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ABSTRACT

Textural Inversion, a prompt learning method, learns a singular embedding for a
new “word” to represent image style and appearance, allowing it to be integrated
into natural language sentences to generate novel synthesised images. However,
identifying and integrating multiple object-level concepts within one scene poses
significant challenges even when embeddings for individual concepts are attain-
able. This is further confirmed by our empirical tests. To address this challenge,
we introduce a framework for Multi-Concept Prompt Learning (MCPL), where
multiple new “words” are simultaneously learned from a single sentence-image
pair. To enhance the accuracy of word-concept correlation, we propose three reg-
ularisation techniques: Attention Masking (AttnMask) to concentrate learning on
relevant areas; Prompts Contrastive Loss (PromptCL) to separate the embeddings
of different concepts; and Bind adjective (Bind adj.) to associate new “words”
with known words. We evaluate via image generation, editing, and attention vi-
sualisation with diverse images. Extensive quantitative comparisons demonstrate
that our method can learn more semantically disentangled concepts with enhanced
word-concept correlation. Additionally, we introduce a novel dataset and evalua-
tion protocol tailored for this new task of learning object-level concepts.
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Figure 1: Multi-concepts learning and composition with previous vs. our approach. Textural In-
version (left) can only learn a single concept from each image and fails at composing multiple ones.
In contrast, our method (right) can learn, compose, and edit multiple concepts simultaneously. The
learning input consists of image(s) accompanied by descriptive sentences with learnable prompts,
represented as coloured pseudo words. The average cross-attentions and the corresponding mask of
the learned prompts denote a disentangled and precise prompt-concept correlation.

1 INTRODUCTION

In nurseries, toddlers are shown pictures to learn new things. Teachers talk about each picture
using sentences with new ideas, like sentences with unfamiliar words. In the Figure 1 right (ours)
example, the describing sentence for the images is: “a photo of brown * on a rolling & at time
square”. Here, “* (teddy bear)” and “& (skateboard)” are the unfamiliar concepts to be learned.
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This way of learning with images and simple natural language descriptions is more economical
and preferred over the current method of teaching machines using detailed contours and masks.

Recent research (Gal et al. (2022); Ruiz et al. (2022)) shows that the appearance and style of an
image can be encapsulated as a cohesive concept via a learned prompt (“word”). The textural em-
bedding of this new prompt is optimised in the frozen embedding space of a pre-trained text-to-
image diffusion model to reconstruct several example input images. The concept conveyed by the
learned prompt can then be composed into natural language sentences to generate or edit various
novel scenes. Despite the significant interest in object-level image editing, (Wu et al., 2020; Meng
et al., 2021; Hertz et al., 2022), Gal et al. (2022) points out that recent prompt learning methods
struggle with learning and composing multiple prompts within multi-object scenes (Figure 1 left).

Break-A-Scene (Avrahami et al., 2023), a mask-based method, recently achieved SoTA in multi-
concept prompt learning. Yet, learning object-level concepts using only natural language descrip-
tions, without precise object segmentation, remains largely unexplored. In this work, we start with
a motivational study that confirm while applying careful samplings such as manual masking or crop-
ping yields distinct embeddings, object-level learning and editing with only text-guidance remains
challenging. Motivated by this finding, we introduce Multi-Concept Prompt Learning (MCPL) Fig-
ure 2 (Top) for mask-free text-guided learning of multiple prompts from one scene.

However, without further assumptions on the embedding relationships, jointly learning multiple
prompts is problematic. The model may disregard the semantic associations and instead prioritise
optimising multiple embedding vectors for optimal image-level reconstruction. To enhance the ac-
curacy of prompt-object level correlation, we propose the following regularisation techniques: 1) To
ensure a concentrated correlation between each prompt-concept pair, we propose Attention Mask-
ing (AttnMask), restricting prompt learning to relevant regions defined by a cross-attention-guided
mask. 2) Recognising that multiple objects within a scene are semantically distinct, we introduce
Prompts Contrastive Loss (PromptCL) to facilitate the disentanglement of prompt embeddings asso-
ciated with multiple concepts. 3) To further enable accurate control of each learned embedding, we
bind each learnable prompt with a related descriptive adjective word, referred to as Bind adj., that
we empirically observe has a strong regional correlation. The middle and bottom row of Figure 2
illustrates the proposed regularisation techniques.

In this work we implement our proposed method based on Textural Inversion by Gal et al. (2022),
but the method can be adapted to other prompt learning methods such as Dreambooth by Ruiz et al.
(2022). To our knowledge, our technique is the first to address the novel and challenging problem of
learning and composing multiple concepts within multi-object scenes. To evaluate this task, we as-
sembled datasets of multi-concept images featuring a total of 16 categories of object-level concepts.
These datasets include both natural images, familiar to the pre-trained model, and out-of-distribution
biomedical images, each equipped with object-level masks. We evaluate and demonstrate that our
framework enables enhanced precision in object-level concept learning, synthesis, editing, quan-
tification, and understanding of relationships between multiple objects, as exemplified in Figure 1
(right) and further illustrated in Figure 9. Through extensive quantitative analysis of approximately
4000 learned object-level embeddings, using both t-SNE and four robust, pre-trained text/image em-
bedding spaces, we validate that our method excels in discerning semantically distinct object-level
concepts, ensuring enhanced prompt-to-concept correlation.

2 RELATED WORKS

Prompt learning for image concept inversion. Prompt tuning, first proposed by Lester et al.
(2021), has been utilised to expedite the tuning of large language models for downstream tasks. Jia
et al. (2022); Zhou et al. (2022) further extended this approach to vision-language models such as
CLIP (Radford et al. (2021)). In the context of text-guided image synthesising, prompt learning
would enable connecting the appearance and style of an unseen image to a learnable prompt and
transferring to newly generated images, as demonstrated by Textural Inversion Gal et al. (2022)
and DreamBooth Ruiz et al. (2022). Addressing multi-concepts, Kumari et al. (2023) fine-tune
cross-attention layers using single-concept images for better composition, while Break-A-Scene
(Avrahami et al., 2023) employs ground-truth object segmentation for improved learning, yet both
approaches depend on carefully selected images or masks.
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Figure 2: Method overview. MCPL takes a sentence (top-left) and a sample image (top-right) as input,
feeding them into a pre-trained text-guided diffusion model comprising a text encoder cϕ and a denoising
network ϵθ . The string’s multiple prompts are encoded into a sequence of embeddings which guide the network
to generate images X̃0 close to the target one X0. MCPL focuses on learning multiple learnable prompts
(coloured texts), updating only the embeddings {v∗} and {v&} of the learnable prompts while keeping cϕ
and ϵθ frozen. We introduce Prompts Contrastive Loss (PromptCL) to help separate multiple concepts within
learnable embeddings. We also apply Attention Masking (AttnMask), using masks based on the average cross-
attention of prompts, to refine prompt learning on images. Optionally we associate each learnable prompt with
an adjective (e.g., “brown” and “rolling”) to improve control over each learned concept, referred to as Bind adj.

