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Abstract

We introduce a new dataset containing phone images of dog feces, annotated with
manually drawn or Al-assisted polygon labels. Its over 9000 “before/after/negative”
full resolution images contain 6000 polygon annotations. The collection and
annotation of images started in late 2020. This paper focuses on two checkpoints
from 2025-04-20 and 2024-07-03. We train VIT and MaskRCNN baseline models
to explore the difficulty of the dataset. The best model achieves a pixelwise
average precision of 0.858 on a 691-image validation set and 0.810 on a small
independently captured 121-image contributor test set. Dataset snapshots are
available through four different distribution methods: two centralized (Girder and
HuggingFace) and two decentralized (IPFS and BitTorrent). We study of the trade-
offs between distribution methods and discuss the feasibility of each with respect
to reliably sharing open scientific data. The code for experiments is hosted on
GitHub. The data license is CC-BY 4.0. Model weights are available with the
dataset. Experiment hardware, time, energy, and emissions are quantified.

1 Introduction

Applications for a computer vision system capable of detecting and localizing poop in images are
numerous. These include automated waste disposal to keep parks and backyards clean, tools for
monitoring wildlife populations via droppings, and a warning system in smart-glasses to prevent
people from stepping in poop. Our primary motivating use case is a phone application that assists
dog owners in locating their dog’s poop in a leafy park for easier cleanup. Many of these applications
can be realized with modern object detection and segmentation methods [48} 50, 155] combined with
a large labeled dataset.

In addition to enabling several applications, poop detection is an interesting benchmark problem. It is
relatively simple, with a narrow focus on a single class, making it suitable for exploring the capabilities
of object detection models that target a single labeled class. However, the task includes non-trivial
challenges such as resolution issues (e.g., camera quality, distance), camouflaging distractors (e.g.,
leaves, pine cones, sticks, dirt, and mud), occlusion (e.g., bushes, overgrown grass), and variation
in appearance (e.g., old vs. new, healthy vs. sick). An example of a challenging case is shown in
Figure[Ta] Investigation into cases where this problem is difficult may provide insight into how to
better train object detection and segmentation networks.

Towards these ends we introduce a new dataset which, in formal settings, we call “ScatSpotter”.
Poops are annotated with polygons making the dataset suitable for training detection and segmen-
tation models. In order to assist with annotation and add variation, we collect images using a
“before/after/negative” (BAN) protocol as shown in Figure[Th|

From this data, we train a segmentation model to classify which pixels in an image contain poop and
which do not. Our models show strong performance, but there are notable failure cases indicating
this problem is difficult even for modern computer vision algorithms.
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(a) A zoomed in example of an annotated object in a (b) The “before/after/negative” protocol. The orange
challenging condition: a scene cluttered with leaves. box highlights the location of the poop in the “before”
The similarity between the leaves and the poop causes image. In the “after” image, it is the same scene but
a camouflage effect that can make detecting it difficult. the poop has been removed. The “negative” image is a
The poop is highlighted in blue. nearby similar scene, potentially with a distractor. Note
that the object is small relative to the image size.

Figure 1: (a) A challenging annotation case due to camouflage. (b) The BAN protocol.

Table 1: Related datasets. Columns list dataset name, number of categories, images, and annotations.
Image W x H gives median image dimensions; Ann Area®® is the median square root of annotation
area (pixels); Size is disk requirements in GB; Annot Type is the labeling method. Figure 2| shows
the distribution of annotation shapes, sizes, and locations.

Name #Cats #Images #Annots évmigle{ 3223’_ t5 ]S):ZSE érr;gzt
ImageNet[47] 1,000 594,546 695,776 500 x 374 239 166GB  box

MSCOCO[33]] 80 123,287 896,782 428 x 640 57 50GB  polygon
CityScapes[[12] 40 5,000 287,465 2,048 x 1,024 50 78GB  polygon
ZeroWaste [3]] 4 4,503 26,766 1,920 x 1,080 200 10GB  polygon
TrashCanV1[23] 22 7,212 12,128 480 x 270 54 0.61GB polygon
UAV Vaste([29] 1 772 3,718 3,840 x 2,160 55 29GB polygon
SpotGarbage[40] 1 2,512 337 754 x 754 355 1.5GB category
TACO[43] 60 1,500 4,784 2,448 x 3,264 119 17GB  polygon
MSHIT[38] 2 769 2,348 960 x 540 99 4GB box

Ours 1 9,296 6,594 4,032 x 3,024 87 60GB  polygon

To enable others to build on our results, it is essential that the dataset is accessible and hosted reliably.
Centralized methods are a typical choice, offering high speeds, but they can be costly for individuals,
often requiring institutional support or paid hosting services. They are also prone to outages and
lack built-in data validation. In contrast, decentralized methods allow volunteers to host data and
offers built-in validation of data integrity. This motivates us to compare and contrast the decentralized
BitTorrent [[8]], and IPFS [4]] protocols as mechanisms for distributing datasets.

Our contributions are: 1) A challenging new open dataset of images with polygon annotations. 2) A
set of trained baseline models. 3) A comparison of dataset distribution methods.

2 Related Work

To the best of our knowledge, our dataset is currently the largest publicly available collection of
annotated dog poop images, but it is not the first. A dataset of 100 dog poop images was collected
and used to train a FasterRCNN model [42] but this dataset and model are not publicly available. The
company iRobot has a dataset of annotated indoor poop images used to train Roomba j7+ to avoid
collisions [21]], but as far as we are aware, this is not available. In terms of available poop detection
datasets we are only aware of MSHIT [38] which is much smaller, only contains box annotations,
and the objects of interest are plastic toy poops.

Compared to benchmark object localization and segmentation datasets [47, 33, [12] ours is much
smaller and focused only on a single category. However, when compared to litter and trash datasets
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Figure 2: A comparison of all of the annotations for different datasets including ours. All polygon
annotations drawn in a single plot with 0.8 opacity to demonstrate the distribution in annotation
location, shape, and size with respect to image coordinates.
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Figure 3: Example images from 2D UMAP clusters [37]. Each point in the top image represents
a 2D-projected embedding, with numbered orange dots indicating nearby images in the bottom
columns. Blue annotation boxes are shown. A clear separation emerges between snowy (columns
1-2) and non-snowy images (columns 3-13).

