"ScatSpotter" — A Dog Poop Detection Dataset

Anonymous Author(s)

Affiliation Address email

Abstract

We introduce a new dataset containing phone images of dog feces, annotated with manually drawn or AI-assisted polygon labels. Its over 9000 "before/after/negative" full resolution images contain 6000 polygon annotations. The collection and annotation of images started in late 2020. This paper focuses on two checkpoints from 2025-04-20 and 2024-07-03. We train VIT and MaskRCNN baseline models to explore the difficulty of the dataset. The best model achieves a pixelwise average precision of 0.858 on a 691-image validation set and 0.810 on a small independently captured 121-image contributor test set. Dataset snapshots are available through four different distribution methods: two centralized (Girder and HuggingFace) and two decentralized (IPFS and BitTorrent). We study of the tradeoffs between distribution methods and discuss the feasibility of each with respect to reliably sharing open scientific data. The code for experiments is hosted on GitHub. The data license is CC-BY 4.0. Model weights are available with the dataset. Experiment hardware, time, energy, and emissions are quantified.

1 Introduction

2

3

4

5

8

9

10

11

12

13

15

- Applications for a computer vision system capable of detecting and localizing poop in images are numerous. These include automated waste disposal to keep parks and backyards clean, tools for monitoring wildlife populations via droppings, and a warning system in smart-glasses to prevent people from stepping in poop. Our primary motivating use case is a phone application that assists dog owners in locating their dog's poop in a leafy park for easier cleanup. Many of these applications can be realized with modern object detection and segmentation methods [48, 50, 55] combined with a large labeled dataset.
- In addition to enabling several applications, poop detection is an interesting benchmark problem. It is relatively simple, with a narrow focus on a single class, making it suitable for exploring the capabilities of object detection models that target a single labeled class. However, the task includes non-trivial challenges such as resolution issues (e.g., camera quality, distance), camouflaging distractors (e.g., leaves, pine cones, sticks, dirt, and mud), occlusion (e.g., bushes, overgrown grass), and variation in appearance (e.g., old vs. new, healthy vs. sick). An example of a challenging case is shown in Figure 1a. Investigation into cases where this problem is difficult may provide insight into how to better train object detection and segmentation networks.
- Towards these ends we introduce a new dataset which, in formal settings, we call "ScatSpotter". Poops are annotated with polygons making the dataset suitable for training detection and segmentation models. In order to assist with annotation and add variation, we collect images using a "before/after/negative" (BAN) protocol as shown in Figure 1b.
- From this data, we train a segmentation model to classify which pixels in an image contain poop and which do not. Our models show strong performance, but there are notable failure cases indicating this problem is difficult even for modern computer vision algorithms.

(a) A zoomed in example of an annotated object in a challenging condition: a scene cluttered with leaves. The similarity between the leaves and the poop causes a camouflage effect that can make detecting it difficult. The poop is highlighted in blue.

(b) The "before/after/negative" protocol. The orange box highlights the location of the poop in the "before" image. In the "after" image, it is the same scene but the poop has been removed. The "negative" image is a nearby similar scene, potentially with a distractor. Note that the object is small relative to the image size.

Figure 1: (a) A challenging annotation case due to camouflage. (b) The BAN protocol.

Table 1: Related datasets. Columns list dataset name, number of categories, images, and annotations. Image $W \times H$ gives median image dimensions; Ann Area^{0.5} is the median square root of annotation area (pixels); Size is disk requirements in GB; Annot Type is the labeling method. Figure 2 shows the distribution of annotation shapes, sizes, and locations.

Name	#Cats	#Images	#Annots	$\begin{array}{c} Image \\ W \times H \end{array}$	Annot Area ^{0.5}	Disk Size	Annot Type
ImageNet[47]	1,000	594,546	695,776	500×374	239	166GB	box
MSCOCO[33]	80	123,287	896,782	428×640	57	50GB	polygon
CityScapes[12]	40	5,000	287,465	$2,048 \times 1,024$	50	78GB	polygon
ZeroWaste [3]	4	4,503	26,766	$1,920 \times 1,080$	200	10GB	polygon
TrashCanV1[25]	22	7,212	12,128	480×270	54	0.61GB	polygon
UAVVaste[29]	1	772	3,718	$3,840 \times 2,160$	55	2.9GB	polygon
SpotGarbage[40]	1	2,512	337	754×754	355	1.5GB	category
TACO[45]	60	1,500	4,784	$2,448 \times 3,264$	119	17GB	polygon
MSHIT[38]	2	769	2,348	960×540	99	4GB	box
Ours	1	9,296	6,594	$4,032 \times 3,024$	87	60GB	polygon

- 38 To enable others to build on our results, it is essential that the dataset is accessible and hosted reliably.
- 39 Centralized methods are a typical choice, offering high speeds, but they can be costly for individuals,
- 40 often requiring institutional support or paid hosting services. They are also prone to outages and
- 41 lack built-in data validation. In contrast, decentralized methods allow volunteers to host data and
- 42 offers built-in validation of data integrity. This motivates us to compare and contrast the decentralized
- BitTorrent [8], and IPFS [4] protocols as mechanisms for distributing datasets.
- 44 Our contributions are: 1) A challenging new **open dataset** of images with polygon annotations. 2) A
- set of trained baseline models. 3) A comparison of dataset distribution methods.

6 2 Related Work

- To the best of our knowledge, our dataset is currently the largest publicly available collection of annotated dog poop images, but it is not the first. A dataset of 100 dog poop images was collected and used to train a FasterRCNN model [42] but this dataset and model are not publicly available. The company iRobot has a dataset of annotated indoor poop images used to train Roomba j7+ to avoid collisions [21], but as far as we are aware, this is not available. In terms of available poop detection datasets we are only aware of MSHIT [38] which is much smaller, only contains box annotations, and the objects of interest are plastic toy poops.
- Compared to benchmark object localization and segmentation datasets [47, 33, 12] ours is much smaller and focused only on a single category. However, when compared to litter and trash datasets

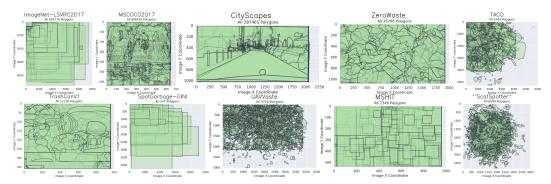


Figure 2: A comparison of all of the annotations for different datasets including ours. All polygon annotations drawn in a single plot with 0.8 opacity to demonstrate the distribution in annotation location, shape, and size with respect to image coordinates.

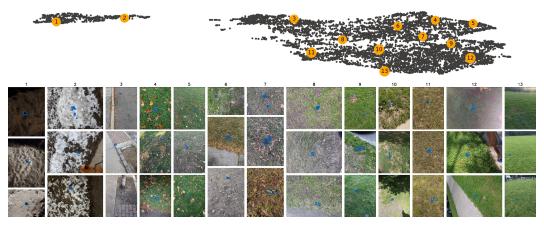
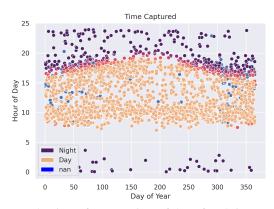


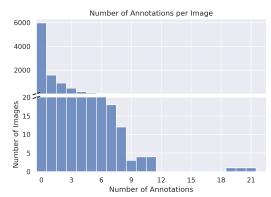
Figure 3: Example images from 2D UMAP clusters [37]. Each point in the top image represents a 2D-projected embedding, with numbered orange dots indicating nearby images in the bottom columns. Blue annotation boxes are shown. A clear separation emerges between snowy (columns 1-2) and non-snowy images (columns 3-13).

