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Abstract

We introduce a new dataset containing phone images of dog feces, annotated with1

manually drawn or AI-assisted polygon labels. Its over 9000 “before/after/negative”2

full resolution images contain 6000 polygon annotations. The collection and3

annotation of images started in late 2020. This paper focuses on two checkpoints4

from 2025-04-20 and 2024-07-03. We train VIT and MaskRCNN baseline models5

to explore the difficulty of the dataset. The best model achieves a pixelwise6

average precision of 0.858 on a 691-image validation set and 0.810 on a small7

independently captured 121-image contributor test set. Dataset snapshots are8

available through four different distribution methods: two centralized (Girder and9

HuggingFace) and two decentralized (IPFS and BitTorrent). We study of the trade-10

offs between distribution methods and discuss the feasibility of each with respect11

to reliably sharing open scientific data. The code for experiments is hosted on12

GitHub. The data license is CC-BY 4.0. Model weights are available with the13

dataset. Experiment hardware, time, energy, and emissions are quantified.14

1 Introduction15

Applications for a computer vision system capable of detecting and localizing poop in images are16

numerous. These include automated waste disposal to keep parks and backyards clean, tools for17

monitoring wildlife populations via droppings, and a warning system in smart-glasses to prevent18

people from stepping in poop. Our primary motivating use case is a phone application that assists19

dog owners in locating their dog’s poop in a leafy park for easier cleanup. Many of these applications20

can be realized with modern object detection and segmentation methods [48, 50, 55] combined with21

a large labeled dataset.22

In addition to enabling several applications, poop detection is an interesting benchmark problem. It is23

relatively simple, with a narrow focus on a single class, making it suitable for exploring the capabilities24

of object detection models that target a single labeled class. However, the task includes non-trivial25

challenges such as resolution issues (e.g., camera quality, distance), camouflaging distractors (e.g.,26

leaves, pine cones, sticks, dirt, and mud), occlusion (e.g., bushes, overgrown grass), and variation27

in appearance (e.g., old vs. new, healthy vs. sick). An example of a challenging case is shown in28

Figure 1a. Investigation into cases where this problem is difficult may provide insight into how to29

better train object detection and segmentation networks.30

Towards these ends we introduce a new dataset which, in formal settings, we call “ScatSpotter”.31

Poops are annotated with polygons making the dataset suitable for training detection and segmen-32

tation models. In order to assist with annotation and add variation, we collect images using a33

“before/after/negative” (BAN) protocol as shown in Figure 1b.34

From this data, we train a segmentation model to classify which pixels in an image contain poop and35

which do not. Our models show strong performance, but there are notable failure cases indicating36

this problem is difficult even for modern computer vision algorithms.37
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(a) A zoomed in example of an annotated object in a
challenging condition: a scene cluttered with leaves.
The similarity between the leaves and the poop causes
a camouflage effect that can make detecting it difficult.
The poop is highlighted in blue.

(b) The “before/after/negative” protocol. The orange
box highlights the location of the poop in the “before”
image. In the “after” image, it is the same scene but
the poop has been removed. The “negative” image is a
nearby similar scene, potentially with a distractor. Note
that the object is small relative to the image size.

Figure 1: (a) A challenging annotation case due to camouflage. (b) The BAN protocol.

Table 1: Related datasets. Columns list dataset name, number of categories, images, and annotations.
Image W × H gives median image dimensions; Ann Area0.5 is the median square root of annotation
area (pixels); Size is disk requirements in GB; Annot Type is the labeling method. Figure 2 shows
the distribution of annotation shapes, sizes, and locations.

Name #Cats #Images #Annots
Image
W × H

Annot

Area0.5
Disk
Size

Annot
Type

ImageNet[47] 1,000 594,546 695,776 500 × 374 239 166GB box
MSCOCO[33] 80 123,287 896,782 428 × 640 57 50GB polygon
CityScapes[12] 40 5,000 287,465 2,048 × 1,024 50 78GB polygon
ZeroWaste [3] 4 4,503 26,766 1,920 × 1,080 200 10GB polygon
TrashCanV1[25] 22 7,212 12,128 480 × 270 54 0.61GB polygon
UAVVaste[29] 1 772 3,718 3,840 × 2,160 55 2.9GB polygon
SpotGarbage[40] 1 2,512 337 754 × 754 355 1.5GB category
TACO[45] 60 1,500 4,784 2,448 × 3,264 119 17GB polygon
MSHIT[38] 2 769 2,348 960 × 540 99 4GB box
Ours 1 9,296 6,594 4,032 × 3,024 87 60GB polygon

To enable others to build on our results, it is essential that the dataset is accessible and hosted reliably.38

Centralized methods are a typical choice, offering high speeds, but they can be costly for individuals,39

often requiring institutional support or paid hosting services. They are also prone to outages and40

lack built-in data validation. In contrast, decentralized methods allow volunteers to host data and41

offers built-in validation of data integrity. This motivates us to compare and contrast the decentralized42

BitTorrent [8], and IPFS [4] protocols as mechanisms for distributing datasets.43

Our contributions are: 1) A challenging new open dataset of images with polygon annotations. 2) A44

set of trained baseline models. 3) A comparison of dataset distribution methods.45

2 Related Work46

To the best of our knowledge, our dataset is currently the largest publicly available collection of47

annotated dog poop images, but it is not the first. A dataset of 100 dog poop images was collected48

and used to train a FasterRCNN model [42] but this dataset and model are not publicly available. The49

company iRobot has a dataset of annotated indoor poop images used to train Roomba j7+ to avoid50

collisions [21], but as far as we are aware, this is not available. In terms of available poop detection51

datasets we are only aware of MSHIT [38] which is much smaller, only contains box annotations,52

and the objects of interest are plastic toy poops.53

Compared to benchmark object localization and segmentation datasets [47, 33, 12] ours is much54

smaller and focused only on a single category. However, when compared to litter and trash datasets55
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Figure 2: A comparison of all of the annotations for different datasets including ours. All polygon
annotations drawn in a single plot with 0.8 opacity to demonstrate the distribution in annotation
location, shape, and size with respect to image coordinates.

Figure 3: Example images from 2D UMAP clusters [37]. Each point in the top image represents
a 2D-projected embedding, with numbered orange dots indicating nearby images in the bottom
columns. Blue annotation boxes are shown. A clear separation emerges between snowy (columns
1-2) and non-snowy images (columns 3-13).

[3, 45, 25, 40, 29] ours is among the largest in terms of number of images / annotations, image size,56

and total dataset size. ZeroWaste [3] uses a “before/after” protocol similar to our BAN protocol. We57

provide an overview of these related datasets in Table 1. Among all of these, ours stands out for58

having the highest resolution images and the smallest objects relative to that resolution. For a review59

of additional waste related datasets, refer to [39].60

Section 5 discusses the logistics and tradeoffs between dataset distribution mechanisms with a focus61

on comparing centralized and decentralized methods. IPFS [4] and BitTorrent [8] are the decentralized62

mechanisms we evaluate, but others exist such as Secure Scuttlebut [52] and Hypercore [17], which63

we did not test.64

3 Dataset65

Our first contribution is the creation of a new open dataset which consists of images of dog poop66

in mostly urban, mostly outdoor environments, from mostly a single city. The data is annotated67

to support object detection and segmentation tasks. The majority of the images feature fresh poop68

from three specific medium sized dogs, but there are a significant number of images with poops of69

unknown age and from unknown dogs.70

Despite these biases, the dataset has significant image variations. To provide a gist, we computed71

UMAP [37] image embeddings based on ResNet50 [22] descriptors display images corresponding72

with clusters in this embedding in Figure 3.73
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(a) The time-of-year vs time-of-day of each image
show lighting and seasonal variation. On the x-axis, 0
is January 1st. On the y-axis, 0 is midnight. Color es-
timates daylight based on location (if available). Most
images are in the day, but many were taken at night
with flash or long exposure.