Mask and text-driven local image editing. In the context of diffusion mode, Meng et al. (2021)
first proposed SDEdit for mask-guided image-to-image style translation. Lugmayr et al. (2022)
developed RePaint to enable mask-guided local image editing. Avrahami et al. (2022) further condi-
tioned local editing with text condition. These methods use manual masks prior to guide local image
editing. A set of recent works showed that text-guided local object-level editing can be achieved
without using a mask prior but instead the attention-derived masks (Hertz et al. (2022); Tumanyan
et al. (2023); Patashnik et al. (2023)). The success of these approaches heavily relies on the accurate
text-concept semantic correlation in the pre-trained model and is limited to in-distribution concepts.

Disentangled per-concept image editing. Interpretable and disentangled per-concept image ma-
nipulation has garnered significant interest in the literature on Generative Adversarial Networks
(GANs). Traditional approaches often focus on layer-wise or channel-wise control within a pre-
trained generator network. The goal is to identify and modify a subset of parameters responsible for
specific concepts (Brock et al., 2018; Karras et al., 2020; Wu et al., 2020). Although our work is not
centred on GAN-based approaches, we emphasise that we directly optimise multiple embeddings
rather than network parameters. This methodology has been shown to better adapt to unseen and
novel concepts by Gal et al. (2022).

3 METHODS

In this section, we outline the preliminaries in Section 3.1 and present a motivational study in Sec-
tion 3.2. These tests show the challenges of applying current methods in text-guided learning of
multiple prompts from one scene. Inspired by these results, we introduce the Multi-Concept Prompt
Learning (MCPL). To address the multi-object optimisation challenge tandem with a single image-
level reconstruction goal, we propose several regularisation techniques in Section 3.4.

3.1 PRELIMINARIES: PROMPT LEARNING IN TEXT-TO-IMAGE DIFFUSION MODEL

Text-guided diffusion models are probabilistic generative models trained to approximate the train-
ing data distribution through a process of incremental denoising from Gaussian random noise, con-
ditioned on text embeddings. Specifically, a denoising network ϵθ is trained to map an initial noise
map ϵ ∼ N (0, I) and conditional textual embedding v = cϕ(p) to generate images x̃ close to the
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target one x. Here cϕ is the text encoder and p is the text prompt. To enable sequential denoising,
cϕ and ϵθ are jointly optimised to minimize the loss:

LDM = LDM (x, x̃) := Ex0,ϵ∼N(0,I),t∼Uniform(1,T )∥ϵ− ϵθ(xt, t, cϕ(p))∥2, (1)

where xt is obtained by adding noise to the initial image x0 at a given time step t in the set T .
During inference, the pre-trained model iteratively eliminates noise from a new random noise map
to generate a fresh image. Our work builds on Latent Diffusion Models (LDMs) (Rombach et al.,
2022), which operate on the latent representation z = E(x) provided by an encoder E .

The prompt learning method by (Gal et al. (2022)) is aimed at identifying the text embedding v∗ for
a new prompt p∗ in a pre-trained text-guided diffusion model. Given a few (3-5) example images
representing a specific subject or concept, the method optimises v∗ in the frozen latent space of a
pre-trained text encoder cϕ. The objective is to generate an image via the denoising network ϵθ that
closely resembles the example images when conditioned on v∗. The optimisation is guided by the
diffusion model loss defined in equation 1, updating only v∗ while keeping cϕ and ϵθ frozen. Our
training approach aligns with the Textural Inversion strategy outlined in Appendix A.11.

Cross-attention layers play a pivotal role in directing the text-guided diffusion process. Within
the denoising network, ϵθ, the textual embedding, v = cϕ(p), interacts with the image embedding,
z = E(x), via the cross-attention layer. Here, Q = fQ(z), K = fK(v), and V = fV (v) are
acquired using learned linear layers fQ, fK , fV . As Hertz et al. (2022) highlighted, the per-prompt
cross-attention maps, M = Softmax(QKT /

√
d), correlate to the similarity between Q and K.

Therefore the average of the cross-attention maps over all time steps reflects the crucial regions
corresponding to each prompt word, as depicted in Figure 2. In this study, the per-prompt attention
map is a key metric for evaluating the correlation between prompt and concept. Our results will
show that without adequate constraints, the attention maps for newly learned prompts often lack
consistent disentanglement and precise prompt-concept correlation.

3.2 MOTIVATIONAL STUDY: IS IMAGE-LEVEL PROMPT LEARNING SUFFICIENT FOR
OBJECT-LEVEL MULTI-CONCEPT LEARNING?

Do multiple distinct embeddings arise from the same image? To understand the challenges in
learning and composing multiple concepts, we explored whether Textural Inversion can discern se-
mantically distinct concepts from processed images, each highlighting a single concept. Following
Wu et al. (2020), we used images with manual masks to isolate concepts, as seen in Figure 3 (left).
We applied Textural Inversion to these images to learn embeddings for the unmasked or masked
images. Our findings indicate that when focusing on isolated concepts, Textural Inversion can suc-
cessfully learn distinct embeddings, as validated by the generated representations of each concept.

Is separate learning of concepts sufficient for multi-object image generation? While separate
learning with carefully sampled or masked images in a multi-object scene deviates from our objec-
tive, it is valuable to evaluate its effectiveness. Specifically, we use Textural Inversion to separately
learn concepts like “ball” and “box” from carefully cropped images, as shown in Figure 3 (sec-
ond column). We then attempt to compose images using strings that combine these concepts, such
as ”a photo of a green ball on orange box.” Our results indicate that the accurate composition of
multi-object images remains challenging, even when individual concepts are well-learned.

