
Multi-Objective One-Shot Pruning
for Large Language Models

Weiyu Chen1 Hansi Yang1 Yunhao Gou1,2 Han Shi3 Enliang Hu4

Zhenguo Li3 James T. Kwok1

1The Hong Kong University of Science and Technology
2Southern University of Science and Technology

3Huawei Noah’s Ark Lab
4Yunnan Normal University

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities across
various tasks but require substantial computational resources, limiting their de-
ployment in resource-constrained environments. While one-shot pruning meth-
ods can reduce model size without expensive retraining, they typically optimize
for single objectives, ignoring LLMs’ multi-faceted applications. We introduce
Multi-Objective One-Shot Pruning (MOSP), which formulates LLM pruning as
a multi-objective optimization problem. MOSP efficiently generates a Pareto set
of pruned models representing different capability trade-offs, allowing users to
select solutions aligned with their preferences. The proposed approach identifies
share core support while enabling specialized support. Experiments across various
LLMs and sparsity levels demonstrate MOSP’s superior performance in navigating
multi-objective trade-offs compared to baseline methods.

1 Introduction

Large Language Models (LLMs) have demonstrated exceptional performance across many scenarios,
such as question answering, coding, and reasoning. However, their effectiveness typically requires
massive model sizes and intensive computing resources, creating barriers for deployment in limited-
resource settings. Network pruning [22, 17], which aims to remove redundant parameters, offers an
important approach to create models with smaller computation cost while maintaining functionality.

For LLMs, traditional pruning methods [22, 17, 27, 19, 3] that involve iterative fine-tuning and/or
extensive retraining are often prohibitively expensive due to the sheer scale of these models. Conse-
quently, one-shot pruning techniques, which identify and remove weights without requiring retraining,
have gained prominence [15, 37, 30]. These methods typically aim to minimize a layer-wise recon-
struction error based on calibration data from a single, general-purpose dataset.

While effective in reducing model size, this single-objective focus overlooks the multi-faceted nature
of modern LLMs, which are increasingly evaluated across diverse tasks like text comprehension,
mathematical reasoning, and code generation. Users prioritize these capabilities differently, requiring
models that are not only sparse but also adaptable to specific preferences. Current one-shot pruning
methods lack mechanisms to address such multi-objective demands or tailor models to varying
priorities. As discussed in Section 3.1, simple adaptations, like concatenating activation data or
independently pruning and merging, often result in suboptimal performance or limited flexibility.

To address this gap, we introduce Multi-Objective One-Shot Pruning (MOSP), a novel framework
designed to efficiently prune LLMs while considering multiple objectives simultaneously. Instead of
producing a single pruned model, MOSP generates a Pareto set of solutions, where each solution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

represents a different trade-off among the objectives. This allows users to select a pruned model that
best aligns with their particular needs and preferences. MOSP achieves this through a multi-stage
process: First, we identify a common core support of weights crucial across all tasks using Dual
ADMM optimization. This involves formulating the problem as bilevel optimization with ADMM
applied to both inner and outer levels, with proven convergence guarantees. Second, using the
identified supports, we perform a simplified ADMM for each task separately. This decoupling of
shared knowledge preservation from task-specific optimization enables efficient on-the-fly generation
of specialized sparse models based on user-defined preference vectors, allowing effective exploration
of the Pareto front.

The main contributions of this paper are as follows:

• We frame LLM pruning as a multi-objective optimization problem, explicitly addressing diverse
user preferences, which is a novel perspective in LLM pruning.

• We introduce MOSP, an efficient one-shot pruning approach that generates a Pareto set of pruned
LLMs, enabling flexible trade-offs across objectives.

• We provide a proof of convergence for the proposed dual ADMM method, which is non-trivial.
• Extensive experiments on various LLMs and sparsity levels show that MOSP outperforms baselines

in navigating multi-objective trade-offs and provides a superior set of pruned models.

2 Background

2.1 Network Pruning

Network pruning reduces model complexity by eliminating redundant parameters, offering benefits
like smaller size and faster inference [22, 17, 27, 19, 3]. Traditional methods, often computational
expensive and/or requiring extensive retraining, are not suitable for Large Language Models (LLMs)
due to their immense scale [15, 37]. Consequently, one-shot pruning techniques, which avoid
retraining, are gaining prominence for LLMs.

LLM pruning methods can be categorized by the granularity of weights removed. Structured pruning
removes entire components like neurons or attention heads [28, 1, 40, 42, 2, 11], maintaining regularity
for hardware acceleration but usually leads to worse performance without retraining. Unstructured
pruning removes individual weights [15, 37, 44, 41, 45], offering fine-grained control but creating
irregular sparse patterns that can be harder to accelerate. Semi-structured pruning, such as N:M
sparsity (N out of M weights kept), offers a compromise, balancing performance with hardware
efficiency [46, 20]. Most unstructured LLM pruning methods are also applicable to semi-structured
pruning. This paper focuses on one-shot unstructured and semi-structured LLM pruning.

2.2 One-Shot Unstructured and Semi-structured LLM Pruning

One-shot unstructured and semi-structured pruning methods aim to efficiently create sparse LLMs
without retraining. These methods often optimize a layer-wise reconstruction error. Given an original
dense weight matrix Ŵ ∈Rc×d for a layer (where c and d are the input and output sizes, respectively),
and calibration activations X∈Rnl×c (from n samples each of length l), the goal is to find a sparse
surrogate W by solving:

min
W∈Rc×d

∥∥∥XŴ −XW
∥∥∥2
F

s.t. ∥W ∥0 ≤ k, (1)

where ∥·∥0 is the ℓ0-norm, ∥·∥F is the Frobenius norm, and k is the maximum number of non-zero
elements.

Notable algorithms in this class include SparseGPT [15], which employs partial weight updates and
adaptive mask selection to approximate the second-order information (Hessian) efficiently. Another
approach, Wanda [37], offers simplicity by pruning weights based on the product of their magnitudes
and the norms of corresponding input activations. ALPS [30] is an optimization-based framework that
directly solves the ℓ0-constrained layer-wise reconstruction problem using the Alternating Direction
Method of Multipliers (ADMM) [4, 10]. It identifies the optimal weight support and values, which are
then refined by Preconditioned Conjugate Gradient (PCG) steps. However, these methods typically

2

consider calibration data X from a single, general-purpose dataset. This overlooks the fact that LLMs
are often evaluated across multiple criteria. Different users may prioritize these objectives differently.
Current one-shot pruning techniques generally do not address this need for customization, lacking
mechanisms to generate models tailored to specific user preferences.

Another line of work considers the allocation of sparsity across different layers [41, 45, 23, 39]. Such
layer-wise sparsity distribution strategies can often be combined with most of the aforementioned
pruning algorithms to further improve performance. These approaches are orthogonal to the proposed
methods and the two can be combined in a straightforward manner.

2.3 Multi-Objective Optimization

Multi-objective optimization (MOO) [31] optimizes m objective functions simultaneously.
Without loss of generality, we consider the minimization problem: minθ∈Θ f(θ) =
minθ∈Θ

(
f1(θ), . . . , fm(θ)

)
, where Θ is the feasible decision space. A solution a dominates b,

denoted a ≺ b, if ∀i ∈ {1, . . . ,m} : fi(a) ≤ fi(b) and ∃j ∈ {1, . . . ,m} : fj(a) < fj(b). A
feasible solution is Pareto-optimal when it is not dominated by any other feasible solution. The set
of all Pareto-optimal decision vectors is called the Pareto set. The corresponding set of objective
vectors, F∗ = {f(θ) | θ is Pareto-optimal}, is the Pareto front.

Gradient-based MOO methods have been widely adopted in deep learning [8]. They can be classified
into three main categories: (i) Learning a single solution, with examples including MGDA [32, 14,
12], CAGrad [25], and Nash-MTL [33]; (ii) Learning a finite Pareto set, with examples including
PMTL[24], EPO [29], MOO-SVGD [26], and GMOOAR [6]; and (3) Learning an infinite set of
solutions, with examples including PHN [34], PaMaL [13], and LORPMAN [7].

All the aforementioned algorithms utilize gradient descent for optimization. However, the direct
application of gradient descent is empirically ineffective in obtaining satisfactory solutions in the
unstructured LLM pruning scenario, particularly when dealing with high sparsity ratios [30]. Conse-
quently, these algorithms are not directly amenable to modification for one-shot LLM pruning.

3 Multi-Objective LLM Pruning

As mentioned in Section 2.2, current LLM pruning methods typically rely on calibration data X
from a single, general-purpose dataset. However, LLMs are evaluated across multiple objectives,
such as performance on general text, mathematical reasoning, and code generation. Single-objective
approaches fail to generate models that satisfy users with varying preferences across these objectives.
We therefore propose to formulate LLM pruning as a multi-objective optimization (MOO) problem.