- [3, 45, 25, 40, 29] ours is among the largest in terms of number of images / annotations, image size, and total dataset size. ZeroWaste [3] uses a "before/after" protocol similar to our BAN protocol. We provide an overview of these related datasets in Table 1. Among all of these, ours stands out for having the highest resolution images and the smallest objects relative to that resolution. For a review of additional waste related datasets, refer to [39].
- Section 5 discusses the logistics and tradeoffs between dataset distribution mechanisms with a focus on comparing centralized and decentralized methods. IPFS [4] and BitTorrent [8] are the decentralized mechanisms we evaluate, but others exist such as Secure Scuttlebut [52] and Hypercore [17], which we did not test.

65 3 Dataset

- Our first contribution is the creation of a new open dataset which consists of images of dog poop in mostly urban, mostly outdoor environments, from mostly a single city. The data is annotated to support object detection and segmentation tasks. The majority of the images feature fresh poop from three specific medium sized dogs, but there are a significant number of images with poops of unknown age and from unknown dogs.
- Despite these biases, the dataset has significant image variations. To provide a gist, we computed UMAP [37] image embeddings based on ResNet50 [22] descriptors display images corresponding with clusters in this embedding in Figure 3.





(a) The time-of-year vs time-of-day of each image show lighting and seasonal variation. On the x-axis, 0 is January 1st. On the y-axis, 0 is midnight. Color estimates daylight based on location (if available). Most images are in the day, but many were taken at night with flash or long exposure.

(b) The histogram of annotations per image shows object density variation. Only 35% (3,314) of images contain annotations; 65% (5,982) are known negatives. About half of the negatives were taken immediately after pickup; the rest are from nearby locations with potential lookalikes.

Figure 4: Dataset distributions. (a) Time and daylight scatterplot. (b) Annotation count histogram.

More details about the dataset are available in a standardized datasheet [18] that covers the motivation,

composition, collection, preprocessing, uses, distribution, and maintenance. This will be distributed 75

with the data itself, and is provided in supplemental material.

Dataset Collection 77

A single researcher on dog walks photographed fresh dog poop, mostly their own dogs, but often 78

others. Distance was sometimes varied for diversity. Most images were taken following the "be-79

fore/after/negative" (BAN) protocol. A BAN triple comprises a "before" shot of the poop, an "after" 80

shot post removal, and a "negative" shot of a nearby lookalike (e.g., pine cones, leaves). We only use 81

them for negative sampling, but they could enable contrastive triplet losses [49].

The majority of images follow the BAN protocol, but there are exceptions. The first six months of 83

data collection only involved the "before/after" part of the protocol. We began collecting the third 84

negative image after a colleague suggested it. In some cases, the researcher failed or was unable to 85

take the second or third image. These exceptions are often programmatically identifiable. 86

We also received 121 contributor images, mostly outside the BAN protocol. These images are held 87

out and used as our test set. Due to the small size, our main results also include validation scores. 88

3.2 Dataset Annotation

89

92

93

Images were annotated using labelme [27]. Most annotations were initialized using SAM and a point 90 prompt. All AI polygons were manually reviewed. In most cases only small manual adjustments 91

were needed, but there were a significant number of cases where SAM did not work well and fully

manual annotations were needed. Regions with shadows seemed to cause SAM the most trouble, but

there were other failure cases. Unfortunately, there is no metadata to indicate which polygons were

94

manually created or done using AI. However, the number of vertices may be a reasonable proxy to 95 96

estimate this, as polygons generated by SAM tend to have higher fidelity boundaries. The boundaries

of the annotated polygons are illustrated in Figure 2. 97

Data collected after 2024-07-03 was annotated with the help of models trained on prior data. Again, 98

all predictions were manually verified or corrected. In these later cases, false positive annotations 99

were labeled (e.g. stick, leaf), but because these categories are not labeled exhaustively, we exclude 100

them from all analysis in this paper.

2 3.3 Dataset Properties and Statistics

- The data was captured at a regular rate over 4.3 years, primarily in parks and sidewalks within a small city. Weather conditions varied across snowy, sunny, rainy, and foggy. A visual representation of the distribution of seasons, time-of-day, daylight, and capture rate is provided in Figure 4a.
- The dataset images are available in full resolution. Almost all images were taken using the same phone-camera, with a consistent width/height of $4,032 \times 3,024$ (although some may be rotated based on EXIF data). The images are stored as 8-bit JPEGs with RGB channels, and most include overviews (i.e., image pyramids), allowing for fast loading of downscaled versions.
- Due to the BAN protocol, about one-third of the images contain annotations, the rest were taken after the object(s) were removed. Consequently, most images have no annotations. When present, annotations are usually singular, but multiple annotations are common and can be due to: 1) fragmented dropping, 2) dogs pooping together, 3) repeated poops in the same area over time (sometimes hard to distinguish from dirt). The number of annotations per image is illustrated in Figure 4b.

115 3.4 Dataset Splits

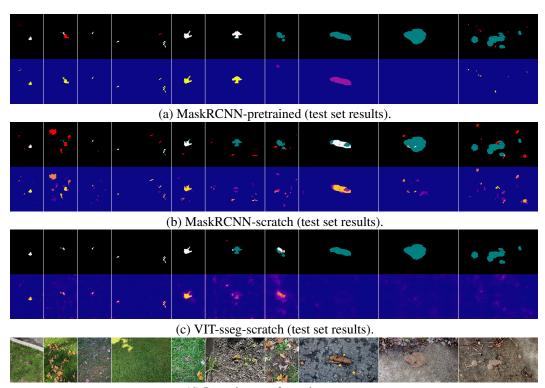
- Our dataset is split into training, validation, and test sets based on the year and day of image capture and photographer. Only data captured by the authors is used for training and validation. Of these, images from 2021-2023, 2025 and beyond are assigned to the training set. Images from 2020 are used for validation. For data from 2024, we consider the ordinal date n of each image and include it in the validation set if $n \equiv 0 \pmod{3}$; otherwise, it is assigned to the training set.
- For testing data, we use contributor images to not bias our results based on the way the authors took images. These splits are provided in the COCO JSON format [33] as well as a WebDataset [53] on HuggingFace.

124 4 Baseline Models

- As our second contribution, we trained and evaluated models to establish a baseline for future comparisons. Specifically we train three model variants. We trained two MaskRCNN [23] models (specifically the R_50_FPN_3x configuration), one starting from pretrained ImageNet weights (MaskRCNN-p), and one starting from scratch (MaskRCNN-s). We also trained a semantic segmentation vision transformer variant (VIT-sseg-s) [20, 13], which was only trained from scratch. Hyperparameters are given in supplemental materials.
- For these baseline models, the training data was limited to an older subset taken before 2024-07-03. Our training dataset consists of 5,747 images and is identified by a suffix of 1e73d54f, which is the prefix of its content hash. The validation set contains 691 images and has a suffix of 99b22ad0. The test set, consists of the 121 images, has a suffix of 6cb3b6ff, and includes contributor images up to 2025-04-20. The evaluated models were selected based on their validation scores.
- We performed two types of evaluations on the models. "Box" evaluation computes standard COCO object detection metrics [33]. MaskRCNN natively outputs scored bounding boxes, but for the VIT-sseg model, we convert heatmaps into boxes by thresholding the probability maps and converting taking the extend of the resulting polygons as bounding boxes. The score is taken as the average heatmap response under the polygon. Bounding box evaluation has the advantage that small and large annotations contribute equally to the score, but it can also be misleading for datasets where the notion of an object instance can be ambiguous.
- To complement the box evaluation, we performed a pixelwise evaluation, which is more sensitive to the details of the segmented masks, but also can be biased towards larger annotations with more pixels. The corresponding truth and predicted pixels were accumulated into a confusion matrix, allowing us to compute standard metrics [44] such as precision, recall, false positive rate, etc. For the VIT-sseg model, computing this score is straightforward, but for MaskRCNN we accumulate per-box heatmaps into a larger full image heatmap, which can then be scored.
- Quantitative results for each of these models on box and pixel metrics are shown in Table 2. Because the independent test set is only 121 images, we also present results on the larger validation dataset. Corresponding qualitative test results are illustrated in Figure 5 and validation results in Figure 6.

