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ABSTRACT

In drug discovery, molecular representation learning is vital for understanding and
generating new drug-like molecules. The accurate representation of molecules fa-
cilitates drug candidate screening and the optimization of lead compounds. The
vastness of chemical space challenges traditional drug design and relies on com-
plex computations. The Pharmacophore is a functional group contained within a
drug molecule, which binds to receptors or biological macromolecules to produce
biological effects and reduce computations. Pharmacophore-guided representa-
tion of molecules, however, remains a significant challenge. To address this issue,
we propose an improved deep learning-based model called PharmaVQA for re-
trieving pharmacophore-related information directly from molecule databases, al-
lowing for a more targeted understanding of drug-like molecules. Through the use
of Visual Question Answering (VQA) framework, PharmaVQA captures pharma-
cophore data, generates knowledge prompts, and enriches molecular representa-
tions. On 46 benchmark datasets, PharmaVQA has demonstrated superior perfor-
mance in both molecular property prediction and drug-target interaction predic-
tion. Additionally, the applicability of PharmaVQA in drug discovery has been
validated on an FDA-approved molecule dataset, where the Top-20 predictions
were analyzed in real-world studies, with the majority of them experimentally
validated as potential ligands previously reported in the literature. Our assess-
ment of PharmaVQA is that it is a powerful and useful tool for accelerating the
development of AI-assisted drug discovery across a wide range of areas.

1 INTRODUCTION

Identifying molecules with specific properties remains challenging in drug discovery due to the time
and resources required for experimental validation (Dickson & Gagnon, 2004; Mullard, 2014). AI-
driven methods have recently enhanced the efficiency of molecular property prediction, however,
developing effective molecular representations remains challenging (Hessler & Baringhaus, 2018;
Walters & Barzilay, 2020). Early machine learning-based methods relied on manually crafted fea-
tures, such as molecule descriptors and FingerPrints (FP), which required complex engineering and
limited adaptability (Van De Waterbeemd & Gifford, 2003; Dong et al., 2018; Butler et al., 2018;
Li et al., 2023b). Deep learning models like Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs) and Graph Neural Networks (GNNs) have automated feature extraction
from Simplified Molecular Input Line Entry System (SMILES) or molecule graphs (Li et al., 2023a;
Xu et al., 2017; Shi et al., 2019; Gilmer et al., 2017), but scarcity of labeled data and vast chemical
space continue to limit accuracy (Dong et al., 2018; Hu* et al., 2020). Self-supervised learning has
improved GNNs via pre-training, but these models struggle to capture detailed molecular semantics,
especially long-range interactions (You et al., 2020; 2021), and often fail to capture critical spatial
and functional relationships limiting the scalability of complex tasks (Sun et al., 2022; Zhang et al.,
2021).

To address these representation challenges, pharmacophores have emerged as a critical concept in
drug design (Jiang et al., 2023). Pharmacophores represent the spatial arrangement of functional
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groups essential for biological activity, offering a robust framework for understanding molecular
interactions with biological targets (Jiang et al., 2023). By identifying the essential features that
contribute to binding affinity and pharmacological effects, pharmacophores help simplify molecular
representations (Li et al., 2022b). This approach can reduce computational costs by focusing on
the key components of a molecule responsible for interactions with biological receptors or macro-
molecules, thereby improving the efficiency of computational models (Noor et al., 2023). Despite
these advantages, representing molecules through a pharmacophore-guided approach remains chal-
lenging, primarily due to the difficulty of accurately capturing the diverse arrangements of functional
groups that are essential for specific interactions.

Recently, Visual Question Answering (VQA) has been proposed to provide accurate answers to vi-
sual and language-based queries (Antol et al., 2015; Ma et al., 2024). The technology harnesses
the synergy of Computer Vision (CV) and Natural Language Processing (NLP) methods, enabling
a deeper understanding of both image content and textual inquiries. In the field of VQA research,
advanced multimodal fusion methodologies have been explored, notably including the Bilinear At-
tention Network (BAN) (Kim et al., 2018; Guo et al., 2023). BAN selectively attends to salient im-
age features, while adeptly filtering out irrelevant information, thereby enhancing VQA responses
precision. This advancement underscores the progress made in the field toward more accurate and
nuanced interpretations of complex visual-linguistic queries.