Formally, let {X(j) ∈ Rnj lj×c}mj=1 be m disjoint calibration sets, one for each objective j. Denote
fj(W) = ∥X(j)Ŵ −X(j)W ∥2F . The problem is then a MOO problem:

minimize f(W) :=
[
f1(W), . . . , fm(W)

]⊤
s.t. ∥W ∥0 ≤ k. (2)

Relative importance of the objectives are represented by user preference λ = [λ1, . . . , λm]⊤ ∈ Rm
≥0,

where
∑m

j=1 λj = 1.

3.1 Straight-Forward Multi-Objective Extension of ALPS

We consider two straightforward multi-objective extensions of the SOTA single-objective LLM
pruning method ALPS [30].1 Experiments are performed on LLaMA-2-7B. For comparison, we show
the performance (test perplexity) on applying ALPS to each task individually. While this per-task
ALPS requires distinct models for different datasets, it serves as a performance upper bound.

Extension 1: Activation Concatenation. This stacks all calibration activations to form X̃ =
[(X(1))⊤; . . . ; (X(m))⊤]⊤ ∈ R(

∑
j nj lj)×c, and then apply ALPS to produce a pruned model.

Limitation. This extension produces only one single pruned model, which cannot adapt to varying
user preferences across objectives. As can be seen from Table 1, dataset conflicts lead to performance

1We follow the parameter settings in ALPS.

3

Table 1: Test perplexities for multi-objective extensions of ALPS in Section 3.1, using LLaMA-2-7B
at 70% sparsity (i.e., 70% of the weights are pruned).

C4 Code GSM8K Average

Per-task 17.66 2.43 2.96 7.68

Extension 1 20.43 2.63 3.12 8.72
Extension 2 410.22 10.63 6.68 142.51

Stage 1: Dual ADMM Stage 2: Task-Specific ADMM

Task 1

Task 2

Stage 3: Refinement

Task 1

Task 2

Core Support Other Support Task 1 Support Task 2 Support

Figure 1: An overview of the proposed MOSP.

degradation compared to per-task pruning. While the m calibration activations can be weighted by
user preference, this requires running the full pruning process and storing separate sparse models for
each preference vector λ(i), incurring significant computational and storage costs.

Extension 2: Independent Pruning then Merging. This proceeds in three steps: (i) For each
objective j, ALPS runs on X(j) to obtain a sparse matrix W (j). (ii) A merged matrix is computed as:
Wmerged =

∑m
j=1 λjW

(j). (iii) Since Wmerged is generally not k-sparse, it is re-pruned by retaining
the k entries with the largest magnitudes and setting all others to zero.

Limitation. As the individual supports Supp(W (j))’s can differ across tasks, the final re-pruning
step may discard important weights, even if they are identified as important in the first step. This
frequently leads to significant performance degradation across all objectives, as shown in Table 1.

3.2 Proposed Method

The limitations in Section 3.1 highlight the need for a new approach to efficiently generate pruned
models tailored to diverse user preferences. In this section, we introduce Multi-Objective One-Shot
Pruning (MOSP), which operates in three main stages. (i) Dual ADMM (Section 3.2.1), which uses a
modified ADMM algorithm to jointly learn a primary sparse model, W , and a core support, Wc. (ii)
Task-specific ADMM (Section 3.2.2), which performs a simplified ADMM procedure for each task i
separately, leveraging the supports identified in the first stage. (iii) Refinement, which further refines
each model using Projected Conjugate Gradient (PCG) as in ALPS [30]. An overview of the proposed
MOSP is illustrated in Figure 1. In the following, we will also discuss inference (Section 3.2.3),
computational costs (Section 3.2.4), and the extension to N:M sparsity (Section 3.2.5).

4

3.2.1 Dual ADMM for Core Support Identification

We adapt ADMM [4, 10] to simultaneously learn two nested weight supports. We identify a primary
weight matrix W with cardinality k, and a core weight matrix Wc inside W with cardinality αk
(where α ∈ [0, 1]). This is formulated as the following bi-level optimization problem:

minWc∈Rc×d ∥X̃Ŵ − X̃Wc∥2F + γ∥Ŵ −Wc∥2F , ∥Wc∥0 ≤ αk, Supp(Wc) ⊂ Supp(W), (3)

subject to W = argminW ′∈Rc×d ∥X̃Ŵ − X̃W ′∥2F + γ∥Ŵ −W ′∥2F , ∥W ′∥0 ≤ k, (4)

where X̃ = [(X(1))⊤; . . . ; (X(m))⊤]⊤ is the concatenated activation, and γ ≥ 0 is the regularization
parameter.

To solve this optimization problem, we apply ADMM to both the inner and outer level problems.
Besides the standard dual variables V and Vc, ADMM also introduces auxiliary variables D and
Dc for the sparsity constraints. We initialize W (0), D(0), W (0)

c , and D
(0)
c to Ŵ , and set both V (0)

and V
(0)
c to 0. Let ρ be the ADMM penalty parameter and H = (X̃)⊤X̃ + γI . At iteration t, the

updates are performed sequentially for the weight matrices, auxiliary variables, and dual variables as
follows. The detailed derivation is in Appendix A.

First, the primary weight matrix W (t+1) and the core weight matrix W
(t+1)
c are computed as:

W (t+1) = (H+ρI)−1(HŴ−V (t)+ρD(t)),W (t+1)
c = (H+ρI)−1(HŴ−V (t)

c +ρD(t)
c). (5)

Next, D and Dc are updated. Let W̃ (t+1) = W (t+1) + V (t)/ρ and W̃
(t+1)
c = W

(t+1)
c + V

(t)
c /ρ.

The primary support projection yields D(t+1) = Pk(W̃
(t+1)) by selecting the k largest-magnitude

elements of W̃ (t+1). The primary support is S(t+1) = Supp(D(t+1)). For the core support
projection, W̃ (t+1)

c is projected onto matrices with at most αk non-zero elements, constrained such
that its support is a subset of S(t+1). This is achieved by first masking W̃

(t+1)
c with S(t+1) and then

selecting the αk largest-magnitude elements in this masked matrix: D(t+1)
c = Pαk(W̃

(t+1)
c ⊙S(t+1)).

The core support is then S(t+1)
c = Supp(D(t+1)

c). Finally, the dual variables V and Vc are updated
as:

V (t+1) = V (t) + ρ(W (t+1) −D(t+1)),V (t+1)
c = V (t)

c + ρ(W (t+1)
c −D(t+1)

c). (6)

The above steps are repeated until convergence, outputting weight matrix W and core support Sc.

Convergence. The following Theorem guarantees convergence of the algorithm. The proof is given
in Appendix B.

Theorem 1. Let {D(t)}∞t=0, {W(t)}∞t=0, {D(t)
c }∞t=0 and {W(t)

c }∞t=0 be the sequences generated by
the algorithm in Section 3.2.1. Suppose the penalty parameter {ρt}∞t=1 satisfies

∑∞
t=1 1/ρt < ∞.

We have

max{∥D(t+1)−D(t)∥F , ∥W(t+1)−D(t+1)∥F , ∥D(t+1)
c −D(t)

c ∥F , ∥W(t+1)
c −D(t+1)

c ∥F } ≤ C/ρt,

where C is a constant depending on X, Ŵ, and
∑∞

t=1 1/ρt. In particular, there exists matrix D̄ and
D̄c such that D(t) → D̄, W(t) → D̄, D(t)

c → D̄c, and W
(t)
c → D̄c as t → ∞.

3.2.2 Task-Specific ADMM

After identifying the core support Sc and a primary weight matrix W in Section 3.2.1, ADMM is
applied individually to each task. This aims to obtain task-specific weights Wi (i = 1, . . . ,m) while
preserving the core support Sc. This can be formulated as the following optimization problem:

min
Wi∈Rc×d

∥X(i)Ŵ −XWi∥2F + γ∥Ŵ −Wi∥2F s.t. ∥Wi∥0 ≤ k, Supp(Wc) ⊂ Supp(Wi). (7)

For initialization, matrix W from Section 3.2.1 is used. As this initialization is strong, we use a fixed
ADMM parameter ρ. This allows pre-computation of the Cholesky decomposition of (Hi + ρI)
(where Hi = (X(i))⊤X(i) + γI) for each task i, significantly speeding up the optimization process.

5

0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.2

0.4

0.6

0.8

1.0

2

Original
′ (p=1.0)
′ (p=0.5)
′ (p=0.1)

Figure 2: Example illustrating the mapping from λ to λ′ for m = 2. Vectors closer to (12 ,
1
2) shrink

toward the origin, while vectors at the corners remain unchanged.

Algorithm. For each task i, ADMM sequentially updates Wi, Di, and Vi. At ADMM iteration t,

weight W is updated as:

W
(t+1)
i = (Hi + ρI)−1(HiŴ − V

(t)
i + ρD

(t)
i).

Next, the auxiliary variable Di is updated. Given W̃
(t+1)
i = W

(t+1)
i + V

(t)
i /ρ, the projection

Pk,Sc
(·) first retains all elements of W̃ (t+1)

i corresponding to Sc. Then, it selects the k − |Sc|
largest-magnitude elements outside Sc. The resulting matrix D

(t+1)
i = Pk,Sc

(W̃
(t+1)
i) comprises

these selected elements from W̃
(t+1)
i , with all others set to zero. Finally, the dual variable is updated:

V
(t+1)
i = V

(t)
i + ρ(W

(t+1)
i −D

(t+1)
i).