Table 2: Results for MaskRCNN and VIT models (suffix -p: pretrained, -s: scratch) on test and validation sets. Evaluated with box and pixel metrics — AP (ppv-tpr area) [44] and AUC (tpr-fpr area) — computed via scikit-learn [43]. Pretrained models outperform. Note: VIT-sseg was tuned more; MaskRCNN may yield better results with similar effort.

Dataset split:		Test (n=121)				Validation (n=691)			
Evaluation type:		Box	Box	Pixel	Pixel	Box	Box	Pixel	Pixel
Model type	# Params	AP	AUC	AP	AUC	AP	AUC	AP	AUC
MaskRCNN-p	43.9e6	0.613	0.697	0.810	0.849	0.612	0.721	0.858	0.905
MaskRCNN-s	43.9e6	0.253	0.464	0.384	0.798	0.255	0.576	0.434	0.891
VIT-s	25.5e6	0.422	0.426	0.473	0.902	0.476	0.532	0.780	0.994

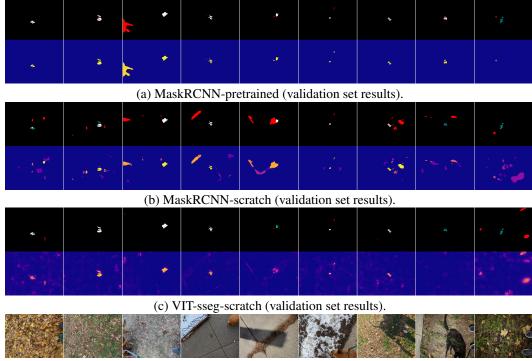


(d) Input images from the test set.

Figure 5: Qualitative results from the top model on the validation set, applied to test images. The first three subfigures (a, b, c) display a binarized classification map (true positives in white, false positives in red, false negatives in teal, true negatives in black) and the predicted heatmap (before binarization). Subfigure (d) shows the input image. The heatmap binarization threshold was 0.5. Failures occur with close-up or deteriorated objects, and camouflage.

All models were trained on a single machine with an Intel Core i9-11900K CPU and an NVIDIA GeForce RTX 3090 GPU. A key limitation of these results is the imbalance between model types, with 42 out of 44 trained models being VIT-ssegs and only two MaskRCNN models, each taking approximately 8 hours to train. Future work could further optimize MaskRCNN models to improve comparability. More details on the VIT-sseg experiments can be found in the supplemental materials.

Environmental Impact The total time spent on prediction and evaluation across all experiments was 15.6 days, with prediction consuming 109.63 kWh of energy and causing an estimated emissions of 23.0 $\rm CO_2kg$ as measured by CodeCarbon [30]. We estimated train-time resource usage during training using indirect methods, assuming a constant power draw of 345W from the RTX 3090 GPU. Energy consumption was approximated accordingly, while emissions were calculated using a conversion ratio of 0.21 $\frac{kg\rm CO_2}{kWh}$ derived from our prediction time measurements. Based on file timestamps, we



(d) Inputs from the validation set.

Figure 6: Qualitative results of the top model on unseen validation images (see Figure 5 for visualization details). Although never trained on these data, the model's was able to detect camouflaged cases on the left but missed some on the right, indicating generalizability but also room for improvement.

estimated that running 44 different training runs took approximately 159.66 days, resulting in an estimated energy usage and emissions of 1321.99 kWh and 277.612 $\rm CO_2$ kg, respectively. For context, at $\frac{\$0.16}{\rm kWh}$ and $\frac{\$25.00}{1000\rm CO_2kg}$, the cost of training and evaluating was \$229.06.

5 Open Data Distribution

163

164 165

166

Empirical evidence suggests that a substantial proportion of scientific studies have low reproducibility rates, which has raised concerns across various disciplines [2]. Ideally, scientific research should be independently reproducible. Despite higher success rates in computer science (up to 60%) compared to other fields, there is still room for improvement [46, 11, 14]. Addressing this issue requires not just better experimental documentation but also more reliable and accessible data distribution methods. Specifically, this involves robustly codifying data download and preparation processes.

Centralized data distribution methods allow for codified data access by storing URLs that point to datasets within the code, offering fast and direct access. However, this approach lacks robustness. It can fail if the provider goes offline, changes the URL, or stops hosting the data. Additionally, cloud storage can be expensive, and users must trust that the provider delivers the correct data — a risk that can be mitigated by using checksums to verify data integrity.

In contrast, decentralized methods allow users to access data in the same way, even if the organization hosting the data changes. By leveraging content-addressable storage, where the dataset checksum acts as both the key to locate and validate the data, these methods ensure data integrity and nearly eliminate the risk of dead URLs, provided that at least one peer retains the data. While decentralized systems face challenges such as longer connection times, increased network overhead, and the need for a robust peer network, their ability to ensure data access via a static address motivates our investigation

Specifically, we focus on two prominent candidates: BitTorrent and IPFS. BitTorrent [8, 9] is a well known sharing protocol that originally relied on centralized trackers and databases of torrent files

to connect peers. While trackers and torrent files are still prominent, torrents can be published to a 186 distributed hash table (DHT) using the Kademlia algorithm [36]. This makes it an strong candidate for 187 a decentralized distribution mechanism. On the other hand, IPFS (InterPlanetary File System) [4, 6] 188 is a newer tool directly build directly on a DHT. IPFS has been likened to "a single BitTorrent swarm, 189 exchanging objects within one Git repository". Both IPFS and BitTorrent are content addressable at 190 the dataset level, which makes them both appropriate for our use case where we seek a static address 191 192 that can be used to robustly access data.

It is worth noting that git-based [7] systems like HuggingFace [32] with large file storage do gain 193 some decentralized properties via multiple remotes, but not content identifiers. 194

For practitioners, key concerns are how quickly and reliably data can be accessed. By comparing 195 decentralized and centralized mechanisms access times for our dataset, we aim to make explicit the tradeoffs between the methods and inform decisions on adopting an approach.

5.1 Dataset Transfer Experiment

198

235

Our third contribution is an experiment that studies transfer rates of decentralized and centralized 199 data distribution methods. For centralized distribution, we use a self-hosted instance of Girder [41] 200 and the HuggingFace datasets [32] platform. For decentralized clients, we use Transmission [31] 201 (BitTorrent) and Kubo [26] (IPFS). As a baseline, we also measure direct transfers using Rsync [54]. 202 203

For data transfer experiments, we use the 2024-07-03 version of the dataset. This is content-addressed with the IPFS CID (content identifier): bafybeiedwp2zvmdyb2c2axrc1455xfbv2mgdbhgkc3dil 204 e4dftiimwth2y The torrent has a magnet URL of: magnet:?xt=urn:btih:ee8d2c87a39ea9bf 205 e48bef7eb4ca12eb68852c49, and is tracked on Academic Torrents [10]. 206

To assess the effectiveness of each mechanism we programmatically download our 42GB dataset and 207 measure the time required to complete the transfer. Each experiment was run five times, machines we controlled were separated by ~ 30 kilometers with an average ping time of 48.48 ms. For each test, we log transfer start and end times along with notes and code (provided in supplemental materials). 210

While our measurements provide a reasonable estimate of for access time for each mechanism, there 211 are notable limitations in our methodology. First, different machines and networks have different 212 upload and download speeds, and network congestion is variable. For decentralized methods, we 213 lack an automated mechanism separate peer-connection time and actual download time. Additionally, 214 Girder and HuggingFace required data to be packed into compressed archives, improving transfer efficiency due to fewer file boundaries. In decentralized cases, we provide granular access to each file in the dataset, which avoids an extra unpacking step and enables sharing of the same file between 217 different versions of the datasets and simpler updates, but decreases transfer efficiency. Due to this, 218 we provide both a compressed and uncompressed rsync baseline. Another confounding factor is that 219 with decentralized mechanisms the number of seeders is not controlled for. Subsets of the data have 220 been hosted on IPFS for years, and portions of the dataset may be provided by unknown members of 221 the network. For BitTorrent, our initial transfers only had one seeder, but during our tests other nodes 222 accessed and started to provide the data.