In this study, we introduce the PharmaVQA model (see Figure. 1), a retrieval-based approach that
enhances molecular representation by directly retrieving pharmacophore-related information. To
optimize pharmacophore knowledge retrieval, we employ VQA technology to construct prompts
(queries) for the retrieval process. Although typically used for answering questions based on im-
ages, VQA is innovatively applied here to generate knowledge prompts related to molecule prop-
erties. By designing appropriate questions, the model can automatically retrieve and integrate an-
swers from multiple sources, forming a comprehensive description of molecule characteristics. In
this way, molecular representations are enriched and high-quality data is provided for modeling
and applications. We conducted extensive experiments on multiple benchmark datasets related to
molecular representation, demonstrating superior performance over existing methods. This vali-
dates the effectiveness and generalizability of the proposed approach. The viability of PharmaVQA
is demonstrated by identifying potential ligands.

Our contributions are summarized as follows:

• We introduce a novel framework named pharmaVQA, a retrieval-augmented visual
question-answering framework that extracts information related to pharmacophores from
molecules as a knowledge prompt to enhance molecular features.

• We apply bilinear attention to integrating information from both the question and molecular
graph, providing an attention map that enhances PharmaVQA’s interpretability.

• We conduct experiments on 46 molecular representation datasets, demonstrating results
that surpass existing state-of-the-art (SOTA) methods. PharmaVQA’s practical applica-
bility in drug discovery has been validated on three ligand datasets (HPK1, FGFR1, and
VIM-1) with 10, 15, and 16 of the Top-20 predictions experimentally confirmed as poten-
tial ligands.

2 RELATED WORK

Molecular Representation Learning. Methods focusing on molecular representation extract
molecule graphs that encompass both node (atom or motif) and edge (bond) information. Such
as Xia et al. (2023) proposed MoleBERT as a novel masking strategy at the node level and a triplet
masked contrastive learning approach at the graph level to achieve a comprehensive view of molec-
ular representations. Recent research focuses on multimodal approaches that combine textual de-
scriptions of molecules with graph representations. MoleculeSTM (Liu et al., 2023) utilizes a con-
trastive learning strategy to simultaneously learn the chemical structures and textual descriptions of
molecules, facilitating a more nuanced comprehension of their dual representations. SPMM (Chang
& Ye, 2024) developed a multimodal molecular pre-training model that incorporates both struc-
tural and biochemical property modalities. By aligning structural and property features in a shared
embedding space, this model captures bidirectional information between molecule structures and
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Figure 1: Overview of PharmaVQA. A Feature extraction: a line graph transformer and SciBERT
model process the molecular graph and question embeddings. B Multiple questions bilinear oper-
ation: Bilinear Attention Network (BAN) handles multiple question embeddings through bilinear
operations, followed by pooling and concatenation. The fused-question embedding integrates into
the output. C The Line Graph Transformer. D The Bilinear Attention Network. E Downstream Task
Prediction: The fused embeddings are used for various downstream tasks, such as property predic-
tion, interaction or affinity prediction, and ligand prediction, leveraging enhanced node embeddings.

their attributes, enhancing the understanding of their complex relationships. For knowledge-based
molecular representation learning methods, KPGT (Li et al., 2023a) employs a pretraining strategy
that involves masking a subset of nodes and incorporating a knowledge node to enhance represen-
tation, utilizing the LineGraphTransformer to extract node features. However, these methods often
overlook the critical spatial and functional relationships, limiting the scalability of complex tasks.

3 PRELIMINARY

3.1 BILINEAR ATTENTION NETWORK

The Bilinear Attention Network (BAN) model generates an attention map G. Subsequently, this
attention map G is used, along with visual and textual representations, to produce a combined
output vector z that includes information from both modalities. Lastly, the joint embedding z is
forwarded to an MLP classifier to assess the answers.