For efficiency, the above steps are run for a maximum of 10 iterations, outputting {Wi}mi=1.

3.2.3 Inference

During inference, given a user preference vector λ = [λ1, . . . , λm]⊤, we adjust the impact of
task-specific corrections {Wi − W } and create a tailored model with weight matrix Wλ =
Pk,Sc (W +

∑m
i=1 λ

′
i(Wi −W)) on the fly. Here, Pk,Sc(·) is a projection that ensures Wλ has at

most k non-zero elements and includes all elements corresponding to the core support Sc. We scale λ
based on its ℓ1 distance from a uniform distribution, normalized by the maximum possible distance:

λ′ =

(∑m
j=1 |λj − 1

m |
2(1− 1

m)

)p

λ,

where p is a hyperparameter. For uniform λ (i.e., λj = 1/m,∀j),
∑m

i=1 λ
′
i(Wi −W) = 0 as the

global weight W should provide a balanced solution. For a one-hot λ, we have λ′ = λ. Thus, the
mapping from λ to λ′ smoothly interpolates: near-uniform preferences favor the global model, while
task-specific preferences amplify task-specific adjustments (Figure 2). Moreover, a larger p delays
task-specific adjustments until λ is highly skewed, while a smaller p enables earlier transitions. In
the experiments, we simply use p = 0.5.

3.2.4 Computation Cost

Stage 1 (Section 3.2.1): In this stage, the computational bottleneck is the calculation of (H + ρI)−1.
To address this, similar to ALPS [30], we pre-compute and store the eigen-decomposition of H

6

as QMQT , where Q is the matrix of eigenvectors and M is the diagonal matrix of eigenvalues.
In each iteration, the stored Q and M can then be reused to efficiently compute (H + ρI)−1 as
Q(M + ρI)−1QT . Note that since the two optimization subproblems (for W and Wc) use the
same matrix H , this eigen-decomposition needs to be performed only once at the beginning of this
stage, with a complexity O(c3). The subsequent per-iteration computational complexity is O(c2d).
Compared to ALPS, this stage introduces a minor overhead consisting of a few additional matrix
multiplications and additions.

Stage 2 (Section 3.2.2): In this stage, we use a fixed ρ, which enables the pre-computation of the
Cholesky decomposition of (Hi + ρI), followed by the computation of its inverse based on the
decomposition, once for each task. While the Cholesky decomposition has O(c3) complexity, it
is significantly more computationally efficient in practice. After the inverse is computed, the per-
iteration computational complexity for this stage becomes O(c2d). For m tasks, the total per-iteration
computational complexity is O(mc2d).

In Section 4.2, we will demonstrate that the computational overhead of the proposed method is small
in comparison to ALPS.

3.2.5 Extension to Semi-Structured Sparsity

Similar to the other unstructured pruning techniques, the proposed method extends naturally to
semi-structured sparsity by modifying the D-update projection steps.

Stage 1 (Section 3.2.1): First, partition W̃ (t+1) into non-overlapping blocks of M elements. Re-
tain the N largest-magnitude elements in each block via projection PN :M (·), yielding D(t+1) =

PN :M (W̃ (t+1)). To identify the core support, we compute the absolute sum of elements in each
block of W̃ (t+1)

c . Designate the l blocks with smallest sums as "weak blocks," and define the core
support Sc by excluding these blocks. The result is D(t+1)

c = PN :M (W̃
(t+1)
c)⊙ Sc.

Stage 2 (Section 3.2.2): Using core support Sc from Stage 1, apply the projection PN :M,Sc
(·)

by preserving elements in W̃ (t+1) at positions in Sc while maintaining the N:M structure for the
remaining elements. Specifically, retain up to N largest-magnitude elements in each block of M
non-core blocks, resulting in D(t+1) = PN :M,Sc(W̃

(t+1)). This ensures the N:M sparsity pattern
while preserving the identified core support.

4 Experiments

In this section, we show the experimental results of the proposed Multi-Objective One-Shot Pruning
(MOSP). We begin by outlining the setup in Section 4.1. Subsequently, we demonstrate the effective-
ness of MOSP on a two-objective pruning scenario (general language understanding and mathematical
reasoning) in Section 4.2. We then extend the evaluation to three objectives, incorporating code
generation capabilities, in Section 4.3. Finally, we provide ablation studies in Section 4.4.

4.1 Setup

We evaluate MOSP across multiple LLMs including Llama-2 [38], Llama-3 [16], and OPT series [43].
We consider three representative datasets to evaluate model performance across different domains:
(1) General Text: C4 [36]. (2) Mathematical Reasoning: GSM8K [9]. (3) Code Generation: Code [5].
Following [15, 30], we use a calibration set of 128 segments (up to 2048 tokens) and evaluate using
perplexity (PPL) on the test sets (the lower the better).

We compare MOSP with state-of-the-art unstructured pruning methods: Magnitude Pruning (MP)
[18], Wanda [37], SparseGPT [15], and ALPS [30]. We use the same pruning datasets across all
methods. For Wanda, SparseGPT, and ALPS, we use the activation concatenation strategy in Section
3.1. We exclude independent pruning then merging (extension 2) due to its poor performance (as
shown in Table 1). The penalty ρ is adapted using the same strategy as ALPS [30]. We set α = 0.5 and
p = 0.5 without hyperparameter tuning. Additional experimental details are provided in Appendix D.

7

4.2 Two-Objective Pruning

Table 2: Comparison of time and GPU
memory consumption between ALPS
and the proposed MOSP.

Method Time GPU Memory

ALPS 1.09h 18.7GB
MOSP 1.36h 20.3GB

We first demonstrate the effectiveness of MOSP for prun-
ing Llama-2-7B on two datasets: C4 and GSM8K. The un-
pruned Llama-2-7B baseline achieves test PPL of 6.97 on
C4 and 2.73 on GSM8K.

Figure 3 shows the performance at 70% unstructured spar-
sity and 2:4 semi-structured sparsity. MP and Wanda are
omitted due to their significantly inferior performance.
As can be seen, the baseline algorithms produce a single
pruned model, whereas MOSP generates a diverse Pareto
set, demonstrating the trade-off between general language
understanding and mathematical reasoning. This allows users to select models that align with their
preferences.

In Figure 4, we vary the sparsity ratio. As can be seen, MOSP generates meaningful Pareto fronts
across varying sparsity settings. Notably, higher sparsity ratios amplify the trade-off region, empha-
sizing the value of multi-objective optimization at greater compression levels.

Table 2 examines the time and GPU memory overhead of the proposed MOSP compared with ALPS.
As can be seen, both the time and memory overhead of the proposed method are small.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5
C4

2.9

3.0

3.1

3.2

3.3

3.4

GS
M

8K

MOSP (70%)
ALPS (70%)
SparseGPT (70%)
MOSP (2:4)
ALPS (2:4)
SparseGPT (2:4)

Figure 3: Test PPL on C4 and GSM8K for Llama-
2-7B pruned to 70% unstructured sparsity and
2:4 semi-structured sparsity.

10 20 30 40 50 60
C4

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4
GS

M
8K

50%
60%
70%
80%
2:4

Figure 4: Test PPL on C4 and GSM8K for Llama-
2-7B pruned to 50%, 60%, 70%, 80% unstruc-
tured sparsity and 2:4 semi-structured sparsity.

4.3 Three-Objective Pruning

In this section, we evaluate MOSP in a scenario involving three objectives: general language
understanding (C4), mathematical reasoning (GSM8K), and code generation (Code). Figure 5 shows
the solutions obtained by MOSP on pruning the Llama-2-7B model to 70% unstructured sparsity.
Each point on the resulting three-dimensional surface represents a pruned model, generated using
one of the 36 uniform preference vectors (λ). As can be seen, MOSP successfully identifies a diverse
set of models spanning different objective trade-offs. More figures for different models pruned to
different sparsity levels are provided in Appendix E.

Table 3 provides a quantitative analysis comparing models pruned using the baselines with represen-
tative points selected from the models obtained by MOSP for Llama-2-7B at 70% sparsity. These
selected points correspond to different preference vectors: λ0 represents balanced preference across
all three objectives, while λ1, λ2, and λ3 heavily favor C4, GSM8K, and Code, respectively, with λ4

representing an intermediate preference. The results clearly demonstrate MOSP’s ability to effectively
navigate the trade-off spaces by adjusting the preference vector λ. For instance, λ1 yields the lowest
PPL on C4, while λ3 achieves the lowest PPL on Code.