224 Despite significant testing limitations, our measurements quantify the expected data-access time penalty to gain the advantages of decentralized mechanisms. With these limitations acknowledged, 225 we present the transfer times statistics in Table 3. Alongside these measurements, several observations 226 are worth noting. Transferring files using IPFS had significantly delayed peer discovery times, and 227 we were only able to connect two machines after manually informing them of each other's peer ID. 228 For BitTorrent, were unable to use the mainline DHT and fell back to using trackers. We believe 229 230 these peer discovery issues are because the dataset has a small number of seeders. To test this, we downloaded other established datasets via IPFS and BitTorrent and found that the peer discovery time 231 was almost immediate, suggesting that this becomes less of an issue as a dataset is shared. However, 232 the inability to quickly find a nearby peer is a major issue for initial or private dataset development. 233

The HuggingFace results stand out, as they are faster than rsync. We believe this is due to an optimized client and content delivery networks, utilizing CAKE [24] to minimize buffer bloat [19]. However, this speed relies on costly centralized infrastructure. The expected speed from a more

modest centralized service is $\sim 20 \times$ slower.

Table 3: Transfer times (in hours) for our 42GB dataset: trials (n), mean (μ) , std (σ) . Each experiment was run 5 times. Uncompressed transfers provide granular access to individual files, while compressed transfers are faster.

Method	Compressed	μ	σ	Min	Max
BitTorrent	No	8.36h	5.16h	2.21h	14.39h
IPFS	No	10.68h	9.54h	1.80h	24.62h
Rsync	No	4.84h	1.39h	3.10h	6.10h
Girder	Yes	2.85h	2.31h	1.05h	6.24h
HuggingFace	Yes	0.14h	0.03h	0.11h	0.18h
Rsync	Yes	1.10h	0.03h	1.07h	1.13h

There is an additional $\sim 4\times$ slowdown between compressed and uncompressed rsync baselines, which needs to be considered when comparing decentralized results. The minimum time column shows that decentralized methods method can be competitive with rsync, but on average decentralized 240 mechanisms are significantly slower and can be stifled by long peer-discovery times.

Conclusion 242

239

253

254

255

256

257

260

261

262

263

264

267

268

269

270

We have introduced the largest open dataset of high resolution images with polygon segmentations 243 of dog poop. The dataset contains several challenges including amorphous objects, multi-season variation, difficult distractors, daytime / nighttime variation. We have described the dataset collection 245 and annotation process and reported statistics on the dataset. 246

We provided a recommended train/validation/test split of the dataset, and trained baseline segmenta-247 tion models that perform well, but could likely be improved. In addition to providing quantitative and 248 qualitative results of the models, we also estimate the resources required to perform these training, 249 prediction, and evaluation experiments. 250

We have published our data and models under a permissive license, and made them available through both centralized (Girder and HuggingFace) and decentralized (BitTorrent and IPFS) mechanisms. Decentralized methods have robustness properties, but suffer from significant network transfer overhead. HuggingFace has exceptionally fast transfer speeds, and due to its usage of git-lfs has some decentralized properties, but lacks content identifiers. Combining IPFS with a content distribution network may be a path to a best-of-both-worlds system.

Limitations of our work include: 1) geographic concentration of the dataset, 2) the small size of the independent test set, 3) limited exploration of the better-performing model variant, and 4) uncontrolled network conditions during distribution experiments. Future work could address these by expanding dataset diversity, training a broader range of models, and improving decentralized hosting strategies.

Our dataset enables applications such as mobile apps for detecting feces, urban cleanliness monitoring, and augmented reality collision warnings. We believe negative impacts are limited and expect respectful use of the dataset. We envision exciting possibilities for the BAN protocol in computer vision research. We hope our work will inspire others to consider decentralized content addressable data sharing, fostering open collaboration and reproducible experiments. Furthermore, we encourage the community to track experimental resource usage to better understand and offset our experiments' small, but real environmental impact. Moreover, we aspire for our dataset to enable the creation of poop-aware applications. Ultimately, our goal is for this research to contribute meaningfully to the advancement of computer vision and have a positive impact on society.

Acknowledgements

We would would like to thank all of the dogs that produced subject matter for the dataset, all of the 271 contributors for helping to construct a challenging test set, and [redacted for peer review] for several suggestions including taking the third negative picture. This work is dedicated to [redacted for peer review], a very weird and very good girl.

References

- 276 [1] Jordan T. Ash and Ryan P. Adams. On Warm-Starting Neural Network Training. In *NeurIPS*. Curran Associates, Inc, 2020.
- 278 [2] Monya Baker. 1,500 scientists lift the lid on reproducibility. *Nature*, 533(7604):452–454, 2016.
- 279 [3] Dina Bashkirova, Mohamed Abdelfattah, Ziliang Zhu, James Akl, Fadi Alladkani, Ping Hu, Vitaly 280 Ablavsky, Berk Calli, Sarah Adel Bargal, and Kate Saenko. ZeroWaste Dataset: Towards Deformable 281 Object Segmentation in Cluttered Scenes. In *CVPR*, pages 21147–21157, 2022.
- [4] Juan Benet. IPFS Content Addressed, Versioned, P2P File System. ArXiV, abs/1407.3561, 2014.
- [5] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video understanding? In *ICML*, page 4, 2021.
- 285 [6] Christian Bieri. An overview into the InterPlanetary File System (IPFS): use cases, advantages, and drawbacks. *Communication Systems XIV*, 28, 2021.
- [7] Scott Chacon and Ben Straub. Pro git, 2014.
- 288 [8] Bram Cohen. Incentives Build Robustness in BitTorrent. In Workshop on Economics of Peer-to-Peer systems, pages 68–72, 2003.
- [9] Bram Cohen. The BitTorrent Protocol Specification v2. https://www.bittorrent.org/beps/bep_
 0052.html, 2017. Accessed: 2024-08-23.
- [10] Joseph Paul Cohen and Henry Z. Lo. Academic torrents: A community-maintained distributed repository.
 In Annual Conference of the Extreme Science and Engineering Discovery Environment, 2014.
- [11] Christian Collberg and Todd A Proebsting. Repeatability in computer systems research. *Communications* of the ACM, 59(3):62–69, 2016.
- 296 [12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Scharwächter, Markus Enzweiler, Rodrigo 297 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset. In *CVPRW*, page 1, 2015.
- [13] Jon Crall, Connor Greenwell, David Joy, Matthew Leotta, Aashish Chaudhary, and Anthony Hoogs.
 GeoWATCH for Detecting Heavy Construction in Heterogeneous Time Series of Satellite Images. In
 IGARSS. 2024.
- [14] Abhyuday Desai, Mohamed Abdelhamid, and Nakul R. Padalkar. What is Reproducibility in Artificial
 Intelligence and Machine Learning Research? ArXiV, abs/2407.10239, 2024.
- Shibhansh Dohare, J. Fernando Hernandez-Garcia, Parash Rahman, Richard S. Sutton, and A. Rupam
 Mahmood. Loss of Plasticity in Deep Continual Learning. ArXiV, abs/2306.13812, 2023. arXiv:2306.13812
 [cs].
- 306 [16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 307 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
 308 Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. *ICLR*,
 309 2021.
- 210 [17] Paul Frazee and Mathias Buss. DEP-0002: Hypercore Dat Protocol. https://www.datprotocol. 211 com/deps/0002-hypercore/, 2018. Accessed: 2024-08-23.
- [18] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
 Hal Daumé III, and Kate Crawford. Datasheets for datasets. *Communications of the ACM*, 64(12):
 86–92, 2021.
- 315 [19] Jim Gettys and Kathleen Nichols. Bufferbloat: dark buffers in the internet. *Communications of the ACM*, 55(1):57–65, 2012.
- [20] Connor Greenwell, Jon Crall, Matthew Purri, Kristin Dana, Nathan Jacobs, Armin Hadzic, Scott Workman, and Matt Leotta. Watch: Wide-area terrestrial change hypercube. In *WACV*, pages 8277–8286, 2024.
- 219 Devindra Hardawar. iRobot's latest Roomba can detect pet poop (and if it fails, you'll get a new one). https://www.engadget.com/irobot-roomba-j-7-object-poop-detection-040152887. html, 2021. Accessed: 2024-08-23.
- 322 [22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 323 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- [23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *ICCV*, pages 2961–2969,
 2017.
- Toke Høiland-Jørgensen, Dave Täht, and Jonathan Morton. Piece of cake: a comprehensive queue management solution for home gateways. In 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), pages 37–42. IEEE, 2018.