(b) The histogram of annotations per image shows
object density variation. Only 35% (3,314) of images
contain annotations; 65% (5,982) are known negatives.
About half of the negatives were taken immediately
after pickup; the rest are from nearby locations with
potential lookalikes.

Figure 4: Dataset distributions. (a) Time and daylight scatterplot. (b) Annotation count histogram.

More details about the dataset are available in a standardized datasheet [18] that covers the motivation,74

composition, collection, preprocessing, uses, distribution, and maintenance. This will be distributed75

with the data itself, and is provided in supplemental material.76

3.1 Dataset Collection77

A single researcher on dog walks photographed fresh dog poop, mostly their own dogs, but often78

others. Distance was sometimes varied for diversity. Most images were taken following the “be-79

fore/after/negative” (BAN) protocol. A BAN triple comprises a “before” shot of the poop, an “after”80

shot post removal, and a “negative” shot of a nearby lookalike (e.g., pine cones, leaves). We only use81

them for negative sampling, but they could enable contrastive triplet losses [49].82

The majority of images follow the BAN protocol, but there are exceptions. The first six months of83

data collection only involved the “before/after” part of the protocol. We began collecting the third84

negative image after a colleague suggested it. In some cases, the researcher failed or was unable to85

take the second or third image. These exceptions are often programmatically identifiable.86

We also received 121 contributor images, mostly outside the BAN protocol. These images are held87

out and used as our test set. Due to the small size, our main results also include validation scores.88

3.2 Dataset Annotation89

Images were annotated using labelme [27]. Most annotations were initialized using SAM and a point90

prompt. All AI polygons were manually reviewed. In most cases only small manual adjustments91

were needed, but there were a significant number of cases where SAM did not work well and fully92

manual annotations were needed. Regions with shadows seemed to cause SAM the most trouble, but93

there were other failure cases. Unfortunately, there is no metadata to indicate which polygons were94

manually created or done using AI. However, the number of vertices may be a reasonable proxy to95

estimate this, as polygons generated by SAM tend to have higher fidelity boundaries. The boundaries96

of the annotated polygons are illustrated in Figure 2.97

Data collected after 2024-07-03 was annotated with the help of models trained on prior data. Again,98

all predictions were manually verified or corrected. In these later cases, false positive annotations99

were labeled (e.g. stick, leaf), but because these categories are not labeled exhaustively, we exclude100

them from all analysis in this paper.101
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3.3 Dataset Properties and Statistics102

The data was captured at a regular rate over 4.3 years, primarily in parks and sidewalks within a small103

city. Weather conditions varied across snowy, sunny, rainy, and foggy. A visual representation of the104

distribution of seasons, time-of-day, daylight, and capture rate is provided in Figure 4a.105

The dataset images are available in full resolution. Almost all images were taken using the same106

phone-camera, with a consistent width/height of 4,032 × 3,024 (although some may be rotated based107

on EXIF data). The images are stored as 8-bit JPEGs with RGB channels, and most include overviews108

(i.e., image pyramids), allowing for fast loading of downscaled versions.109

Due to the BAN protocol, about one-third of the images contain annotations, the rest were taken after110

the object(s) were removed. Consequently, most images have no annotations. When present, annota-111

tions are usually singular, but multiple annotations are common and can be due to: 1) fragmented112

dropping, 2) dogs pooping together, 3) repeated poops in the same area over time (sometimes hard to113

distinguish from dirt). The number of annotations per image is illustrated in Figure 4b.114

3.4 Dataset Splits115

Our dataset is split into training, validation, and test sets based on the year and day of image capture116

and photographer. Only data captured by the authors is used for training and validation. Of these,117

images from 2021-2023, 2025 and beyond are assigned to the training set. Images from 2020 are118

used for validation. For data from 2024, we consider the ordinal date n of each image and include it119

in the validation set if n ≡ 0 (mod 3); otherwise, it is assigned to the training set.120

For testing data, we use contributor images to not bias our results based on the way the authors took121

images. These splits are provided in the COCO JSON format [33] as well as a WebDataset [53] on122

HuggingFace.123

4 Baseline Models124

As our second contribution, we trained and evaluated models to establish a baseline for future125

comparisons. Specifically we train three model variants. We trained two MaskRCNN [23] mod-126

els (specifically the R_50_FPN_3x configuration), one starting from pretrained ImageNet weights127

(MaskRCNN-p), and one starting from scratch (MaskRCNN-s). We also trained a semantic seg-128

mentation vision transformer variant (VIT-sseg-s) [20, 13], which was only trained from scratch.129

Hyperparameters are given in supplemental materials.130

For these baseline models, the training data was limited to an older subset taken before 2024-07-03.131

Our training dataset consists of 5,747 images and is identified by a suffix of 1e73d54f, which is the132

prefix of its content hash. The validation set contains 691 images and has a suffix of 99b22ad0. The133

test set, consists of the 121 images, has a suffix of 6cb3b6ff, and includes contributor images up to134

2025-04-20. The evaluated models were selected based on their validation scores.135

We performed two types of evaluations on the models. “Box” evaluation computes standard COCO136

object detection metrics [33]. MaskRCNN natively outputs scored bounding boxes, but for the137

VIT-sseg model, we convert heatmaps into boxes by thresholding the probability maps and converting138

taking the extend of the resulting polygons as bounding boxes. The score is taken as the average139

heatmap response under the polygon. Bounding box evaluation has the advantage that small and140

large annotations contribute equally to the score, but it can also be misleading for datasets where the141

notion of an object instance can be ambiguous.142

To complement the box evaluation, we performed a pixelwise evaluation, which is more sensitive143

to the details of the segmented masks, but also can be biased towards larger annotations with more144

pixels. The corresponding truth and predicted pixels were accumulated into a confusion matrix,145

allowing us to compute standard metrics [44] such as precision, recall, false positive rate, etc. For the146

VIT-sseg model, computing this score is straightforward, but for MaskRCNN we accumulate per-box147

heatmaps into a larger full image heatmap, which can then be scored.148

Quantitative results for each of these models on box and pixel metrics are shown in Table 2. Because149

the independent test set is only 121 images, we also present results on the larger validation dataset.150

Corresponding qualitative test results are illustrated in Figure 5 and validation results in Figure 6.151
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Table 2: Results for MaskRCNN and VIT models (suffix -p: pretrained, -s: scratch) on test and
validation sets. Evaluated with box and pixel metrics — AP (ppv-tpr area) [44] and AUC (tpr-fpr
area) — computed via scikit-learn [43]. Pretrained models outperform. Note: VIT-sseg was tuned
more; MaskRCNN may yield better results with similar effort.