Table 4 compares the Hypervolume (HV) [47, 21] achieved by MOSP with baseline methods for
pruning various OPT and Llama models to different sparsity targets. A higher HV value indicates
a better approximation of the true Pareto front, reflecting solutions that are both high-performing

8

1820222426
28

30 C4

3.1
3.2

3.3
3.4

3.5

GSM8K

2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

Code

MOSP
ALPS
SparseGPT

20 22 24 26 28 30
C4

3.1

3.2

3.3

3.4

3.5

GS
M

8K

20 22 24 26 28 30
C4

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Co
de

3.1 3.2 3.3 3.4 3.5
GSM8K

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Co
de

Figure 5: Test PPL on C4, GSM8K, and Code for Llama-2-7B pruned to 70% unstructured sparsity.
The top left figure shows 3D view and the other three figures show different 2D projections.

Table 3: Test PPL of Llama-2-7B pruned to 70% unstructured sparsity with different prefer-
ence vectors. λ0 = [0.33, 0.33, 0.33],λ(1) = [1, 0, 0],λ(2) = [0, 1, 0],λ(3) = [0, 0, 1],λ(4) =
[0.72, 0.14, 0.14].

Method C4 GSM8K Code

MP 9839.28 6191.83 3285.59
Wanda 73.64 12.90 10.51
SparseGPT 30.91 3.53 3.07
ALPS 20.44 3.12 2.63
MOSP (λ0) 20.44 3.12 2.63
MOSP (λ1) 18.80 3.37 3.20
MOSP (λ2) 24.33 3.05 3.06
MOSP (λ3) 25.82 3.43 2.53
MOSP (λ4) 19.30 3.20 2.79

(closer to the ideal point) and diverse (covering a broader range of trade-offs). The reference point is
set as 1.1 times the PPL of the model obtained using SparseGPT. Note that since the reference point
varies across different sparsity levels and models, HV comparisons are only meaningful within the
same model-sparsity combination. Results show that MOSP consistently outperforms SparseGPT
and ALPS in HV. Wanda performs far below the reference point, yielding an HV of zero.

4.4 Ablation Studies

This section studies the impact of key components in MOSP: the support sharing parameter α and
the preference mapping strategy. All experiments use Llama-2-7B pruned to 70% sparsity, with the
hyperparameters kept consistent with the other experiments.

Effect of α. Parameter α controls the degree of support sharing, interpolating between fully task-
specific supports (α = 0) to a completely shared support (α = 1). Figure 6a shows that neither

9

Table 4: Comparison of HV on Llama-2, Llama-3, and OPT models across various sparsity levels

Sparsity Method OPT-2.7B Llama-2-7B Llama-3-8B Llama-2-13B OPT-30B

2:4

Wanda 0.00 0.00 0.00 0.00 0.00
SparseGPT 0.39 0.09 0.27 0.07 0.16
ALPS 0.99 0.38 1.39 0.21 0.28
MOSP 1.18 0.48 1.70 0.25 0.31

70%

Wanda 0.00 0.00 0.00 0.00 0.00
SparseGPT 0.70 0.33 0.99 0.20 0.20
ALPS 4.68 7.73 25.36 3.35 0.72
MOSP 5.67 9.59 30.85 4.24 0.85

80%

Wanda 0.00 0.00 0.00 0.00 0.00
SparseGPT 4.86 4.83 9.28 2.02 0.90
ALPS 168.50 770.74 1180.42 220.53 43.56
MOSP 188.26 887.52 1287.07 259.21 48.65

18 19 20 21
C4

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

GS
M

8K

= 0
= 0.5
= 1.0

(a) Effect of α .

18 19 20 21
C4

3.00

3.05

3.10

3.15

3.20

3.25

3.30

GS
M

8K

without transform
with transform

(b) Effect of preference transformation.

Figure 6: Ablation studies for Llama-2-7B pruned to 70% sparsity.

extreme yields the optimal trade-off. An intermediate α, as used in our main experiments, allows
partial overlap in supports. This enables MOSP to maintain similarity for better interpolated models
while still permitting task-specific specialization.

Effect of preference transformation. Figure 6b shows the effect of the transformation from λ to λ′.
While the performance at the extreme ends remains the same, other models generally achieve better
performance when the transformation is applied. This indicates that the performance transformation
helps in finding superior intermediate models.

5 Conclusion

In this paper, we consider the multi-objective nature of LLM pruning and formulate it as a MOO
problem. The proposed method MOSP, with proven convergence, efficiently identifies models with
varying trade-offs across different objectives. Experiments on representative models demonstrate our
approach’s effectiveness in providing tailored models based on user preferences.

Limitations. We only evaluate MOSP on some representative models. Extending this evaluation to a
broader range of LLMs would be valuable. Additionally, considering more objectives is an interesting
future work.

Acknowledgment

This research was supported in part by the Research Grants Council of the Hong Kong Special
Administrative Region (Grants 16202523 and HKU C7004-22G).

10

References
[1] Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive

structured pruning for large language models. In AAAI Conference on Artificial Intelligence,
volume 38, pages 10865–10873, 2024.

[2] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
Preprint arXiv:2401.15024, 2024.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the
state of neural network pruning? In Proceedings of Machine Learning and Systems, volume 2,
pages 129–146, 2020.

[4] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine learning, 3(1):1–122, 2011.

[5] Sahil Chaudhary. Code Alpaca: An instruction-following LLaMA model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

[6] Weiyu Chen and James Kwok. Multi-objective deep learning with adaptive reference vectors.
Advances in Neural Information Processing Systems, 35:32723–32735, 2022.

[7] Weiyu Chen and James Kwok. Efficient pareto manifold learning with low-rank structure. In
International Conference on Machine Learning, pages 7015–7032, 2024.

[8] Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, and James T
Kwok. Gradient-based multi-objective deep learning: Algorithms, theories, applications, and
beyond. Preprint arXiv:2501.10945, 2025.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. Preprint arXiv:2110.14168, 2021.

[10] Damek Davis and Wotao Yin. Convergence rate analysis of several splitting schemes. In
Splitting Methods in Communication, Imaging, Science, and Engineering, pages 115–163.
Springer, 2017.

[11] Lucio Dery, Steven Kolawole, Jean-François Kagy, Virginia Smith, Graham Neubig, and Ameet
Talwalkar. Everybody prune now: Structured pruning of llms with only forward passes. Preprint
arXiv:2402.05406, 2024.

[12] Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective opti-
mization. Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

[13] Nikolaos Dimitriadis, Pascal Frossard, and François Fleuret. Pareto manifold learning: Tackling
multiple tasks via ensembles of single-task models. In International Conference on Machine
Learning, pages 8015–8052, 2023.

[14] Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria optimization.
Mathematical Methods of Operations Research, 51(3):479–494, 2000.

[15] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337, 2023.

[16] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
Llama 3 herd of models. Preprint arXiv:2407.21783, 2024.

[17] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

[18] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

11

https://github.com/sahil280114/codealpaca

[19] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference
on computer vision (ECCV), pages 784–800, 2018.

[20] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry.
Accelerated sparse neural training: A provable and efficient method to find n: m transposable
masks. Advances in neural information processing systems, 34:21099–21111, 2021.

[21] Joshua D Knowles, David W Corne, and Mark Fleischer. Bounded archiving using the Lebesgue
measure. In Congress on Evolutionary Computation, pages 2490–2497, 2003.

[22] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989.

[23] Wei Li, Lujun Li, Mark Lee, and Shengjie Sun. Adaptive layer sparsity for large language
models via activation correlation assessment. Advances in Neural Information Processing
Systems, 37:109350–109380, 2024.

[24] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task
learning. In Neural Information Processing Systems, 2019.

[25] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. In Neural Information Processing Systems, pages 18878–18890, 2021.

[26] Xingchao Liu, Xin Tong, and Qiang Liu. Profiling Pareto front with multi-objective stein
variational gradient descent. In Neural Information Processing Systems, pages 14721–14733,
2021.

[27] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and
Jian Sun. Metapruning: Meta learning for automatic neural network channel pruning. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 3296–3305,
2019.

[28] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[29] Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient
descent with controlled ascent in Pareto optimization. In International Conference on Machine
Learning, pages 6597–6607, 2020.

[30] Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimiza-
tion for highly sparse one-shot pruning for large language models. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[31] Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science &
Business Media, 1999.

[32] Hiroaki Mukai. Algorithms for multicriterion optimization. IEEE Transactions on Automatic
Control, 25(2):177–186, 1980.

[33] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik,
and Ethan Fetaya. Multi-task learning as a bargaining game. In International Conference on
Machine Learning, pages 16428–16446, 2022.

[34] Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the Pareto front with
hypernetworks. In International Conference on Learning Representations, 2020.

[35] A Paszke. Pytorch: An imperative style, high-performance deep learning library. Preprint
arXiv:1912.01703, 2019.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

12

[37] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. Preprint arXiv:2306.11695, 2023.

[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. Preprint arXiv:2307.09288, 2023.

[39] Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An,
Yu Qiao, and Ping Luo. Besa: Pruning large language models with blockwise parameter-efficient
sparsity allocation. Preprint arXiv:2402.16880, 2024.

[40] Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
Preprint arXiv:2402.11187, 2024.

[41] Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay
Jaiswal, Mykola Pechenizkiy, Yi Liang, et al. Outlier weighed layerwise sparsity (owl): A
missing secret sauce for pruning llms to high sparsity. Preprint arXiv:2310.05175, 2023.

