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ABSTRACT

This paper introduces Hebbian Architecture Generation (HAG), a method
grounded in Hebbian plasticity principles, designed to optimize the structure of
Reservoir Computing networks. HAG adapts the synaptic weights in Recurrent
Neural Networks by dynamically forming connections between neurons that ex-
hibit high Pearson correlation. Unlike conventional reservoir computing models
that rely on static, randomly initialized connectivity matrices, HAG tailors the
reservoir architecture to specific tasks by autonomously optimizing network prop-
erties such as signal decorrelation and singular value spread. This task-specific
adaptability enhances the linear separability of input data, as supported by Cover’s
theorem, which posits that increasing the dimensionality of the feature space im-
proves pattern recognition. Experimental results show that HAG outperforms
traditional Echo State Networks across various predictive modeling and pattern
recognition benchmarks. By aligning with biological principles of structural plas-
ticity, HAG addresses limitations of static reservoir architectures, offering a bio-
logically plausible and highly adaptable alternative for improved performance in
dynamic learning environments.

1 INTRODUCTION

In this paper, we introduce Hebbian Architecture Generation (HAG), a novel approach that dynam-
ically adjusts the synaptic weights in Recurrent Neural Networks (RNNs) to improve the quality
of their representations. HAG is founded on Hebbian theory (Attneave et al., 1950), the princi-
ple that synaptic connections between co-activating neurons strengthen over time, encapsulated by
the maxim “neurons that fire together wire together.” Leveraging this idea of topology informed
by correlations, HAG dynamically constructs reservoir connectivity to better suit the task at hand,
addressing several core challenges in Reservoir Computing (RC).

RC, particularly through Echo State Networks (ESNs) (Jaeger, 2001), provides a framework for
transforming input signals into high-dimensional dynamic states, as dictated by Cover’s theorem
(Cover, 1965). Cover’s theorem posits that increasing the dimensionality of a feature space enhances
the likelihood that complex data patterns become linearly separable, which is crucial for efficient
learning in RC. However, traditional ESNs, as highlighted by Jaeger (2005), face notable limitations
in reservoir suitability, unsupervised adaptation, or alignment with biological principles.

HAG addresses these limitations in several ways:

1. Task-specific: beginning with a blank connectivity matrix, HAG forms dynamic synaptic
connections, which inherently tailors the reservoir to the demands of specific tasks, moving
beyond the random, static connectivity found in traditional ESNs.

2. Unsupervised adaptation: It autonomously optimizes network properties such as singu-
lar value spread and signal decorrelation by leveraging high Pearson correlations between
neurons, thereby enhancing the linearity of the feature space.

3. Performance predictors: By focusing on measurable properties such as signal decorrela-
tion and feature space expansion, we provide specific criteria for assessing and enhancing
reservoir performance. This approach moves beyond the tautological notion that a reservoir
is suitable if it yields accurate models.
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4. Biological insights: Reflecting the principles of Hebbian and structural plasticity, HAG
mimics the adaptability of biological neural networks by forming new connections and
reorganizing correlated input features to optimize feature extraction.

Our experimental results demonstrate that HAG not only addresses those key challenges, but also
improves performance across multiple benchmarks compared to traditional RC approaches.

This paper first presents the necessary background (section 2) for echo state networks. We then
introduce the HAG algorithm, the motivation behind this rule, and the main elements of our exper-
iments in Section 3. Section 4 then covers the significant performance improvements on several
benchmarks for two versions of the HAG algorithm compared to traditional RC. Finally, in section 5
we show that our algorithm projects input data into a higher-dimensional space which leads to better
performance according to Cover’s theorem.

2 BACKGROUND

2.1 ECHO STATE NETWORKS

Figure 1: Schematic architecture of ESNs

In ESNs, the challenge of capturing nonlinear relationships in data is addressed by transforming the
time series input into a high-dimensional space using a dynamical system (the reservoir) which in
the case of ESNs is an artificial neural network of recurrently connected nodes. In this new feature
space, the complex, nonlinear relationships may become linear, enabling the use of simple linear
models, such as ridge regression, to accurately estimate the target variable. Notably, only the linear
readout layer is trained, while the reservoir remains fixed, reducing computational complexity and
enhancing training efficiency.

An illustration of the ESN framework (Lukoševičius & Jaeger, 2009) (Jaeger, 2001) is given in Fig.
1. It normally consists of a randomly initiated RNN of n neurons (the reservoir), and a trained
readout layer that creates the outputs as a linear combination of the reservoir neuron states.

The evolution of the vector states x of the n neurons is determined by the interactions between the
connection matrix W, the input matrix Win, the input u[t] and the activation function σ that we fix
as the hyperbolic tangent function, combined in the following equation:

x[t+ 1] = σ(W × x[t] +Win × u[t] + b) (1)

The purpose of the bias term b is to enrich the dynamics of the network, but is kept small through
bias scaling to avoid dominating the system. b is a 1 × n vector and dimension of the matrices
are n × n for W and 1 × n for Win. In ESNs, these weights are typically randomly initialized
from a chosen distribution, and modulated by input scaling (sin) and bias scaling (sb) that are two
hyperparameters of the systems. However, as we explain below, mean-HAG uses a different weight
initialization scheme where these weights evolve during operation according to an unsupervised
rule.

Once W, Win and b are fixed, the desired output is obtained through the following equation :

y[t+ 1] = Wout × x[t+ 1] + bout (2)

where Wout, bout are learned using ridge regression with regularization parameter λ to prevent
overfitting by controlling the size of the output such that the generated train output, y[t], optimally
approximates a desired target output, ytarget[t] (Lukoševičius & Jaeger, 2009).
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3 METHODS

While Lukoševičius & Jaeger (2009) gives an overview of other unsupervised methods used to
improve RC, a detailed overview of the effect of biological rules on the dynamics of RC is given
in Morales et al. (2021). Additionally, the self-organizing recurrent network (SORN) introduced by
Lazar (2009) focuses on spiking neurons and leverages multiple forms of plasticity to adapt a form of
spiking neural network, Cazalets & Dambre (2023) on structural plasticity in reservoirs with limited
results and Schrauwen et al. (2008) use synaptic plasticity in an unsupervised manner.

Our approach differs from previously explored techniques such as Cazalets & Dambre (2023) or
Schrauwen et al. (2008), on two points. First, our algorithm takes inspiration from structural plas-
ticity and starts from a blank connectivity matrix, and is then able to create connections between
neurons that are not connected. Second, our algorithm is based on the Pearson correlation, which
allows us to recombine frequently correlated input features, transforming the data into a new feature
space with reduced correlation. In this transformed space, the input features are recombined into a
higher-dimensional space where patterns become as linearly independent as possible.

