%—2
220240240230 24020=3
210200240260 25022 =3
21024026 025 O 200 22 =2

256021021025023 = 3
24021022024026 = 1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Testing, for Operator ©

200240250260 22021
260220021 0250240 24
200250240 260210 22
26 ©21 0260220236025
26 © 220250210230 26
O 26 O 22

O on
T <6

O 24

OX(
&4
D«
&

I

23026 ©O210 250220 25
23026025 022025021
220025 0250250240 24
200250240250 25024
25 024022025025 O 24
240©2102402:021021
2002102102024 021
250200260210 240 24
25 © 26 ©O210 240200 24
200200220240 26 O 23 =
2400220240 260200 23
250200210210 25 0 23
25 0210210250200 23
200200210220 26 O 22
220210220 26 O 200 22
2602002190220 25 O 24
26021 0220250200 24
210200240260 210 23
21024026 0210200 23
200200210220 240 26
200210220240 20O 26
200200240210 220 22
200240210220 20O 22
220200210230250 24

Il
RNWWhNFNDNDNDDNDNDDNWWRN NN WER WER W WK RN W W NN R W

Training, for Operator <

2922124423126 <24 = 29
26 1290232224424 = Z2g
26 A 2224122424423 = 26
26 124222223424 = Z2g
24 <26 221232624 = 24
24 <24 <26<22<d23d26 = 24
26 1232442442622 = 2¢
25 <29 <d23<d25<d26<d23 = 25
23 <25 12512242326 = 23
26 N22<d23<d23d25d25 = Zg
25 <25 25123425 22 = 25
25 2902525423425 = 25
25 <25 12342542522 = 25
290 <25 <123<d25<d25<d25 = 22
25 <26 123122425426 = 25
26 2023425426421 = Z¢
25 124425425 124422 = 25
24 < 204232523421 = 24
24 2325423420421 = 24
20421425426 <26 <21 = 20
21<d25<426<420d26<d21 = 21
21125 <26 <2621 = 21

25 129 <20d25 129423 = 25
25 129025 d22d23<20 = 25
2320421 <d22d290<d22 = 23
23121 <d22d22d2)0< 22 = 23
20 < 22<d24<d24<d23<d24 = 20

20

2002200260 25024 021
260240210240 220 25
260250210240 220 24
200250230210 26O 26
26 026 023025022021
25026026 0230210 22

15

o

10 220220 26

IS
ISy
K
(
IS
) (
N
[V)
N /]
I

© 260220

S 29

DO

N
ot
-
N
I
N
Il

D (
N
N
-

O 7 O
© 26 O

22 © 24 © 25 1O 22
260250230210 25 O 22
25 © 220250210260 23
260250210230 220 25
200250250220 25 O 24
250240250250 220 24
25 0240250220 25 O 24
210250240210 21 024
210250210240 21024 =
250260200210 240 24
25 © 26 © 210240 240 20
200220200240 26 O 23
240220240 260230 20
2502102002102 O 23
25 0210210250230 20
200210200 220 26 O 22
220210220 26 O 220 20
260210200220 25 O 24
26 021 0220250 2460 20
210240200260 210 23
21024026 02102360 20
200210200220 24O 26
200210220240 26 O 20
200240200210 220 22
200240210220 220 20

I
[e [|

|
B WO DN NNDDNDWWWWEWWWWNENWWWWWWENWWWEWWWR

24 <23<426<24<d22<d22 = 24
2902312422426 <d24 = 29
2422426222324 = 24
26 <26 12424290423 = 2¢
24 <2226 <124<d26<23 = 24
26 123242524422 = Z2g
26 A 22244242326 = 26
26 A 290 <d23<d25<d23d25 = Z¢
25 <26 123122423425 = 25
23 <25 <23<25<2z25<d22 = 23
25 <25 122425123425 = 25
25 < 23<1224d25<d25<d25 = 25
25 <25 125123120425 = 25
26 <2 1220<d25<d25<d23 = Z2¢
25 232242812625 = 25
24426 d22<221d244d25 = 24
24921421924 <25421 = 24
24 <23<120d4d25<d234d21 = 24
24 123252342142y =
2142042542626 <21 = 21
21d25<d26<d26<420d21 = 21
1425 < 22425 22423 = 20