13, [29]] ours is among the largest in terms of number of images / annotations, image size,
and total dataset size. ZeroWaste [3] uses a “before/after” protocol similar to our BAN protocol. We
provide an overview of these related datasets in Table[I] Among all of these, ours stands out for
having the highest resolution images and the smallest objects relative to that resolution. For a review
of additional waste related datasets, refer to [39].

Section 5 discusses the logistics and tradeoffs between dataset distribution mechanisms with a focus
on comparing centralized and decentralized methods. IPFS [4] and BitTorrent [8] are the decentralized
mechanisms we evaluate, but others exist such as Secure Scuttlebut [52]] and Hypercore [17], which
we did not test.

3 Dataset

Our first contribution is the creation of a new open dataset which consists of images of dog poop
in mostly urban, mostly outdoor environments, from mostly a single city. The data is annotated
to support object detection and segmentation tasks. The majority of the images feature fresh poop
from three specific medium sized dogs, but there are a significant number of images with poops of
unknown age and from unknown dogs.

Despite these biases, the dataset has significant image variations. To provide a gist, we computed
UMAP image embeddings based on ResNet50 [22] descriptors display images corresponding
with clusters in this embedding in Figure[3]
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(a) The time-of-year vs time-of-day of each image  (b) The histogram of annotations per image shows
show lighting and seasonal variation. On the x-axis, 0 object density variation. Only 35% (3,314) of images
is January 1st. On the y-axis, O is midnight. Color es-  contain annotations; 65% (5,982) are known negatives.
timates daylight based on location (if available). Most ~ About half of the negatives were taken immediately
images are in the day, but many were taken at night  after pickup; the rest are from nearby locations with
with flash or long exposure. potential lookalikes.

Figure 4: Dataset distributions. (a) Time and daylight scatterplot. (b) Annotation count histogram.

More details about the dataset are available in a standardized datasheet [I8]] that covers the motivation,
composition, collection, preprocessing, uses, distribution, and maintenance. This will be distributed
with the data itself, and is provided in supplemental material.

3.1 Dataset Collection

A single researcher on dog walks photographed fresh dog poop, mostly their own dogs, but often
others. Distance was sometimes varied for diversity. Most images were taken following the “be-
fore/after/negative” (BAN) protocol. A BAN triple comprises a “before” shot of the poop, an “after”
shot post removal, and a “negative” shot of a nearby lookalike (e.g., pine cones, leaves). We only use
them for negative sampling, but they could enable contrastive triplet losses [49].

The majority of images follow the BAN protocol, but there are exceptions. The first six months of
data collection only involved the “before/after” part of the protocol. We began collecting the third
negative image after a colleague suggested it. In some cases, the researcher failed or was unable to
take the second or third image. These exceptions are often programmatically identifiable.

We also received 121 contributor images, mostly outside the BAN protocol. These images are held
out and used as our test set. Due to the small size, our main results also include validation scores.

3.2 Dataset Annotation

Images were annotated using labelme [27]. Most annotations were initialized using SAM and a point
prompt. All Al polygons were manually reviewed. In most cases only small manual adjustments
were needed, but there were a significant number of cases where SAM did not work well and fully
manual annotations were needed. Regions with shadows seemed to cause SAM the most trouble, but
there were other failure cases. Unfortunately, there is no metadata to indicate which polygons were
manually created or done using AI. However, the number of vertices may be a reasonable proxy to
estimate this, as polygons generated by SAM tend to have higher fidelity boundaries. The boundaries
of the annotated polygons are illustrated in Figure 2]

Data collected after 2024-07-03 was annotated with the help of models trained on prior data. Again,
all predictions were manually verified or corrected. In these later cases, false positive annotations
were labeled (e.g. stick, leaf), but because these categories are not labeled exhaustively, we exclude
them from all analysis in this paper.
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3.3 Dataset Properties and Statistics

The data was captured at a regular rate over 4.3 years, primarily in parks and sidewalks within a small
city. Weather conditions varied across snowy, sunny, rainy, and foggy. A visual representation of the
distribution of seasons, time-of-day, daylight, and capture rate is provided in Figure fa]

The dataset images are available in full resolution. Almost all images were taken using the same
phone-camera, with a consistent width/height of 4,032 x 3,024 (although some may be rotated based
on EXIF data). The images are stored as 8-bit JPEGs with RGB channels, and most include overviews
(i.e., image pyramids), allowing for fast loading of downscaled versions.

Due to the BAN protocol, about one-third of the images contain annotations, the rest were taken after
the object(s) were removed. Consequently, most images have no annotations. When present, annota-
tions are usually singular, but multiple annotations are common and can be due to: 1) fragmented
dropping, 2) dogs pooping together, 3) repeated poops in the same area over time (sometimes hard to
distinguish from dirt). The number of annotations per image is illustrated in Figure #b]

3.4 Dataset Splits

Our dataset is split into training, validation, and test sets based on the year and day of image capture
and photographer. Only data captured by the authors is used for training and validation. Of these,
images from 2021-2023, 2025 and beyond are assigned to the training set. Images from 2020 are
used for validation. For data from 2024, we consider the ordinal date n of each image and include it
in the validation set if n = 0 (mod 3); otherwise, it is assigned to the training set.

For testing data, we use contributor images to not bias our results based on the way the authors took
images. These splits are provided in the COCO JSON format [33]] as well as a WebDataset [53]] on
HuggingFace.

4 Baseline Models

As our second contribution, we trained and evaluated models to establish a baseline for future
comparisons. Specifically we train three model variants. We trained two MaskRCNN [23]] mod-
els (specifically the R_50_FPN_3x configuration), one starting from pretrained ImageNet weights
(MaskRCNN-p), and one starting from scratch (MaskRCNN-s). We also trained a semantic seg-
mentation vision transformer variant (VIT-sseg-s) [20} [13]], which was only trained from scratch.
Hyperparameters are given in supplemental materials.