Dataset split: Test (n=121) Validation (n=691)
Evaluation type: Box Box Pixel Pixel Box Box Pixel Pixel

Model type # Params AP AUC AP AUC AP AUC AP AUC

MaskRCNN-p 43.9e6 0.613 0.697 0.810 0.849 0.612 0.721 0.858 0.905
MaskRCNN-s 43.9e6 0.253 0.464 0.384 0.798 0.255 0.576 0.434 0.891
VIT-s 25.5e6 0.422 0.426 0.473 0.902 0.476 0.532 0.780 0.994

(a) MaskRCNN-pretrained (test set results).

(b) MaskRCNN-scratch (test set results).

(c) VIT-sseg-scratch (test set results).

(d) Input images from the test set.

Figure 5: Qualitative results from the top model on the validation set, applied to test images. The first
three subfigures (a, b, c) display a binarized classification map (true positives in white, false positives
in red, false negatives in teal, true negatives in black) and the predicted heatmap (before binarization).
Subfigure (d) shows the input image. The heatmap binarization threshold was 0.5. Failures occur
with close-up or deteriorated objects, and camouflage.

All models were trained on a single machine with an Intel Core i9-11900K CPU and an NVIDIA152

GeForce RTX 3090 GPU. A key limitation of these results is the imbalance between model types,153

with 42 out of 44 trained models being VIT-ssegs and only two MaskRCNN models, each taking154

approximately 8 hours to train. Future work could further optimize MaskRCNN models to improve155

comparability. More details on the VIT-sseg experiments can be found in the supplemental materials.156

Environmental Impact The total time spent on prediction and evaluation across all experiments was157

15.6 days, with prediction consuming 109.63 kWh of energy and causing an estimated emissions of158

23.0 CO2kg as measured by CodeCarbon [30]. We estimated train-time resource usage during training159

using indirect methods, assuming a constant power draw of 345W from the RTX 3090 GPU. Energy160

consumption was approximated accordingly, while emissions were calculated using a conversion161

ratio of 0.21
kgCO2

kWh
derived from our prediction time measurements. Based on file timestamps, we162
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(a) MaskRCNN-pretrained (validation set results).

(b) MaskRCNN-scratch (validation set results).

(c) VIT-sseg-scratch (validation set results).

(d) Inputs from the validation set.

Figure 6: Qualitative results of the top model on unseen validation images (see Figure 5 for visualiza-
tion details). Although never trained on these data, the model’s was able to detect camouflaged cases
on the left but missed some on the right, indicating generalizability but also room for improvement.

estimated that running 44 different training runs took approximately 159.66 days, resulting in an163

estimated energy usage and emissions of 1321.99 kWh and 277.612 CO2 kg, respectively. For164

context, at $0.16

kWh
and $25.00

1000CO2kg
, the cost of training and evaluating was $229.06.165

5 Open Data Distribution166

Empirical evidence suggests that a substantial proportion of scientific studies have low reproducibility167

rates, which has raised concerns across various disciplines [2]. Ideally, scientific research should be168

independently reproducible. Despite higher success rates in computer science (up to 60%) compared169

to other fields, there is still room for improvement [46, 11, 14]. Addressing this issue requires not just170

better experimental documentation but also more reliable and accessible data distribution methods.171

Specifically, this involves robustly codifying data download and preparation processes.172

Centralized data distribution methods allow for codified data access by storing URLs that point to173

datasets within the code, offering fast and direct access. However, this approach lacks robustness. It174

can fail if the provider goes offline, changes the URL, or stops hosting the data. Additionally, cloud175

storage can be expensive, and users must trust that the provider delivers the correct data — a risk that176

can be mitigated by using checksums to verify data integrity.177

In contrast, decentralized methods allow users to access data in the same way, even if the organization178

hosting the data changes. By leveraging content-addressable storage, where the dataset checksum acts179

as both the key to locate and validate the data, these methods ensure data integrity and nearly eliminate180

the risk of dead URLs, provided that at least one peer retains the data. While decentralized systems181

face challenges such as longer connection times, increased network overhead, and the need for a182

robust peer network, their ability to ensure data access via a static address motivates our investigation183

Specifically, we focus on two prominent candidates: BitTorrent and IPFS. BitTorrent [8, 9] is a well184

known sharing protocol that originally relied on centralized trackers and databases of torrent files185
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to connect peers. While trackers and torrent files are still prominent, torrents can be published to a186

distributed hash table (DHT) using the Kademlia algorithm [36]. This makes it an strong candidate for187

a decentralized distribution mechanism. On the other hand, IPFS (InterPlanetary File System) [4, 6]188

is a newer tool directly build directly on a DHT. IPFS has been likened to “a single BitTorrent swarm,189

exchanging objects within one Git repository”. Both IPFS and BitTorrent are content addressable at190

the dataset level, which makes them both appropriate for our use case where we seek a static address191

that can be used to robustly access data.192

It is worth noting that git-based [7] systems like HuggingFace [32] with large file storage do gain193

some decentralized properties via multiple remotes, but not content identifiers.194

For practitioners, key concerns are how quickly and reliably data can be accessed. By comparing195

decentralized and centralized mechanisms access times for our dataset, we aim to make explicit the196

tradeoffs between the methods and inform decisions on adopting an approach.197

5.1 Dataset Transfer Experiment198

Our third contribution is an experiment that studies transfer rates of decentralized and centralized199

data distribution methods. For centralized distribution, we use a self-hosted instance of Girder [41]200

and the HuggingFace datasets [32] platform. For decentralized clients, we use Transmission [31]201

(BitTorrent) and Kubo [26] (IPFS). As a baseline, we also measure direct transfers using Rsync [54].202

For data transfer experiments, we use the 2024-07-03 version of the dataset. This is content-addressed203

with the IPFS CID (content identifier): bafybeiedwp2zvmdyb2c2axrcl455xfbv2mgdbhgkc3dil204

e4dftiimwth2y The torrent has a magnet URL of: magnet:?xt=urn:btih:ee8d2c87a39ea9bf205

e48bef7eb4ca12eb68852c49, and is tracked on Academic Torrents [10].206

To assess the effectiveness of each mechanism we programmatically download our 42GB dataset and207

measure the time required to complete the transfer. Each experiment was run five times, machines we208

controlled were separated by ∼30 kilometers with an average ping time of 48.48 ms. For each test,209

we log transfer start and end times along with notes and code (provided in supplemental materials).210

While our measurements provide a reasonable estimate of for access time for each mechanism, there211

are notable limitations in our methodology. First, different machines and networks have different212

upload and download speeds, and network congestion is variable. For decentralized methods, we213

lack an automated mechanism separate peer-connection time and actual download time. Additionally,214

Girder and HuggingFace required data to be packed into compressed archives, improving transfer215

efficiency due to fewer file boundaries. In decentralized cases, we provide granular access to each file216

in the dataset, which avoids an extra unpacking step and enables sharing of the same file between217

different versions of the datasets and simpler updates, but decreases transfer efficiency. Due to this,218

we provide both a compressed and uncompressed rsync baseline. Another confounding factor is that219

with decentralized mechanisms the number of seeders is not controlled for. Subsets of the data have220

been hosted on IPFS for years, and portions of the dataset may be provided by unknown members of221

the network. For BitTorrent, our initial transfers only had one seeder, but during our tests other nodes222

accessed and started to provide the data.223

Despite significant testing limitations, our measurements quantify the expected data-access time224

penalty to gain the advantages of decentralized mechanisms. With these limitations acknowledged,225

we present the transfer times statistics in Table 3. Alongside these measurements, several observations226

are worth noting. Transferring files using IPFS had significantly delayed peer discovery times, and227

we were only able to connect two machines after manually informing them of each other’s peer ID.228