25 129 d25d2)<d22d23 = 25
25 129 dz25 <2223 =
23 <21 4d20<d22d290d22 =
23 <21 22222220 =
2220424 <24<23<24 = 22

19

200240220210 260 25
25 022024024026 O 21
210220240260 25 O 24
23022026 0210250 26
21026 O 250260230 22
25023026 ©220 26 O 21
2025022024 0 24 €
20z €

4O 25 © 22 € y 26
260220250250 210 23
230210260220 25 O 25
219025025 ©220 26 O 23
220250250240 25 O 24
200240250240 250 25
25 022024025025 O 24
210210240210 25 O 24
20025 0260210240 24
2502602190200 240 24
200240220240 26 O 23
2400220240 200 26 O 23
20025021 021025023
250210210200 25 O 23
200220210220 26 O 22
220210220 200 26 O 22
20026 021022025 O 24
260210220200 25 O 24
20021024026 0210 23
210240260200 210 23
200240210220 240 26
200210220200 240 26
200240240 210220 22
200240210200 220 22
200220210230 25 O 24

~

&

o
Z4

) [

O 26 O

w

fa

N

)20 6 24 S

IS

d 26
< 26
< 29
< 24
< 24
< 26
4 z25
< 22
2d 25
< z3
d 25
< 25
< 29
< 26
d 25
< 23
< 24
< 23

<124 <24
24 424
22423
< 22 4 2zg
<z 423
22 <24
<z 4 22
<23 d2z3
< z3d2z3
29 <23
< z5 22
dz5 425
< z3d2zs5
25 4 22
4z44d21
<z 421
Lz23d25d23<d21 =
125 d20d23<21 =
24 2325423421 =
Q254204262621 =
Q252612612120 =

< 292
< 23
< 24
< 24
< 22
< 24
423
< 25
< Z6
< 25
4 25
< 29
d 25
< 25
< 22
< 25

dz9 =
29 =
dz4 =
<23 =
dz4 =
426 =
123 =
dz6 =
25 =
dz5 =
25 =
25 =
25 =
23 =
dz4 =
425 =

Z1
21

25 120 < 22425 12223 =

25 129 25292923 =

20423 <21 122422422 =

2321224202222 =
2321 422422429 =
29 <24 <20<d24<d23<d24 =

N
'S
D d
N W
T O
T e | | o A T 1

I
[CINGJUN IR U8 S SUN CRFSEIC VU SR U U U U OO U SU U O I CRVCIVU U U U

24
21
21

zZ3

z2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

20 <24 <424<20<d23d24 = 29
29 124 d24<d23d24 = 29

2124 420<4d26 <2522 = 21
214242625422 = 21

29 <24 124423

20 <21 d2z4 126 d

21 <24 12642

2512621424424 = 25

29<21<29<426<22 = 29 26<121<422<25<424 = 26

24 <24<21<422<4d29 = 24

Testing, for Operator <

24 <24 <2526 <d2204d21 = 24
26 2221425424424 = Zg
24 <25 12442612122 = 24

26 4211262242325 = Z2¢
26 29025121 d23<d26 = 26
25 1214262312622 = 25
2024 42512242426 = 22
25 120262420424 = 25
24 22<424<25d26<22 = 24

2921426252523 = 22
23 <26 <21d25<d20d25 = 23
23126 d25d22d25<21 = 23
2025425412524 d24 = 29
2902542425425 <124 = 29
25 <24 29042525424 = 25
24421 4244254421421 = 24
24 <421 <4214d25<d24<4d21 = 24
25 2026421424424 = 25
25 2612142420424 = 25

24 2022242623 = 24
2422042426 <20<d23 = 24
25 20421421 425423 = 25
25 121421425 420423 = 25
2920421422426 <22 = 29

2021422426 2022 = 29
26 1202122425424 = Z2g
26 <21 422042520424 = Zg
2120424426121 d23 = 21
21 <24<4d26<121<d20d23 = 21
2420421422424 <d26 = 24
24 <21 29042420426 = 24
24 <20<424<d21<d29d22 = 24
2424421 <224d20d22 = 24
290<20<21<423<25<24 = 22

Training, for Operator >

20D 29D 24D 23D 2> 24 = 24
2D 2D 23D 22D 2aD 24 = 24
26D 29D 24D 22D 24D 23 = 23
26D 24D 22D 29D 23> 24 = 24
24D 2 D> 2o D> 23D 2> 24 = 24
24D 2zaDzg D> 22D 23D 26 = 26
26 D> 23D 24D 24D 2g D> 22 = 29