3.1 HAG ALGORITHM

We start from a blank echo state network with no connections except from the input connectivity.
The HAG algorithm dynamically adjusts synaptic weights wij based on either variance or average
of the activity of the reservoir’s neurons. Those two types of homeostatic mechanisms lead to two
corresponding algorithms:

1. Mean Homeostasis Function (mean-HAG): Adjusts synaptic weights based on deviations
from a target mean activity rate.

2. Variance Homeostasis Function (variance-HAG): Adjusts synaptic weights by compar-
ing the standard deviation of neuron states to a target standard deviation.

A more detailed explanation on the HAG algorithm is provided in Appendix B with pseudo-code in
B.1.

Every T time steps, we calculate for each neuron a growth indicator:

∆zi =
1

β
(si − ρ) (3)

where si represents either the average i-th neuron’s activity ⟨xi⟩T over period T for mean-HAG,
or the i-th neuron’s standard deviation σxi,T over period T for variance-HAG. We denote ρr as the
activity target value and βr as the rate spread (for mean-HAG), and ρv as the variance target and βv

as the variance spread (for variance-HAG).

If ∆zi < −1, the neuron needs to increase its activity. In this case, one connection weight is
increased by δw. The creation of new connections is restricted to neurons that have been identified
as requiring additional connections. To choose which connection to increase, for every neuron that
has not yet achieved homeostasis, we compute pairwise Pearson correlation coefficients (Pearson,
1895) with every other neuron that is also not at homeostasis. We establish a connection with the
highest correlated neuron. Detailed description can be found in Appendix B.2.

If ∆zi > 1, the neuron needs to decrease its activity. In this case, one connection weight is decreased
by δw. Unlike the creation of new connections, the pruning of connections is performed randomly,
independently of the state of the neuron’s partners, regardless of whether they also need to decrease
their activity or not.

The network is said to be at homeostasis if, for each neuron i, the absolute value of ∆zi is less than
1 (i.e. si is between ρ− β and ρ+ β). At this homeostasis the network maintains a desired level of
variance or average in neuronal activity as seen in Figure 2a.

We impose a limit on the degree of the node, γ. By design, the RNN will only have positive
connections, which ensures predictable increases in neuronal activity. This configuration restricts
the network to excitatory connections, which might limit the computational properties of the ESN.

3
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(a) Different neurons’ activities during training with
the mean-HAG algorithm. As new connections are
added every T period, the average neuron states
⟨xi⟩T clearly converge within the homeostatic range
of activity.

(b) Nodes are initially correlated (on the left), cre-
ating a connection between them reduce redundancy
and produce decorrelated, more informative states for
improved reservoir representation (on the right).

Figure 2: (a) Neuronal activities during training with the mean-HAG algorithm. (b) Illustration of
how connecting correlated nodes improves reservoir efficiency.

3.1.1 ENSURING CONVERGENCE

The mean-HAG algorithm dynamically adjusts neural connectivity based on deviations from target
mean activity rates. This ensures convergence during the learning phases as seen in Figure 2a.

In contrast, the variance-HAG algorithm aims to increase variability, which could inadvertently
amplify the overall signal strength and lead to potential saturation. To counteract this, we employ a
homeostatic plasticity mechanism, when a neuron’s activity level exceeds a saturation threshold θsat,
the algorithm scales the weights by ηsat. This adjustment is crucial for maintaining network balance,
avoiding disruptive saturation, and ensuring the smooth convergence of the algorithm.

3.1.2 MOTIVATION

Reservoir Computing (RC) leverages the concept of transforming input data into a higher-
dimensional space where complex patterns become more linearly separable. This idea is rooted
in Cover’s theorem, which suggests that projecting data into a high-dimensional nonlinear space in-
creases the likelihood of linear separability. Traditional Echo State Networks (ESNs) accomplish
this transformation using randomly instantiated reservoirs, a method described by Lukoševičius
(2012) as “the antithesis of the ’optimal.’”. Such random reservoirs fail to exploit the structure
of the input data, potentially limiting their effectiveness in separating complex patterns.

Our Hebbian Architecture Generation (HAG) algorithm is motivated by the need to enhance this
transformation process. By dynamically adjusting the reservoir’s connectivity based on neuron acti-
vations, HAG aims to design a network structure that recombines the inputs to effectively increases
the dimensionality and richness of the feature space, a mechanism illustrated by Figure 2b.

Drawing inspiration from biological systems, we incorporate principles of structural plasticity ob-
served in neural circuits, where neuronal activity leads to both growth and retraction of synaptic
connections (Fauth & Tetzlaff, 2016; Cohan & Kater, 1986; Vaillant et al., 2002). Such plasticity
mechanisms dynamically shape neural networks in response to stimuli, enhancing their adaptability.
Similar mechanisms have been shown to drive transitions between dynamic states in biological net-
works due to changes in input strength, mediated by homeostatic plasticity (Zierenberg et al., 2018).
By integrating unsupervised, activity-dependent structural plasticity with minimal supervised ele-
ments, our approach enhances the efficiency and effectiveness of reservoir computing systems. This
aligns with the hypothesis proposed by Zador (2019), suggesting that biologically inspired adapta-
tions can achieve remarkable efficiency and performance with significantly less supervision com-
pared to conventional neural network models. These findings underscore the importance of adaptive
connectivity in optimizing dynamic representations.
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3.2 DATASETS

ESNs have employed a diversity of benchmarks and datasets, as extensively documented in Sun et al.
(2020). Our study employs a diverse array of datasets to assess the capabilities of our algorithm.

We utilized ReservoirPy (Trouvain et al., 2020), a library updated with contemporary advance-
ments, featuring a modular architecture for assembling ESNs and a suite of standard algorithms for
training the readout layer.

3.2.1 TASKS

The training of the ESN system occurs in two phases. Initially, for classification tasks such as speech
recognition, the reservoir processes input signals into high-dimensional representations, capturing
the dynamic state at the end of each input sequence. This state, representing the reservoir’s response
to the input, serves as the feature vector for training the readout layer using ridge regression to
determine the optimal output weights Wout .

For prediction tasks aimed at forecasting future values from past inputs, we adopt a sequence-to-
sequence approach. The reservoir updates its state at each time step, using the entire sequence of
states to train the readout layer. Here, Wout is optimized to minimize the difference between the
predicted outputs and the actual targets at each time step.

3.2.2 CLASSIFICATION DATASETS

CatsDogs The CatsDogs dataset is the auditory counterpart to the classic image classification
task, containing WAV audio files—164 for cats (1,323 seconds) and 113 for dogs (598 sec-
onds)—recorded at 16 kHz.