For these baseline models, the training data was limited to an older subset taken before 2024-07-03.
Our training dataset consists of 5,747 images and is identified by a suffix of 1e73d54f, which is the
prefix of its content hash. The validation set contains 691 images and has a suffix of 99b22ad0. The
test set, consists of the 121 images, has a suffix of 6cb3b6£ £, and includes contributor images up to
2025-04-20. The evaluated models were selected based on their validation scores.

We performed two types of evaluations on the models. “Box” evaluation computes standard COCO
object detection metrics [33]. MaskRCNN natively outputs scored bounding boxes, but for the
VIT-sseg model, we convert heatmaps into boxes by thresholding the probability maps and converting
taking the extend of the resulting polygons as bounding boxes. The score is taken as the average
heatmap response under the polygon. Bounding box evaluation has the advantage that small and
large annotations contribute equally to the score, but it can also be misleading for datasets where the
notion of an object instance can be ambiguous.

To complement the box evaluation, we performed a pixelwise evaluation, which is more sensitive
to the details of the segmented masks, but also can be biased towards larger annotations with more
pixels. The corresponding truth and predicted pixels were accumulated into a confusion matrix,
allowing us to compute standard metrics [44]] such as precision, recall, false positive rate, etc. For the
VIT-sseg model, computing this score is straightforward, but for MaskRCNN we accumulate per-box
heatmaps into a larger full image heatmap, which can then be scored.

Quantitative results for each of these models on box and pixel metrics are shown in Table [2} Because
the independent test set is only 121 images, we also present results on the larger validation dataset.
Corresponding qualitative test results are illustrated in Figure[5|and validation results in Figure[6]
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Table 2: Results for MaskRCNN and VIT models (suffix -p: pretrained, -s: scratch) on test and
validation sets. Evaluated with box and pixel metrics — AP (ppv-tpr area) [44] and AUC (tpr-fpr
area) — computed via scikit-learn [43]]. Pretrained models outperform. Note: VIT-sseg was tuned
more; MaskRCNN may yield better results with similar effort.

Dataset split: Test (n=121) Validation (n=691)
Evaluation type: Box Box Pixel Pixel Box Box Pixel Pixel
Model type # Params AP AUC AP AUC AP AUC AP AUC

MaskRCNN-p  43.9¢6 0.613 0.697 0.810 0.849 0.612 0.721 0.858 0.905
MaskRCNN-s  43.9e6 0.253 0.464 0.384 0.798 0.255 0.576 0.434 0.891
VIT-s 25.5e6 0422 0426 0473 0902 0476 0.532 0.780 0.994
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(a) MaskRCNN-pretrained (test set results).

III | | I I-
- R -

(b) MaskRCNN-scratch (test set results).

(c) VIT sseg scratch (test set results)

(d) Input images from the test set.

Figure 5: Qualitative results from the top model on the validation set, applied to test images. The first
three subfigures (a, b, ¢) display a binarized classification map (true positives in white, false positives
in red, false negatives in teal, true negatives in black) and the predicted heatmap (before binarization).
Subfigure (d) shows the input image. The heatmap binarization threshold was 0.5. Failures occur
with close-up or deteriorated objects, and camouflage.

All models were trained on a single machine with an Intel Core i9-11900K CPU and an NVIDIA
GeForce RTX 3090 GPU. A key limitation of these results is the imbalance between model types,
with 42 out of 44 trained models being VIT-ssegs and only two MaskRCNN models, each taking
approximately 8 hours to train. Future work could further optimize MaskRCNN models to improve
comparability. More details on the VIT-sseg experiments can be found in the supplemental materials.

Environmental Impact The total time spent on prediction and evaluation across all experiments was
15.6 days, with prediction consuming 109.63 kWh of energy and causing an estimated emissions of
23.0 CO2kg as measured by CodeCarbon [30]. We estimated train-time resource usage during training
using indirect methods, assuming a constant power draw of 345W from the RTX 3090 GPU. Energy
consumption was approximated accordingly, while emissions were calculated using a conversion

ratio of 0.21 k%{gv% derived from our prediction time measurements. Based on file timestamps, we
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Figure 6: Qualitative results of the top model on unseen validation images (see Figure [5|for visualiza-
tion details). Although never trained on these data, the model’s was able to detect camouflaged cases
on the left but missed some on the right, indicating generalizability but also room for improvement.

estimated that running 44 different training runs took approximately 159.66 days, resulting in an
estimated energy usage and emissions of 1321.99 kWh and 277.612 CO; kg, respectively. For

$0.16 $25.00 .. )
context, at S and T000COke” the cost of training and evaluating was $229.06.

5 Open Data Distribution

Empirical evidence suggests that a substantial proportion of scientific studies have low reproducibility
rates, which has raised concerns across various disciplines [2]]. Ideally, scientific research should be
independently reproducible. Despite higher success rates in computer science (up to 60%) compared
to other fields, there is still room for improvement [46} (11} [14]]. Addressing this issue requires not just
better experimental documentation but also more reliable and accessible data distribution methods.
Specifically, this involves robustly codifying data download and preparation processes.

Centralized data distribution methods allow for codified data access by storing URLs that point to
datasets within the code, offering fast and direct access. However, this approach lacks robustness. It
can fail if the provider goes offline, changes the URL, or stops hosting the data. Additionally, cloud
storage can be expensive, and users must trust that the provider delivers the correct data — a risk that
can be mitigated by using checksums to verify data integrity.