25 D> 22D 23D 25> 2g D> 23 = 23
23D 25D 25 D> 22D 23D 26 = 26
26D 22D 23D 23D 25> 25 = 25

25 D> 25 D25 D> 23D 25 D> 2o = 29
25 D> 29D 25 D> 25 D> 23D 25 = 25
25 D> 25 D> 23D 25D 25 D> 29 = 29
29D 25> 23D 25D 25> 25 = 25
25 D> z2g D> 23D 22D 25D 26 = 26
26D 2o D> 23D 25D 2> 21 = 21
25D 24D 25D 25D 24D 29 = 29
24D 20D 23D 25> 23 D21 = 21
24D 23D 25> 23D 2D 21 = 21
20D z1 D25 zZgD 2> 21 = 21

24
26
Z6
z2

24
22
24
26
24
26
Z6
26
25
23
Z5
Z5
Z5
26
25
Z4
Za
Z4

< 29
< 24

> z3
> 23
> 2o
> Ze
> 2o
> z3
> 2o
)
> zg
> 25
> zs5
> z3
> zs5
> zZe
> z3
> 26
> 21
> 23

< 26
< z1
<21
< Zz3

26

24

>
<6

A AN A A

<5
< 23
< 25
< z1
< 25
d 25
< 25
< 24
<21
< 2o
< 21
< 20
< Z4
< 20
< 21
< 2o
< 22
< zo
< 22
< 20
< Zg
< 20
< 22
< 20
<21

> 26
> z4
> z6
> z4
> 26
> z4
> 24
> 23
> z3
> 23
> 29
> 2o
> 25
> zo
)
> zo
>z
> Zo

2942123425424 =

> 24
> 29
> 2o
D> z4
> 24
> Ze
> 24
> z5
D> 29
> 26
> z5
> 25
> z3
> 25
>z
> z9
> 24
> 25

dzodz4 = 29

25 < 22

< 25

< 22

20

Z1

20 <24 <24<d23<24<20 = 22

Z1

< z4

24<422<24<26<423 = 24
21<424<26<421d23 = 21

> 29
> z6
> 23
> 29
> 26
> z4
> 23
> 23
> 23
> 25
> z3
> 25
> 2o
> 25
> z6
> z4
> 25
> 23

> 2o
D> z4
> z4
> z3
> z3
> z9
> ze
> z5
> z5
> z9
> 25
> 25
> 25
> z3
> z5
> z5
> z1
>z

24D 23D 25> 23D 21D 2o
Z1D2zoPz2zs D2 2g D> 21 =

20

Z5

23
22
26
26

Z4

21

Z4

J AN AN AN AN ANVANRY NVANRVAN
N
o

> 26
> Ze
> 2o
D> z4
> 24
> zZe

)
> z5

5 D> 23

> 25
> 25
> 29
> zZe
> z5
> 23
> 24
> 23
zZ4 D>
> 25

21 204242625220 = 21

1262520422 = 21
2542121425423 = 25
24<21<29<424<26 = 24

d29d21d26<d25 = 24
<Lz4<d24d2d = 25
Q24 d2z6d2z5d = z1
<126 121 dz25d = 23
dz5 <z dz3d = 21
<12z 122 dzgd = Z5
5 22 <24 <d24< = 22
1224261244 = 29
12222042426 = 24

25425421 <23 = 26
dz26d22d25<d25 = 23
125 22426423 = 21
d25d24d25<d24 = 22
25424425 <25 = 22
d24d25<4d25<24 = 25
124421425424 = 21
dz26d21d24<d24 = 20
Q2120424424 = 25
d29d24d26<23 = 20

12420426 <23 = 24
121d21d25<23 = 20
121 d290d25 <23 = 25
121d22d4d26<22 = 20
L22d20d25 <22 = 29

121 d22425<d24 = 20
Qzo0dz90d25<d24 = 26
124426121 <23 = 20
220421423 = 21
Q2122424426 = 20
d29d20d24<d26 = 24
1244214224290 = 20
121 d20d22<d29 = 24
1421d23d25<24 = 20