- 329 [25] Jungseok Hong, Michael Fulton, and Junaed Sattar. Trashcan: A semantically-segmented dataset towards visual detection of marine debris. ArXiV, abs/2007.08097, 2020.
- [26] Jeromy Johnson, Juan Benet, Steven Allen, et al. ipfs/kubo. https://github.com/ipfs/kubo, 2024.
 Accessed: 2024-08-23.
- 333 [27] Wada Kentaro. Labelme: Image polygonal annotation with python. https://github.com/labelmeai/ 334 labelme, 2016. Accessed: 2024-08-23.
- 335 [28] Keith Kirkpatrick. The Carbon Footprint of Artificial Intelligence. *Communications of the ACM*, 66(8): 336 17–19, 2023.
- [29] Marek Kraft, Mateusz Piechocki, Bartosz Ptak, and Krzysztof Walas. Autonomous, onboard vision-based
 trash and litter detection in low altitude aerial images collected by an unmanned aerial vehicle. *Remote Sensing*, 13(5), 2021.
- 340 [30] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon emissions of machine learning. *ArXiV*, abs/1910.09700, 2019.
- 342 [31] Jordan Lee, Josh Elsasser, Eric Petit, and Mitchell Livingston. Transmission. https://github.com/ 343 transmission/transmission, 2024. Accessed: 2024-08-23.
- [32] Quentin Lhoest, Albert Villanova Del Moral, Yacine Jernite, Abhishek Thakur, Patrick Von Platen, Suraj
 Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A community library
 for natural language processing. arXiv preprint arXiv:2109.02846, 2021. Accessed: 2025-04-26.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
 and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In *Computer Vision ECCV* 2014, pages 740–755, Cham, 2014. Springer International Publishing.
- [34] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 detection. In CVPR, pages 2980–2988, 2017.
- 352 [35] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In ICLR, 2019.
- [36] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information System Based on the
 XOR Metric. In *Peer-to-Peer Systems*, pages 53–65. Springer, Berlin, Heidelberg, 2002.
- 355 [37] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiV, 2020.
- 357 [38] Mikian. Dog Poop (MSHIT). https://www.kaggle.com/datasets/mikian/dog-poop, 2020. Accessed: 2024-08-23.
- 359 [39] Agnieszka Mikołajczyk. Waste datasets review. https://github.com/AgaMiko/ 360 waste-datasets-review, 2024. Accessed: 2024-09-07.
- [40] Gaurav Mittal, Kaushal B Yagnik, Mohit Garg, and Narayanan C Krishnan. Spotgarbage: smartphone app
 to detect garbage using deep learning. In *Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing*, pages 940–945, 2016.
- 364 [41] Zack Mullen, Brian Helba, David Manthy, et al. Girder: a data management platform. https://girder. 365 readthedocs.io/en/latest, 2024. Accessed: 2024-08-23.
- 366 [42] Neeraj Madan. Dog Poop Detection: Deep Learning (Details). https://www.youtube.com/watch?v= 967 qGNbHwp0jM8, 2019. Accessed: 2024-08-23.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
 Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
 Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.
- [44] David Martin Powers. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness
 and correlation. *Journal of Machine Learning Technologies*, 2(1):37–63, 2011.
- 373 [45] Pedro F Proença and Pedro Simões. Taco: Trash annotations in context for litter detection. *ArXiV*, abs/2003.06975, 2020.
- Edward Raff. A step toward quantifying independently reproducible machine learning research. In *NeurIPS*.
 Curran Associates, Inc., 2019.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
 Scale Visual Recognition Challenge. *IJCV*, 115(3):211–252, 2015.
- [48] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
 Inverted Residuals and Linear Bottlenecks. In CVPR, pages 4510–4520, 2018.
- Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A Unified Embedding for Face Recognition and Clustering. In *CVPR*, pages 815–823, 2015.

- [50] Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani, and Martin Jagersand.
 RTSeg: Real-Time Semantic Segmentation Comparative Study. In *ICIP*, pages 1603–1607, 2018.
- Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large
 learning rates. In Artificial intelligence and machine learning for multi-domain operations applications,
 pages 369–386. SPIE, 2019.
- [52] Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin. Secure Scuttlebutt: An Identity Centric Protocol for Subjective and Decentralized Applications. In ACM Conference on Information Centric Networking, pages 1–11, New York, NY, USA, 2019. Association for Computing Machinery.
- 392 [53] The WebDataset Contributors. Webdataset. GitHub repository and documentation, 2023. Accessed: 393 2025-04-26.
- 394 [54] Andrew Tridgell, Paul Mackerras, et al. rsync. https://github.com/RsyncProject/rsync, 2024.
 395 Accessed: 2024-08-23.
- [55] Kang Yu, Guoxin Tang, Wen Chen, Shanshan Hu, Yanzhou Li, and Haibo Gong. MobileNet-YOLO v5s:
 An Improved Lightweight Method for Real-Time Detection of Sugarcane Stem Nodes in Complex Natural
 Environments. *IEEE Access*, 11:104070–104083, 2023.

399 A Expanded Dataset Information

In Section 3 we provided an overview of several dataset statistics. In this appendix we expand on that with additional plots. The distribution of image pixel intensities is illustrated in Figure 7. The distribution of images collected over time is shown in Figure 8. The distribution of annotation location is shown in Figure 9 and sizes is shown in Figure 10 and Figure 11.

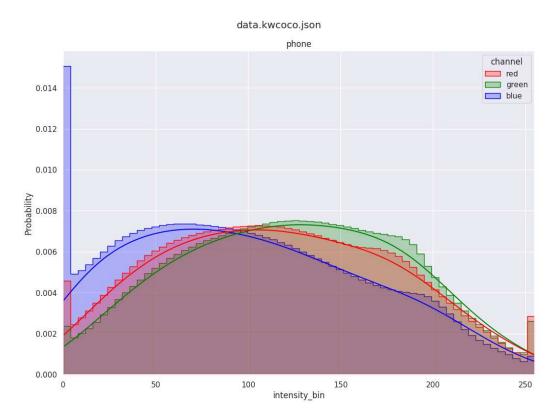


Figure 7: The "spectra" or histogram of the pixel intensities in the dataset. The dataset RGB mean/std is [117, 124, 100], [61, 59, 63]. This was run on the older 2024-07-03 snapshot.