3.3 MULTI-CONCEPT PROMPT LEARNING (MCPL)

Our motivational study confirm that: 1) multiple unique embeddings can be derived from a single
multi-concept image, albeit with human intervention, and 2) despite having well-learned individual
concepts, synthesizing them into a unified multi-concept scene remains challenging. To address
these issues, we introduce the Multi-Concept Prompt Learning (MCPL) framework. MCPL modi-
fies Textural Inversion to enable simultaneous learning of multiple prompts within the same string.
In specific, MCPL learn a list of multiple embeddings V = [v∗, . . . , v&] corresponds to multiple
new prompts P = [p∗, . . . , p&]. The optimisation is still guided by the image-level LDM , but now
updating {v∗, . . . , v&} while keeping cϕ and ϵθ frozen. The MCPL algorithm is outlined in Ap-
pendix A.11, Algorithm 2. Recognising the complexity of learning multiple embeddings with a
single image-generation goal, we propose three training strategies: 1) MCPL-all, a naive approach
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Figure 3: minor-update Motivational Study with “Watch Face-Band” and “Ball-Box” Images.
Left: Embeddings are learned using Textural Inversion (T.I.) on both multi-concept (unmasked) and
single-concept (masked) images. Right: Concepts of “ball” and “box” are learned and composed
using different methods: T.I., which crops and learns each concept separately; MCPL-one, learning
both concepts jointly from uncropped examples with a single string; and MCPL-diverse accounting
for per-image specific relationships. Refer to Appendix Section A.9 for more results.

that learns embeddings for all prompts in the string (including adjectives, prepositions and nouns.
etc.); 2) MCPL-one, which simplifies the objective by learning single prompt (nouns) per concept; 3)
MCPL-diverse, where different strings are learned per image to observe variances among examples.
Preliminary evaluations of MCPL-one and MCPL-diverse methods on the “ball” and “box” multi-
concept task are shown in Figure 3. Our findings indicate that MCPL-one enhance the joint learning
of multiple concepts within the same scene over separate learning. Meanwhile, MCPL-diverse goes
further by facilitating the learning of intricate relationships between multiple concepts.

Limitations of plain MCPL. Our primary aim is to facilitate accurate interpretation and modi-
fication of multi-concept scenes. To evaluate object-level prompt-concept correlation, we visualise
the average cross-attention maps for each prompt. As depicted in Figure 4, both MCPL-one and
MCPL-all inadequately capture this correlation, especially for the target concept. These results sug-
gest that naively extending image-level prompt learning techniques (Gal et al., 2022) to object-level
multi-concept learning poses optimisation challenges, notwithstanding the problem reformulation
efforts discussed in Section 3.3. Specifically, optimising multiple object-level prompts based on a
single image-level objective proves to be non-trivial. Given the image generation loss equation 1,
prompt embeddings may converge to trivial solutions that prioritize image-level reconstruction at
the expense of semantic prompt-object correlations, thereby contradicting our objectives. In the
next section, we introduce multiple regularisation terms to overcome this challenge.

   "a        photo        of       green        *           on      orange      @"MaskImage

MCPL-one
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Figure 4: (reposition) Enhancing object-level prompt-concept correlation in MCPL using the
proposed AttnMask, PromptCL and Bind adj. regularisation techniques. We compare our best
results of MCPL-one applying all regularisation terms against the plain MCPL-one, using a “Ball and
Box” example (left) and the plain MCPL-all, using a “Hamster and Watermelon” example (right).
We use the average cross-attention maps and the AttnMask to assess the accuracy of correlation.

3.4 REGULARISING THE MULTIPLE OBJECT-LEVEL PROMPTS LEARNING

Encouraging focused prompt-concept correlation with Attention Masking (AttnMask). Pre-
vious results show plain MCPL may learn prompts focused on irrelevant areas. To correct this, we
apply masks to both generated and target images over all the denoising steps (Figure 2, middle-right).
These masks, derived from the average cross-attention of learnable prompts (Figure 2, bottom-row),
constrain the image generation loss (equation 1) to focus on pertinent areas, thereby improving
prompt-concept correlation. To calculate the mask, we compute for each learnable prompt p ∈ P
the average attention map over all time steps M

p
= 1/T

∑T
t=1 M

p
t . We then apply a threshold to

produce binary maps for each learnable prompt, where B(Mp) := {1 if Mp > k, 0 otherwise} and
k = 0.5 throughout all our experiments. For multiple prompt learning objectives, the final mask
M is a union of multiple binary masks of all learnable prompts M =

⋃
p∈P B(Mp). We compute
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the Hadamard product of M with x and x̃ to derive our masked loss LAttnMask
DM as equation 2. Our

AttnMask is inspired by Hertz et al. (2022), but a reverse of the same idea, where the AttnMask is
applied over the pixel-level loss equation 1 to constrain the prompt learning to only related regions.

LAttnMask
DM = LDM (M⊙ x,M⊙ x̃), (2)

Encouraging semantically disentangled multi-concepts with Prompts Contrastive Loss
(PromptCL). AttnMask focuses the learning of multiple prompts on the joint area of target ob-
jects, eliminating the influence of irrelevant regions like the background. However, it doesn’t in-
herently promote separation between the embeddings of different target concepts. Leveraging the
mutual exclusivity of multiple objects in a scene, we introduce a contrastive loss in the latent space
where embeddings are optimised. Specifically, we employ an InfoNCE loss Oord et al. (2018), a
standard in contrastive and representation learning, to encourage disentanglement between groups
of embeddings corresponding to distinct learnable concepts (Figure 2, middle-left).