G = softmax
(((

1 · p⊤) ◦ σ (
Q⊤WQ

))
σ
(
W⊤

V V
))

, (1a)

z = σ
(
Q⊤WU

)
◦Gσ

(
W⊤

V V
)
1, (1b)

y = MLP (z), (1c)
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where y denotes the response, which can be in the form of a string or numerical number of regression
or classification problems.

3.2 GRAPH TRANSFORMER

Graph Transformer introduces the topological properties of the graph into the Transformer model,
enabling the model to handle high-dimensional spatial data with structural position priors, leading
to its extensive application across various domains (Yun et al., 2019; Mialon et al., 2021; Wu et al.,
2023; Chen et al., 2024). Given a molecular graph G, the initial feature is X ∈ Rn×d, where d
denotes the dimension of atom feature covering the atomic number, atomic type, etc. Utilizing the
connectivity relationships between atom nodes, an adjacency matrix A ∈ Rn×n can be constructed,
where Aij signifies whether node i is connected to node j.

Ĥ(l) =

(
H(l−1)WQ × (H(l−1)WK)⊤√

d
+A

)
(H(l−1)WV ), (2a)

H(l) = Residual(H(l), Ĥ(l)), (2b)

where H(l−1) denotes the node feature matrix on layer (l − 1) and H(0) = X , WQ ∈ Rd×da ,
WK ∈ Rd×da , W V ∈ Rd×da are the trainable parameter matrix which da is the dimension of
attention module, the Residual(·) is a function to alleviate the problem of gradient vanishing or
exploding that may occur during the training process of deep neural networks, and helping the
model better learn complex graph-structured data.

4 PROPOSED FRAMEWORK: PHARMAVQA

4.1 MOLECULAR REPRESENTATION

To incorporate molecular edge information, we perform a pre-processing step (Li et al., 2023a)
on the original graph, transforming it into the augmented graph. In this new graph, the node set
comprises information about the current edges augmented with the details of the atomic nodes they
connect, while the edge set represents the new edges connecting these enriched nodes. We apply
the LineGraphTransformer (Li et al., 2023a), referred to as Encoderg(·), to encode the graph. This
transformer utilizes the GraphTransformer for encoding the molecular graph, integrating both the
positional encoding and distance encoding modules. As a result, we obtain the representation HG ∈
Rn×dg for the modified molecular graph G:

HG = Encoderg(G), (3)
where dg denotes the dimension of the graph node feature.

4.2 QUESTION REPRESENTATION

We design a series of query questions denoted as Q = {q1, · · · , qP }, where each pharmacophore
question is tailored to uncover the pharmacophore features of the molecule (The details can be
found in Section. 5.2 and Appendix A). These queries are then embedded through pre-trained lan-
guage models such as SciBERT (Beltagy et al., 2019), which capture semantic information within
the text. SciBERT’s proficiency in understanding scientific text provides robust support for extract-
ing relevant knowledge associated with the pharmacophores, enabling a deeper and more nuanced
understanding of their various facets. Suppose the question text for pharmacophore type i is defined
as qi = [q1i , · · · , qli], where l denotes the sequence length. The embeddings corresponding to the
text Hqi ∈ Rl×dl is defined as follows:

Hqi = Encodert([q
1
i , · · · , qli]), (4)

where Encodert(·) denotes the SciBERT encoder and dl denotes the dimension of input text.

4.3 PHARMACOPHORE KNOWLEDGE EXTRACTION

To generate predictive outputs that match the questions, we combine the features of the graph HG
and the question text Hq through BAN to extract knowledge. Specifically, we produce several at-
tention maps customized for pharmacophore-related queries. In this context, we utilize the multiple
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glimpse approach (Kim et al., 2018; Guo et al., 2023) to improve the model’s understanding. Given
a pharmacophore-related question of type i as qi, the corresponding attention map Gi,s ∈ Rn×l for
the sth glimpse representation is as follows:

Gi,s = softmax
(((

1 · u⊤
i,s

)
◦ σ (HGUi,s)

)
σ
(
(Vi,sHqi

)
⊤
))

, i = 1, · · · , P, s = 1, · · · , S,
(5)

where P and S denote the overall count of all types of pharmacophore and the number of glimpses.
1 ∈ Rn stands for ones vector, Ui,s ∈ Rdg×dk , Vi,s ∈ Rdl×dk and ui,s ∈ Rdk are the learnable pa-
rameters, dk represents the dimension of these parameters, σ signifies the ReLU activation function,
while ◦ and softmax(·) represent Hadamard product and softmax function, respectively.