In contrast, decentralized methods allow users to access data in the same way, even if the organization
hosting the data changes. By leveraging content-addressable storage, where the dataset checksum acts
as both the key to locate and validate the data, these methods ensure data integrity and nearly eliminate
the risk of dead URLS, provided that at least one peer retains the data. While decentralized systems
face challenges such as longer connection times, increased network overhead, and the need for a
robust peer network, their ability to ensure data access via a static address motivates our investigation

Specifically, we focus on two prominent candidates: BitTorrent and IPFS. BitTorrent [8, 9] is a well
known sharing protocol that originally relied on centralized trackers and databases of torrent files
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to connect peers. While trackers and torrent files are still prominent, torrents can be published to a
distributed hash table (DHT) using the Kademlia algorithm [36]. This makes it an strong candidate for
a decentralized distribution mechanism. On the other hand, IPFS (InterPlanetary File System) [4], 6]
is a newer tool directly build directly on a DHT. IPFS has been likened to “a single BitTorrent swarm,
exchanging objects within one Git repository”. Both IPFS and BitTorrent are content addressable at
the dataset level, which makes them both appropriate for our use case where we seek a static address
that can be used to robustly access data.

It is worth noting that git-based [7] systems like HuggingFace [32] with large file storage do gain
some decentralized properties via multiple remotes, but not content identifiers.

For practitioners, key concerns are how quickly and reliably data can be accessed. By comparing
decentralized and centralized mechanisms access times for our dataset, we aim to make explicit the
tradeoffs between the methods and inform decisions on adopting an approach.

5.1 Dataset Transfer Experiment

Our third contribution is an experiment that studies transfer rates of decentralized and centralized
data distribution methods. For centralized distribution, we use a self-hosted instance of Girder [41]]
and the HuggingFace datasets [32] platform. For decentralized clients, we use Transmission [31]]
(BitTorrent) and Kubo [26] (IPFS). As a baseline, we also measure direct transfers using Rsync [54].

For data transfer experiments, we use the 2024-07-03 version of the dataset. This is content-addressed
with the IPFS CID (content identifier): bafybeiedwp2zvmdyb2c2axrcl455xfbv2mgdbhgkc3dil
e4dftiimwth2y The torrent has a magnet URL of: magnet:?xt=urn:btih:ee8d2c87a39eadbf
e48bef7ebdcal2eb68852c49, and is tracked on Academic Torrents [[10].

To assess the effectiveness of each mechanism we programmatically download our 42GB dataset and
measure the time required to complete the transfer. Each experiment was run five times, machines we
controlled were separated by ~ 30 kilometers with an average ping time of 48.48 ms. For each test,
we log transfer start and end times along with notes and code (provided in supplemental materials).

While our measurements provide a reasonable estimate of for access time for each mechanism, there
are notable limitations in our methodology. First, different machines and networks have different
upload and download speeds, and network congestion is variable. For decentralized methods, we
lack an automated mechanism separate peer-connection time and actual download time. Additionally,
Girder and HuggingFace required data to be packed into compressed archives, improving transfer
efficiency due to fewer file boundaries. In decentralized cases, we provide granular access to each file
in the dataset, which avoids an extra unpacking step and enables sharing of the same file between
different versions of the datasets and simpler updates, but decreases transfer efficiency. Due to this,
we provide both a compressed and uncompressed rsync baseline. Another confounding factor is that
with decentralized mechanisms the number of seeders is not controlled for. Subsets of the data have
been hosted on IPFS for years, and portions of the dataset may be provided by unknown members of
the network. For BitTorrent, our initial transfers only had one seeder, but during our tests other nodes
accessed and started to provide the data.

Despite significant testing limitations, our measurements quantify the expected data-access time
penalty to gain the advantages of decentralized mechanisms. With these limitations acknowledged,
we present the transfer times statistics in Table[3] Alongside these measurements, several observations
are worth noting. Transferring files using IPFS had significantly delayed peer discovery times, and
we were only able to connect two machines after manually informing them of each other’s peer ID.
For BitTorrent, were unable to use the mainline DHT and fell back to using trackers. We believe
these peer discovery issues are because the dataset has a small number of seeders. To test this, we
downloaded other established datasets via IPFS and BitTorrent and found that the peer discovery time
was almost immediate, suggesting that this becomes less of an issue as a dataset is shared. However,
the inability to quickly find a nearby peer is a major issue for initial or private dataset development.

The HuggingFace results stand out, as they are faster than rsync. We believe this is due to an
optimized client and content delivery networks, utilizing CAKE [24] to minimize buffer bloat [19].
However, this speed relies on costly centralized infrastructure. The expected speed from a more
modest centralized service is ~20x slower.
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Table 3: Transfer times (in hours) for our 42GB dataset: trials (n), mean (), std (o). Each experiment
was run 5 times. Uncompressed transfers provide granular access to individual files, while compressed
transfers are faster.

Method Compressed I o Min Max
BitTorrent No 8.36h 5.16h 2.21h 14.3%h
IPFS No 10.68h 9.54h 1.80h 24.62h
Rsync No 4.84h 1391 3.10h 6.10h
Girder Yes 2.85h 2.31h 1.05h 6.24h
HuggingFace Yes 0.14h 0.03h 0.11h 0.18h
Rsync Yes 1.10h 0.03h 1.07h  1.13h

There is an additional ~ 4x slowdown between compressed and uncompressed rsync baselines,
which needs to be considered when comparing decentralized results. The minimum time column
shows that decentralized methods method can be competitive with rsync, but on average decentralized
mechanisms are significantly slower and can be stifled by long peer-discovery times.

6 Conclusion

We have introduced the largest open dataset of high resolution images with polygon segmentations
of dog poop. The dataset contains several challenges including amorphous objects, multi-season
variation, difficult distractors, daytime / nighttime variation. We have described the dataset collection
and annotation process and reported statistics on the dataset.

We provided a recommended train/validation/test split of the dataset, and trained baseline segmenta-
tion models that perform well, but could likely be improved. In addition to providing quantitative and
qualitative results of the models, we also estimate the resources required to perform these training,
prediction, and evaluation experiments.

We have published our data and models under a permissive license, and made them available through
both centralized (Girder and HuggingFace) and decentralized (BitTorrent and IPFS) mechanisms.
Decentralized methods have robustness properties, but suffer from significant network transfer
overhead. HuggingFace has exceptionally fast transfer speeds, and due to its usage of git-1fs has some
decentralized properties, but lacks content identifiers. Combining IPFS with a content distribution
network may be a path to a best-of-both-worlds system.