Concretely, at each learning step as described in Algorithm 2, a mini-batch B minor augmented
(e.g. with random flip) example images are sampled, with N learnable prompts/concepts for each
image, yields a set of BN embeddings, {vnb }Bb=1,

N
n=1. Then, the similarity between every pair vi

and vj of the BN samples is computed using cosine similarity, i.e. sim(vi, vj) = vTi .vj/||vi||||vj ||.
Given our goal is to differentiate the embeddings corresponding to each prompt, we consider the
embeddings of the same concept as positive samples while the others as negative. Next, the con-
trastive loss lηi,j∈B for a positive pair vηi and vηj of each concept η ∈ N (two augmented views of
the example image) is shown in the equation 3, where τ is a temperature parameter following Chen
et al. (2020). The contrastive loss is computed for BN views of each of the N learnable concepts.
The total contrastive loss LPromptCL is shown in equation 4 (left).

lηi,j∈B = −log(
exp(sim(vηi , v

η
j ))/τ∑N

η=1

∑B
j=1,j ̸=i exp(sim(vηi , v

η
j )/τ)

) (3)

LPromptCL =
1

N

1

B

N∑
η=1

B∑
i=1

lηi,j∈B , Ladj
PromptCL =

1

NM

1

B

NM∑
η=1

B∑
i=1

lηi,j∈B (4)

Enhance prompt-concept correlation by binding learnable prompt with the adjective word
(Bind adj.). An additional observation from the misaligned results in Figure 38 reveals that adjec-
tive words often correlate strongly with specific regions. This suggests that the pre-trained model
is already adept at recognising descriptive concepts like colour or the term ”fluffy.” To leverage
this innate understanding, we propose to optionally associate one adjective word for each learn-
able prompt as one positive group during the contrastive loss calculation. In particular, consider
M adjective words associated with N learnable prompts. Then the positive pair vηi and vηj of each
concept is sampled from η ∈ MN instead of N . Therefore the contrastive loss is now computed for
BNM views of each of the N learnable concepts. The resulting total contrastive loss Ladj

PromptCL

is detailed in equation 4 (right). We scale Ladj
PromptCL with a scaling term γ and add with LAttnMask

DM

(equation 2), for them to have comparable magnitudes, resulting our final loss in equation 5.

L = LAttnMask
DM + γLadj

PromptCL, (5)

Implementation details. Unless otherwise noted, we retain the original hyper-parameter choices
of LDM (Rombach et al., 2022). All learnable embeddings were initialised by the encoding of
each pseudo word, such as “*”. Our experiments were conducted using a single V100 GPU with a
batch size of 4. The base learning rate was set to 0.005. Following LDM, we further scale the base
learning rate by the number of GPUs and the batch size, for an effective rate of 0.02. On calculating
LPromptCL, we apply the temperature and scaling term (τ, γ) of (0.2, 0.0005) when AttnMask is
not applied, and (0.3, 0.00075) when AttnMask is applied. All results were produced using 6100
optimisation steps. We find that these parameters work well for most cases.
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4 RESULTS

4.1 ASSESSING REGULARISATION TERMS WITH CROSS-ATTENTION

We start with assessing our proposed regularisation terms on improving the accuracy of seman-
tic correlations between prompts and concepts. We visualise the cross-attention and segmentation
masks, as shown in Figure 4. Our visual results suggest that incorporating all of the proposed regu-
larisation terms enhances concept disentanglement, whereas applying them in isolation yields subop-
timal outcomes (refer to full ablation results in Appendix A.10). Moreover, the results demonstrate
that MCPL-one is a more effective learning strategy than MCPL-all, highlighting the importance of
excluding irrelevant prompts to maintain a focused learning objective.

4.2 QUANTITATIVE EVALUATIONS

We collect both in-distribution natural images and out-of-distribution biomedical images over 16
object-level concepts, with all images containing multiple concepts and object-level masks (see
examples in Figure 5). We collected 40 images for each concept, full details of dataset preparation
in Appendix A.12. We compare three baseline methods: 1) Textural Inversion applied to each
masked object serving as our best estimate for the unknown disentangled “ground truth” embedding.
2) Break-A-Scene (BAS), the state-of-the-art (SoTA) mask-based multi-concept learning method,
serves as a performance upper bound, though it’s not directly comparable. 3) MCPL-all as our
naive adaptation of the Textural Inversion method to achieve the multi-concepts learning goal. For
our method MCPL-all and MCPL-one, we examine four variations to scrutinise the impact of the
regularisation terms discussed in Section 3.4. It’s important to note that, all learning with our method
is performed on unmasked images. To assess the robustness of each learning method, we randomly
sample four images to learn an embedding, leading to 10 (all MCPL-based methods) or 5 (BAS)
learned embeddings per concept. The experiments were executed on a single V100 GPU, with
each run taking approximately one hour, resulting in a total computational cost of around 2100 GPU
hours (or 87 days on a single GPU). We employed various metrics to evaluate the four methods.

Mask-based

SoTA:


Break-A-
Scene

hamster-watermelonbananas-basketcactus-ball
 cavity-myocardium tumour-edema ransition-peripheral


Ground
truth

Figure 5: Visualisation of the prepared ground truth examples (top) and the generated images with
Break-A-Scene (bottom). Note that BAS requires segmentation masks as input and employs separate
segmentation models to produce masked objects, thus serving as a performance upper-bound. See
the full 16 concepts dataset in Appendix A.13 and all BAS generated images in Appendix A.6.

Investigate the disentanglement of learned embeddings with t-SNE. To assess disentangle-
ment, we begin by visualising the t-SNE projection of the learned features Van der Maaten & Hinton
(2008). The results, depicted in Figure 7, encompass both natural and biomedical datasets. They
illustrate that our MCPL-one combined with all regularisation terms can effectively distinguish all
learned concepts compared to all baselines. It’s noteworthy that the learned embeddings from both
the mask-based ’ground truth’ and BAS show less disentanglement compared to ours, attributable to
their lack of a specific disentanglement objective, such as the PromptCL loss in MCPL. This finding
confirms the necessity of our proposed method.

Embedding similarity comparing to the estimated “ground truth”. To assess the preservation
of per-concept semantic and textural details, we calculate both prompt and image fidelity. This
evaluation follows prior research by Gal et al. (2022) and Ruiz et al. (2022), but differently, we
perform the calculations at the object level. We compared the masked “ground truth” and generated
masked-objects across four embedding spaces. For both BAS and our MCPL variants, we initially
learned object-level concepts and then generated masks. Specifically for BAS, we used separate pre-
trained segmentation models—MaskFormer (Cheng et al., 2021) for natural images and human-in-
the-loop MedSAM (Ma & Wang, 2023) for medical images—to create masked objects (see Figure 5
and Appendix A.1 for details). In contrast, our method employed its own AttnMask to generate
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Figure 6: Visualisation of generated concepts with the “SoTA” and our method. Masks are
derived from cross-attentions. Full ablation results are presented in the Appendix A.8

in-distribution natural images out-of-distribution biomedical images

Mask-based SoTA: Break-A-Scene Mask-based SoTA: Break-A-Scene 'Ground Truth': Textural Inversion (T.I.) + mask

Ours: MCPL-one + AttnMask + PromptCL 

+ Bind adj.