Next, we create joint embeddings fi,s = [fi,s,1, · · · , fi,s,K ] ∈ RK for each unique attention map:

fi,s,k = σ (HGUi,s)
⊤
k Gi,sσ

(
(Vi,sHqi)

⊤
)
k
, k = 1, · · · ,K. (6)

Subsequently, a sum pooling function (denoted as SumPool(·)) is employed to combine the ob-
tained S glimpse vectors, resulting in the features relevant to the pharmacophore i query:

fi = SumPool(fi,s). (7)

Finally, we merge the embeddings designed for various pharmacophore-related questions to com-
bine their unique features. This unified representation, enriched with information from multiple
embeddings of pharmacophore questions, is then used for predictions in subsequent tasks.

f = MLP (f1, · · · ,fP ). (8)

4.4 PROMPT-BASED PREDICTION TASK

In the subsequent prediction tasks, we integrate the extracted pharmacophore knowledge fea-
tures f as prompts into the molecular embeddings from another encoder which is derived from
H ′

G = Encoder′g(G). This enhanced embedding, which includes both molecular features and
pharmacophore-related knowledge, is then utilized for predictions in downstream tasks.

ŷ = MLP (concat(f ,H ′
G)), (9)

where the concat(·) denotes the cat operation of two vectors.

4.5 MODEL TRAINING

For the molecular property prediction task, our model employs different loss functions Lp tailored
to a specific task. For the classification task, we adopt the Binary Cross-Entropy (BCE) loss func-
tion, which is well-suited to handling binary or multi-class classification problems. On the other
hand, for regression tasks, we utilize the Mean Squared Error (MSE) loss function, as it provides a
straightforward measure of the difference between the predicted and true values.

Furthermore, for predicting answers corresponding to specific questions, we also employ the MSE
regression loss function Lph, ensuring that our model is optimized to accurately predict continuous
values in the context of question answering.

Lph =
1

N

N∑
j=1

1

P

P∑
i=1

(
rji −MLP (f j

i )
)2

, (10)

where N denotes the total molecule count, rji and f j
i indicate the true label and the pharmacophore

feature vector for the ith functional group of the jth molecule, and an MLP layer is used to obtain the
predicted value MLP (f j

i ). In addition to these task-specific losses, we incorporate an alignment
loss Lalign derived from the Bilinear Attention Network.

In this context, we create a matrix O ∈ Rn,P , where n is the number of nodes in a molecular
graph and P represents different functional group questions. Each element in O indicates if a node
belongs to the ith functional group. By summing the columns of the final glimpse attention map
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Gi,P , we obtain a vector vi ∈ Rn that represents the importance score of the molecule for the ith
functional group. Combining these vectors constructs an importance matrix Ô ∈ Rn,P , indicating
the molecule’s relevance across all functional groups. We then compute the loss by comparing the
predicted importance matrix with the label matrix, maximizing alignment to enhance focus on key
input segments (Equation 11). In this case, the final loss function is shown in Equation 12:

Lalgin =
1

N

N∑
i=1

1

nP
||O − Ô||2F , (11)

L = Lp + αLph + βLalign, (12)
where α and β are controllable parameters.

5 EXPERIMENTS

5.1 DATASETS

To comprehensively compare SOTA methods, we have curated two benchmark datasets. The first
benchmark is Li’s molecular property prediction dataset (Li et al., 2023a), consisting eight classifi-
cation tasks and three regression tasks. The second benchmark, MoleculeACE dataset (van Tilborg
et al., 2022), contains thirty regression bio-activity datasets involving activity cliffs.