For BitTorrent, were unable to use the mainline DHT and fell back to using trackers. We believe229

these peer discovery issues are because the dataset has a small number of seeders. To test this, we230

downloaded other established datasets via IPFS and BitTorrent and found that the peer discovery time231

was almost immediate, suggesting that this becomes less of an issue as a dataset is shared. However,232

the inability to quickly find a nearby peer is a major issue for initial or private dataset development.233

The HuggingFace results stand out, as they are faster than rsync. We believe this is due to an234

optimized client and content delivery networks, utilizing CAKE [24] to minimize buffer bloat [19].235

However, this speed relies on costly centralized infrastructure. The expected speed from a more236

modest centralized service is ∼20× slower.237
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Table 3: Transfer times (in hours) for our 42GB dataset: trials (n), mean (µ), std (σ). Each experiment
was run 5 times. Uncompressed transfers provide granular access to individual files, while compressed
transfers are faster.

Method Compressed µ σ Min Max

BitTorrent No 8.36h 5.16h 2.21h 14.39h
IPFS No 10.68h 9.54h 1.80h 24.62h
Rsync No 4.84h 1.39h 3.10h 6.10h
Girder Yes 2.85h 2.31h 1.05h 6.24h
HuggingFace Yes 0.14h 0.03h 0.11h 0.18h
Rsync Yes 1.10h 0.03h 1.07h 1.13h

There is an additional ∼ 4× slowdown between compressed and uncompressed rsync baselines,238

which needs to be considered when comparing decentralized results. The minimum time column239

shows that decentralized methods method can be competitive with rsync, but on average decentralized240

mechanisms are significantly slower and can be stifled by long peer-discovery times.241

6 Conclusion242

We have introduced the largest open dataset of high resolution images with polygon segmentations243

of dog poop. The dataset contains several challenges including amorphous objects, multi-season244

variation, difficult distractors, daytime / nighttime variation. We have described the dataset collection245

and annotation process and reported statistics on the dataset.246

We provided a recommended train/validation/test split of the dataset, and trained baseline segmenta-247

tion models that perform well, but could likely be improved. In addition to providing quantitative and248

qualitative results of the models, we also estimate the resources required to perform these training,249

prediction, and evaluation experiments.250

We have published our data and models under a permissive license, and made them available through251

both centralized (Girder and HuggingFace) and decentralized (BitTorrent and IPFS) mechanisms.252

Decentralized methods have robustness properties, but suffer from significant network transfer253

overhead. HuggingFace has exceptionally fast transfer speeds, and due to its usage of git-lfs has some254

decentralized properties, but lacks content identifiers. Combining IPFS with a content distribution255

network may be a path to a best-of-both-worlds system.256

Limitations of our work include: 1) geographic concentration of the dataset, 2) the small size of the257

independent test set, 3) limited exploration of the better-performing model variant, and 4) uncontrolled258

network conditions during distribution experiments. Future work could address these by expanding259

dataset diversity, training a broader range of models, and improving decentralized hosting strategies.260

Our dataset enables applications such as mobile apps for detecting feces, urban cleanliness monitoring,261

and augmented reality collision warnings. We believe negative impacts are limited and expect262

respectful use of the dataset. We envision exciting possibilities for the BAN protocol in computer263

vision research. We hope our work will inspire others to consider decentralized content addressable264

data sharing, fostering open collaboration and reproducible experiments. Furthermore, we encourage265

the community to track experimental resource usage to better understand and offset our experiments’266

small, but real environmental impact. Moreover, we aspire for our dataset to enable the creation of267

poop-aware applications. Ultimately, our goal is for this research to contribute meaningfully to the268

advancement of computer vision and have a positive impact on society.269
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A Expanded Dataset Information399

In Section 3 we provided an overview of several dataset statistics. In this appendix we expand400

on that with additional plots. The distribution of image pixel intensities is illustrated in Figure 7.401

The distribution of images collected over time is shown in Figure 8. The distribution of annotation402

location is shown in Figure 9 and sizes is shown in Figure 10 and Figure 11.403

Figure 7: The “spectra” or histogram of the pixel intensities in the dataset. The dataset RGB mean/std
is [117, 124, 100], [61, 59, 63]. This was run on the older 2024-07-03 snapshot.

B Expanded Dataset Comparison404

In Section 2 we compared to related work. Here we expand on this by comparing our analysis plots.405

Every dataset is converted into the COCO format and visualized using the same logic. Figure 2406

visualizes the annotations of all datasets. We make similar visualizations for other comparable dataset407

metrics. Figure 12 shows the number of annotations per image. Figure 13 shows of image sizes in408

each dataset. Figure 14 shows the distribution of width and heights of oriented bounding boxes fit to409

annotation polygons. Figure 15 shows the area of each polygon versus the number of vertices (which410

could be used to estimate the likelihood a polygon was generated by AI for our dataset). Figure 16411

shows the distribution of centroid positions (relative to the image size).412

C VIT-sseg Models413

This section provides more details about the training of VIT-sseg models.414

To train VIT-sseg models we use the training, prediction, and evaluation system presented in [20, 13],415

which utilizes polygon annotations to train a pixelwise binary segmentation model.416

In all experiments, we use half-resolution images, which means most images have an effective width417

× height of 2,016 × 1,512. We employ a spatial window size of 416 × 416 for network inputs, which418

13



Figure 8: The number of images collected over time.

(a) Absolute pixel coordinates. (b) Relative image coordinates.

Figure 9: The distribution of annotation centroids in terms of (a) absolute image coordinates and (b)
relative image coordinates. The absolute centroid distribution is bimodal because some images are
taken in landscape mode and other in portrait mode.

means that multiple windows are needed to predict on entire images. During prediction, we apply a419

window overlap of 0.3 with feathered stitching to prevent boundary artifacts.420

To address the class imbalance in our dataset (where positives are patches containing annotations and421

negatives contain no annotations), we adopt a balanced sampling strategy. Each “epoch” consists422

of randomly sampling 32,768 patches from the dataset with replacement, ensuring roughly equal423

numbers of positive and negative samples. We train each network for 163,840 gradient steps. For424

data augmentation we use random crops and flips.425

14



(a) Linear scale. (b) Log10 scale.

Figure 10: The distribution of annotation sizes as measured by an oriented bounding box fit to each
polygon. (a) shows this plot on a linear scale and (b) show this plot on a log scale.

Figure 11: The distribution of polygon areas versus the number of vertices in the polygon boundary.
The SAM model tends to produce polygons with a higher number of vertices than manually drawn
ones. For smaller polygons there are two peaks in the number of vertices histograms likely corre-
sponding to pure-manual versus AI-assisted annotations.

Our baseline architecture is a variant [5, 20] of a vision-transformer [16]. The model is a 12-layer426

encoder backbone with 384 channels and 8 attention heads that feeds into a 4-layer MLP segmentation427

head. It has 25,543,369 parameters and a size of 114.19 MB on disk. At predict time it uses 1.96GB428

of GPU RAM.429

We compute loss pixelwise using Focal Loss [34] with a small downweighting of pixels towards430

the edge of the window. Our optimizer is AdamW [35], and we experiment with varying learning431

rate, weight decay, and perturb-scale (implementing the shrink perturb trick [1, 15]). We employ a432

OneCycle learning rate scheduler [51] with a cosine annealing strategy and starting fraction of 0.3.433

Our effective batch size is 24 with a real batch size of 2 and 12 accumulate gradient steps. This setup434

consumes approximately 20 GB of GPU RAM during training.435
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Figure 12: Number of annotations per image in each dataset.