[42] Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan
Zhuang. Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning. Preprint
arXiv:2305.18403, 2023.

[43] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. Preprint arXiv:2205.01068, 2022.

[44] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci.
Plug-and-play: An efficient post-training pruning method for large language models. In The
Twelfth International Conference on Learning Representations, 2024.

[45] Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner,
Shiwei Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse
llms. In The Twelfth International Conference on Learning Representations, 2024.

[46] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n: m fine-grained structured sparse neural networks from scratch.
Preprint arXiv:2102.04010, 2021.

[47] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary algorithms
— A comparative case study. In International Conference on Parallel Problem Solving from
Nature, pages 292–301, 1998.

13

A Detailed Derivation of Dual ADMM

We use the Alternating Direction Method of Multipliers (ADMM) to solve these constrained opti-
mization problems. The updates for the primary weights (W ,D,V) and core weights (Wc,Dc,Vc)
are performed sequentially within each iteration t. Let H = (X̃)⊤X̃ + γI .

A.1 ADMM for Inner Problem

The inner problem (4) aims to find the primary weight matrix W . The problem is:

min
W

∥∥∥X̃Ŵ − X̃W
∥∥∥2
F
+ γ

∥∥∥Ŵ −W
∥∥∥2
F
, s.t. ∥W ∥0 ≤ k. (8)

We introduce an auxiliary variable D = W and a scaling factor of 1
2 to simplify the resulting

expressions:

min
W ,D

1

2

(∥∥∥X̃Ŵ − X̃W
∥∥∥2
F
+ γ

∥∥∥Ŵ −W
∥∥∥2
F

)
+ I∥D∥0≤k(D), s.t. W = D, (9)

where I∥D∥0≤k(D) is an indicator function that is 0 if ∥D∥0 ≤ k and ∞ otherwise. The augmented
Lagrangian is:

Lρ(W ,D,V) =
1

2

(∥∥∥X̃Ŵ − X̃W
∥∥∥2
F
+ γ

∥∥∥Ŵ −W
∥∥∥2
F

)
+I∥D∥0≤k(D)+⟨V ,W−D⟩+ρ

2
∥W −D∥2F .

(10)
The ADMM iterations consist of the following updates:

1. W -update: W (t+1) = argminW Lρ(W ,D(t),V (t)). This involves minimizing:

1

2

(∥∥∥X̃Ŵ − X̃W
∥∥∥2
F
+ γ

∥∥∥Ŵ −W
∥∥∥2
F

)
+ ⟨V (t),W ⟩+ ρ

2

∥∥∥W −D(t)
∥∥∥2
F
. (11)

Taking the derivative with respect to W and setting it to zero:

∇W

[
1

2

∥∥∥X̃Ŵ − X̃W
∥∥∥2
F
+

γ

2

∥∥∥Ŵ −W
∥∥∥2
F
+ ⟨V (t),W ⟩F +

ρ

2

∥∥∥W −D(t)
∥∥∥2
F

]
= 0

−X̃⊤(X̃Ŵ − X̃W)− γ(Ŵ −W) + V (t) + ρ(W −D(t)) = 0

(X̃⊤X̃ + γI + ρI)W = (X̃⊤X̃ + γI)Ŵ + ρD(t) − V (t).

Using the definition H = (X̃)⊤X̃ + γI:

(H + ρI)W (t+1) = HŴ + ρD(t) − V (t). (12)

Thus, the update for W is:

W (t+1) = (H + ρI)−1(HŴ − V (t) + ρD(t)). (13)

2. D-update: D(t+1) = argminD Lρ(W
(t+1),D,V (t)). This involves minimizing:

I∥D∥0≤k(D) + ⟨V (t),−D⟩+ ρ

2

∥∥∥W (t+1) −D
∥∥∥2
F
. (14)

This can be rewritten by completing the square for terms involving D:

I∥D∥0≤k(D) +
ρ

2

∥∥∥D − (W (t+1) + V (t)/ρ)
∥∥∥2
F
+ const. (15)

The solution is obtained by projecting W (t+1) + V (t)/ρ onto the set of matrices with at most k
non-zero elements. Let W̃ (t+1) = W (t+1) + V (t)/ρ.

D(t+1) = Pk(W̃
(t+1)), (16)

where Pk(A) is an operator that keeps the k elements of A with the largest magnitudes and sets
others to zero. The primary support is S(t+1) = Supp(D(t+1)).

3. V -update: The dual variable V is updated as:

V (t+1) = V (t) + ρ(W (t+1) −D(t+1)). (17)

14

A.2 ADMM for Outer Problem

The outer problem (3) aims to find the core weight matrix Wc. The problem is:

min
Wc

∥∥∥X̃Ŵ − X̃Wc

∥∥∥2
F
+ γ

∥∥∥Ŵ −Wc

∥∥∥2
F
, s.t. ∥Wc∥0 ≤ αk, Supp(Wc) ⊂ S(t+1), (18)

where S(t+1) = Supp(D(t+1)) is the primary support identified at iteration t from the inner problem’s
ADMM step.

Similarly, we introduce an auxiliary variable Dc = Wc and a scaling factor of 1
2 to simplify the

resulting expressions:

min
Wc,Dc

1

2

(∥∥∥X̃Ŵ − X̃Wc

∥∥∥2
F
+ γ

∥∥∥Ŵ −Wc

∥∥∥2
F

)
+I∥Dc∥0≤αk,Supp(Dc)⊂S(t+1)(Dc), s.t. Wc = Dc.

(19)
The augmented Lagrangian is:

Lρ,c(Wc,Dc,Vc) =
1

2

(∥∥∥X̃Ŵ − X̃Wc

∥∥∥2
F
+ γ

∥∥∥Ŵ −Wc

∥∥∥2
F

)
+ I∥Dc∥0≤αk,Supp(Dc)⊂S(t+1)(Dc) + ⟨Vc, (Wc −Dc)⟩+

ρ

2
∥Wc −Dc∥2F . (20)

1. Wc-update: W
(t+1)
c = argminWc

Lρ,c(Wc,D
(t)
c ,V

(t)
c). The objective function for Wc is

identical in form to that for W . Thus, the derivation is analogous:

(H + ρI)W (t+1)
c = HŴ + ρD(t)

c − V (t)
c . (21)

The update for Wc is:

W (t+1)
c = (H + ρI)−1(HŴ − V (t)

c + ρD(t)
c). (22)

2. Dc-update: D(t+1)
c = argminDc

Lρ,c(W
(t+1)
c ,Dc,V

(t)
c). This involves minimizing:

I∥Dc∥0≤αk,Supp(Dc)⊂S(t+1)(Dc) +
ρ

2

∥∥∥Dc − (W (t+1)
c + V (t)

c /ρ)
∥∥∥2
F
. (23)

Let W̃ (t+1)
c = W

(t+1)
c + V

(t)
c /ρ. The solution is obtained by first ensuring the support constraint

Supp(Dc) ⊂ S(t+1) and then projecting onto the set of matrices with at most αk non-zero elements.
This is achieved by masking W̃

(t+1)
c with the primary support S(t+1) and then selecting the αk

largest magnitude elements from this masked matrix:

D(t+1)
c = Pαk(W̃

(t+1)
c ⊙ S(t+1)). (24)

3. Vc-update: The dual variable Vc is updated as:

V (t+1)
c = V (t)

c + ρ(W (t+1)
c −D(t+1)

c). (25)

These derivations provide the update rules for W ,D,V and Wc,Dc,Vc as presented in Section 3.2.1
of the main paper.

B Proofs of Theorem 1

Proof. Since we do not modify the update steps for W and D compared to ALPS [30], the con-
vergence proof of ALPS remains valid for W and D. Here, we further extend the proof in [30] to
analyze the convergence of Wc and Dc.

For the sake of conciseness, throughout the proof, we denote H = X⊤X and G = X⊤XŴ. To
establish the theorem, we first present the following two lemmas. The proofs of these two lemmas
are given in Section B.1 and B.2, respectively.

15

Lemma 1. Let
{
D

(t)
c

}∞

t=0
and

{
V

(t)
c

}∞

t=0
be the sequence generated by MOSP. Then for any t ≥ 0,

it holds

∥V(t+1)
c ∥F ≤ ∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥F
ρt

(26)

and

∥D(t+1)
c −D(t)

c ∥F ≤ 2

ρt

(
∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥F
ρt

)
. (27)

Lemma 2. Let
{
D

(t)
c

}∞

t=0
,
{
W

(t)
c

}∞

t=0
and

{
V

(t)
c

}∞

t=0
be the sequence generated by MOSP.