SpokenArabicDigits The Spoken Arabic Digits dataset contains recordings of 88 individuals
pronouncing Arabic digits 0–9, with ten pronunciations per digit per speaker. It is commonly
used for testing speech recognition algorithms due to the phonetic diversity of Arabic numerals.
(Mouldi Bedda, 2008)

Japanese Vowels The Japanese Vowels dataset includes recordings of nine male speakers pro-
nouncing sequences of Japanese vowels. It is frequently utilized in research on linguistic character-
istics and speaker identification technologies. (Mineichi Kudo, 1999)

FSDD The Free Spoken Digit Dataset (FSDD) is an open collection of English audio recordings
of spoken digits 0–9 by multiple speakers. Designed for experimenting with speech processing
techniques like classification and clustering, it provides a straightforward entry point into digital
speech processing. (Jackson et al., 2018)

SPEECHCOMMANDS The SPEECHCOMMANDS dataset comprises over 105,000 audio
files of short commands like “Yes,” “No,” “Up,” and “Down,” spoken by various speakers. Widely
used for training and benchmarking models in voice user interfaces. (Warden, 2018)

3.2.3 PREDICTION DATASETS

MackeyGlass Derived from a differential equation, the MackeyGlass dataset is noted for its use
in modeling nonlinear dynamics and chaos, making it a challenging dataset for time series prediction
models. (Mackey & Glass, 1977)

Lorenz The Lorenz dataset is based on the Lorenz attractor, a set of chaotic differential equations
used extensively in predicting nonlinear system behaviors and atmospheric studies. (Lorenz, 1963)

Sunspot (SILSO) The Sunspot dataset from SILSO includes smoothed monthly mean sunspot
numbers from 1749 to 2020, reflecting solar activity and serving as a proxy for the Sun’s magnetic
field strength. Its complexity makes it a significant test case for forecasting models in time series
analysis and solar studies. (SILSO World Data Center, 2024)
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Figure 3: Preprocessing pipeline for classification datasets (here for FSDD) from raw time series
(left) to spectrogram (middle) and normalized features (right).

Figure 4: Preprocessing pipeline for prediction datasets (here for Lorenz) from raw time series (left)
to features after filtering around main frequencies (middle) and normalized features (right). Here
the number of time steps in the time series are preserved to perform prediction tasks

3.3 PREPROCESSING

We adopt distinct preprocessing methods tailored to classification and prediction tasks, each lever-
aging the properties of audio signals to prepare data for analysis and model training.

In the classification tasks, we preprocess the audio signals by converting them into a spectral rep-
resentations using Mel-Frequency Cepstral Coefficients (MFCCs), computed with the librosa
library (McFee et al., 2015). MFCCs are widely used in speech and audio processing to capture the
timbral aspects of sound by modeling the human auditory system’s response (Davis & Mermelstein,
1980; Verstraeten et al., 2005). They provide a compact representation of the spectral properties of
audio signals, making them suitable for classification tasks. This process is illustrated in Figure 3.

Conversely, for prediction tasks, the preprocessing utilizes band-pass filters to isolate specific fre-
quency bands from the signal. This approach starts with the identification of peak frequencies.
Frequency bands are then defined around these peaks by calculating the bandwidth as half the dis-
tance to adjacent peak frequencies. This method effectively segments the time series into parts that
contain relevant information for predictive modeling. The filtered signals obtained from this process
constitute the feature set used for forecasting future events or states from past time series. Com-
pared to the method for classification tasks, this method preserves the number of time steps in the
time series, which is essential to perform prediction tasks. This process is illustrated in Figure 4.

For each dataset, the network size is set to just above 500 units by duplicating the multivariate input
a specific number of times. For example, the SpokenArabicDigits dataset uses a network size of 507,
achieved by duplicating its 13-dimensional spectrogram 39 times. Similarly, the Japanese Vowels
dataset has a network size of 504, with a 12-dimensional spectrogram duplicated 42 times.

3.4 HYPERPARAMETER SEARCH

To ensure robust model evaluation, we employed cross-validation strategies appropriate for each task
type. For classification tasks without predefined groups, we used Stratified K-Fold cross-validation
with shuffling to maintain class distribution across folds. When group-based classification was nec-
essary, Stratified Group K-Fold cross-validation was applied to preserve both class distribution and
group integrity, preventing data leakage. For time series prediction tasks, Time Series Split cross-
validation was utilized to respect temporal ordering and prevent future data leakage.
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Table 1: Mean cross-validation classification accuracy averaged over 3-folds for 400 trials.

E-ESN ESN IP-ESN mean-HAG variance-HAG

CatsDogs 61.6% 61.5% 83.0% 71.4% 76.8%
Japanese Vowels 95.2% 95.9% 98.5% 96.3% 94.4%
SpokenArabicDigits 56.1% 76.6% 71.4% 77.0% 82.8%
FSDD 28.0% 20.0% 72.9% 51.4% 44.6%
SPEECHCOMMANDS 5.8% 5.91% 7.1% 32.6% 34.0%

Table 2: Cross-validation NRMSE averaged over 3-folds for 400 trials

E-ESN ESN IP-ESN mean-HAG variance-HAG

MackeyGlass 0.070 0.068 0.055 0.066 0.063
Lorenz 0.20 0.14 0.147 0.21 0.14
Sunspot 0.0155 0.0202 0.0223 0.0195 0.0198

Hyperparameter tuning was performed using optuna (Akiba et al., 2019), leveraging the Tree-
structured Parzen Estimator (TPE) sampler over 400 trials per dataset and algorithm variant. The
TPE sampler efficiently explores the hyperparameter space by focusing on promising regions, mak-
ing it suitable for our optimization tasks (Bergstra et al., 2011).

The hyperparameters optimized included input scaling, bias scaling, ridge regression coefficient,
and algorithm-specific parameters such as rate target and variance target. Table 5 summarizes the
hyperparameter ranges.

4 RESULTS

We evaluated the performance of the HAG algorithms (mean-HAG and variance-HAG) against base-
line models, including traditional ESNs, ESNs with only positive weights (E-ESNs), and Intrinsic
Plasticity ESNs (IP-ESNs) as described in Schrauwen et al. (2008). The results highlight the robust
improvements offered by the HAG algorithms, particularly in classification tasks. Details on the
hyperparameter search results can be found in C.2.

4.1 CROSS VALIDATION PERFORMANCES

Tables 1 and 2 present the mean cross-validation classification accuracies and normalized root mean
square errors (NRMSEs), respectively, averaged over 3-folds for 400 trials per model and dataset.

In classification tasks, the HAG algorithms consistently outperformed E-ESN and standard ESNs
except for instance of the JapaneseVowels eplained by an ill-conditioning of the reservoir (see Ap-
pendix B.3). For example, on the SPEECHCOMMANDS dataset, variance-HAG achieved a no-
table accuracy of 34.0%, significantly outperforming the ESN (5.9%) and E-ESN (5.8%). The
IP-ESN model demonstrated strong performance on the CatsDogs, Japanese Vowels datasets and
FSDD, achieving the highest accuracies of 83.0%, 98.5% and 72.9%, respectively. However, on
datasets such as SpokenArabicDigits and SPEECHCOMMANDS, HAG algorithms surpassed IP-
ESN, showing greater adaptability to diverse datasets.