Figure 13: Image size distributions of each dataset. Ours has two primary width/heights.

C.1 VIT-sseg Model Experiments436

To establish a baseline, we evaluated 35 training runs where we varied input resolutions, window437

sizes, model depth, and other parameters. Although this initial search was somewhat ad-hoc, it438

provided insights into the optimal configuration for our model. Building on the best hyperparameters439

from this search, we performed a sweep over 7 combinations of learning rate, weight decay, and440

perturb scale (i.e., shrink and perturb [1, 15]). Scripts used to reproduce these experiments, as well as441

a log of the ad-hoc experiments, are available in the code repository. Additionally, trained models are442

packaged and distributed with information about their training configuration.443

Note: the test dataset used in this appendix section is an older 30 image version with suffix d8988f8c,444

which is a subset of the more recent 121 image test set used in the main paper.445

For each of the 7 hyperparameter combinations, we trained the model for 163,840 optimizer steps446

using a batch size of 24. We defined an “epoch” as 1,365 steps, at which point we saved a checkpoint,447

evaluated validation loss, and adjusted learning rates. To conserve disk space, we retained only the448

top 5 lowest-validation-loss checkpoints (although training crashes and restarts sometimes resulted in449

additional checkpoints, which are included in our evaluation).450

Using the top-checkpoints, we predicted heatmaps for each image in the validation set. We then451

performed binary classification on each pixel (poop-vs-background) using a threshold. Next, we452

rasterized the truth polygons. The corresponding truth and predicted pixels were accumulated into a453

confusion matrix, allowing us to compute standard metrics such as precision, recall, false positive454

rate, etc. [44] for the specific threshold. By sweeping a range of thresholds, we calculated the average455

precision (AP) and the area under the ROC curve (AUC). We computed all metrics using scikit-learn456

[43]. Due to the high number of true negative pixels, we preferred AP as the primary measure of457

model quality.458

The details of the top model for each run, along with relevant hyperparameters, are presented in459

Table 4. This table also includes the results on the small, held out, test set for the top model.460
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Figure 14: Oriented bounding box size distributions (log10 scale) of each dataset.

Figure 15: Polygon area versus number of vertices (log10 scale) for each dataset. The polygons with
more vertices are more likely to be AI generated.

The results show strong performance on the validation set, with a maximum AP of 0.78. However,461

while the test AP for this model is good, it is significantly lower at 0.51. To investigate this discrepancy,462

we turned to qualitative analysis.463

Qualitative results for the test, validation, and training sets are presented in Fig. 17. These examples464

illustrate both success and failure cases. The test and validation sets show clear responses to objects465

of interest, but the test set contains images of close-up and partially deteriorated poops. This suggests466

a bias in the dataset towards “fresh” poops taken from some distance.467

Notably, the much larger training set also contains errors, indicating more information can be extracted468

from this dataset using hard-negative mining. There are clear difficult cases caused by sticks, leafs,469

pine cones, and dark areas on snow. We note that while compiling these results, we checked over470

1000 images and discovered 14 cases where an object failed to be annotated, and it is likely that more471

are missed, but we believe these cases are rare.472

Although focal loss was used, the current learning curriculum is likely under-weighting smaller473

distant objects. Our pixelwise evaluation metric is biased against this, which is a current limitation of474

our approach. Future work evaluating this dataset on an object-detection level can remedy this.475

In Table 4 we only presented the top results. Here we’ve plotted the AP and AUC on the validation476

set for the top 5 AP-maximizing results from each of the 7 training runs. We also created a box-and-477

whisker plot for these top 5 results, which serves to assign a color and label to each training run.478

These plots are shown in Figure 18.479

C.1.1 Resource Usage480

All models were trained on a single machine with an 11900k CPU and a 3090 GPU. At predict time,481

using one background worker, our models processed 416 × 416 patches at a rate of 20.93Hz with482

94% GPU utilization.483

To better understand the energy requirements of our model, particularly for potential deployment484

on mobile devices, we used CodeCarbon [30] to measure the resource usage during prediction and485
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Figure 16: Polygon centroid relative distribution for each dataset. It is interesting to note patterns in
this data. For instance, the outline of a street can be seen in CityScapes. In Zero Waste you can see
the conveyor belt. ImageNet is more uniform. Ours is Gaussian distributed.

Table 4: Results for the best-performing models on the validation set across 7 hyperparameter
configurations. The table provides detailed information about each configuration, including: 1)
Configuration name (first column): a unique code identifying each training run used in the score
scatter and box plots. 2) Varied hyperparameters (next three columns): specific values for learning
rate, weight decay, and perturb scale that were used in each run. 3) Validation set performance
(AP and AUC scores): metrics evaluating the model’s performance on the validation set. 4) Test
set performance (AP and AUC scores): metrics evaluating the model’s performance on the test set
using the same validation-maximizing models. Note that the top AP score over all models on the
test set was 0.65, but it did not correspond to one of these validation runs used for model selection.
Qualitative examples illustrating the performance of the top-scoring validation model listed here are
provided in Fig. 17.

Validation (n=691) Test (n=30)
config name lr weight_decay perterb_scale AP AUC AP AUC

D05 1e-4 1e-6 3e-6 0.7802 0.9943 0.5051 0.9125
D03 1e-4 1e-5 3e-7 0.7758 0.9707 0.4346 0.8576
D04 1e-4 1e-7 3e-7 0.7725 0.9818 0.4652 0.7965
D02 1e-4 1e-6 3e-7 0.7621 0.9893 0.5167 0.9252
D00 3e-4 3e-6 9e-7 0.7571 0.9737 0.4210 0.7766
D01 1e-3 1e-5 3e-6 0.7070 0.9913 0.4607 0.9062
D06 1e-4 1e-6 3e-8 0.6800 0.9773 0.4137 0.8157

evaluation. This analysis not only informs practical considerations but also helps us assess our486

contribution to the growing carbon footprint of AI [28]. The results for the 7 presented training487

experiments and the total 42 training experiments are reported in Table 5.488

Direct measurement of resource usage during training is still under development, but we estimate489

the duration of each training run using indirect methods. We approximate energy consumption490

by assuming a constant power draw of 345W from the 3090 GPU during training. Emissions are491

estimated using a conversion ratio of 0.21
kgCO2

kWh
.492

Based on the validation set’s 691 images, we estimate that predicting on a single image on our desktop493

requires approximately 1.15 seconds and 0.13 Wh of energy. For context, typical mobile phones have494

a battery capacity of around 10 Wh and significantly less compute power than our desktop setup.495

While our models demonstrate the feasibility of training a strong detector from our dataset, they496

are not optimized for the mobile setting. To deploy our model on mobile devices, we will need to497

improve its efficiency or explore more efficient architectures.498
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(a) Test set.

(b) Validation set.

(c) Training set.