Limitations of our work include: 1) geographic concentration of the dataset, 2) the small size of the
independent test set, 3) limited exploration of the better-performing model variant, and 4) uncontrolled
network conditions during distribution experiments. Future work could address these by expanding
dataset diversity, training a broader range of models, and improving decentralized hosting strategies.

Our dataset enables applications such as mobile apps for detecting feces, urban cleanliness monitoring,
and augmented reality collision warnings. We believe negative impacts are limited and expect
respectful use of the dataset. We envision exciting possibilities for the BAN protocol in computer
vision research. We hope our work will inspire others to consider decentralized content addressable
data sharing, fostering open collaboration and reproducible experiments. Furthermore, we encourage
the community to track experimental resource usage to better understand and offset our experiments’
small, but real environmental impact. Moreover, we aspire for our dataset to enable the creation of
poop-aware applications. Ultimately, our goal is for this research to contribute meaningfully to the
advancement of computer vision and have a positive impact on society.
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A Expanded Dataset Information

In Section [3] we provided an overview of several dataset statistics. In this appendix we expand
on that with additional plots. The distribution of image pixel intensities is illustrated in Figure 7]
The distribution of images collected over time is shown in Figure[8] The distribution of annotation
location is shown in Figure[9]and sizes is shown in Figure[T0]and Figure [T}

data.kwcoco.json
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Figure 7: The “spectra” or histogram of the pixel intensities in the dataset. The dataset RGB mean/std
is [117,124,100], [61, 59, 63]. This was run on the older 2024-07-03 snapshot.

B Expanded Dataset Comparison

In Section 2] we compared to related work. Here we expand on this by comparing our analysis plots.
Every dataset is converted into the COCO format and visualized using the same logic. Figure|2]
visualizes the annotations of all datasets. We make similar visualizations for other comparable dataset
metrics. Figure[I2]shows the number of annotations per image. Figure[I3|shows of image sizes in
each dataset. Figure[T4]shows the distribution of width and heights of oriented bounding boxes fit to
annotation polygons. Figure [I5]shows the area of each polygon versus the number of vertices (which
could be used to estimate the likelihood a polygon was generated by Al for our dataset). Figure[T6]
shows the distribution of centroid positions (relative to the image size).

C VIT-sseg Models

This section provides more details about the training of VIT-sseg models.

To train VIT-sseg models we use the training, prediction, and evaluation system presented in 20, [13],
which utilizes polygon annotations to train a pixelwise binary segmentation model.

In all experiments, we use half-resolution images, which means most images have an effective width
x height of 2,016 x 1,512. We employ a spatial window size of 416 x 416 for network inputs, which
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Figure 9: The distribution of annotation centroids in terms of (a) absolute image coordinates and (b)
relative image coordinates. The absolute centroid distribution is bimodal because some images are
taken in landscape mode and other in portrait mode.

means that multiple windows are needed to predict on entire images. During prediction, we apply a
window overlap of 0.3 with feathered stitching to prevent boundary artifacts.

To address the class imbalance in our dataset (where positives are patches containing annotations and
negatives contain no annotations), we adopt a balanced sampling strategy. Each “epoch” consists
of randomly sampling 32,768 patches from the dataset with replacement, ensuring roughly equal
numbers of positive and negative samples. We train each network for 163,840 gradient steps. For
data augmentation we use random crops and flips.
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Figure 10: The distribution of annotation sizes as measured by an oriented bounding box fit to each
polygon. (a) shows this plot on a linear scale and (b) show this plot on a log scale.
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The SAM model tends to produce polygons with a higher number of vertices than manually drawn
ones. For smaller polygons there are two peaks in the number of vertices histograms likely corre-
sponding to pure-manual versus Al-assisted annotations.
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Our baseline architecture is a variant [3, of a vision-transformer [16]. The model is a 12-layer
encoder backbone with 384 channels and 8 attention heads that feeds into a 4-layer MLP segmentation
head. It has 25,543,369 parameters and a size of 114.19 MB on disk. At predict time it uses 1.96GB
of GPU RAM.

We compute loss pixelwise using Focal Loss with a small downweighting of pixels towards
the edge of the window. Our optimizer is AdamW [33]], and we experiment with varying learning
rate, weight decay, and perturb-scale (implementing the shrink perturb trick [T} [15]). We employ a
OneCycle learning rate scheduler with a cosine annealing strategy and starting fraction of 0.3.
Our effective batch size is 24 with a real batch size of 2 and 12 accumulate gradient steps. This setup
consumes approximately 20 GB of GPU RAM during training.
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Figure 13: Image size distributions of each dataset. Ours has two primary width/heights.

C.1 VIT-sseg Model Experiments

To establish a baseline, we evaluated 35 training runs where we varied input resolutions, window
sizes, model depth, and other parameters. Although this initial search was somewhat ad-hoc, it
provided insights into the optimal configuration for our model. Building on the best hyperparameters
from this search, we performed a sweep over 7 combinations of learning rate, weight decay, and
perturb scale (i.e., shrink and perturb [T} [T5]]). Scripts used to reproduce these experiments, as well as
a log of the ad-hoc experiments, are available in the code repository. Additionally, trained models are
packaged and distributed with information about their training configuration.

Note: the test dataset used in this appendix section is an older 30 image version with suffix d8988f8c,
which is a subset of the more recent 121 image test set used in the main paper.

For each of the 7 hyperparameter combinations, we trained the model for 163,840 optimizer steps
using a batch size of 24. We defined an “epoch” as 1,365 steps, at which point we saved a checkpoint,
evaluated validation loss, and adjusted learning rates. To conserve disk space, we retained only the
top S lowest-validation-loss checkpoints (although training crashes and restarts sometimes resulted in
additional checkpoints, which are included in our evaluation).