In prediction tasks, variance-HAG achieved competitive performance, matching the standard ESN
on the Lorenz dataset (NRMSE of 0.140). However, the IP-ESN model achieved the lowest NRMSE
on the MackeyGlass dataset (0.055), highlighting its strength in this type of task. On the Sunspot
dataset, E-ESN achieved the best NRMSE of 0.0155, but both HAG algorithms performed compa-
rably, demonstrating their versatility across different prediction challenges.
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Table 3: Test classification accuracy over 8 trials on the test dataset using the whole training dataset

E-ESN ESN IP-ESN mean-HAG variance-HAG

CatsDogs 60.9% 60.4% 55.41% 68.8% 69.1%
Japanese Vowels 95.8% 96.7% 97.0% 98.4% 94.19%
SpokenArabicDigits 63.6% 74.8% 57.84% 95.4% 95.2%
FSDD 23.5% 25.3% 32.75% 46.3% 44.0%
SPEECHCOMMANDS 6.11% 6.94% 6.35% 17.3% 27.4%

Table 4: Mean NRMSE over 8 trials on the test dataset using the whole training dataset

E-ESN ESN IP-ESN mean-HAG variance-HAG

MackeyGlass 0.0518 0.0533 0.0734 0.0667 0.0663
Lorenz 0.174 0.187 0.174 0.173 0.159
Sunspot 0.0695 0.0376 0.0510 0.0342 0.0544

4.2 TEST PERFORMANCES

Tables 3 and 4 summarize the models’ test performance using the best hyperparameters identified
during cross-validation.

On the test datasets, the HAG algorithms maintained strong performance. On the SpokenArabicDig-
its dataset, mean-HAG achieved a remarkable accuracy of 95.4%, significantly outperforming IP-
ESN (57.8%). On the SPEECHCOMMANDS dataset, variance-HAG achieved the highest accuracy
of 27.4%, a substantial improvement over all baselines. IP-ESN excelled on the CatsDogs, Japanese
Vowels and FSDD dataset during cross-validation but underperformed on the test set compared to
the HAG algorithms, suggesting potential overfitting.

In prediction tasks, variance-HAG achieved the lowest NRMSE on the Lorenz dataset (0.159), while
mean-HAG performed best on the Sunspot dataset (0.0342). IP-ESN underperformed on the test
datasets.

The results demonstrate that the HAG algorithms, particularly variance-HAG, consistently outper-
form baseline models, including IP-ESN, in classification tasks. Their ability to dynamically adjust
synaptic weights based on Hebbian principles allows for improved representation of input data, en-
hancing accuracy and generalization. While IP-ESN achieved strong performance on some datasets,
its inconsistency across tasks highlights the advantage of HAG’s tailored reservoir dynamics, par-
ticularly on the most complex task of SPEECHCOMMANDS. In prediction tasks, HAG algorithms
showed competitive performance but did not consistently outperform E-ESN or IP-ESN. This sug-
gests that further optimization of the HAG approach is needed for time-series forecasting applica-
tions.

5 DISCUSSION

We hypothesize that our algorithm enhances the dynamics of ESNs by transforming redundant in-
puts into more informative representations. Leveraging Hebbian learning principles, our approach
projects input data into a new feature space with reduced feature correlation, enriching the pool of
features and increasing the likelihood of discovering linearly separable representations. This trans-
formation is expected to improve the network’s ability to perform complex tasks by creating a richer
set of features for downstream processing.

Aligned with our hypothesis based on Cover’s theorem, that increasing the dimensionality of neural
states simplifies problem-solving, we evaluate the dynamic richness of our reservoir (Gallicchio &
Micheli, 2022), which is specifically designed to increase neural state dimensionality. We assess
dynamic richness using Pearson correlation and Cumulative Explained Variance (CEV). Detailed
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analysis of Pearson correlations and CEVs values for every dataset/function combination are pre-
sented in Appendix D

5.1 PEARSON CORRELATION

To elucidate the operational dynamics of our reservoir, we assess the correlation among neural states
using Pearson correlation (Pearson, 1895), which measures the linear relationship between neuron
activation states. This metric helps understand inter-neuronal connectivity and synchrony, directly
impacting the network’s ability to process complex data patterns. By computing Pearson correlation
coefficients, we quantify initial levels of synchrony and track their evolution over time, offering
insights into the network’s dynamic restructuring in response to varying inputs. Detailed explanation
about this calculation can be found in Appendix A.2

(a) during the formation of the connections for a
set of good performing hyperparameters

(b) for a random reservoir instantiated with best
performing hyperparameters

Figure 5: Comparison of the evolution of the average Pearson correlation between neural states be-
tween the mean-HAG-designed and randomly instantiated reservoirs on the same input data (FSDD
dataset). Lower Pearson correlation indicates better conditioning of the learning problem.

Figure 5 illustrates the correlation evolution within a high-performing HAG network compared to
a randomly initialized reservoir. Initially, the correlation metric is near unity, indicating highly
synchronized neuron states, a typical characteristic of freshly initialized networks where states are
scaled input vectors with a bias term, resulting in almost identical states. Over time, a pronounced
decline in mean correlation is evident, aligning with the HAG method’s objective to refine the con-
nectivity matrix by dynamically linking neurons based on correlation levels. This fosters a more
diverse and functionally rich neural dynamic, enhancing the reservoir’s computational capabilities.
The comparison supports our hypothesis that HAG networks better represent complex input data
than traditional ESNs.

It should be noted that similar patterns are observed across different graphs, highlighting the un-
derlying coherence in input data characteristics. The same pattern of Pearson correlation can be
observed in the inputs, that then influence neural state variations.

5.2 CUMULATIVE EXPLAINED VARIANCE

To quantify the reservoir’s dynamic behavior, we perform Principal Component Analysis (PCA) on
the reservoir states. This approach allows us to analyze how the variance in the reservoir’s state
space is distributed among different principal components, providing insight into the complexity
and richness of the dynamics.

We denote H as the data matrix formed by collecting the reservoir states, where each column cor-
responds to a state vector at a particular time step. Performing PCA on H yields singular values
σ1, σ2, . . . , σn, arranged in decreasing order. These singular values are directly related to the vari-
ance explained by each principal component.