404 B Expanded Dataset Comparison

In Section 2 we compared to related work. Here we expand on this by comparing our analysis plots. 405 Every dataset is converted into the COCO format and visualized using the same logic. Figure 2 406 visualizes the annotations of all datasets. We make similar visualizations for other comparable dataset 407 metrics. Figure 12 shows the number of annotations per image. Figure 13 shows of image sizes in 408 each dataset. Figure 14 shows the distribution of width and heights of oriented bounding boxes fit to 409 annotation polygons. Figure 15 shows the area of each polygon versus the number of vertices (which 410 could be used to estimate the likelihood a polygon was generated by AI for our dataset). Figure 16 411 shows the distribution of centroid positions (relative to the image size). 412

413 C VIT-sseg Models

- This section provides more details about the training of VIT-sseg models.
- To train VIT-sseg models we use the training, prediction, and evaluation system presented in [20, 13], which utilizes polygon annotations to train a pixelwise binary segmentation model.
- In all experiments, we use half-resolution images, which means most images have an effective width \times height of 2,016 \times 1,512. We employ a spatial window size of 416 \times 416 for network inputs, which

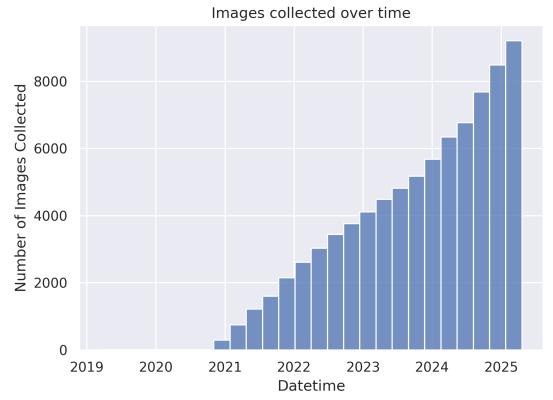


Figure 8: The number of images collected over time.

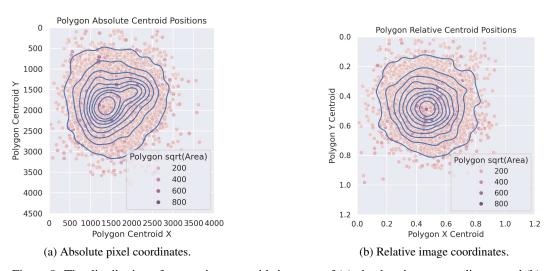
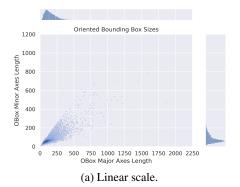


Figure 9: The distribution of annotation centroids in terms of (a) absolute image coordinates and (b) relative image coordinates. The absolute centroid distribution is bimodal because some images are taken in landscape mode and other in portrait mode.

means that multiple windows are needed to predict on entire images. During prediction, we apply a window overlap of 0.3 with feathered stitching to prevent boundary artifacts.

To address the class imbalance in our dataset (where positives are patches containing annotations and negatives contain no annotations), we adopt a balanced sampling strategy. Each "epoch" consists of randomly sampling 32,768 patches from the dataset with replacement, ensuring roughly equal numbers of positive and negative samples. We train each network for 163,840 gradient steps. For data augmentation we use random crops and flips.



426

427

428

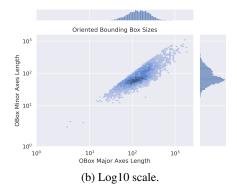


Figure 10: The distribution of annotation sizes as measured by an oriented bounding box fit to each polygon. (a) shows this plot on a linear scale and (b) show this plot on a log scale.

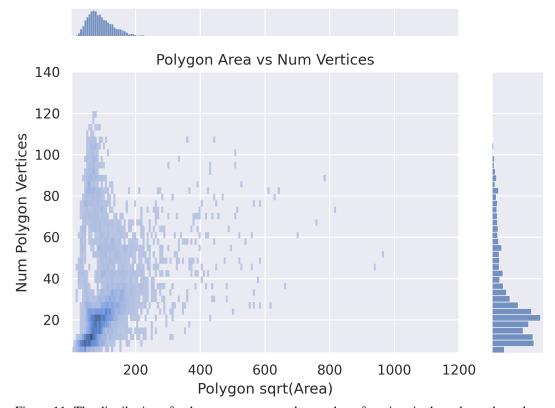


Figure 11: The distribution of polygon areas versus the number of vertices in the polygon boundary. The SAM model tends to produce polygons with a higher number of vertices than manually drawn ones. For smaller polygons there are two peaks in the number of vertices histograms likely corresponding to pure-manual versus AI-assisted annotations.

Our baseline architecture is a variant [5, 20] of a vision-transformer [16]. The model is a 12-layer encoder backbone with 384 channels and 8 attention heads that feeds into a 4-layer MLP segmentation head. It has 25,543,369 parameters and a size of 114.19 MB on disk. At predict time it uses 1.96GB of GPU RAM.

of GPU RAM.

We compute loss pixelwise using Focal Loss [34] with a small downweighting of pixels towards the edge of the window. Our optimizer is AdamW [35], and we experiment with varying learning rate, weight decay, and perturb-scale (implementing the shrink perturb trick [1, 15]). We employ a OneCycle learning rate scheduler [51] with a cosine annealing strategy and starting fraction of 0.3. Our effective batch size is 24 with a real batch size of 2 and 12 accumulate gradient steps. This setup consumes approximately 20 GB of GPU RAM during training.

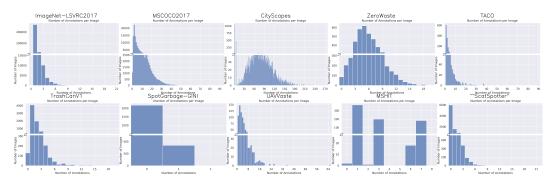


Figure 12: Number of annotations per image in each dataset.

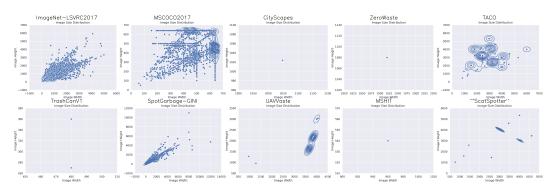


Figure 13: Image size distributions of each dataset. Ours has two primary width/heights.

436 C.1 VIT-sseg Model Experiments

451

452

453

454

455

456

457

458

459

460

To establish a baseline, we evaluated 35 training runs where we varied input resolutions, window sizes, model depth, and other parameters. Although this initial search was somewhat ad-hoc, it provided insights into the optimal configuration for our model. Building on the best hyperparameters from this search, we performed a sweep over 7 combinations of learning rate, weight decay, and perturb scale (i.e., shrink and perturb [1, 15]). Scripts used to reproduce these experiments, as well as a log of the ad-hoc experiments, are available in the code repository. Additionally, trained models are packaged and distributed with information about their training configuration.

Note: the test dataset used in this appendix section is an older 30 image version with suffix d8988f8c, which is a subset of the more recent 121 image test set used in the main paper.

For each of the 7 hyperparameter combinations, we trained the model for 163,840 optimizer steps using a batch size of 24. We defined an "epoch" as 1,365 steps, at which point we saved a checkpoint, evaluated validation loss, and adjusted learning rates. To conserve disk space, we retained only the top 5 lowest-validation-loss checkpoints (although training crashes and restarts sometimes resulted in additional checkpoints, which are included in our evaluation).

Using the top-checkpoints, we predicted heatmaps for each image in the validation set. We then performed binary classification on each pixel (poop-vs-background) using a threshold. Next, we rasterized the truth polygons. The corresponding truth and predicted pixels were accumulated into a confusion matrix, allowing us to compute standard metrics such as precision, recall, false positive rate, etc. [44] for the specific threshold. By sweeping a range of thresholds, we calculated the average precision (AP) and the area under the ROC curve (AUC). We computed all metrics using scikit-learn [43]. Due to the high number of true negative pixels, we preferred AP as the primary measure of model quality.