Suppose {ρt}∞t=0 is non-decreasing. Then for any t ≥ 0, it holds

∥D(t)
c ∥F +

∥V(t)
c ∥F
ρt

≤

[
t−1∏
s=0

(
1 +

3∥H∥2
ρs

)]
·

(
∥D(0)

c ∥F +
∥V(0)

c ∥F
ρ0

+

t−1∑
s=0

3∥G∥F
ρs

)
(28)

Returning to the proof of the main theorem, combining Lemma 2 with the initialization of our method
MOSP gives

∥D(t)
c ∥F +

∥V(t)
c ∥F
ρt

≤

[
t−1∏
s=0

(
1 +

3∥H∥2
ρs

)]
·

(
∥D(0)

c ∥F +
∥V(0)

c ∥F
ρ0

+

t−1∑
s=0

3∥G∥F
ρs

)

≤ exp

(
3∥H∥2

∞∑
s=0

1

ρs

)
·

(
∥G∥F + 3∥G∥F

∞∑
s=0

1

ρs

) (29)

Let

C(X,Ŵ, ρ0, tu, τ̂) := 2∥G∥F + 2∥H∥2

(
exp

(
3∥H∥2

∞∑
s=0

1

ρs

)
·

(
∥G∥F + 3∥G∥F

∞∑
s=0

1

ρs

))
(30)

be the constant depending on X, Ŵ and
∑∞

s=0 1/ρs. Lemma 1 together with (29) leads to

∥V(t+1)
c ∥F ≤ ∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥F
ρt

≤ ∥G∥F + ∥H∥2

(
∥D(t)

c ∥F +
∥V(t)

c ∥F
ρt

)
≤ 1

2
C(X,Ŵ, ρ0, tu, τ̂)

(31)

and

∥D(t+1)
c −D(t)

c ∥F ≤ 2

ρt

(
∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥F
ρt

)
≤ C(X,Ŵ, ρ0, tu, τ̂)

ρt
. (32)

It then follows from W
(t+1)
c −D

(t+1)
c = (V

(t+1)
c −V

(t)
c)/ρt that

∥W(t+1)
c −D(t+1)

c ∥F ≤ ∥V(t+1)
c ∥F + ∥V(t)

c ∥F
ρt

≤ C(X,Ŵ, ρ0, tu, τ̂)

ρt
. (33)

Therefore, we prove the desired inequality. Since
∑∞

s=0 1/ρs < ∞, {Dc}∞t=0 is a Cauchy sequence,
and therefore there exists a matrix D̄c such that D(t)

c → D̄c. It follows from ∥W(t+1)
c −D

(t+1)
c ∥F →

0 that W(t)
c → D̄c. The proof is completed.

16

B.1 Proof of Lemma 1

Proof. According to the W−update rule in (5), it holds

W(t+1)
c −D(t)

c +
V

(t)
c

ρ(t)
= (H+ ρtI)

−1(G−V(t)
c + ρtD

(t)
c)−D(t)

c +
V

(t)
c

ρ(t)

=
(
(H+ ρtI)

−1ρt − I
)
D(t)

c + (H+ ρtI)
−1(G−V(t)

c) +
V

(t)
c

ρt

= − 1

ρt

(
I+

H

ρt

)−1

HD(t)
c +

1

ρt

(
I+

H

ρt

)−1

(G−V(t)
c) +

V
(t)
c

ρt

=
1

ρt

(
I+

H

ρt

)−1

(G−HD(t)
c) +

1

ρt

[
I−

(
I+

H

ρt

)−1
]
V(t)

c

=
1

ρt

(
I+

H

ρt

)−1
(
G−HD(t)

c +
HV

(t)
c

ρt

)
(34)

Therefore, we obtain∥∥∥∥∥W(t+1)
c −D(t)

c +
V

(t)
c

ρ(t)

∥∥∥∥∥
F

≤ 1

ρt

∥∥∥∥∥
(
I+

H

ρt

)−1
∥∥∥∥∥
2

∥∥∥∥∥G−HD(t)
c +

HV
(t)
c

ρt

∥∥∥∥∥
F

≤ 1

ρt

∥∥∥∥∥G−HD(t)
c +

HV
(t)
c

ρt

∥∥∥∥∥
F

≤ 1

ρt

(
∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥

ρt

)
.

(35)

Denote Ĩ(t) := {(i, j) ∈ [c]× [d] | D(t)
ij = 0}, Ĩ(t)

c := {(i, j) ∈ [c]× [d] | (D(t)
c)ij = 0}. It follows

from the D−update rule and the definition of the projection operator that∥∥∥∥∥D(t+1)
c −W(t+1)

c − V
(t)
c

ρt

∥∥∥∥∥
2

F

= min
I⊆Supp(D(t+1))

|I|=(1−l)k

∑
(i,j)∈I

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

+
∑

(i,j)∈Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

(36)

By definition, note that Supp(D(t+1))∪Ĩ(t+1) = [c]× [d] and Supp(D(t+1))∩Ĩ(t+1) = ϕ, then we
can write Ĩ(t)

c =
(
Ĩ(t)
c ∩ Supp(D(t+1))

)
∪
(
Ĩ(t)
c ∩ Ĩ(t+1)

)
. Then from |Ĩ(t+1)| = cd−k, we must

have |Ĩ(t)
c ∩ Ĩ(t+1)| ≤ cd − k. And since |Ĩ(t)

c | = cd − lk and Ĩ(t)
c =

(
Ĩ(t)
c ∩ Supp(D(t+1))

)
∪(

Ĩ(t)
c ∩ Ĩ(t+1)

)
, we should have |Ĩ(t)

c ∩ Supp(D(t+1))| ≥ (1 − l)k. Therefore, assume |Ĩ(t)
c ∩

Supp(D(t+1))| = (1− l)k+∆ with ∆ ≥ 0, which also directly gives us |Ĩ(t)
c ∩Ĩ(t+1)| ≤ cd−k−∆

we first should have:

min
I⊆Supp(D(t+1))

|I|=(1−l)k

∑
(i,j)∈I

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

≤ min
I⊆(Ĩ(t)

c ∩Supp(D(t+1)))
|I|=(1−l)k

∑
(i,j)∈I

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

= min
I⊆(Ĩ(t)

c ∩Supp(D(t+1)))
|I|=(1−l)k

∑
(i,j)∈I

(
W(t+1)

c −D(t)
c +

V
(t)
c

ρt

)2

i,j

(37)

17

Regarding the second term in (36), we have:∑
(i,j)∈Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

=
∑

(i,j)∈Ĩ(t)
c ∩Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

+
∑

(i,j)∈Ĩ(t+1)/Ĩ(t)
c

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

By definition, we should have |Ĩ(t+1)/Ĩ(t)
c | = ∆, which also matches the number of additional

elements in |Ĩ(t)
c ∩ Supp(D(t+1))| other than the smallest (1 − l)k elements in it. Then since all

elements in Ĩ(t+1) corresponds to the smallest cd− k elements in W(t+1) + V(t)

ρt
, we should have:

max
I⊆(Ĩ(t)

c ∩Supp(D(t+1)))
|I|=∆

∑
(i,j)∈I

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

≥
∑

(i,j)∈Ĩ(t+1)/Ĩ(t)
c

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

Thus we have:∑
(i,j)∈Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

≤
∑

(i,j)∈Ĩ(t)
c ∩Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

+ max
I⊆(Ĩ(t)

c ∩Supp(D(t+1)))
|I|=∆

∑
(i,j)∈I

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

(38)

Then combining (37) and (38) will give us:∥∥∥∥∥D(t+1)
c −W(t+1)

c − V
(t)
c

ρt

∥∥∥∥∥
2

F

= min
I⊆Supp(D(t+1))

|I|=(1−l)k

∑
(i,j)∈I

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

+
∑

(i,j)∈Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

≤
∑

(i,j)∈
(
Ĩ(t)
c ∩Supp(D(t+1))

)
(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

+
∑

(i,j)∈Ĩ(t)
c ∩Ĩ(t+1)

(
W(t+1)

c +
V

(t)
c

ρt

)2

i,j

≤
∑

(i,j)∈Ĩ(t)
c

(
W(t+1)

c −D(t)
c +

V
(t)
c

ρt

)2

i,j

≤

∥∥∥∥∥W(t+1)
c −D(t)

c +
V

(t)
c

ρt

∥∥∥∥∥
2

F

(39)

Together with (35), we get∥∥∥∥∥D(t+1)
c −W(t+1)

c − V
(t)
c

ρt

∥∥∥∥∥
F

≤ 1

ρt

(
∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥

ρt

)
. (40)

It then follows from the V−update rule that

∥V(t+1)
c ∥F
ρt

=

∥∥∥∥∥D(t+1)
c −W(t+1)

c − V
(t)
c

ρt

∥∥∥∥∥
F

≤ 1

ρt

(
∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥

ρt

)
(41)

This establishes the inequality (26). Furthermore, by summing up (35) and (40) and applying the
triangle inequality, we verify the inequality (27).

18

B.2 Proof of Lemma 2

Proof. It follows from Lemma 1 that

∥V(t+1)
c ∥F ≤ ∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥F
ρt

≤ ∥H∥2∥D(t)
c ∥F + ∥G∥F +

∥H∥2∥V(t)
c ∥F

ρt

(42)

and

∥D(t+1)
c −D(t)

c ∥F ≤ 2

ρt

(
∥G−HD(t)

c ∥F +
∥HV

(t)
c ∥F
ρt

)

≤ 2

ρt

(
∥H∥2∥D(t)

c ∥F + ∥G∥F +
∥H∥2∥V(t)

c ∥F
ρt

)
.