Using the top-checkpoints, we predicted heatmaps for each image in the validation set. We then
performed binary classification on each pixel (poop-vs-background) using a threshold. Next, we
rasterized the truth polygons. The corresponding truth and predicted pixels were accumulated into a
confusion matrix, allowing us to compute standard metrics such as precision, recall, false positive
rate, etc. [44] for the specific threshold. By sweeping a range of thresholds, we calculated the average
precision (AP) and the area under the ROC curve (AUC). We computed all metrics using scikit-learn
[43]. Due to the high number of true negative pixels, we preferred AP as the primary measure of
model quality.

The details of the top model for each run, along with relevant hyperparameters, are presented in
TableF_fl This table also includes the results on the small, held out, test set for the top model.
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The results show strong performance on the validation set, with a maximum AP of 0.78. However,
while the test AP for this model is good, it is significantly lower at 0.51. To investigate this discrepancy,
we turned to qualitative analysis.

Qualitative results for the test, validation, and training sets are presented in Fig.[[7} These examples
illustrate both success and failure cases. The test and validation sets show clear responses to objects
of interest, but the test set contains images of close-up and partially deteriorated poops. This suggests
a bias in the dataset towards “fresh” poops taken from some distance.

Notably, the much larger training set also contains errors, indicating more information can be extracted
from this dataset using hard-negative mining. There are clear difficult cases caused by sticks, leafs,
pine cones, and dark areas on snow. We note that while compiling these results, we checked over
1000 images and discovered 14 cases where an object failed to be annotated, and it is likely that more
are missed, but we believe these cases are rare.

Although focal loss was used, the current learning curriculum is likely under-weighting smaller
distant objects. Our pixelwise evaluation metric is biased against this, which is a current limitation of
our approach. Future work evaluating this dataset on an object-detection level can remedy this.

In Table ] we only presented the top results. Here we’ve plotted the AP and AUC on the validation
set for the top 5 AP-maximizing results from each of the 7 training runs. We also created a box-and-
whisker plot for these top 5 results, which serves to assign a color and label to each training run.
These plots are shown in Figure [I8]

C.1.1 Resource Usage

All models were trained on a single machine with an 11900k CPU and a 3090 GPU. At predict time,
using one background worker, our models processed 416 x 416 patches at a rate of 20.93Hz with
94% GPU utilization.

To better understand the energy requirements of our model, particularly for potential deployment
on mobile devices, we used CodeCarbon [30] to measure the resource usage during prediction and
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Figure 16: Polygon centroid relative distribution for each dataset. It is interesting to note patterns in
this data. For instance, the outline of a street can be seen in CityScapes. In Zero Waste you can see
the conveyor belt. ImageNet is more uniform. Ours is Gaussian distributed.

Table 4: Results for the best-performing models on the validation set across 7 hyperparameter
configurations. The table provides detailed information about each configuration, including: 1)
Configuration name (first column): a unique code identifying each training run used in the score
scatter and box plots. 2) Varied hyperparameters (next three columns): specific values for learning
rate, weight decay, and perturb scale that were used in each run. 3) Validation set performance
(AP and AUC scores): metrics evaluating the model’s performance on the validation set. 4) Test
set performance (AP and AUC scores): metrics evaluating the model’s performance on the test set
using the same validation-maximizing models. Note that the top AP score over all models on the
test set was 0.65, but it did not correspond to one of these validation runs used for model selection.
Qualitative examples illustrating the performance of the top-scoring validation model listed here are

provided in Fig.

Validation (n=691) Test (n=30)

config name Ir weight_decay perterb_scale AP AUC AP AUC
D05 le-4 1le-6 3e-6 0.7802 0.9943 0.5051 0.9125
D03 le-4 le-5 3e-7 0.7758 0.9707 0.4346 0.8576
le-4 le-7 3e-7 0.7725 0.9818 0.4652 0.7965
D02 le-4 le-6 3e-7 0.7621  0.9893 0.5167 0.9252
D00 3e-4 3e-6 9e-7 0.7571 0.9737 04210 0.7766
DO1 le-3 le-5 3e-6 0.7070  0.9913 0.4607 0.9062
D06 le-4 1le-6 3e-8 0.6800 0.9773 04137 0.8157

evaluation. This analysis not only informs practical considerations but also helps us assess our
contribution to the growing carbon footprint of AI [28]]. The results for the 7 presented training
experiments and the total 42 training experiments are reported in Table [5]

Direct measurement of resource usage during training is still under development, but we estimate
the duration of each training run using indirect methods. We approximate energy consumption
by assuming a constant power draw of 345W from the 3090 GPU during training. Emissions are

. . . . k
estimated using a conversion ratio of 0.21 igv(liz .

Based on the validation set’s 691 images, we estimate that predicting on a single image on our desktop
requires approximately 1.15 seconds and 0.13 Wh of energy. For context, typical mobile phones have
a battery capacity of around 10 Wh and significantly less compute power than our desktop setup.
While our models demonstrate the feasibility of training a strong detector from our dataset, they
are not optimized for the mobile setting. To deploy our model on mobile devices, we will need to
improve its efficiency or explore more efficient architectures.
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Figure 17: Qualitative results using the top-performing model on the validation set, applied to a
selection of images from the (a) test, (b) validation, and (c) training sets. Success cases are presented
on the left, with failure cases increasing towards the right. Each figure is organized into three rows:
Top row: Binarized classification map, where true positive pixels are shown in white, false positives
in red, false negatives in teal, and true negatives in black. The threshold for binarization was chosen
to maximize the F1 score for each image, showcasing the best possible classification of the heatmap.
Middle row: The predicted heatmap, illustrating the model’s output before binarization. Bottom row:
The input image, providing context for the prediction. The majority of images in the test set exhibit
qualitatively good results. Failure cases tend to occur with close-up images of older, sometimes
partially deteriorated poops. These examples were manually selected and ordered to demonstrate
dataset diversity in addition to representative results.