The proportion of variance explained by the j-th principal component is calculated as:

Rj =
σ2
j∑n

k=1 σ
2
k

(4)

9
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(a) during the formation of the connections for a
set of good performing hyperparameters

(b) for a random reservoir instantiated with best
performing hyperparameters

Figure 6: Comparison of evolution of moving cumulative explained variance (with θ = 0.9) on
the same input data (here with the SPEECHCOMMANDS datasets). Higher CEV indicates better
conditioning of the learning problem.

The cumulative explained variance up to the d-th principal component is then given by:

Cd =

d∑
j=1

Rj =

∑d
j=1 σ

2
j∑n

k=1 σ
2
k

(5)

This cumulative measure indicates the total proportion of variance captured by the first d principal
components. To assess the effective dimensionality of the reservoir’s state space, we determine
the minimum number of principal components required to reach a predetermined threshold θ of
cumulative explained variance:

D = argmin
d

(Cd ≥ θ) (6)

A higher value of D suggests that more principal components are needed to capture the same amount
of variance, indicating a richer and more complex dynamic structure within the reservoir.

Figure 6 presents the cumulative explained variance curves for both the HAG-designed reservoir
and the randomly instantiated reservoir on SPEECHCOMMANDS dataset. The HAG-designed
reservoir exhibits a more gradual increase in cumulative explained variance, requiring more principal
components to reach the threshold θ. This implies a higher effective dimensionality compared to the
random reservoir, supporting our hypothesis that the HAG algorithm enhances the richness of the
reservoir’s dynamics.

6 CONCLUSION

We presented a new algorithm generating a connectivity matrix by identifying and connecting highly
correlated neural nodes within a reservoir. This algorithm contrasts with traditional random matrix
instantiation by creating a connectivity pattern that enhances decorrelation of reservoir states. By
aligning the connectivity within the reservoir to the intrinsic correlations of the system, the proposed
approach not only supports a new theoretical parallel with Hebbian plasticity but also demonstrates
practical superiority over conventional methods.

The dynamic adaptability of HAG not only addresses the limitations of static reservoirs in Echo
State Networks but also showcases the practical application of biologically-inspired algorithms in
improving computational efficiency and task-specific performance. Our results underscore the utility
of biologically-inspired design principles in computational models, emphasizing the potential of
Hebbian learning rules not just as a theoretical construct but as a practical tool in machine learning.

Future research should delve deeper into understanding the mechanisms that enable HAG to perform
well with complex datasets. Additionally, exploring the scalability of HAG in larger and more
intricate systems will further validate its effectiveness and contribute to the development of more
intelligent and adaptable neural network models.
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A PEARSON CORRELATION

To dynamically form connections in the reservoir, we leverage the Pearson correlation coefficient
(Pearson, 1895) to identify neurons that exhibit strong linear relationships in their activation patterns.
This process is performed exclusively on neurons that have not yet achieved homeostasis, as defined
by the growth indicator ∆z.

A.1 PEARSON CORRELATION COEFFICIENT

For two neurons i and j, the Pearson correlation coefficient, rij , measures the linear relationship
between their respective activation states, xi[t] and xj [t], over a time period T . It is defined as:

rij =

∑T
t=1(xi[t]− x̄i)(xj [t]− x̄j)√∑T

t=1(xi[t]− x̄i)2
√∑T

t=1(xj [t]− x̄j)2
, (7)

where:

• xi[t] and xj [t] are the activation states of neurons i and j at time t,

• x̄i =
1
T

∑T
t=1 xi[t] is the mean activation state of neuron i over the period T ,

• x̄j =
1
T

∑T
t=1 xj [t] is the mean activation state of neuron j over the same period.

The coefficient rij ranges from −1 (perfect negative correlation) to 1 (perfect positive correlation),
with 0 indicating no linear relationship.

A.2 PEARSON AS A MEASURE OF RICHNESS

Figure 5 illustrates the average Pearson correlation between the activations of all neurons in the
reservoir within each time window. Using a sliding window approach, the reservoir states are seg-
mented into overlapping windows of a fixed size. For each window, the pairwise Pearson correlation
coefficients, rij , are calculated for all neuron pairs (i, j), excluding self-correlations (i = j).

The average Pearson correlation for a given time window is defined as:

µwindow =
1

N(N − 1)

N∑
i=1

N∑
j=i+1

rij , (8)

where:

• N is the number of neurons in the reservoir,

• rij is the Pearson correlation coefficient between neurons i and j over the time window.

This metric, µwindow, represents the mean correlation between neuron activations in the window. By
plotting µwindow for successive time windows, Figure 5 shows how the average correlation evolves
during the pretraining phase.

Lower average correlations over time indicate reduced synchronization among neurons, reflecting
the reservoir’s increasing ability to generate a diverse and decorrelated feature space. This is a
desirable property in reservoirs, as it enhances their capacity to separate input patterns in a high-
dimensional space, aligning with the goals of effective reservoir design.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B DETAILS ON THE HAG ALGORITHM

B.1 PSEUDO-CODE

Algorithm 1: HAG Algorithm
Input: Reservoir weights W, Input weights Win, Bias b, Pretraining data Xpretrain,
Hyperparameters (ρ, β, δw, γ, Tmin, Tmax)
Output: Adjusted reservoir weights W
for each time increment Tcurrent sampled from logspace between Tmin and Tmax do

for t← 1 to Tcurrent do
Update reservoir states:
x[t+ 1]← σ (Wx[t] +Winu[t] + b)

end
for each neuron i do

Compute activity measure si (mean or variance over Tcurrent)
Compute growth indicator:

∆zi ←
1

β
(si − ρ)

if ∆zi < −1 then
Find neuron j with highest Pearson correlation with neuron i
Increase weight:
wij ← wij + δw
if degree(i) ¿ γ then

// Implement logic to maintain maximum degree
end

end
if ∆zi > +1 then

Randomly select a synapse wij connected to neuron i to decrease
wij ← max(wij − δw, 0)

// Ensure non-negativity
end
if variance-HAG and xi exceeds saturation threshold θsat then

for each outgoing synapse wij of neuron i do
wij ← wij × ηsat

end
end

end
end

B.2 CONNECTION FORMATION BASED ON PEARSON CORRELATION

Identifying the Most Correlated Pair. To form new connections, we consider only neurons i and
j for which the growth indicator ∆zi or ∆zj satisfies:

∆zi > 1 or ∆zj > 1. (9)

For this subset of neurons, we compute pairwise correlation coefficients rij for all pairs, with rij as
defined in A.1. The pair (i∗, j∗) with the highest absolute correlation is selected:

(i∗, j∗) = argmax
(i,j)
|rij |, (10)

where the maximization is performed over all neuron pairs (i, j) that have not yet achieved home-
ostasis.
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(a) CatsDogs (b) FSDD

(c) Japanese Vowels (d) SPEECHCOMMANDS

(e) SpokenArabicDigits

Figure 7: Final connectivity matrices generated using Mean-HAG and Variance-HAG algorithms
across different classification datasets. For each dataset, the left panel represents the Mean-HAG
connectivity matrix, while the right panel illustrates the Variance-HAG connectivity matrix.