D 24D 24D 22D 29 = 29
D2ZaD2zaD 23D 29 = 22
D 2oD 23D 24D 24 = 24
D> zoaD 2D 24D 23 = 23
D>z 23D 22D 24 = 24
D 2zoaD 24D 24D 26 = 26
>zg P> zoD> 23> 23 = 23

>z3D>z2z3D 25D 2 = Zg
>z3Pbz3DbzgD> 2y = 25
> zoD 2325 D25 = 25

D>zsD>2oD 25D 25 = 25
Dzs D25 D> 22D 25 = 25
>z3D>zs D> 25> 25 = 25
D>z D> 2D 25D 23 = 23
D2aD> 21D 2D 24 = 24
DzegP>2z1D25sD> 25 = 25
D>z3bzz D23 D2z = 21
DzsD>zogP> 2321 = 21
23Dz D23 D>z = 21
DzoPDzegP> 2z 21 = 21

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Z1 Dz D zeg D22 > 21 = 21 Z1Dz2zs D zegD>zZg D> 2o > 21 = 21
zZ1 Dbz DzeD>z2g 21 = 21 Zo D> 25 D> 2o D25 D> 29> 23 = 23
25 D 2o D 2o D> 25D 2o D> 23 = 23 25 D 2o D25 D> 2o D> 2o D> 23 = 23
25 D> 29D 25D 22> 23D 20 = 20 25 D> 29D 25 D> 22> 23 = 23

23D 20D 21D 22D 2D 2o = 29 23D 21D 2D 22D 2o D29 = 29
23D 21D 22D 2o 20D 22 = 2o 23D 21D 2D 2o D> 29D 2 =
20D 2o D2y D 2ya D 23D 24 = 24 29D 20D 24D 24D 23D 24 = 24
290D 24D 2zg D> 2o 23> 24 = 24 290D 24D 24D 23D 20> 24 = 24
290D 24D 24D 23D 24 = 24 ZoD 21D 2a D zZgD> 25> 29 = 29

21D 2aD 2D 2D 25 D> 22 = 29
21D 24Dz 25> 20 = 29 25> 2> 21> 24> 24 = 24 24D 2o 2y D> 2> 23 = 23
29D 21D 2o zZgD> 2o = 29 26D 21D 225> 24 = 24 zZ1D 2y zeP> 21 D23 = 23
29D 21D 23D 25 D24 = 24

24D 24D 21D 22D 29 = 29

Testing, for Operator >
24D z2aD 25D 2g D> 22> 21
Ze D> 2o D> 21D 25D 24D 24
24D 25D 24D 2D 21 D 2o
Ze D> 21 D> zgD> 2o D> 23D 25
Ze D> 2o D 2z5 D> 21 D 23D 26
5 > > z3 D 26
2o D> 24D 25D

D> zoD2g D> 24D 22

> D> z5 D 26
2o D> z1 D zgD 25D 25 D> 23
23D 2> 21D 25D 29D 25
23D z2g D> 25D 2o D> 25 D> 21
2o D 25D 25D 25 D> 24D 24
2o D25 D> 24D 25D 25D 24
25 D> 24D 2o D> 25D 25 D> 24
24D 21D 2zga D 25D 21 D21
24D 21> 21D 25D 2alD 21
25 D> 2o D> z2zg D> 21D 24D 2
25D 2> 21 D> 24D 20D 24
24D 20D 22D 24D 26D 23
24D 29D 24 D> 2g D> 20> 23
25D 2o D21 D21 D25 D23
25 D> 21 D21 D25 D> 2o D> 23
2D 20D 21D 22D 2D 22
22D 2z1 D 22D 2g D> 20D 22
Ze D> 2o D> 21D 2o D 25D 24
26 D> 21 D 2D 25D 20D 24
21D zoDzaD>2zeg > 21 D23
21D 24D zg D> 21D 29D 23
ZaDzoD 21D 22> 2ga D 2g
24D 21D 22D 24D 20D 26
24D 20D 24 D21 D 22D 29
24D 24D 21D 22D 20D 22
29D 2o 21D 23D 25 D2y =

>

Zo D 24 D Zg
>
>

21
Z4
22
z5
26
22

e
~6

z

Z4
22
zZ3
z5
Z1
24
Z4
Z4
Z1
z21
24
24
zZ3
Z3
Z3
Z3
Z2
22
Z4
24
zZ3
Z3
Z6
Z6
Z2
z22