C.1.2 Dataset Versions

There are two main versions of the dataset used in this paper. We can specify these using content-
based identifiers. The version from 2024-07-03 has a IPFS CID of: bafybeiedwp2zvmdyb2c2a
xrcl4bbxfbv2mgdbhgkc3dile4dftiimwth2y and a BitTorrent magnet of: magnet:?xt=urn:
btih:ee8d2c87a39ea9bfed8bef7ebdcal2eb68852c49. The version from 2025-04-20 has an
IPES CID of: bafybeia2uv3ea3aoz27ytiwbyudrjzblfuend47hmb6tyfrjt6dgf6iadtad and a
BitTorrent magnet of: magnet: ?xt=urn:btih:27a2512ae93298£75544be6d2d629dfb186£86
cf. Note: the hash suffix of the magnet URL can be searched on jacademictorrents.com.

At the time of writing, the version of the dataset on HuggingFace is the latest, and we use
git tags that correspond with the date of release and the IPFS CID to help identify dataset
versions. However, unlike the decentralized methods, these are guaranteed to point to the ex-
pected version of the dataset. At the time of writing the HuggingFace URL is: |https://
huggingface.co/datasets/[redactedforpeerreview]/scatspotter and the Girder URL
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Figure 18: (a) Scatterplot of pixelwise average precision (AP) and Area Under the ROC curve (AUC)
for the top 5 checkpoints on the validation set. Points of the same color represent checkpoints from
the same training run, which used identical hyperparameters. (b) Box-and-whisker plot the AP values
across the top 5 checkpoints evaluated on the validation set. For each run, corresponding varied

hyperparameters and maximum APs are given in Table El

Table 5: Resources used for training, prediction, and evaluation. The "node" column is the pipeline
stage: "train" for training, "pred" for heatmap prediction, and "eval" for pixelwise heatmap evaluation.
The "resource" column lists the resource type: time, energy, or emissions. The "total" and "p"
columns show the total and average consumptions, and the "n" column indicates the frequency of
each stage (e.g., across different hyperparameters). Train rows marked with an asterisk (*) are based
on indirect measurements.

(a) Presented experiment resources.

Node

Resource  Total I3 n
eval time 14.24 hours 0.41 hours 35
pred  time 11.97 hours 0.34 hours 35
pred  energy 8.76 kWh 0.25 kWh 35
pred  emissions 1.84 COgzkg  0.05 COskg 35
train®*  time 39.22 days 5.60 days 7
train®  energy 32475 kWh  46.39 kWh 7
train*  emissions 68.20 COzkg 9.74 CO2kg 7
(b) All experiment resources.
Node Resource Total I n
eval time 5.84 days 0.35 hours 399
pred  time 7.29 days 0.44 hours 399
pred  energy 102.83 kWh 0.26 kWh 399
pred  emissions 21.6 COskg 0.05 COzkg 399
train®  time 158.95 days 3.78 days 42
train®  energy 1,316.07 kWh  31.34 kWh 42
train®*  emissions 276.37 COskg 6.58 COskg 42

is: https://data. [redactedforpeerreview] .com/7#user/598a19658d777£7d33e9c18b/

folder/66b6bc7ef87a980650£41£98.
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4 NeurIPS Paper Checklist

5

515 1. Claims

516 Question: Do the main claims made in the abstract and introduction accurately reflect the
517 paper’s contributions and scope?

518 Answer: [Yes]

519 Justification: Our abstract describes all sections of the paper in a concise manner. We lay
520 our our main contribution: the dataset, the best scores we have achieved so far. And indicate
521 we are going to discuss dataset distribution where the focus is on discussing and quantifying
522 tradeoffs. We make no claim that our trained models are the best, and indicate this in the
523 abstract by describing our results as "exploring the difficulty of the dataset". It is likely that
524 a skilled graduate student could do better, and we hope they will.

525 Guidelines:

526 * The answer NA means that the abstract and introduction do not include the claims
527 made in the paper.

528 * The abstract and/or introduction should clearly state the claims made, including the
529 contributions made in the paper and important assumptions and limitations. A No or
530 NA answer to this question will not be perceived well by the reviewers.

531 * The claims made should match theoretical and experimental results, and reflect how
532 much the results can be expected to generalize to other settings.

533 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
534 are not attained by the paper.

535 2. Limitations

536 Question: Does the paper discuss the limitations of the work performed by the authors?
537 Answer: [Yes]

538 Justification: There are a number of limitations in the experiments, and we aim to make
539 those explicit and transparent. Our primary contribution is the dataset and we attempt to
540 describe it in a way that is both transparent and limits the misconceptions a reader might
541 walk away with. Our models simply provide a baseline, which we expect can be improved
542 on. We also note that our test dataset is small, which is why many results are presented on
543 validation data. We clearly distinguish when this is the case. Our transfer measurements are
544 inherently limited by the complexity of network communication.

545 Guidelines:

546 * The answer NA means that the paper has no limitation while the answer No means that
547 the paper has limitations, but those are not discussed in the paper.

548  The authors are encouraged to create a separate "Limitations" section in their paper.
549 * The paper should point out any strong assumptions and how robust the results are to
550 violations of these assumptions (e.g., independence assumptions, noiseless settings,
551 model well-specification, asymptotic approximations only holding locally). The authors
552 should reflect on how these assumptions might be violated in practice and what the
553 implications would be.

554 * The authors should reflect on the scope of the claims made, e.g., if the approach was
555 only tested on a few datasets or with a few runs. In general, empirical results often
556 depend on implicit assumptions, which should be articulated.

557 * The authors should reflect on the factors that influence the performance of the approach.
558 For example, a facial recognition algorithm may perform poorly when image resolution
559 is low or images are taken in low lighting. Or a speech-to-text system might not be
560 used reliably to provide closed captions for online lectures because it fails to handle
561 technical jargon.

562 * The authors should discuss the computational efficiency of the proposed algorithms
563 and how they scale with dataset size.

564 * If applicable, the authors should discuss possible limitations of their approach to
565 address problems of privacy and fairness.
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566 * While the authors might fear that complete honesty about limitations might be used by

567 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
568 limitations that aren’t acknowledged in the paper. The authors should use their best
569 judgment and recognize that individual actions in favor of transparency play an impor-
570 tant role in developing norms that preserve the integrity of the community. Reviewers
571 will be specifically instructed to not penalize honesty concerning limitations.