Additionally, to assess the performance of our models in predicting drug-target interactions, we
utilized two distinct datasets from (Song et al., 2023). The first is the BindingDB classification
dataset, which focuses on identifying interacting and non-interacting drug-target pairs. The second
is the BindingDB regression dataset, which measures interactions’ affinity quantitatively. Finally,
in our investigation of potential ligand candidates, we have compiled three specific ligand datasets,
namely HPK1, FGFR1, and VIM-1. The HPK1 and FGFR1 datasets are from (Li et al., 2023a),
while the VIM-1 dataset is sourced from BindingDB, a comprehensive drug database.

5.2 EXPERIMENTS CONFIGURATION

In the following sections, we first evaluate the ability of our model, PharmaVQA, to predict molec-
ular properties accurately by comparing its performance with seven methods on widely used molec-
ular property prediction datasets (see Section. 5.3). The datasets were scaffold-split following (Li
et al., 2023a) for robust comparison of PharmaVQA’s effectiveness in molecule representation. AUC
is used for Li’s classification dataset, RMSE for Li’s regression dataset, and both RMSE and R2 for
MoleculeACE datasets.

Furthermore, we evaluate PharmaVQA’s ability to discern relationships between molecules and pro-
teins (refer to Section 5.4). In this study, PharmaVQA’s performance was tested using the Bind-
ingDB classification and regression datasets, and the results were compared to those reported in
(Song et al., 2023). For the BindingDB classification dataset, AUC and AUPR were used as metrics,
while MSE and Pearson correlation were employed for regression.

To further assess the representation capabilities of PharmaVQA, we applied it to discovering poten-
tial ligands for three targets: HPK1, FGFR1, and VIM-1 (see Section 5.5). This experiment focused
on identifying ligands for three targets, HPK1, FGFR1, and VIM-1. Performance was measured
using Pearson and Spearman correlation coefficients, consistent with benchmarks established in (Li
et al., 2023a). Additionally, we evaluated PharmaVQA’s ability to associate pharmacophores with
the corresponding textual information, demonstrating its capacity to provide valuable insights and
enhance interpretability (see Section. 5.6). Comprehensive experiments highlight various aspects
of PharmaVQA’s remarkable performance, demonstrating its effectiveness across diverse molecular
representation tasks.

We address pharmacophore-related questions by shifting the focus from binary classification to re-
gression. Instead of asking whether pharmacophores exist, which could bias results positively, we
ask how many are present. Thus, we identified seven common pharmacophores via RDKit and de-
signed specific question templates for each. To enrich semantics, descriptive attributes were added
to the questions. For certain pharmacophores, we formulated two distinct questions to capture their
unique characteristics and applications, as summarized in Table 5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance of property prediction on Li’s eight classification datasets using AUC. Results
are reported as mean (standard deviation) over three runs with different seeds using scaffold split.
Top-1 results are highlighted in bold, and the second best are underlined.

Methods BACE BBBP ClinTox SIDER Estrogen MetStab Tox21 ToxCast

GraphLoG (Xu et al., 2021) 0.830(0.014) 0.846(0.008) 0.667(0.021) 0.615(0.013) 0.871(0.054) 0.850(0.080) 0.796(0.025) 0.677(0.019)
GROVER (Rong et al., 2020) 0.840(0.030) 0.887(0.006) 0.874(0.048) 0.638(0.005) 0.892(0.044) 0.876(0.038) 0.838(0.017) 0.696(0.014)
MolCLR (Wang et al., 2022) 0.796(0.057) 0.914(0.015) 0.869(0.048) 0.615(0.018) 0.808(0.085) 0.814(0.110) 0.773(0.038) 0.622(0.010)
MoleculeSTM (Liu et al., 2023) 0.812(0.008) 0.880(0.013) 0.875(0.031) 0.615(0.018) 0.876(0.073) 0.860(0.066) 0.813(0.023) 0.730(0.013)
MoleBERT (Xia et al., 2023) 0.843(0.031) 0.851(0.022) 0.797(0.074) 0.615(0.010) 0.887(0.046) 0.868(0.051) 0.832(0.021) 0.720(0.009)
KPGT (Li et al., 2023a) 0.855(0.011) 0.908(0.010) 0.946(0.022) 0.649(0.009) 0.905(0.028) 0.889(0.047) 0.848(0.013) 0.746(0.002)
SPMM (Chang & Ye, 2024) 0.834(0.016) 0.914(0.015) 0.897(0.014) 0.620(0.010) 0.905(0.046) 0.841(0.075) 0.821(0.020) 0.708(0.011)
PharmaVQA (ours) 0.876(0.017) 0.922(0.013) 0.946(0.011) 0.655(0.023) 0.913(0.045) 0.892(0.047) 0.850(0.029) 0.735(0.002)