(43)

This further implies

∥D(t+1)
c ∥F ≤

(
1 +

2∥H∥2
ρt

)
∥D(t)

c ∥F +
2∥G∥F

ρt
+

2∥H∥2∥V(t)
c ∥F

ρ2t
(44)

Combining inequalities (42) and (44) yields

∥D(t+1)
c ∥F +

∥V(t+1)
c ∥F
ρt+1

≤ ∥D(t+1)
c ∥F +

∥V(t+1)
c ∥F
ρt

≤
(
1 +

3∥H∥2
ρt

)
∥D(t)

c ∥F +
3∥G∥F

ρt
+

3∥H∥2∥V(t)
c ∥F

ρ2t

≤
(
1 +

3∥H∥2
ρt

)(
∥D(t)

c ∥F +
∥V(t)

c ∥F
ρt

)
+

3∥G∥F
ρt

(45)

Denote at := ∥D(t)
c ∥F + ∥V(t)

c ∥F /ρt, then the above inequality can be rewritten as

at+1 ≤
(
1 +

3∥H∥2
ρt

)
at +

3∥G∥F
ρt

(46)

Therefore,
at+1∏t

s=0(1 + 3∥H∥2/ρk)
≤ at∏t−1

s=0(1 + 3∥H∥2/ρk)
+

3∥G∥F
ρt
∏t

s=0(1 + 3∥H∥2/ρk)

≤ at∏t−1
s=0(1 + 3∥H∥2/ρk)

+
3∥G∥F

ρt

(47)

It then follows from telescoping that

at∏t−1
s=0(1 + 3∥H∥2/ρk)

≤ a0 +

t−1∑
s=0

3∥G∥F
ρt

(48)

Recalling the definition of at completes the proof.

C Details of the Refinement Stage

Algorithm 1 details the refinement stage, which further refines each model using Projected Conjugate
Gradient (PCG), following ALPS [30].

D Experimental Details

In this section, we provide more details about the experiment.

We perform all experiments on a GPU server equipped with 8 NVIDIA A6000 GPUs, each with
48GB of memory. However, for each individual experiment, we utilize only a single GPU. We use
PyTorch version 2.0.0 [35]. The total time of execution for all reproduce all experiments is around
100 hours.

19

Algorithm 1 PCG with vectorization [30] for ith task.
Require: Support S, pre-conditioner M = Diag(H), initial solution Wi

1: Set R(0) := Hi(Ŵ −Wi)
2: Project R(0) onto the support S by setting all elements outside the support to zero.
3: Set Z(0) = M−1R(0) and P(0) = Z(0)

4: for t = 0, 1, . . . do

5: α(t) =
sum(R(t) ⊙ Z(t), axis = 0)

sum(P(t) ⊙Q(t), axis = 0)

6: W
(t+1)
i = W

(t)
i + α(t) ⊙P(t)

7: R(t+1) = R(t) − α(t) ⊙HiP
(t)

8: Project R(t+1) onto the support S by setting all elements outside the support to zero.
9: Z(t+1) = M−1R(t+1)

10: if R(t+1) is sufficiently small then
11: break
12: end if

13: β(t) =
sum(R(t+1) ⊙ Z(t+1), axis = 0)

sum(R(t) ⊙ Z(t), axis = 0)
14: P(t+1) := Z(t+1) + β(t) ⊙P(t)
15: end for

Preference Vectors. For MOSP, we sample user preferences (λ) to trace the Pareto
front. In the two-objective scenario, we employ 11 uniform preference vectors (i.e.,
[1, 0], [0.9, 0.1], . . . , [0.1, 0.9], [0, 1]). For the three-objective scenario, we utilize 36 uniform pref-
erence vectors. These vectors are generated by defining a 2-simplex (an equilateral triangle where
components sum to 1) and selecting points (λ1, λ2, λ3) such that λi = ki/S for ki ∈ N0 and∑

i ki = S. For 36 vectors, this corresponds to S = 7. The meshzoo package 2 is used to help
generate the vertices of a triangular mesh, which correspond to these preference vectors. Each
preference vector λ produces a distinct pruned model on the Pareto front.

Hypervolume. The Hypervolume (HV) indicator [47, 21] is a popular metric in multi-objective
optimization (MOO), offering a measure of the quality of an obtained solution set by quantifying the
volume of the dominated portion of the objective space. Formally, for a given solution set P and a
reference point r ∈ Rm (where m is the number of objectives), the HV is defined as:

HV(P, r) = Λ

⋃
p∈P

{q ∈ Rm | p ⪰ q ⪰ r}

 , (49)

where Λ denotes the Lebesgue measure, and p ⪰ q means p dominates or is equal to q (assuming
maximization of objectives). A larger HV is preferable, indicating a better approximation of the true
Pareto front.

Hyperparameter Setting. As mentioned in the main paper, we set both α and p to 0.5. For other
hyperparameters, we follow the settings in [30]. Specifically, we set the initial penalty parameter
ρ0 = 0.1. We update ρ every 3 iterations based on a step function that depends on the current value
of ρt and st := |Supp(D(t))∆Supp(D(t−3))|. The term st represents the number of elements in
the symmetric difference between the support of D at iteration t and iteration t− 3. Specifically, the
update rule is:

ρt+1 =


1.3ρt if st ≥ 0.1k,

1.2ρt if st ≥ 0.005k,

1.1ρt if st ≥ 1.

(50)

where k is the total number of elements or parameters being considered for pruning. If st = 0, it
indicates that ρ is sufficiently large and the support has stabilized. For stage 2, the task-specific
ADMM, we use a fixed ρ = 0.5. We set γ to 0.01Tr(X⊤X). We refine each model with 10 PCG
iterations.

2https://github.com/meshpro/meshzoo

20

https://github.com/meshpro/meshzoo

Dataset. We use three publicly available datasets for our experiments:

• C4 (Colossal Clean Crawled Corpus)[36]: ODC-BY License. This is a large-scale, cleaned
version of the Common Crawl dataset, containing primarily English text. Following common
practice [37, 15, 30], we use a subset of C4 dataset. We use the same data split as [30].

• GSM8K (Grade School Math 8K)[9]: MIT License. A dataset comprising high-quality
grade school mathematics word problems designed to evaluate the multi-step reasoning
capabilities of models. We follow the official data split.

• Python Code[5]: CC-BY-4.0 License. An instruction-following dataset tailored for Python
code generation, styled after the Alpaca dataset. We follow the official data split.

Licenses for Models. The licenses for the models are as follows: for the LLaMA-2 series, the li-
cense is the "LLaMA 2 Community License Agreement"; for the LLaMA-3 series, it is the "LLaMA 3
Community License Agreement"; and for the OPT series, the license is the "OPT License Agreement."

E Additional Experimental Results

Extension to More Objectives. In this section, in addition to the three objectives discussed in
Section 4.3, we introduce a fourth objective: multilingual performance evaluated on ChineseWebText
2.0. All other experimental settings remain the same as in Section 4.3. The results, summarized in
Table 5, show that MOSP continues to effectively identify diverse Pareto-optimal solutions across all
four objectives.

Table 5: Test PPL of Llama-2-7B pruned to 70% unstructured sparsity with different preference
vectors.

Method C4 Code GSM8K Chinese

SparseGPT 30.52 3.21 3.60 16.57
ALPS 20.57 2.67 3.17 9.53
MOSP(λ(1) = [1, 0, 0, 0]) 19.17 3.37 3.42 14.31
MOSP(λ(2) = [0, 1, 0, 0]) 26.69 2.57 3.50 17.31
MOSP(λ(3) = [0, 0, 1, 0]) 25.07 3.25 3.07 18.30
MOSP(λ(4) = [0, 0, 0, 1]) 22.52 3.26 3.51 8.17
MOSP(λ(5) = [0.07, 0.07, 0.07, 0.8]) 20.19 2.97 3.34 8.52

Efficiency Improvement. Our observed speedups are consistent with those reported in SparseGPT
[15]. This is because speedups are fundamentally determined by model sparsity and hardware; the
pruning algorithm used makes only a minimal difference. We refer the reader to SparseGPT [15] for
more comprehensive results.

Additional Visualization Results. We present additional visualization results across various models
and sparsity levels. Figure 7 compares MOSP and SparseGPT when pruning Llama-2-7B to 50%,
60%, 70%, 80% unstructured sparsity and 2:4 semi-structured sparsity. Figures 8 and 9 show the
performance of Llama-2-7B pruned to 2:4 semi-structured sparsity and 80% sparsity, respectively.
Figures 10, 11, 12, 13, 14 show the performance of OPT-1.3B, OPT-2.7B, Llama-3-8B, Llama-2-13B,
and OPT-30B at 70% sparsity. These results demonstrate that the proposed method consistently
provides diverse trade-off solutions.