MCPL-all (modify T.I. to learn all prompts) MCPL-all (modify T.I. to learn all prompts) Ours: MCPL-one + AttnMask + PromptCL 

+ Bind adj.

'Ground Truth': Textural Inversion (T.I.) + mask

Figure 7: The t-SNE projection of the learned embeddings. Our method can effectively dis-
tinguish all learned concepts compared to Textural Inversion (MCPL-all), the SoTA mask-based
learning method, Break-A-Scene, and the masked ’ground truth’ (full results in Appendix A.7).

masked images (as shown in Figure 6). We generated a total of 320 masked objects for each MCPL
variant and 160 for the BAS baseline, with 20 (10 for BAS) masked images per concept. Prompt
fidelity is determined by measuring the average pairwise cosine similarity between the embeddings
learned from the estimated “ground truth” and the generated masked images, in the pre-trained
embedding space of BERT (Devlin et al., 2018). For image fidelity, we compare the average pairwise
cosine similarity in the pre-trained embedding spaces of CLIP Radford et al. (2021), DINOv1 (Caron
et al., 2021) and DINOv2 (Oquab et al., 2023), all based on the ViT-S backbone.

The results in Figure 8 show our method combined with all the proposed regularisation terms
can improve both prompt and image fidelity consistently. Our fully regularised version (MCPL-
one+CL+Mask) achieved competitive performance compared to the SoTA mask-based method
(BAS) on the natural dataset. In the OOD medical dataset, BAS outperformed our method signifi-
cantly in the DINOv1 embedding space, although the performance was comparable in other spaces.
This discrepancy is due to the less accurate object masks in our method compared to BAS, which
employs human-in-the-loop MedSAM (Ma & Wang, 2023) for segmentation, as evident in Figure 6
and Figure 5.

4.3 APPLICATIONS: IMAGE EDITING OVER DISENTANGLED CONCEPTS.

Finally we demonstrate our method enables more accurate object-level synthesis, editing and quan-
tification (Figure 9 top-left). The framework also has the flexibility to handle per-image speci-
fied string to learn the differences concepts within each image, as shown in the top-right example
of Figure 9. Furthermore, our method can also learn unknown concepts from challenging out-of-
distribution images (Figure 9 bottom-left and right), opening an avenue of knowledge mining from
pairs of textbook figures and captions, which are abundantly available on the internet.
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Figure 8: Embedding similarity in learned object-level concepts compared to masked “ground truth”.
We evaluate the embedding similarity of our multi-concept adaptation of Textural Inversion (MCPL-all) and the
state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by Avrahami et al. (2023), against
our regularised versions. The analysis is conducted in both pre-trained text (BERT) and image encoder spaces
(CLIP, DINOv1, and DINOv2), with each bar representing an average of 40,000 pairwise cosine similarities.
A comprehensive object-level comparison is available in the Appendix (Section A.5).
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Figure 9: MCPL learning and composing capabilities. (top-left) learning and editing multiple concepts
with a single string; (top-right) learning per-image different concepts with per-image specified string; (bottom-
left) learning to disentangle multiple unseen concepts from cardiac MRI images; (bottom-right) learning to
disentangle multiple unseen concepts from chest X-ray images.

5 LIMITATIONS AND CONCLUSIONS

We identify the following limitations in our method: (1) Imperfect Masking: Our reliance on image-
level text descriptions, instead of segmentation masks, grants flexibility in exploring unknown con-
cepts but results in less precise object boundary optimization. Future research could use our Attn-
Mask as an input prompt to segmentation models for mask refinement. (2) Composition Capability:
MCPL’s composition strength is weaker than BAS, as MCPL doesn’t update model parameters,
unlike BAS. Integrating MCPL with weight optimization methods like BAS or DreamBooth may
enhance performance, albeit at higher computational costs, which is a potential direction for future
work. (3) Evaluation Metrics: Current quantification methods in this field (e.g. TI, DB, CD, BAS,
and P2P), predominantly rely on prompt/embedding similarity due to the absence of more effective
quantification mechanisms without known ground truth. This indicates a need for developing better
evaluation metrics in future research. (4) Our method relies on adjectives serving as textual de-
scriptors (e.g., color) to differentiate between multiple concepts. While human-machine interaction
using purely linguistic descriptions is generally preferred, challenges arise when two concepts are
very similar and lack distinct visual cues in the image. In such cases, our method may struggle, and
Break-A-Scene currently offers the best solution.

In conclusion, MCPL is introduced to address the novel challenge of learning multiple concepts
using images and simple natural language descriptions. We anticipate that this will pave the way
for knowledge discovery through natural language-driven human-machine interaction, leading to
advancements in tasks like synthesis, editing, quantification, and a more precise understanding of
multi-object relationships at the object level.
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A APPENDIX

Here we provide additional results and various ablation studies and implementation details that have
not been presented in the main paper.
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A.1 BREAK-A-SCENE EXPERIMENTS SETUP

Break-A-Scene (BAS) (Avrahami et al., 2023) learns multiple concepts from images paired with
object-level masks. It augments input images with masks to highlight target concepts and updates
both textural embeddings and model weights accordingly. BAS introduces ’union sampling’, a
training strategy that randomly selects subsets of multi-concepts in each iteration to enhance the
combination of multiple concepts in generated images, see Figure 11 for an illustration. During
inference, BAS employs a pre-trained segmentation model to obtain masked objects, facilitating
localized editing.

To fit BAS (Avrahami et al., 2023) into our evaluation protocol, we first learned object-level concepts
and then generated masked objects for evaluation, including the following steps:

1. BAS Learning: For each concept pair, we randomly selected 20 images with ground truth
segmentations from our dataset for BAS learning, resulting in 20 BAS embeddings per
concept.

2. BAS Generation: We then generated 20 images for each concept pair, producing a total of
100 BAS-generated natural images and 60 medical images.

3. Segmentation: For masked object production with BAS, we used different pre-trained seg-
mentation models. MaskFormer (Cheng et al., 2021) was effective for natural images, but
segmenting medical images posed challenges due to their out-of-distribution characteris-
tics.

4. Quantitative Evaluation: With the obtained masked objects (20 per concept, see visual-
izations in Section A.6), we applied the embedding similarity evaluation protocol from
Section 4.2 to assess the preservation of semantic and textural details per concept in four
embedding spaces.