Figure 17: Qualitative results using the top-performing model on the validation set, applied to a
selection of images from the (a) test, (b) validation, and (c) training sets. Success cases are presented
on the left, with failure cases increasing towards the right. Each figure is organized into three rows:
Top row: Binarized classification map, where true positive pixels are shown in white, false positives
in red, false negatives in teal, and true negatives in black. The threshold for binarization was chosen
to maximize the F1 score for each image, showcasing the best possible classification of the heatmap.
Middle row: The predicted heatmap, illustrating the model’s output before binarization. Bottom row:
The input image, providing context for the prediction. The majority of images in the test set exhibit
qualitatively good results. Failure cases tend to occur with close-up images of older, sometimes
partially deteriorated poops. These examples were manually selected and ordered to demonstrate
dataset diversity in addition to representative results.

C.1.2 Dataset Versions499

There are two main versions of the dataset used in this paper. We can specify these using content-500

based identifiers. The version from 2024-07-03 has a IPFS CID of: bafybeiedwp2zvmdyb2c2a501

xrcl455xfbv2mgdbhgkc3dile4dftiimwth2y and a BitTorrent magnet of: magnet:?xt=urn:502

btih:ee8d2c87a39ea9bfe48bef7eb4ca12eb68852c49. The version from 2025-04-20 has an503

IPFS CID of: bafybeia2uv3ea3aoz27ytiwbyudrjzblfuen47hm6tyfrjt6dgf6iadta4 and a504

BitTorrent magnet of: magnet:?xt=urn:btih:27a2512ae93298f75544be6d2d629dfb186f86505

cf. Note: the hash suffix of the magnet URL can be searched on academictorrents.com.506

At the time of writing, the version of the dataset on HuggingFace is the latest, and we use507

git tags that correspond with the date of release and the IPFS CID to help identify dataset508

versions. However, unlike the decentralized methods, these are guaranteed to point to the ex-509

pected version of the dataset. At the time of writing the HuggingFace URL is: https://510

huggingface.co/datasets/[redactedforpeerreview]/scatspotter and the Girder URL511
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(a) AP and AUC of 35 checkpoints. (b) AP of 35 checkpoints.

Figure 18: (a) Scatterplot of pixelwise average precision (AP) and Area Under the ROC curve (AUC)
for the top 5 checkpoints on the validation set. Points of the same color represent checkpoints from
the same training run, which used identical hyperparameters. (b) Box-and-whisker plot the AP values
across the top 5 checkpoints evaluated on the validation set. For each run, corresponding varied
hyperparameters and maximum APs are given in Table 4.

Table 5: Resources used for training, prediction, and evaluation. The "node" column is the pipeline
stage: "train" for training, "pred" for heatmap prediction, and "eval" for pixelwise heatmap evaluation.
The "resource" column lists the resource type: time, energy, or emissions. The "total" and "µ"
columns show the total and average consumptions, and the "n" column indicates the frequency of
each stage (e.g., across different hyperparameters). Train rows marked with an asterisk (*) are based
on indirect measurements.

(a) Presented experiment resources.

Node Resource Total µ n

eval time 14.24 hours 0.41 hours 35

pred time 11.97 hours 0.34 hours 35
pred energy 8.76 kWh 0.25 kWh 35
pred emissions 1.84 CO2kg 0.05 CO2kg 35

train∗ time 39.22 days 5.60 days 7
train∗ energy 324.75 kWh 46.39 kWh 7
train∗ emissions 68.20 CO2kg 9.74 CO2kg 7

(b) All experiment resources.

Node Resource Total µ n

eval time 5.84 days 0.35 hours 399

pred time 7.29 days 0.44 hours 399
pred energy 102.83 kWh 0.26 kWh 399
pred emissions 21.6 CO2kg 0.05 CO2kg 399

train∗ time 158.95 days 3.78 days 42
train∗ energy 1,316.07 kWh 31.34 kWh 42
train∗ emissions 276.37 CO2kg 6.58 CO2kg 42

is: https://data.[redactedforpeerreview].com/?#user/598a19658d777f7d33e9c18b/512

folder/66b6bc7ef87a980650f41f98.513
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NeurIPS Paper Checklist514

1. Claims515

Question: Do the main claims made in the abstract and introduction accurately reflect the516

paper’s contributions and scope?517

Answer: [Yes]518

Justification: Our abstract describes all sections of the paper in a concise manner. We lay519

our our main contribution: the dataset, the best scores we have achieved so far. And indicate520

we are going to discuss dataset distribution where the focus is on discussing and quantifying521

tradeoffs. We make no claim that our trained models are the best, and indicate this in the522

abstract by describing our results as "exploring the difficulty of the dataset". It is likely that523

a skilled graduate student could do better, and we hope they will.524

Guidelines:525

• The answer NA means that the abstract and introduction do not include the claims526

made in the paper.527

• The abstract and/or introduction should clearly state the claims made, including the528

contributions made in the paper and important assumptions and limitations. A No or529

NA answer to this question will not be perceived well by the reviewers.530

• The claims made should match theoretical and experimental results, and reflect how531

much the results can be expected to generalize to other settings.532

• It is fine to include aspirational goals as motivation as long as it is clear that these goals533

are not attained by the paper.534

2. Limitations535

Question: Does the paper discuss the limitations of the work performed by the authors?536

Answer: [Yes]537

Justification: There are a number of limitations in the experiments, and we aim to make538

those explicit and transparent. Our primary contribution is the dataset and we attempt to539

describe it in a way that is both transparent and limits the misconceptions a reader might540

walk away with. Our models simply provide a baseline, which we expect can be improved541

on. We also note that our test dataset is small, which is why many results are presented on542

validation data. We clearly distinguish when this is the case. Our transfer measurements are543

inherently limited by the complexity of network communication.544

Guidelines:545

• The answer NA means that the paper has no limitation while the answer No means that546

the paper has limitations, but those are not discussed in the paper.547

• The authors are encouraged to create a separate "Limitations" section in their paper.548

• The paper should point out any strong assumptions and how robust the results are to549

violations of these assumptions (e.g., independence assumptions, noiseless settings,550

model well-specification, asymptotic approximations only holding locally). The authors551

should reflect on how these assumptions might be violated in practice and what the552

implications would be.553

• The authors should reflect on the scope of the claims made, e.g., if the approach was554

only tested on a few datasets or with a few runs. In general, empirical results often555

depend on implicit assumptions, which should be articulated.556

• The authors should reflect on the factors that influence the performance of the approach.557

For example, a facial recognition algorithm may perform poorly when image resolution558

is low or images are taken in low lighting. Or a speech-to-text system might not be559

used reliably to provide closed captions for online lectures because it fails to handle560

technical jargon.561

• The authors should discuss the computational efficiency of the proposed algorithms562

and how they scale with dataset size.563

• If applicable, the authors should discuss possible limitations of their approach to564

address problems of privacy and fairness.565
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• While the authors might fear that complete honesty about limitations might be used by566

reviewers as grounds for rejection, a worse outcome might be that reviewers discover567

limitations that aren’t acknowledged in the paper. The authors should use their best568

judgment and recognize that individual actions in favor of transparency play an impor-569

tant role in developing norms that preserve the integrity of the community. Reviewers570

will be specifically instructed to not penalize honesty concerning limitations.571