Establishing the Connection. Once the most highly correlated pair (i∗, j∗) is identified, a con-
nection is established between these two neurons by incrementing the corresponding weight wi∗j∗

in the connectivity matrix W. The updated weight is given by:

wi∗j∗ ← wi∗j∗ + δw,

where δw > 0 is the weight increment parameter.

This mechanism ensures that connections are formed preferentially between neurons that exhibit
high correlation, promoting the restructuring of the reservoir to enhance its dynamic representation
of input data.

B.3 FINAL CONNECTIVITY DETAILS

This section provides an analysis of the connectivity matrices produced by the Hebbian Architecture
Generation (HAG) mechanism, which dynamically adjusts the reservoir’s synaptic connections to
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(a) CatsDogs (b) FSDD

(c) Japanese Vowels

Figure 8: Final connectivity matrices generated using Mean-HAG and Variance-HAG algorithms
across different prediction datasets. For each dataset, the left panel represents the Mean-HAG con-
nectivity matrix, while the right panel illustrates the Variance-HAG connectivity matrix.

optimize its representational capacity. The visualizations in Figure 7 and Figure 8 reveal distinct
patterns in the matrices depending on the dataset and the specific variant of the HAG algorithm
used.

The connectivity matrices exhibit two notable characteristics. First, Mean-HAG generates struc-
tured, modular patterns indicative of clusters of strongly interconnected neurons. This structure
corresponds to localized groups of neurons that represent specific features of the input space, rein-
forcing separability within subsets of the data. By contrast, Variance-HAG produces more dispersed
and heterogeneous patterns, reflecting its goal of enhancing variability and reducing redundancy
across neuron activations. Second, there is a distinct set of connections corresponding to inter-
cluster connectivity, which increases the overall decorrelation of the reservoir state by linking the
most redundant subsets.

The matrices also reveal that HAG adapts to dataset complexity. For instance, tasks involving high-
dimensional data, such as CatsDogs and SPEECHCOMMANDS, result in connectivity matrices with
pronounced modularity or hierarchical structure, emphasizing separability and diversity. However,
the best-performing network (variance-HAG) is the one that exhibits the most inter-cluster connec-
tivity.

On Japanese Vowels, HAG shows ill-conditioning as no connections were created. This explains
why results on this dataset were so low, as the reservoir part of the network remained inadequately
configured for effective processing.

C DETAILS ON THE HYPERPARAMETER OPTIMIZATION

In this appendix, we present the detailed results of the hyperparameter optimization across the dif-
ferent datasets. The hyperparameters were optimized using Optuna over 400 trials per dataset.
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Table 5: Hyperparameter ranges, settings, and notation

CATEGORY PARAMETER SYMBOL RANGE/SETTINGS

Shared Across Models

Input Scaling sin 0.01 to 0.2, step 0.005
Bias Scaling sb 0 to 0.2, step 0.005
Ridge Coefficient λ Logarithmic scale from 10−15 to 101

Maximum degree γ Between 10 to 20
Weight Increment δw 0.001 to 0.1, step 0.001

mean-HAG Rate Target ρr 0.5 to 1, step 0.01
Rate Spread βr 0.01 to 0.4, step 0.005

variance-HAG

Variance Target ρv 0.001 to 0.02, step 0.001
Variance Spread βv 0.001 to 0.02, step 0.001
Saturation Threshold θsat 0.8 to 0.98, step 0.02
Saturation scaling ηsat 0.8 to 0.98, step 0.02
Connection Selection - ”random” or ”pearson”

E-ESN/ESN Connectivity p 0 to 1, no step
Spectral Radius ρs 0.4 to 1.6, step 0.01

IP-ESN Target distribution’s mean µ 0 to 1, no step
Target distribution’s variance σIP 0 to 1, no step

Fixed Parameters

Activation Function σ Hyperbolic Tangent (tanh)
Win Connectivity - 1 (Full Connectivity)
Network Size n Just above 500 neurons
Input Duplication - Equal duplication for each input variate

Table 6: Optimized hyperparameters for the variance-HAG algorithm

sin sb λ ρv βv θsat ηsat δw γ

CatsDogs 0.030 0.000 100 0.017 0.007 0.86 0.88 0.100 11
FSDD 0.155 0.020 10−7 0.011 0.001 0.82 0.94 0.087 14
Japanese Vowels 0.040 0.190 10−9 0.003 0.013 0.90 0.86 0.075 18
Lorenz 0.065 0.170 10−9 0.018 0.005 0.94 0.96 0.006 17
MackeyGlass 0.170 0.185 10−9 0.019 0.007 0.80 0.94 0.076 10
SPEECHCOMMANDS 0.060 0.000 10−9 0.014 0.003 0.92 0.80 0.030 20
SpokenArabicDigits 0.060 0.040 10−10 0.014 0.001 0.82 0.96 0.057 16
Sunspot 0.180 0.135 10−9 0.017 0.005 0.94 0.94 0.028 14

The detailed hyperparameter settings serve as a reference for reproducing the results and offer in-
sights into how different parameters impact the performance of the different algorithm.

C.1 HYPERPARAMETER DEFINITIONS:

• Input Scaling (sin): Scaling factor applied to the input weights Win.
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Table 7: Optimized hyperparameters for the mean-HAG algorithm

sin sb λ ρr βr δw γ

CatsDogs 0.120 0.100 100 0.51 0.39 0.021 12
FSDD 0.200 0.075 10−5 0.56 0.39 0.050 10
Japanese Vowels 0.195 0.195 10−4 0.66 0.21 0.094 13
Lorenz 0.190 0.170 10−9 0.97 0.165 0.021 19
MackeyGlass 0.045 0.185 10−10 0.94 0.295 0.043 10
SPEECHCOMMANDS 0.060 0.000 10−9 0.58 0.34 0.002 16
SpokenArabicDigits 0.075 0.035 10−10 0.53 0.38 0.025 11
Sunspot 0.050 0.105 10−9 0.51 0.265 0.087 13

Table 8: Optimized hyperparameters for E-ESN

sin sb λ p ρs

CatsDogs 0.135 0.025 10−6 0.842 0.49
FSDD 0.175 0.14 10−9 0.0040 0.92
Japanese Vowels 0.190 0.005 10−9 0.155 0.62
MackeyGlass 0.195 0.2 10−10 0.0318 1.4
SPEECHCOMMANDS 0.040 0.05 10−12 0.0038 1.02
SpokenArabicDigits 0.030 0.1 10−14 0.0049 1.0
Sunspot 0.055 0.005 10−9 0.0178 0.78

• Bias Scaling (sb): Scaling factor applied to the bias vector b.