21D zaDzgD> 2o D25 D> 22 = 29

25D z2g D> 2zg D> 23D 21 D> 2o = 29
24D 25D 24D 220D 29D 26 = 26
25 D 24D 2> 22D 24D 22 = 29
20D 24D 25D 2 D> 24D 29 = 29

26D 25> 23D 21 D25 D> 2o = 29

26D 25D 21D 23D 2D 25 = 25
24D 25D 25D 2o D> 25> 24 = 24
25D 24D 25D 25D 2o D> 24 = 24
25D 24D 25D 2o D> 25> 24 = 24
21D 25D 2zg D2z D21 D24 = 24
21D 25D 21 D2aD 21 D24 = 24
25D 2D 2o D> 21D 2a D24 = 24
25D 2eg D> 21D 2aD> 24D 20 = 20
24D 20D 20D 24D 26 D> 23 = 23

24D 29D 24D 2ZgD> 23> 20 = 20
25D z21 D221 D25 D> 23 = 23
25 D> 21 D21 D25 D> 23> 20 = 20

220D 21 D2 22D 2D 22 = 29
29D 21D 2D z2Zg D> 22> 20 = 20
26D 21D 2D 2D 25> 24 = 24
26D 21D 2D 25D 24> 20 = 20
21D zaD2zoD>2e>21 D23 = 23
21D zaDzgD> 21 D23 D> 20 = 20
24D z1D 2o 22> 24D 2g = 26
24D 21D 22D 24D 2> 20 = 20
24D z2aD 2o 21 D2 D22 = 29
24D 24D 21D 22D 29> 20 = 20

21

21D 25Dz D>z > 21 D 20
25 D> 2o D> 22D 25 > 29 D> 23
25 D> 2o D25 D> 22D 20D 23
2o D 23D 21D 22D 29D 29
23D 21D 22D 2D 22D 29
23D 21D 22D 220D 29
29D 24D 2o D> 24D 23D 24
29D 24D 24D 23D 24D 20
21D 2o D> 24D 2D 25 D> 29
D>zg D>zl 2z5 D> 20> 22
z5>2z1D2z1 D25 23 =
24D 21D 2o 24Dz =

21

24
z5
z1
Z3
zZ1
z5
22
z2
Z4
26
z3
21
z2
Z22
z5
Z1
20
25
20
24
20
Z5
20
22
20
26
20
Z1
20
Z4
20
Z4
20

> z4

> z9
> 29
> Ze
> 23
> z5
> z4
> z5
> zo
> z1
> z5
> z5
D> z4
> z9
> z1
D> z5
> zg
D> z4
> 29
> 25
>z
> zo
> z1
> 2z
>z
> z1
> z4
> 24
> z1
> 24
> z4
D)

D> zoD>2z1D2zeD 25
D2zoDzgD2zaD 2l 21

> z4
> 26
> 25

>
>z
>
>

> Ze
> z1
> Ze
22
4
6
2

I

N

>
>
>
>

W

> 25
)
> 2o
D> z4
> z4
D> z5
> z1
>z
> 2o
D> z4
> 2o
> z1
> 2o
> z9o
> 2o
> z9
> 2o
> ze
> 2o
> 2o
> 2o
> 21
> 2o
> z3

> 25
> 25
> 23
> 26
> z4
> 24
> z4
> 21
> 25
DAY
> 25
> 25
> 25
> 25
> z4
> z4
> 26
> Zg
> 25
> 25
> Zg
> Zg
> 25
> 25
> z1
> 21
> 24
> 24
> 29
> 29
> 25

D> z4
> ze
> 29

z5
21
24
26
Z2
Z1
Z6
~0
Z6
Z3
Z5
Z3
24
Z5
24
24
Z4
24
Z3
Z3
zZ3
Z3
z2
Z2
24
24
z3
Z3
Z6
Z6
22
Z2
24

	Introduction
	Methodology
	Problem Settings
	Dataset for Commutativity and Identity
	Dataset to Exclude Numerical Calculation
	Dataset to Avoid Trivial Solutions
	How Do LLMs Learn Algebraic Structure?

	Experiments
	Results
	Training Dynamics
	Varying the Training Set's Scale.

	Visualization of Hidden States

	Limitations
	Conclusion
	Appendix
	Related Works
	Background Knowledge
	Proof of Theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Example of Dataset for Z7 with K=50