F Further Discussion on the Motivation

Our primary motivation is to serve the diverse range of user preferences that exist between the
extremes of "pure generality" and various "pure specializations." For instance, different deployments
of a model on edge devices may require different balances between capabilities: One user might
prioritize language understanding (60% importance) over coding (30%) and math (10%), while
another may require strong mathematical reasoning (80% importance). As the number of objectives

21

increases, these preference combinations grow exponentially. MOSP efficiently addresses this by
obtaining a set of trade-off models in a single pruning run. This allows users to select the best-fit
model for their specific needs post-training, avoiding the significant computational cost of re-pruning
for every new preference. For instance, handling 100 distinct user preferences with traditional
methods would take over 100 hours, whereas MOSP accomplishes this in just 1.36 hours. This
approach also uniquely allows for dynamic preference adjustments.

Comparison with Single-Objective Baselines. To further contextualize these trade-offs, we com-
pared MOSP against single-objective optimization by running the ALPS baseline on each task
individually. The results are shown in Table 6. As can be seen, single-objective ALPS achieves
optimal performance on its target task but shows significant degradation on others. ALPS (optimized
on all 3 objectives) provides more balanced performance but offers only one single pruned model
for all possible user preferences. MOSP enables users to select from various reasonable trade-offs,
maintaining acceptable performance across all tasks while allowing preference-based customization.

Table 6: Comparison of MOSP and single-objective optimization using ALPS.
Method C4 GSM8K Code

ALPS (optimized on C4only) 17.66 18.71 5.00
ALPS (optimized on GSM8Konly) 39.63 2.96 7.85
ALPS (optimized on Codeonly) 44.88 4.63 2.43
ALPS (optimized on all 3 objectives) 20.44 2.63 3.12

MOSP (λ = [1, 0, 0]) 18.80 3.37 3.20
MOSP (λ = [0, 1, 0]) 24.33 3.05 3.06
MOSP (λ = [0, 0, 1]) 25.82 3.43 2.53
MOSP (λ = [0.72, 0.14, 0.14]) 19.30 3.20 2.79

Interpreting the multi-stage optimization. For efficient Pareto front exploration, we design a
multi-stage optimization which disentangles the shared and task-specific knowledge through the
following interactions:

Stage 1 (Dual ADMM): Identifies a foundational "core support" representing weights broadly
beneficial across all tasks. This captures common knowledge required for the multi-task problem and
serves as a strong shared prior.

Stage 2 (Task-specific ADMM): Leverages the core support from Stage 1 to guide task-specific
pruning. For each task, it performs a separate ADMM procedure where the core support acts as
regularization, ensuring task-specific weights build upon the shared foundation while incorporating
task specific adaptation.

This two-stage decomposition enables efficient Pareto front exploration, decoupling of shared knowl-
edge preservation from task-specific optimization.

G Broader Impacts

This paper proposes a new method for providing personalized pruned models tailored to different
users. By utilizing these pruned models, users can reduce computational costs, making the approach
more environmentally friendly. However, as with other pruning methods, the models may produce
more inaccurate outputs after pruning. Therefore, careful verification of the results is necessary
during use.

22

20 40 60 80 100
C4

3.0

3.5

4.0

4.5

5.0

GS
M

8K

MOSP (50%)
SparseGPT (50%)
MOSP (60%)
SparseGPT (60%)
MOSP (70%)
SparseGPT (70%)
MOSP (80%)
SparseGPT (80%)
MOSP (2:4)
SparseGPT (2:4)

Figure 7: Test PPL on C4and GSM8Kfor Llama-2-7B pruned to 50%, 60%, 70%, 80% unstructured
sparsity and 2:4 semi-structured sparsity.

11.0
11.5

12.0
12.5

13.0
13.5

C4

2.85
2.90

2.95
3.00

3.05

GSM8K

2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65

Code

MOSP
ALPS
SparseGPT

11.0 11.5 12.0 12.5 13.0
C4

2.85

2.90

2.95

3.00

3.05

GS
M

8K

11.0 11.5 12.0 12.5 13.0
C4

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Co
de

2.85 2.90 2.95 3.00 3.05
GSM8K

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Co
de

Figure 8: Test PPL on C4, GSM8K, and Code for Llama-2-7B pruned to 2:4 semi-structured sparsity.

23

11.0
11.5

12.0
12.5

13.0
13.5

C4

2.85
2.90

2.95
3.00

3.05

GSM8K

2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65

Code

MOSP
ALPS
SparseGPT

11.0 11.5 12.0 12.5 13.0
C4

2.85

2.90

2.95

3.00

3.05

GS
M

8K

11.0 11.5 12.0 12.5 13.0
C4

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Co
de

2.85 2.90 2.95 3.00 3.05
GSM8K

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

Co
de

Figure 9: Test PPL on C4, GSM8K, and Code for Llama-2-7B pruned to 80% sparsity.

150
200

250
300

350 C4

12
14

16
18

20
22

24
26

28

GSM8K

8
9

10
11
12
13
14
15

Code

MOSP
ALPS
SparseGPT

150 200 250 300 350
C4

12

14

16

18

20

22

24

26

GS
M

8K

150 200 250 300 350
C4

9

10

11

12

13

14

15

Co
de

12 14 16 18 20 22 24 26
GSM8K

9

10

11

12

13

14

15

Co
de

Figure 10: Test PPL on C4, GSM8K, and Code for OPT-1.3B pruned to 80% sparsity.

24

22
23

24
25

26
C4

5.8
5.9

6.0
6.1

6.2
6.3

6.4
6.5

GSM8K

3.80
3.85
3.90
3.95
4.00
4.05
4.10
4.15

Code

MOSP
ALPS
SparseGPT

22 23 24 25 26
C4

5.9

6.0

6.1

6.2

6.3

6.4

6.5

GS
M

8K

22 23 24 25 26
C4

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

Co
de

5.9 6.0 6.1 6.2 6.3 6.4 6.5
GSM8K

3.80

3.85

3.90

3.95

4.00

4.05

4.10

4.15

Co
de

Figure 11: Test PPL on C4, GSM8K, and Code for OPT-2.7B pruned to 70% sparsity.

35
40

45
50

55
C4

3.8
3.9

4.0
4.1

4.2
4.3

4.4
4.5

GSM8K

3.2
3.4
3.6
3.8

4.0

4.2

Code

MOSP
ALPS
SparseGPT

35 40 45 50 55
C4

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

GS
M

8K

35 40 45 50 55
C4

3.2

3.4

3.6

3.8

4.0

4.2

Co
de

3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5
GSM8K

3.2

3.4

3.6

3.8

4.0

4.2

Co
de

Figure 12: Test PPL on C4, GSM8K, and Code for LLaMMA-3-8B pruned to 70% sparsity.

25

16
18

20
22 C4

2.80
2.85

2.90
2.95

3.00
3.05

3.10
3.15

GSM8K

2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75

Code

MOSP
ALPS
SparseGPT

16 18 20 22
C4

2.80

2.85

2.90

2.95

3.00

3.05

3.10

GS
M

8K

16 18 20 22
C4

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.75

Co
de

2.80 2.85 2.90 2.95 3.00 3.05 3.10
GSM8K

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

2.75

Co
de

Figure 13: Test PPL on C4, GSM8K, and Code for LLaMMA-2-13B pruned to 70% sparsity.

12.813.013.213.413.613.814.014.214.4
C4

4.45
4.50

4.55
4.60

4.65

GSM8K

2.90
2.92
2.94
2.96
2.98
3.00
3.02
3.04

Code

MOSP
ALPS
SparseGPT

13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4
C4

4.45

4.50

4.55

4.60

4.65

GS
M

8K

13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4
C4

2.90

2.92

2.94

2.96

2.98

3.00

3.02

3.04

Co
de

4.45 4.50 4.55 4.60 4.65
GSM8K

2.90

2.92

2.94

2.96

2.98

3.00

3.02

3.04

Co
de

Figure 14: Test PPL on C4, GSM8K, and Code for OPT-30B pruned to 70% sparsity.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we focus on LLM one-shot pruning, and the contributions are clearly
outlined in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitation in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

27

Justification: We provide the proof in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the main experimental
results of the paper in Section 4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [No]
Justification: We have provided all the necessary details to reproduce the experiments in
Appendix D. The code will be released later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided experimental setting in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to resource constraints, we did not report error bars but will include them
if additional GPUs become available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

30

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the datasets and models and provide the license information in
Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

31

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

32

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Network Pruning
	One-Shot Unstructured and Semi-structured LLM Pruning
	Multi-Objective Optimization

	Multi-Objective LLM Pruning
	Straight-Forward Multi-Objective Extension of ALPS
	Proposed Method
	Dual ADMM for Core Support Identification
	Task-Specific ADMM
	Inference
	Computation Cost
	Extension to Semi-Structured Sparsity

	Experiments
	Setup
	Two-Objective Pruning
	Three-Objective Pruning
	Ablation Studies

	Conclusion
	Detailed Derivation of Dual ADMM
	ADMM for Inner Problem
	ADMM for Outer Problem

	Proofs of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2

	Details of the Refinement Stage
	Experimental Details
	Additional Experimental Results
	Further Discussion on the Motivation
	Broader Impacts