• Ridge Coefficient (λ): Regularization parameter in ridge regression, where λ =
10ridge exponent.

• Variance Target (ρv): Target standard deviation of neuron states.

• Rate Spread (βr): Spread parameter activity controlling the activity deviation from target
ρr that is tolerated.

• Rate Target (ρr): Target activity of neuron states.

• Variance Spread (βv): Spread parameter controlling the sensitivity to deviations from ρv .

• Saturation Threshold (θsat): Threshold beyond which intrinsic plasticity mechanisms re-
duce synaptic weights.

• Saturation scaling (ηsat): Factor by which synaptic weights are scaled when saturation
occurs.

• Weight Increment (δw): Amount by which synaptic weights are increased during growth.

• Maximum Degree (γ): Maximum number of synaptic partners per neuron.

• Mean of the target distribution for IP (µ): Target mean for intrinsic plasticity normal-
ization.

• Variance of the target distribution for IP (σIP): Target standard deviation for intrinsic
plasticity normalization.

C.2 OPTIMIZED HYPERPARAMETERS FOR EACH ALGORITHM

Tables 7, 6, 8, 9 and 10 summarize the optimal hyperparameters found for each dataset and algo-
rithm. Key insights include:

1. Variance-HAG and Mean-HAG: Effective in dynamically tailoring the reservoir to the
data, with significant reliance on ρv , ρr, and γ to optimize neuron activity and connectivity.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Optimized hyperparameters for traditional ESN

sin sb λ p ρs

CatsDogs 0.135 0.025 10−6 0.842 0.49
FSDD 0.175 0.140 10−9 0.004 0.92
Japanese Vowels 0.190 0.005 10−9 0.155 0.62
MackeyGlass 0.130 0.045 10−10 0.193 0.89
SPEECHCOMMANDS 0.135 0.005 10−11 0.356 1.00
SpokenArabicDigits 0.035 0.005 10−14 0.003 0.61
Sunspot 0.025 0.110 10−11 0.014 0.46

2. Traditional ESN and E-ESN: Spectral radius (ρs) and connectivity (p) are critical for
matching the reservoir’s memory and dynamic properties to the dataset.

3. General Trends: High input scaling (sin) and low ridge coefficients (λ) are commonly
effective across algorithms, reflecting the need for strong input signals and minimal regu-
larization.

Table 10: Optimized hyperparameters for IP-ESN

sin sb λ p ρs µ σ

CatsDogs 0.18 0.08 10−10 0.462 0.46 0.733 0.142
FSDD 0.05 0.095 10−14 0.005 1.05 0.298 0.087
Japanese Vowels 0.14 0.06 10−10 0.327 0.56 0.886 0.719
Lorenz 0.09 0.06 10−9 0.093 1.11 0.071 0.838
MackeyGlass 0.19 0.19 10−7 0.048 0.45 0.158 0.363
SPEECHCOMMANDS 0.195 0.105 10−14 0.005 0.89 0.097 0.062
SpokenArabicDigits 0.03 0.125 10−15 0.015 0.82 0.318 0.582
Sunspot 0.01 0.145 10−11 0.138 0.64 0.758 0.782

D ADDITIONAL RESULTS AND ANALYSIS

To further substantiate the effectiveness of our Hebbian Architecture Generation (HAG) method,
we have expanded our experiments to include detailed results and additional metrics across our
datasets and reservoir configurations. Specifically, we provide an in-depth analysis of the spectral
radius, Pearson correlation coefficients among neuron activations, and the Cumulative Explained
Variance (CEV) in the reservoir states. These metrics offer insights into the dynamical properties
of the reservoirs and their impact on performance. Table 11 and 12summarizes the spectral radius,
average Pearson correlation, and CEV for each combination of dataset and reservoir configuration.
The spectral radius is measured from the connectivity matrix of the different networks obtained with
various rules, while Pearson correlation and CEV are measured based on neurons’ activity during
the test set inference for each dataset.

D.1 RESULTS

D.1.1 SPECTRAL RADII

The spectral radius is an important parameter in Echo State Networks (ESNs), influencing the echo
state property. Our results indicate that the HAG-based methods (Mean-HAG and Variance-HAG)
generally have higher spectral radii compared to the traditional E-ESN, particularly in datasets like
SPEECHCOMMANDS and CatsDogs (see Figure 9a). This suggests that the adaptive connectivity
in HAG methods allows the reservoir to have a high spectral radius while performing extremly well,
for instance the SPEECHCOMMANDS dataset.
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(a) Spectral Radius (b) Pearson Correlation

(c) Cumulative Explained Variance
(d) Test Scores, on the right accuracy (higher is better
and on the left NRMSE (lower is better)

Figure 9: Detailed Results for Spectral Radius, Pearson Correlation, Cumulative Explained Vari-
ance, and Test Scores across different reservoir configurations and Datasets. Each subfigure illus-
trates the respective metric for various algorithms across the evaluated datasets.

D.1.2 PEARSON CORRELATION

The average Pearson correlation coefficient among neuron activations provides insight into the re-
dundancy and diversity of the reservoir states. Lower correlation values imply a more decorrelated
and thus more informative set of features for the readout layer.

In our experiments, the Variance-HAG method consistently achieved lower Pearson correlation co-
efficients compared to other methods across multiple datasets, as shown in Table 11 and Table 12
and illustrated in Figure 9b. For instance, in the SPEECHCOMMANDS dataset, Variance-HAG
achieved a correlation of 0.471, significantly lower than the 0.980 observed in the random E-ESN.
Similarly, in the MackeyGlass dataset, Variance-HAG achieved a correlation of 0.064, compared to
0.910 in the random E-ESN. This reduction in correlation indicates that Variance-HAG effectively
decorrelates neuron activations, potentially leading to better generalization and performance.

D.1.3 CUMULATIVE EXPLAINED VARIANCE

The Cumulative Explained Variance (CEV) quantifies the dimensionality of the reservoir’s projected
feature space by identifying the number of principal components needed to explain a specified frac-
tion of the variance. Higher CEV values indicate that more components are required to capture the
system’s dynamics, which can reflect richer dynamics or increased complexity.

Our results show that the HAG methods doesn’t always exhibit higher CEV values. But it is impor-
tant to notice that it does on the most complex dataset (SPEECHCOMMAND) where our algorithm
shows the most impressive results.

D.2 DISCUSSION

The analysis of these metrics supports the efficacy of the HAG methods in improving reservoir
performance:
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Table 11: Spectral radius, Pearson Correlation, Cumulative Explained Variance (CEV), and test
scores for the different reservoir configurations across prediction datasets’ test data (average over 4
trials).