3. Theory assumptions and proofs572

Question: For each theoretical result, does the paper provide the full set of assumptions and573

a complete (and correct) proof?574

Answer: [NA] .575

Justification: There are no new theoretical results.576

Guidelines:577

• The answer NA means that the paper does not include theoretical results.578

• All the theorems, formulas, and proofs in the paper should be numbered and cross-579

referenced.580

• All assumptions should be clearly stated or referenced in the statement of any theorems.581

• The proofs can either appear in the main paper or the supplemental material, but if582

they appear in the supplemental material, the authors are encouraged to provide a short583

proof sketch to provide intuition.584

• Inversely, any informal proof provided in the core of the paper should be complemented585

by formal proofs provided in appendix or supplemental material.586

• Theorems and Lemmas that the proof relies upon should be properly referenced.587

4. Experimental result reproducibility588

Question: Does the paper fully disclose all the information needed to reproduce the main ex-589

perimental results of the paper to the extent that it affects the main claims and/or conclusions590

of the paper (regardless of whether the code and data are provided or not)?591

Answer: [Yes]592

Justification: The paper describes the experimental details at a level where one could follow593

them and get similar results. Furthermore, the exact code used to run experiments and their594

dependencies are provided. In some cases that depend on hardware and network conditions,595

statistical reproduction is possible.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• If the paper includes experiments, a No answer to this question will not be perceived599

well by the reviewers: Making the paper reproducible is important, regardless of600

whether the code and data are provided or not.601

• If the contribution is a dataset and/or model, the authors should describe the steps taken602

to make their results reproducible or verifiable.603

• Depending on the contribution, reproducibility can be accomplished in various ways.604

For example, if the contribution is a novel architecture, describing the architecture fully605

might suffice, or if the contribution is a specific model and empirical evaluation, it may606

be necessary to either make it possible for others to replicate the model with the same607

dataset, or provide access to the model. In general. releasing code and data is often608

one good way to accomplish this, but reproducibility can also be provided via detailed609

instructions for how to replicate the results, access to a hosted model (e.g., in the case610

of a large language model), releasing of a model checkpoint, or other means that are611

appropriate to the research performed.612

• While NeurIPS does not require releasing code, the conference does require all submis-613

sions to provide some reasonable avenue for reproducibility, which may depend on the614

nature of the contribution. For example615

(a) If the contribution is primarily a new algorithm, the paper should make it clear how616

to reproduce that algorithm.617

(b) If the contribution is primarily a new model architecture, the paper should describe618

the architecture clearly and fully.619
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(c) If the contribution is a new model (e.g., a large language model), then there should620

either be a way to access this model for reproducing the results or a way to reproduce621

the model (e.g., with an open-source dataset or instructions for how to construct622

the dataset).623

(d) We recognize that reproducibility may be tricky in some cases, in which case624

authors are welcome to describe the particular way they provide for reproducibility.625

In the case of closed-source models, it may be that access to the model is limited in626

some way (e.g., to registered users), but it should be possible for other researchers627

to have some path to reproducing or verifying the results.628

5. Open access to data and code629

Question: Does the paper provide open access to the data and code, with sufficient instruc-630

tions to faithfully reproduce the main experimental results, as described in supplemental631

material?632

Answer: [Yes]633

Justification: The entire history of the project is archived on github and desci.nodes. Effort634

was made to make training and evaluation as simple as possible and also to minimize any635

manual steps, but document them when they were unavoidable.636

Guidelines:637

• The answer NA means that paper does not include experiments requiring code.638

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/639

public/guides/CodeSubmissionPolicy) for more details.640

• While we encourage the release of code and data, we understand that this might not be641

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not642

including code, unless this is central to the contribution (e.g., for a new open-source643

benchmark).644

• The instructions should contain the exact command and environment needed to run to645

reproduce the results. See the NeurIPS code and data submission guidelines (https:646

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.647

• The authors should provide instructions on data access and preparation, including how648

to access the raw data, preprocessed data, intermediate data, and generated data, etc.649

• The authors should provide scripts to reproduce all experimental results for the new650

proposed method and baselines. If only a subset of experiments are reproducible, they651

should state which ones are omitted from the script and why.652

• At submission time, to preserve anonymity, the authors should release anonymized653

versions (if applicable).654

• Providing as much information as possible in supplemental material (appended to the655

paper) is recommended, but including URLs to data and code is permitted.656

6. Experimental setting/details657

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-658

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the659

results?660

Answer: [Yes] .661

Justification: The models are not the main point of this paper, so some details have been662

omitted from the main 9 page paper. The dataset splits and details are explicitly defined in663

the paper. In any case, full details are available in the released code.664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The experimental setting should be presented in the core of the paper to a level of detail667

that is necessary to appreciate the results and make sense of them.668

• The full details can be provided either with the code, in appendix, or as supplemental669

material.670

7. Experiment statistical significance671
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Question: Does the paper report error bars suitably and correctly defined or other appropriate672

information about the statistical significance of the experiments?673

Answer: [No]674

Justification: This answer is a no with nuance. For model results we report maximum scores,675

as the point of our models is to provide a baseline level of performance. Statistics about VIT676

experiments are provided in the appendix.677

For transfer rate experiments we provide mean, std, min, and max in the paper, and the full678

record of transfers and details is logged in a publicly released repo.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The authors should answer "Yes" if the results are accompanied by error bars, confi-682

dence intervals, or statistical significance tests, at least for the experiments that support683

the main claims of the paper.684

• The factors of variability that the error bars are capturing should be clearly stated (for685

example, train/test split, initialization, random drawing of some parameter, or overall686

run with given experimental conditions).687

• The method for calculating the error bars should be explained (closed form formula,688

call to a library function, bootstrap, etc.)689

• The assumptions made should be given (e.g., Normally distributed errors).690

• It should be clear whether the error bar is the standard deviation or the standard error691

of the mean.692

• It is OK to report 1-sigma error bars, but one should state it. The authors should693

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis694

of Normality of errors is not verified.695

• For asymmetric distributions, the authors should be careful not to show in tables or696

figures symmetric error bars that would yield results that are out of range (e.g. negative697

error rates).698

• If error bars are reported in tables or plots, The authors should explain in the text how699

they were calculated and reference the corresponding figures or tables in the text.700

8. Experiments compute resources701

Question: For each experiment, does the paper provide sufficient information on the com-702

puter resources (type of compute workers, memory, time of execution) needed to reproduce703

the experiments?704

Answer: [Yes]705

Justification: We quantify hardware, time, energy, and emissions.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,709

or cloud provider, including relevant memory and storage.710

• The paper should provide the amount of compute required for each of the individual711

experimental runs as well as estimate the total compute.712

• The paper should disclose whether the full research project required more compute713

than the experiments reported in the paper (e.g., preliminary or failed experiments that714

didn’t make it into the paper).715

9. Code of ethics716

Question: Does the research conducted in the paper conform, in every respect, with the717

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?718

Answer: [Yes]719

Justification: For the people that have contributed to our dataset, we received explicit consent.720

We do not believe our dataset has a high potential for misuse. In some cases metadata has721

been scrubbed from the images before they were released.722

Guidelines:723
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.724

• If the authors answer No, they should explain the special circumstances that require a725

deviation from the Code of Ethics.726

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-727

eration due to laws or regulations in their jurisdiction).728

10. Broader impacts729

Question: Does the paper discuss both potential positive societal impacts and negative730

societal impacts of the work performed?731

Answer: [Yes]732

Justification: Part of the motivation for this work was to build a dataset with as limited733

negative social impact as possible.734

Guidelines:735

• The answer NA means that there is no societal impact of the work performed.736

• If the authors answer NA or No, they should explain why their work has no societal737

impact or why the paper does not address societal impact.738

• Examples of negative societal impacts include potential malicious or unintended uses739