The details of the top model for each run, along with relevant hyperparameters, are presented in Table 4. This table also includes the results on the small, held out, test set for the top model.

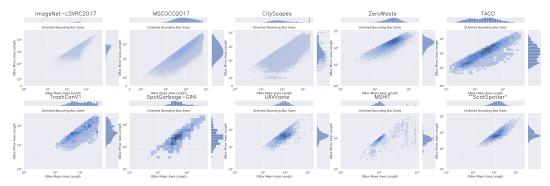


Figure 14: Oriented bounding box size distributions (log10 scale) of each dataset.

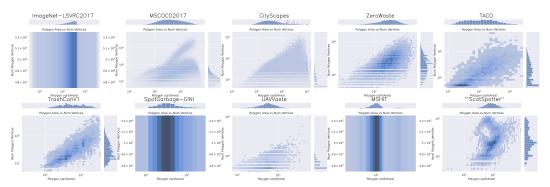


Figure 15: Polygon area versus number of vertices (log10 scale) for each dataset. The polygons with more vertices are more likely to be AI generated.

The results show strong performance on the validation set, with a maximum AP of 0.78. However, while the test AP for this model is good, it is significantly lower at 0.51. To investigate this discrepancy, we turned to qualitative analysis.

Qualitative results for the test, validation, and training sets are presented in Fig. 17. These examples illustrate both success and failure cases. The test and validation sets show clear responses to objects of interest, but the test set contains images of close-up and partially deteriorated poops. This suggests a bias in the dataset towards "fresh" poops taken from some distance.

Notably, the much larger training set also contains errors, indicating more information can be extracted from this dataset using hard-negative mining. There are clear difficult cases caused by sticks, leafs, pine cones, and dark areas on snow. We note that while compiling these results, we checked over 1000 images and discovered 14 cases where an object failed to be annotated, and it is likely that more are missed, but we believe these cases are rare.

Although focal loss was used, the current learning curriculum is likely under-weighting smaller distant objects. Our pixelwise evaluation metric is biased against this, which is a current limitation of our approach. Future work evaluating this dataset on an object-detection level can remedy this.

In Table 4 we only presented the top results. Here we've plotted the AP and AUC on the validation set for the top 5 AP-maximizing results from each of the 7 training runs. We also created a box-and-whisker plot for these top 5 results, which serves to assign a color and label to each training run. These plots are shown in Figure 18.

C.1.1 Resource Usage

480

All models were trained on a single machine with an 11900k CPU and a 3090 GPU. At predict time, using one background worker, our models processed 416×416 patches at a rate of 20.93Hz with 94% GPU utilization.

To better understand the energy requirements of our model, particularly for potential deployment on mobile devices, we used CodeCarbon [30] to measure the resource usage during prediction and

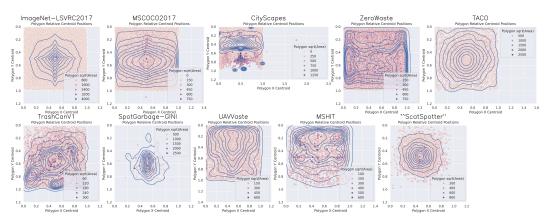


Figure 16: Polygon centroid relative distribution for each dataset. It is interesting to note patterns in this data. For instance, the outline of a street can be seen in CityScapes. In Zero Waste you can see the conveyor belt. ImageNet is more uniform. Ours is Gaussian distributed.

Table 4: Results for the best-performing models on the validation set across 7 hyperparameter configurations. The table provides detailed information about each configuration, including: 1) Configuration name (first column): a unique code identifying each training run used in the score scatter and box plots. 2) Varied hyperparameters (next three columns): specific values for learning rate, weight decay, and perturb scale that were used in each run. 3) Validation set performance (AP and AUC scores): metrics evaluating the model's performance on the validation set. 4) Test set performance (AP and AUC scores): metrics evaluating the model's performance on the test set using the same validation-maximizing models. Note that the top AP score over all models on the test set was 0.65, but it did not correspond to one of these validation runs used for model selection. Qualitative examples illustrating the performance of the top-scoring validation model listed here are provided in Fig. 17.

				Validation (n=691)		Test (n=30)	
config name	lr	weight_decay	perterb_scale	AP	AUC	AP	AUC
D05	1e-4	1e-6	3e-6	0.7802	0.9943	0.5051	0.9125
D03	1e-4	1e-5	3e-7	0.7758	0.9707	0.4346	0.8576
D04	1e-4	1e-7	3e-7	0.7725	0.9818	0.4652	0.7965
D02	1e-4	1e-6	3e-7	0.7621	0.9893	0.5167	0.9252
D00	3e-4	3e-6	9e-7	0.7571	0.9737	0.4210	0.7766
D01	1e-3	1e-5	3e-6	0.7070	0.9913	0.4607	0.9062
D06	1e-4	1e-6	3e-8	0.6800	0.9773	0.4137	0.8157

evaluation. This analysis not only informs practical considerations but also helps us assess our contribution to the growing carbon footprint of AI [28]. The results for the 7 presented training experiments and the total 42 training experiments are reported in Table 5.

Direct measurement of resource usage during training is still under development, but we estimate the duration of each training run using indirect methods. We approximate energy consumption by assuming a constant power draw of 345W from the 3090 GPU during training. Emissions are estimated using a conversion ratio of $0.21 \frac{\text{kgCO}_2}{\text{kWh}}$.

Based on the validation set's 691 images, we estimate that predicting on a single image on our desktop requires approximately 1.15 seconds and 0.13 Wh of energy. For context, typical mobile phones have a battery capacity of around 10 Wh and significantly less compute power than our desktop setup. While our models demonstrate the feasibility of training a strong detector from our dataset, they are not optimized for the mobile setting. To deploy our model on mobile devices, we will need to improve its efficiency or explore more efficient architectures.

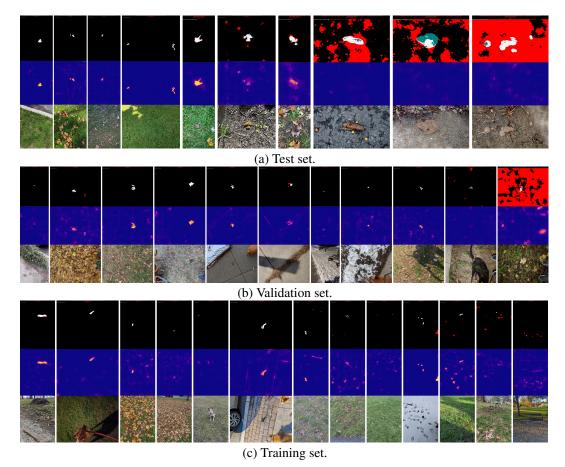
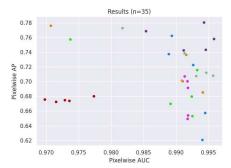


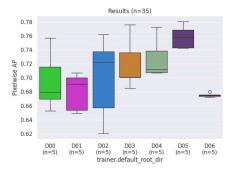
Figure 17: Qualitative results using the top-performing model on the validation set, applied to a selection of images from the (a) test, (b) validation, and (c) training sets. Success cases are presented on the left, with failure cases increasing towards the right. Each figure is organized into three rows: Top row: Binarized classification map, where true positive pixels are shown in white, false positives in red, false negatives in teal, and true negatives in black. The threshold for binarization was chosen to maximize the F1 score for each image, showcasing the best possible classification of the heatmap. Middle row: The predicted heatmap, illustrating the model's output before binarization. Bottom row: The input image, providing context for the prediction. The majority of images in the test set exhibit qualitatively good results. Failure cases tend to occur with close-up images of older, sometimes partially deteriorated poops. These examples were manually selected and ordered to demonstrate dataset diversity in addition to representative results.