For segmenting medical images, given the diversity of classes in our dataset, we utilized MedSAM
(Ma & Wang, 2023), a state-of-the-art foundation model adapted from SAM (Kirillov et al., 2023)
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for the medical domain. MedSAM requires a bounding box for input, making it a multi-step, human-
in-the-loop process. We initially assessed segmentation quality from several (up to five) bounding
box proposals, as exemplified in Figure 10. MedSAM, despite having a bounding box, cannot fully
automate segmentation for all classes. Thus, we employed an additional post-processing step to dis-
cern the segmentation of both classes by calculating the difference between the two segmentations.
This procedure was applied to all 60 BAS-generated medical images.

Figure 10: This demonstration shows how MedSAM is used to segment medical images generated
by BAS. On the left, MedSAM segmentation with a large bounding box prompt can identify the
combined area of the cavity-myocardium classes, but it does not distinguish between the two. On
the right, using a smaller bounding box prompt, MedSAM successfully segments the central cavity
class. We calculate the difference between the two segments to get the segmentation of the missing
myocardium class (outer ring-like pattern).

A.2 VISUAL COMPARISON OF MCPL-DIVERSE/ONE WITH MASK-BASED APPROACHES

In tasks learning more than two concepts from a single image, we compare MCPL with Break-
A-Scene (BAS). Unlike BAS, MCPL neither uses segmentation masks as input nor updates model
parameters. To level the playing field, we adopted BAS’s ’union sampling’ training strategy, which
randomly selects subsets of multi-concepts in each iteration. However, lacking mask input, we
manually prepared a set of cropped images of each individual concept and randomly selected subsets
to combine. This approach, termed ’random crop,’ serves as our equivalent training strategy, see
Figure 11 for an illustration. Given that each cropped image has a different number of concepts,
we utilized our MCPL-diverse, designed to learn varying concepts per image. In Figure 11 and
Figure 12 we showcase examples of such tasks against a set competitive baselines.

"a photo of colorful [v1] sitting on
a rock in the Grand Canyon"

Textural Inversion-m Dreambooth-m Break-A-Scene

"a photo of colorful [v1]
sitting on [v2] with green

[v3] next to a river"

Masked Image-Text
iNPUT  Image-Text Input

Our mask-free multi-concept learning

Text input for random crop




"colorful [v1]"

"black [v2] with green [v3]"







"colorful [v1] sitting on
black [v2] with green [v3]"

Mask-based multi-concept learning

MCPL-doverse +
random cropCustom Diffusion-m ELITE

Figure 11: A qualitative comparison between our method (MCPL-diverse) and mask-based ap-
proaches: Break-A-Scene (Avrahami et al., 2023), Textural Inversion (Gal et al., 2022) (masked
version), DreamBooth (Ruiz et al., 2022) (masked version), Custom Diffusion (Kumari et al., 2023)
(masked version) and ELITE (Wei et al., 2023). Our MCPL-diverse, which neither uses mask
inputs nor updates model parameters, showed decent results, outperforming most mask-based
approaches and was closer to SoTA Break-A-Scene. Images modified from Break-A-Scene (Avra-
hami et al., 2023).
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Figure 12: A qualitative comparison between Textural Inversion (Gal et al., 2022), DreamBooth
(Ruiz et al., 2022), Break-A-Scene (Avrahami et al., 2023) and our method (MCPL-one and MCPL-
diverse). The left task learns three concepts from a single image and then composes a subset
(two concepts) in a novel scene. Both Textural Inversion and DreamBooth were unsuccessful,
while Break-A-Scene, using mask input and model parameter updates, performed best. Our MCPL-
diverse, which neither uses mask inputs nor updates model parameters, showed decent results,
outperforming Textural Inversion and DreamBooth, and was closer to BAS. The task on the right,
involving learning six concepts from a single image and then composing a subset of 1 ∼ 3 concepts
in a new scene, is particularly challenging. Break-A-Scene (Avrahami et al., 2023) has acknowl-
edged limitations in learning more than four concepts. In our study, we evaluated both MCPL-one
and MCPL-diverse, the latter employing random crops akin to BAS’s ’union sampling’ strategy. Our
findings reveal that: 1) our equivalent to ’union sampling’ effectively enhances results by exposing
the model to more concept combinations; 2) similar to BAS, our method also faces challenges with
a high number of concepts, but it shows marginally better performance, likely aided by the use of
adjectives; 3) as a validation, removing adjectives at inference leads to a noticeable performance
drop. Images modified from Break-A-Scene (Avrahami et al., 2023).
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A.3 ABLATION STUDY COMPARING MCPL-DIVERSE VERSUS MCPL-ONE IN LEARNING
PER-IMAGE DIFFERENT CONCEPT TASKS
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Figure 13: Visual comparison of MCPL-diverse versus MCPL-one in learning per-image different
concept tasks (cat with different hat example). As MCPL-diverse are specially designed for such
tasks, it outperforms MCPL-one, which fails to capture per image different hat styles.

Learning with per image different prompts

"a photo of green * per-image-prompt orange @"
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Figure 14: Visual comparison of MCPL-diverse versus MCPL-one in learning per-image different
concept tasks (ball and box relationships example). As MCPL-diverse are specially designed for
such tasks, it outperforms MCPL-one, which fails to capture per image different relationships.
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A.4 ABLATION STUDY ON EFFECT OF ADJECTIVE WORDS.
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Figure 15: Visual comparison of MCPL-diverse with adjective word versus without adjective word.
Adjective words are crucial in linking each prompt to the correct region; without them, the model
may struggle for regional guidance and we observe reduced performance.

A.5 ALL OBJECT-LEVEL EMBEDDING SIMILARITY OF THE LEARNED CONCEPT COMPARED
TO THE ESTIMATED “GROUND TRUTH”.

Figure 16:
footnotesize Per-object (natural images) embedding similarity (BERT) of learned concept compar-
ing to the masked “ground truth”. We evaluate the embedding similarity of our multi-concept adapta-
tion of Textural Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method,
Break-A-Scene (BAS) by Avrahami et al. (2023), against our regularised versions.
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Figure 17: Per-object (natural images) embedding similarity (CLIP) of learned concept comparing to the
masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.