Dataset Algorithm SR Correlation CEV Test Scores

MackeyGlass

E-ESN 0.89± 0.00 0.913± 0.001 1.0± 0.0 0.059± 0.004
ESN 1.40± 0.00 1.00± 0.00 1.0± 0.0 0.051± 0.005
IP-ESN 0.45± 0.00 0.955± 0.001 1.0± 0.0 0.076± 0.007
Mean-HAG 1.16± 0.00 0.517± 0.001 4.0± 0.0 0.065± 0.005
Variance-HAG 1.40± 0.03 0.463± 0.001 5.0± 0.0 0.060± 0.007

Lorenz

E-ESN 1.31± 0.00 0.725± 0.004 4.0± 0.0 0.068± 0.001
ESN 0.54± 0.00 0.118± 0.005 6.0± 0.0 0.066± 0.001
IP-ESN 1.11± 0.00 0.871± 0.023 2.3± 0.4 0.060± 0.011
Mean-HAG 1.31± 0.00 0.707± 0.009 4.0± 0.0 0.083± 0.006
Variance-HAG 0.90± 0.02 0.493± 0.004 5.5± 0.5 0.257± 0.027

Sunspot

E-ESN 0.46± 0.00 0.691± 0.011 4.0± 0.0 0.505± 0.092
ESN 0.78± 0.00 0.072± 0.014 6.0± 0.0 0.163± 0.024
IP-ESN 0.64± 0.00 0.882± 0.004 2.0± 0.0 0.610± 0.687
Mean-HAG 0.96± 0.00 0.928± 0.002 1.0± 0.0 0.051± 0.005
Variance-HAG 1.84± 0.00 0.466± 0.002 5.0± 0.0 0.122± 0.020

• Enhanced Dynamics: Higher spectral radii in HAG methods suggest a more powerful
dynamic regime, allowing the reservoir to better model temporal dependencies.

• Reduced Redundancy: Lower Pearson correlations indicate that HAG methods produce
more diverse neuron activations, reducing redundancy and providing richer information to
the readout layer.

• Enriched Feature Space: Higher CEV values demonstrate that HAG methods generate
a more informative and expansive feature space, facilitating better representation of input
dynamics.

However, while HAG algorithms excel in classification tasks by enhancing feature separability, their
performance in prediction tasks is more variable. As shown in Table 11 and Table 12, Variance-HAG
does not always outperform traditional ESNs or other baseline models in prediction scenarios. This
inconsistency suggests that the mechanisms driving connectivity adjustments in HAG may be more
aligned with tasks requiring distinct feature separation rather than continuous temporal forecasting.

D.3 IMPLICATIONS FOR RESERVOIR DESIGN

Despite these shortcomings, the HAG methods offer valuable insights into how adaptive connec-
tivity can enhance reservoir performance. The ability to dynamically tailor the reservoir to specific
tasks by reducing neuron correlations and expanding the feature space underscores the potential of
biologically inspired design principles in neural network architecture.

It is important to note that enriching the feature space (lower Pearson correlation and higher CEV)
does not always translate into augmented performances across all tasks. This discrepancy may
stem from the inherent differences between classification and prediction tasks. Classification tasks
primarily benefit from enhanced feature separability, allowing for more accurate differentiation be-
tween classes. In contrast, prediction tasks rely heavily on the reservoir’s ability to capture and retain
temporal dependencies, which may not be directly enhanced by the structural adjustments made by
HAG.

In conclusion, the Hebbian Architecture Generation (HAG) method presents a robust framework
for enhancing reservoir computing, particularly in classification tasks, by leveraging biologically
inspired adaptive connectivity. While its efficacy in prediction tasks is promising, it highlights
the need for a nuanced approach that considers the distinct demands of different task types. The
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Table 12: Spectral radius, Pearson Correlation, Cumulative Explained Variance (CEV), and test
scores for the different reservoir configurations across classification datasets’ test data (average over
4 trials).

Dataset Algorithm SR Correlation CEV Test Scores

CatsDogs

E-ESN 0.42± 0.00 0.443± 0.011 11.0± 0.0 0.599± 0.003
ESN 0.49± 0.00 0.078± 0.005 14.0± 0.0 0.613± 0.003
IP-ESN 0.46± 0.00 0.469± 0.013 11.0± 0.0 0.535± 0.026
Mean-HAG 0.94± 0.02 0.249± 0.001 11.0± 0.0 0.684± 0.003
Variance-HAG 1.44± 0.20 0.230± 0.004 12.75± 0.43 0.678± 0.017

JapaneseVowels

E-ESN 0.69± 0.00 0.306± 0.008 7.0± 0.0 0.957± 0.002
ESN 0.62± 0.00 0.004± 0.000 8.0± 0.0 0.966± 0.005
IP-ESN 0.56± 0.00 0.203± 0.008 7.0± 0.0 0.968± 0.003
Mean-HAG 1.00± 0.02 0.149± 0.007 8.0± 0.0 0.987± 0.001
Variance-HAG 0.00± 0.00 0.031± 0.000 8.0± 0.0 0.945± 0.003

SpokenArabicDigits

E-ESN 0.61± 0.01 0.268± 0.020 11.5± 0.5 0.634± 0.012
ESN 1.00± 0.00 0.401± 0.068 10.0± 1.22 0.740± 0.016
IP-ESN 0.82± 0.00 0.626± 0.017 7.0± 0.0 0.582± 0.005
Mean-HAG 0.99± 0.01 0.159± 0.000 10.0± 0.0 0.954± 0.002
Variance-HAG 1.41± 0.01 0.157± 0.003 10.25± 0.43 0.952± 0.004

FSDD

E-ESN 0.66± 0.00 0.618± 0.005 10.75± 0.43 0.299± 0.004
ESN 0.93± 0.01 0.105± 0.006 32.5± 1.12 0.316± 0.010
IP-ESN 1.05± 0.01 0.653± 0.009 10.0± 0.0 0.335± 0.007
Mean-HAG 0.95± 0.00 0.414± 0.001 10.0± 0.0 0.506± 0.017
Variance-HAG 1.00± 0.04 0.293± 0.002 16.0± 0.0 0.452± 0.006

SPEECHCOMMANDS

E-ESN 1.00± 0.00 0.980± 0.001 1.0± 0.0 0.060± 0.001
ESN 1.01± 0.01 0.569± 0.028 5.75± 0.83 0.068± 0.001
IP-ESN 0.90± 0.01 0.750± 0.007 6.5± 0.5 0.065± 0.002
Mean-HAG 1.02± 0.00 0.581± 0.005 8.0± 0.0 0.169± 0.004
Variance-HAG 1.66± 0.07 0.464± 0.009 12.25± 0.43 0.272± 0.006

adaptability and biological plausibility of HAG not only address the limitations of static reservoir
architectures but also pave the way for more versatile and efficient neural network models in diverse
learning environments.
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