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations740

(e.g., deployment of technologies that could make decisions that unfairly impact specific741

groups), privacy considerations, and security considerations.742

• The conference expects that many papers will be foundational research and not tied743

to particular applications, let alone deployments. However, if there is a direct path to744

any negative applications, the authors should point it out. For example, it is legitimate745

to point out that an improvement in the quality of generative models could be used to746

generate deepfakes for disinformation. On the other hand, it is not needed to point out747

that a generic algorithm for optimizing neural networks could enable people to train748

models that generate Deepfakes faster.749

• The authors should consider possible harms that could arise when the technology is750

being used as intended and functioning correctly, harms that could arise when the751

technology is being used as intended but gives incorrect results, and harms following752

from (intentional or unintentional) misuse of the technology.753

• If there are negative societal impacts, the authors could also discuss possible mitigation754

strategies (e.g., gated release of models, providing defenses in addition to attacks,755

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from756

feedback over time, improving the efficiency and accessibility of ML).757

11. Safeguards758

Question: Does the paper describe safeguards that have been put in place for responsible759

release of data or models that have a high risk for misuse (e.g., pretrained language models,760

image generators, or scraped datasets)?761

Answer: [NA]762

Justification: This dataset is not scrapped. It is a collection of new real images collected with763

explicit consent for the purpose training models. The models are detection and segmentation764

models. We cannot envision a non-contrived case where they are a risk.765

Guidelines:766

• The answer NA means that the paper poses no such risks.767

• Released models that have a high risk for misuse or dual-use should be released with768

necessary safeguards to allow for controlled use of the model, for example by requiring769

that users adhere to usage guidelines or restrictions to access the model or implementing770

safety filters.771

• Datasets that have been scraped from the Internet could pose safety risks. The authors772

should describe how they avoided releasing unsafe images.773

• We recognize that providing effective safeguards is challenging, and many papers do774

not require this, but we encourage authors to take this into account and make a best775

faith effort.776
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12. Licenses for existing assets777

Question: Are the creators or original owners of assets (e.g., code, data, models), used in778

the paper, properly credited and are the license and terms of use explicitly mentioned and779

properly respected?780

Answer: [Yes]781

Justification: The license is provided and dataset versioning is discussed.782

Guidelines:783

• The answer NA means that the paper does not use existing assets.784

• The authors should cite the original paper that produced the code package or dataset.785

• The authors should state which version of the asset is used and, if possible, include a786

URL.787

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.788

• For scraped data from a particular source (e.g., website), the copyright and terms of789

service of that source should be provided.790

• If assets are released, the license, copyright information, and terms of use in the791

package should be provided. For popular datasets, paperswithcode.com/datasets792

has curated licenses for some datasets. Their licensing guide can help determine the793

license of a dataset.794

• For existing datasets that are re-packaged, both the original license and the license of795

the derived asset (if it has changed) should be provided.796

• If this information is not available online, the authors are encouraged to reach out to797

the asset’s creators.798

13. New assets799

Question: Are new assets introduced in the paper well documented and is the documentation800

provided alongside the assets?801

Answer: [Yes]802

Justification: Documentation is summarized to the extent possible in 9 pages. External803

documentation, detailed logs and progress reports are maintained in a public git repo and804

also stored on desci.nodes.805

Guidelines:806

• The answer NA means that the paper does not release new assets.807

• Researchers should communicate the details of the dataset/code/model as part of their808

submissions via structured templates. This includes details about training, license,809

limitations, etc.810

• The paper should discuss whether and how consent was obtained from people whose811

asset is used.812

• At submission time, remember to anonymize your assets (if applicable). You can either813

create an anonymized URL or include an anonymized zip file.814

14. Crowdsourcing and research with human subjects815

Question: For crowdsourcing experiments and research with human subjects, does the paper816

include the full text of instructions given to participants and screenshots, if applicable, as817

well as details about compensation (if any)?818

Answer: [No]819

Justification: We currently do encourage external contributions to the project on the bottom820

of the project’s github README. However, the number of contributors is small, and the821

few contributions we recieved were obtained before we placed this section in the README.822

The current text of this section does include instruction which we list here:823

Please contribute! The quickest way is with the Google Form for ShitSpotter Image
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Contributions.

Alternatively, you can send me an image via email to: <removed-for-blind-review>

When you contribute an image:

• Make sure you are ok with it being released for free under: (CC BY 4.0)

• Let me know how to give you credit.

• Let me know if you want time / GPS camera metadata to be removed from the
images.

Guide to taking an image:

Upload an image with poop in it. The poop need not be centered in the image. It could
be close up, or far away. It should be visible, but it need not be obvious. The idea is
that it could be difficult to see and we want to test if a machine learning algorithm can
find it. The only requirement is that if a human looks at it carefully, they can tell there
is poop in it.

For the contributions received so far, no instruction were given, and they were volunteered824

when they learned about the project.825

This project has no paid participants.826

Disclosure: Initially, some contributions were made informally before we had established827

explicit contribution instructions and consent language. After recognizing the need for828

explicit consent, we proactively contacted all early contributors, explained the situation,829

and obtained formal consent to include their contributions. All contributors agreed to the830

terms. Going forward, clear instructions and consent requests are provided to all potential831

contributors.832

Guidelines:833

• The answer NA means that the paper does not involve crowdsourcing nor research with834

human subjects.835

• Including this information in the supplemental material is fine, but if the main contribu-836

tion of the paper involves human subjects, then as much detail as possible should be837

included in the main paper.838

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,839

or other labor should be paid at least the minimum wage in the country of the data840

collector.841

15. Institutional review board (IRB) approvals or equivalent for research with human842

subjects843

Question: Does the paper describe potential risks incurred by study participants, whether844

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)845

approvals (or an equivalent approval/review based on the requirements of your country or846

institution) were obtained?847

Answer: [No]848

Justification: This project is entirely unfunded and performed independent of any institution849

funding; but some institutional resources were used for network transfer experiments.850

Contributions received from non-author volunteers was limited. Volunteers provided consent851

for their data to be published under CC-BY 4.0.852

Guidelines:853

• The answer NA means that the paper does not involve crowdsourcing nor research with854

human subjects.855

• Depending on the country in which research is conducted, IRB approval (or equivalent)856

may be required for any human subjects research. If you obtained IRB approval, you857

should clearly state this in the paper.858

• We recognize that the procedures for this may vary significantly between institutions859

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the860

guidelines for their institution.861
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• For initial submissions, do not include any information that would break anonymity (if862

applicable), such as the institution conducting the review.863

16. Declaration of LLM usage864

Question: Does the paper describe the usage of LLMs if it is an important, original, or865

non-standard component of the core methods in this research? Note that if the LLM is used866

only for writing, editing, or formatting purposes and does not impact the core methodology,867

scientific rigorousness, or originality of the research, declaration is not required.868

Answer: [NA]869

Justification: LLMs were only used for mundain writing or formatting tasks.870

Guidelines:871

• The answer NA means that the core method development in this research does not872

involve LLMs as any important, original, or non-standard components.873

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)874

for what should or should not be described.875
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