572 3. Theory assumptions and proofs

573 Question: For each theoretical result, does the paper provide the full set of assumptions and
574 a complete (and correct) proof?

575 Answer: [NA] .

576 Justification: There are no new theoretical results.

577 Guidelines:

578 » The answer NA means that the paper does not include theoretical results.

579  All the theorems, formulas, and proofs in the paper should be numbered and cross-
580 referenced.

581 * All assumptions should be clearly stated or referenced in the statement of any theorems.
582 * The proofs can either appear in the main paper or the supplemental material, but if
583 they appear in the supplemental material, the authors are encouraged to provide a short
584 proof sketch to provide intuition.

585 * Inversely, any informal proof provided in the core of the paper should be complemented
586 by formal proofs provided in appendix or supplemental material.

587 * Theorems and Lemmas that the proof relies upon should be properly referenced.

588 4. Experimental result reproducibility

589 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
590 perimental results of the paper to the extent that it affects the main claims and/or conclusions
591 of the paper (regardless of whether the code and data are provided or not)?

592 Answer: [Yes]

593 Justification: The paper describes the experimental details at a level where one could follow
594 them and get similar results. Furthermore, the exact code used to run experiments and their
595 dependencies are provided. In some cases that depend on hardware and network conditions,
596 statistical reproduction is possible.

597 Guidelines:

598 * The answer NA means that the paper does not include experiments.

599 * If the paper includes experiments, a No answer to this question will not be perceived
600 well by the reviewers: Making the paper reproducible is important, regardless of
601 whether the code and data are provided or not.

602 * If the contribution is a dataset and/or model, the authors should describe the steps taken
603 to make their results reproducible or verifiable.

604 * Depending on the contribution, reproducibility can be accomplished in various ways.
605 For example, if the contribution is a novel architecture, describing the architecture fully
606 might suffice, or if the contribution is a specific model and empirical evaluation, it may
607 be necessary to either make it possible for others to replicate the model with the same
608 dataset, or provide access to the model. In general. releasing code and data is often
609 one good way to accomplish this, but reproducibility can also be provided via detailed
610 instructions for how to replicate the results, access to a hosted model (e.g., in the case
611 of a large language model), releasing of a model checkpoint, or other means that are
612 appropriate to the research performed.

613 * While NeurIPS does not require releasing code, the conference does require all submis-
614 sions to provide some reasonable avenue for reproducibility, which may depend on the
615 nature of the contribution. For example

616 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
617 to reproduce that algorithm.

618 (b) If the contribution is primarily a new model architecture, the paper should describe
619 the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The entire history of the project is archived on github and desci.nodes. Effort
was made to make training and evaluation as simple as possible and also to minimize any
manual steps, but document them when they were unavoidable.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy]) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The models are not the main point of this paper, so some details have been
omitted from the main 9 page paper. The dataset splits and details are explicitly defined in
the paper. In any case, full details are available in the released code.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This answer is a no with nuance. For model results we report maximum scores,
as the point of our models is to provide a baseline level of performance. Statistics about VIT
experiments are provided in the appendix.

For transfer rate experiments we provide mean, std, min, and max in the paper, and the full
record of transfers and details is logged in a publicly released repo.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We quantify hardware, time, energy, and emissions.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: For the people that have contributed to our dataset, we received explicit consent.
We do not believe our dataset has a high potential for misuse. In some cases metadata has
been scrubbed from the images before they were released.

Guidelines:
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» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Part of the motivation for this work was to build a dataset with as limited
negative social impact as possible.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This dataset is not scrapped. It is a collection of new real images collected with
explicit consent for the purpose training models. The models are detection and segmentation
models. We cannot envision a non-contrived case where they are a risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The license is provided and dataset versioning is discussed.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Documentation is summarized to the extent possible in 9 pages. External
documentation, detailed logs and progress reports are maintained in a public git repo and
also stored on desci.nodes.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: We currently do encourage external contributions to the project on the bottom
of the project’s github README. However, the number of contributors is small, and the
few contributions we recieved were obtained before we placed this section in the README.
The current text of this section does include instruction which we list here:

Please contribute! The quickest way is with the Google Form for ShitSpotter Image
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Contributions.
Alternatively, you can send me an image via email to: <removed-for-blind-review>
When you contribute an image:

* Make sure you are ok with it being released for free under: (CC BY 4.0)

* Let me know how to give you credit.

* Let me know if you want time / GPS camera metadata to be removed from the

images.

Guide to taking an image:
Upload an image with poop in it. The poop need not be centered in the image. It could
be close up, or far away. It should be visible, but it need not be obvious. The idea is
that it could be difficult to see and we want to test if a machine learning algorithm can
find it. The only requirement is that if a human looks at it carefully, they can tell there
is poop in it.

15.

For the contributions received so far, no instruction were given, and they were volunteered
when they learned about the project.

This project has no paid participants.

Disclosure: Initially, some contributions were made informally before we had established
explicit contribution instructions and consent language. After recognizing the need for
explicit consent, we proactively contacted all early contributors, explained the situation,
and obtained formal consent to include their contributions. All contributors agreed to the
terms. Going forward, clear instructions and consent requests are provided to all potential
contributors.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: This project is entirely unfunded and performed independent of any institution
funding; but some institutional resources were used for network transfer experiments.
Contributions received from non-author volunteers was limited. Volunteers provided consent
for their data to be published under CC-BY 4.0.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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862 * For initial submissions, do not include any information that would break anonymity (if

863 applicable), such as the institution conducting the review.

864 16. Declaration of LLM usage

865 Question: Does the paper describe the usage of LLMs if it is an important, original, or
866 non-standard component of the core methods in this research? Note that if the LLM is used
867 only for writing, editing, or formatting purposes and does not impact the core methodology,
868 scientific rigorousness, or originality of the research, declaration is not required.

869 Answer: [NA]

870 Justification: LLMs were only used for mundain writing or formatting tasks.

871 Guidelines:

872 * The answer NA means that the core method development in this research does not
873 involve LLMs as any important, original, or non-standard components.

874 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
875 for what should or should not be described.
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