Figure 18: Per-object (natural images) embedding similarity (DINOv1) of learned concept comparing to the
masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.

Figure 19: Per-object (natural images) embedding similarity (DINOv2) of learned concept comparing to the
masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.
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Figure 20: Per-object (medical images) embedding similarity (BERT) of learned concept comparing to the
masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.

Figure 21: Per-object (medical images) embedding similarity (CLIP) of learned concept comparing to the
masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.

Figure 22: Per-object (medical images) embedding similarity (DINOv1) of learned concept comparing to
the masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.
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Figure 23: Per-object (medical images) embedding similarity (DINOv2) of learned concept comparing to
the masked “ground truth”. We evaluate the embedding similarity of our multi-concept adaptation of Textural
Inversion (MCPL-all) and the state-of-the-art (SoTA) mask-based learning method, Break-A-Scene (BAS) by
Avrahami et al. (2023), against our regularised versions.
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A.6 VISUALISATION OF ALL BREAK-A-SCENE RESULTS

Figure 24: Visualisation of the Break-A-Scene results of generated and masked natural images.
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Figure 25: Visualisation of the Break-A-Scene results of generated and masked medical images.
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A.7 FULL T-SNE RESULTS

Image level prompt learning with Textural Inversion (T.I.)MCPL-all + AttnMask + PromptCL + Bind adj.MCPL-all + AttnMaskMCPL-all (learn all prompts in a string)

MCPL-one + AttnMask + PromptCL + Bind adj. Estimated 'ground truth': Textural Inversion (T.I.) + maskMCPL-one + AttnMaskMCPL-one (learn one noun prompt per concep

Figure 26: The t-SNE visualisations of learned prompt-concept features (comparing all vari-
ants) on the in-distribution natural dataset. We use features learned with Textural Inversion Gal
et al. (2022) on either unmasked or per-concept masked images. We use the features learned with
Textural Inversion Gal et al. (2022) on per-concept masked images to approximate the unknown
’Ground truth’. We compare two versions of our proposed MCPL framework MCPL-all (learn all
prompts in a string and MCPL-ong (learn one noun prompt per concept. We also compare two
variants one each version of our method, where we add the proposed regularisation of AttnMask or
AttnMask + PromptCL + Bind adj. over the multi-concepts learning goal.

3

MCPL-all + AttnMask + PromptCL + Bind adj.MCPL-all + AttnMaskMCPL-all (learn all prompts in a string)

MCPL-one + AttnMask + PromptCL + Bind adj. Estimated 'ground truth': Textural Inversion (T.I.) + maskMCPL-one + AttnMaskMCPL-one (learn one noun prompt per concep

Image level prompt learning with Textural Inversion (T.I.)

Figure 27: The t-SNE visualisations of learned prompt-concept features (comparing all vari-
ants) on the out-distribution medical dataset. We use features learned with Textural Inversion Gal
et al. (2022) on either unmasked or per-concept masked images. We use the features learned with
Textural Inversion Gal et al. (2022) on per-concept masked images to approximate the unknown
’Ground truth’. We compare two versions of our proposed MCPL framework MCPL-all (learn all
prompts in a string and MCPL-ong (learn one noun prompt per concept. We also compare two
variants one each version of our method, where we add the proposed regularisation of AttnMask or
AttnMask + PromptCL + Bind adj. over the multi-concepts learning goal.
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A.8 MORE QUALITATIVE RESULTS

   "a        green        @         and          a          red         *           in          the       desert"MaskImage
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MCPL-one
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+Bind adj.

MCPL-one
+AttnMask
+PromptCL

+Bind adj.

MCPL-one

MCPL-all
+PromptCL

+Bind adj.

MCPL-all
+AttnMask
+PromptCL

+Bind adj.

masked @ masked *

Figure 28: Visualisation of generated in-distribution natural concepts @ (“cactus”) and * (“ball”)
with ours and all baseline methods.

   "a         fluffy        @       eating      red         *           on          the      beach"MaskImage
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MCPL-one
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+Bind adj.
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+AttnMask
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+Bind adj.

MCPL-one

MCPL-all
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+Bind adj.

MCPL-all
+AttnMask
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+Bind adj.

masked @ masked *

Figure 29: Visualisation of generated in-distribution natural concepts @ (“hamster”) and * (“water-
melon”) with ours and all baseline methods.
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Figure 30: Visualisation of generated in-distribution natural concepts @ (“chair”) and * (“dog”)
with ours and all baseline methods.
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Figure 31: Visualisation of generated in-distribution natural concepts @ (“teddybear”) and * (“skate-
board”) with ours and all baseline methods.

   "a        brown       @         with     yellow      * "MaskImage
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+Bind adj.

masked @ masked *

Figure 32: Visualisation of generated in-distribution natural concepts @ (“basket”) and * (“ba-
nanas”) with ours and all baseline methods.
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   "  a          !          with      round       @     encircled    by       circle        *  "MaskImage
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Figure 33: Visualisation of generated out-of-distribution medical concepts @ (“cavity”) and * (“my-
ocardium”) with ours and all baseline methods.
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Figure 34: Visualisation of generated out-of-distribution medical concepts @ (“tumour”) and *
(“edema”) with ours and all baseline methods.
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Figure 35: Visualisation of generated out-of-distribution medical concepts @ (“transition”) and *
(“peripheral”) with ours and all baseline methods.
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A.9 FULL MOTIVATIONAL EXPERIMENT RESULTS

"a photo of * (watch face + watch band)"

Learning multi-

concepts images 

Generating multi-
concepts  images 

Learning single concept
from masked image 

"a photo of ! (watch band)"

Generating single
concept  images 

Learning single concept
from masked images 

Generating single
concept  images 

"a photo of @ (watch face )"

Figure 36: Motivational study with watch images. We learn embeddings using Textural Inver-
sion on both unmasked multi-concept images (“watch face” and “watch band”) and masked single-
concept images (“watch face” or “watch band”).