C.1.2 Dataset Versions

There are two main versions of the dataset used in this paper. We can specify these using content-based identifiers. The version from 2024-07-03 has a IPFS CID of: bafybeiedwp2zvmdyb2c2a xrc1455xfbv2mgdbhgkc3dile4dftiimwth2y and a BitTorrent magnet of: magnet:?xt=urn: btih:ee8d2c87a39ea9bfe48bef7eb4ca12eb68852c49. The version from 2025-04-20 has an IPFS CID of: bafybeia2uv3ea3aoz27ytiwbyudrjzblfuen47hm6tyfrjt6dgf6iadta4 and a BitTorrent magnet of: magnet:?xt=urn:btih:27a2512ae93298f75544be6d2d629dfb186f86 cf. Note: the hash suffix of the magnet URL can be searched on academictorrents.com.

At the time of writing, the version of the dataset on HuggingFace is the latest, and we use git tags that correspond with the date of release and the IPFS CID to help identify dataset versions. However, unlike the decentralized methods, these are guaranteed to point to the expected version of the dataset. At the time of writing the HuggingFace URL is: https://huggingface.co/datasets/[redactedforpeerreview]/scatspotter and the Girder URL





(a) AP and AUC of 35 checkpoints.

(b) AP of 35 checkpoints.

Figure 18: (a) Scatterplot of pixelwise average precision (AP) and Area Under the ROC curve (AUC) for the top 5 checkpoints on the validation set. Points of the same color represent checkpoints from the same training run, which used identical hyperparameters. (b) Box-and-whisker plot the AP values across the top 5 checkpoints evaluated on the validation set. For each run, corresponding varied hyperparameters and maximum APs are given in Table 4.

Table 5: Resources used for training, prediction, and evaluation. The "node" column is the pipeline stage: "train" for training, "pred" for heatmap prediction, and "eval" for pixelwise heatmap evaluation. The "resource" column lists the resource type: time, energy, or emissions. The "total" and " μ " columns show the total and average consumptions, and the "n" column indicates the frequency of each stage (e.g., across different hyperparameters). Train rows marked with an asterisk (*) are based on indirect measurements.

(a) Presented experiment resources.

Node	Resource	Total	μ	n
eval	time	14.24 hours	0.41 hours	35
pred	time	11.97 hours	0.34 hours	35
pred	energy	8.76 kWh	0.25 kWh	35
pred	emissions	$1.84~\mathrm{CO_2kg}$	$0.05~\mathrm{CO_2kg}$	35
train*	time	39.22 days	5.60 days	7
train*	energy	324.75 kWh	46.39 kWh	7
train*	emissions	$68.20~\mathrm{CO_2kg}$	$9.74~\mathrm{CO_2kg}$	7

(b) All experiment resources.

Node	Resource	Total	μ	n
eval	time	5.84 days	0.35 hours	399
pred	time	7.29 days	0.44 hours	399
pred	energy	102.83 kWh	0.26 kWh	399
pred	emissions	$21.6~\mathrm{CO_2kg}$	$0.05~\mathrm{CO_2kg}$	399
train*	time	158.95 days	3.78 days	42
train*	energy	1,316.07 kWh	31.34 kWh	42
train*	emissions	$276.37~\mathrm{CO_2kg}$	$6.58~\mathrm{CO_2kg}$	42

is: https://data.[redactedforpeerreview].com/?#user/598a19658d777f7d33e9c18b/s folder/66b6bc7ef87a980650f41f98.

NeurIPS Paper Checklist

1. Claims

515

517

521 522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

542

543

544

545

546

547 548

549

550

551

552

553

556

557

558

559

560

561

562

563

565

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Our abstract describes all sections of the paper in a concise manner. We lay our our main contribution: the dataset, the best scores we have achieved so far. And indicate we are going to discuss dataset distribution where the focus is on discussing and quantifying tradeoffs. We make no claim that our trained models are the best, and indicate this in the abstract by describing our results as "exploring the difficulty of the dataset". It is likely that a skilled graduate student could do better, and we hope they will.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: There are a number of limitations in the experiments, and we aim to make those explicit and transparent. Our primary contribution is the dataset and we attempt to describe it in a way that is both transparent and limits the misconceptions a reader might walk away with. Our models simply provide a baseline, which we expect can be improved on. We also note that our test dataset is small, which is why many results are presented on validation data. We clearly distinguish when this is the case. Our transfer measurements are inherently limited by the complexity of network communication.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach.
 For example, a facial recognition algorithm may perform poorly when image resolution
 is low or images are taken in low lighting. Or a speech-to-text system might not be
 used reliably to provide closed captions for online lectures because it fails to handle
 technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA].

Justification: There are no new theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes the experimental details at a level where one could follow them and get similar results. Furthermore, the exact code used to run experiments and their dependencies are provided. In some cases that depend on hardware and network conditions, statistical reproduction is possible.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.

- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The entire history of the project is archived on github and desci.nodes. Effort was made to make training and evaluation as simple as possible and also to minimize any manual steps, but document them when they were unavoidable.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes].

Justification: The models are not the main point of this paper, so some details have been omitted from the main 9 page paper. The dataset splits and details are explicitly defined in the paper. In any case, full details are available in the released code.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: This answer is a no with nuance. For model results we report maximum scores, as the point of our models is to provide a baseline level of performance. Statistics about VIT experiments are provided in the appendix.

For transfer rate experiments we provide mean, std, min, and max in the paper, and the full record of transfers and details is logged in a publicly released repo.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We quantify hardware, time, energy, and emissions.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: For the people that have contributed to our dataset, we received explicit consent. We do not believe our dataset has a high potential for misuse. In some cases metadata has been scrubbed from the images before they were released.

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Part of the motivation for this work was to build a dataset with as limited negative social impact as possible.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This dataset is not scrapped. It is a collection of new real images collected with explicit consent for the purpose training models. The models are detection and segmentation models. We cannot envision a non-contrived case where they are a risk.

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

812

813

814

815

816

817

818

819

820

821

822

823

Justification: The license is provided and dataset versioning is discussed.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Documentation is summarized to the extent possible in 9 pages. External documentation, detailed logs and progress reports are maintained in a public git repo and also stored on desci.nodes.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [No]

Justification: We currently do encourage external contributions to the project on the bottom of the project's github README. However, the number of contributors is small, and the few contributions we recieved were obtained before we placed this section in the README. The current text of this section does include instruction which we list here:

Please contribute! The quickest way is with the Google Form for ShitSpotter Image

Contributions.

Alternatively, you can send me an image via email to: <removed-for-blind-review> When you contribute an image:

- Make sure you are ok with it being released for free under: (CC BY 4.0)
- Let me know how to give you credit.
- Let me know if you want time / GPS camera metadata to be removed from the images.

Guide to taking an image:

Upload an image with poop in it. The poop need not be centered in the image. It could be close up, or far away. It should be visible, but it need not be obvious. The idea is that it could be difficult to see and we want to test if a machine learning algorithm can find it. The only requirement is that if a human looks at it carefully, they can tell there is poop in it.

For the contributions received so far, no instruction were given, and they were volunteered when they learned about the project.

This project has no paid participants.

Disclosure: Initially, some contributions were made informally before we had established explicit contribution instructions and consent language. After recognizing the need for explicit consent, we proactively contacted all early contributors, explained the situation, and obtained formal consent to include their contributions. All contributors agreed to the terms. Going forward, clear instructions and consent requests are provided to all potential contributors.

Guidelines:

825

826

828

829

830

831

832

833

835

836

837

838

839

840

841

842

843

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [No]

Justification: This project is entirely unfunded and performed independent of any institution funding; but some institutional resources were used for network transfer experiments. Contributions received from non-author volunteers was limited. Volunteers provided consent for their data to be published under CC-BY 4.0.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for mundain writing or formatting tasks.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.