T.I.: separately learn each concept + compose

"a photo of green *" "a photo of orange @"

merge embeddings of "green *" and "orange @"

"a photo of green * and orange @"

MCPL-one: jointly learn multi-concepts MCPL-diverse: learn per image multi-concepts

"a photo of 

green * 

under 


orange @"

"a photo of 

green * 


on 

orange @"

"a photo of 

green * 


front 

orange @"

"a photo of green * on orange @"

"a photo of green * under orange @"

"a photo of green * in front of orange @"

"a photo of green * on orange @"

"a photo of green * under orange @"

"a photo of green * in front of orange @"

"a photo of green * on orange @"

"a photo of green * under orange @"

"a photo of green * in front of orange @"

Figure 37: Learning and Composing “ball” and “box”. We learned the concepts of “ball” and
“box” using different methods (top row) and composed them into unified scenes (bottom row). We
compare three learning methods: Textural Inversion (Gal et al., 2022), which learns each concept
separately from isolated images (left); MCPL-one, which jointly learns both concepts from un-
cropped examples using a single prompt string (middle); and MCPL-diverse, which advances this
by learning both concepts with per-image specific relationships (right).

A.10 FULL ABLATION RESULTS OF ASSESSING REGULARISATION TERMS WITH
CROSS-ATTENTION

We present in this section the full results of assessing our proposed regularisation terms in Sec-
tion 3.4. The results presented in Figure 38 indicate that our plain MCPL algorithm can learn
complex multi-object relationships, yet it may not accurately capture semantic correlations be-
tween prompts and objects. To address this, we introduce several regularisation terms: AttnMask,
PromptCL, and Bind adj.. We assess the efficacy of these terms in disentangling learned concepts
by visualising attention and segmentation masks, as shown in Figure 38. Although the primary aim
of this work is not segmentation accuracy, we generate segmentation masks of target concepts to
provide a visual quantification of disentanglement. Our visual results suggest that incrementally in-
corporating the proposed regularisation terms enhances concept disentanglement, whereas applying
them in isolation yields suboptimal outcomes. Moreover, the results demonstrate that MCPL-one is a
more effective learning strategy than MCPL-all, highlighting the importance of excluding irrelevant
prompts to maintain a focused learning objective.
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   "a         fluffy        @       eating      red         *           on          the      beach"MaskImage
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Figure 38: Enhancing object-level prompt-concept correlation in MCPL using proposed Attn-
Mask, PromptCL and Bind adj. regularisation techniques. We conduct ablation studies to assess
the impact of our proposed regularisation methods. We apply these techniques to the MCPL-one
framework, using a “Ball and Box” example (left) and compare the performance of MCPL-one
against MCPL-all in a “Hamster and Watermelon” example (right). We use average cross-attention
maps to quantify the correlation of each prompt with its corresponding object-level concept. Ad-
ditionally, we construct attention-based masks from multiple selected prompts for the concepts of
interest.

A.11 ALGORITHMS OF TEXTURAL-INVERSION AND MCPL

To introduce diversity, during training the generation is conditioned on phrases constructed from
randomly selected text template y derived from CLIP ImageNet (Radford et al., 2021) and the new
prompt p∗, such as “A photo of p∗”, “A sketch of p∗”, etc.

Algorithm 1: Textural-Inversion
1 Input: a small set of images x0, pre-trained text-encoder cθ and denoising network ϵθ.
2 Output: an embedding v∗ corresponds to new prompt p∗.
3 initialise v∗ = cθ(p

∗) ;
4 # optimising v∗ with LDM

5 for step = 1, . . . , S do
6 randomly sample neutral texts y to make string [y, p∗];
7 for t = T, T − 1, . . . , 1 do
8 v∗ := argminv Ex0,ϵ∼N(0,I)

9 ∥ϵ− ϵθ(xt, t, [cθ(y), v
∗]∥2;

10 end
11 end
12 Return (p∗, v∗)

A.12 DATASET PREPARATION.

For the in-distribution natural images dataset, we generate variations of target objects using local
text-driven editing, as proposed by Patashnik et al. (2023). This minimizes the influence of irrele-
vant elements like background. This approach also produces per-text local masks based on attention
maps, assisting us in getting our best approximation for the “ground truth” of disentangled embed-
dings. We generate five sets of natural images containing 10 object-level concepts. For the out-
of-distribution bio-medical image dataset, we assemble three sets of radiological images featuring
six organ/lesion concepts. These images are sourced from three public MRI segmentation datasets:
heart myocardial infarction (Lalande et al., 2020), prostate segmentation (Antonelli et al., 2022), and
Brain Tumor Segmentation (BraTS) (Menze et al., 2014). Each dataset includes per-concept masks.
For both natural and biomedical datasets, we collected 40 images for each concept. Figure 39 gives
some examples of the prepared datasets.
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Algorithm 2: MCPL
1 Input: a small set of images x0, pre-trained text-encoder cθ and denoising network ϵθ.
2 Output: a list of multiple embeddings V = [v∗, . . . , v&] corresponds to multiple new prompts

P = [p∗, . . . , p&].
3 initialise [v∗, . . . , v&] = [cθ(p

∗), . . . , cθ(p
&)] ;

4 # optimising {v∗, . . . , v&} with LDM

5 for step = 1, . . . , S do
6 randomly sample neutral texts y to make string [y, p∗, . . . , p&];
7 for t = T, T − 1, . . . , 1 do
8 [v∗, . . . , v&] := argminV Ex0,ϵ∼N(0,I)

9 ∥ϵ− ϵθ(xt, t, [cθ(y), v
∗, . . . , v&]∥2;

10 end
11 end
12 Return (P,V)

hamster-watermelon bananas-basket cactus-ball
 teddybear-skateboard
 chair-dog
 cavity-myocardium tumour-edema ransition-peripheral


Figure 39: Quantitative evaluation dataset examples. We prepared five sets of in-distribution
natural images and three sets of out-of-distribution biomedical images, each containing two concepts
resulting in a total of 16 concepts. Visualisation of full sets is available in the Appendix A.13.

A.13 VISUALISATION OF QUANTITATIVE EVALUATION DATASETS

Figure 40: Visualisation of the full sets of generated and masked hamster-watermelon images.
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Figure 41: Visualisation of the full sets of generated and masked bananas-basket images.

Figure 42: Visualisation of the full sets of generated and masked cactus-ball images.
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Figure 43: Visualisation of the full sets of generated and masked teddybear-skateboard images.

Figure 44: Visualisation of the full sets of generated and masked chair-dog images.
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Figure 45: Visualisation of the full sets of generated and masked cavity-myocardium images.

Figure 46: Visualisation of the full sets of generated and masked transition-peripheral images.
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Figure 47: Visualisation of the full sets of generated and masked tumour-edema images.
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