Therefore, to explore the advantages of incorporating pharmacophore information, we conducted
two ablation studies: First, we evaluated whether incorporating pharmacophores into the VQA
query improves performance by comparing a baseline model without pharmacophore questions to
one that includes them, using the phrase ”to be or not to be, it’s a question” as a noise prompt.
Second, we examined the impact of querying with multiple pharmacophores compared to querying
with one pharmacophores by evaluating both scenarios using our model PharmaVQA. To evaluate
performance, we conducted tests across seven pharmacophore types using the molecular property
prediction datasets from Li et al. (2023a), as detailed in Table 12 and Table 13. For classification
datasets, performance is measured using the Area Under the Curve (AUC), while regression datasets
are evaluated using the Root Mean Squared Error (RMSE).

Experimental parameter settings and ablation study results are in Appendix B, G.

5.3 EVALUATION OF MOLECULE PROPERTY PREDICTION

In this section, we have conducted a comparative analysis between Li’s datasets and the
MoleculeACE datasets. The results of these comparisons are summarized in Table 1, Table 2, and
Appendix C, providing a comprehensive view of the model’s performance across different evalua-
tion frameworks. Each dataset was analyzed three times with distinct random seeds. The baseline
models encompass two categories, including those that specialize in molecular graph pre-training
such as GraphLoG (Xu et al., 2021), GROVER (Rong et al., 2020), MolCLR (Wang et al., 2022),
MoleBERT (Xia et al., 2023), and KPGT (Li et al., 2023a). Additionally, we also consider multi-
modal models like MoleculeSTM (Liu et al., 2023) and SPMM (Chang & Ye, 2024), which integrate
multiple modalities for their unique capabilities. This diverse set of models allows us to compre-
hensively evaluate our model’s performance in various aspects of molecular representation learning.
Considering that previous research utilized diverse evaluation settings, we replicated all models
under KPGT experimental conditions, excluding KPGT itself and the two models GraphLoG and
GROVER, as detailed in the KPGT study.

As shown in Table 1 and Table 2, our model has demonstrated remarkable performance across a
diverse range of benchmarks, outperforming several SOTA approaches on both classification and re-
gression tasks. Specifically, when evaluated on Li’s eight classification datasets, our model achieved
superior AUC scores on seven datasets and ranked 2 on one datasets, consistently ranking among the
top performers. Furthermore, when tested on Li’s three regression datasets, our model also shone
brightly. As demonstrated in the results presented in Appendix C, which encompasses the evalu-
ation of thirty regression datasets from MoleculeACE, the pharmaVQA has exhibited remarkable
versatility and robustness across a wide spectrum of molecular regression tasks. Notably, we have
achieved outstanding performance, with the lowest RMSE in 24 out of 30 datasets and the highest
correlation coefficients (R2) in 23 out of 30 datasets, further underscoring the effectiveness of our
method.

5.4 EVALUATION OF DRUG-TARGET INTERACTION AND AFFINITY PREDICTION

We conducted experiments on both BindingDB classification and regression datasets. The results of
the baseline models are from (Song et al., 2023). Firstly, on the BindingDB classification dataset (as
shown in Table 3), PharmaVQA exhibits the most outstanding performance, reaching a top level of
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Table 2: Performance of property prediction on Li’s three regression datasets using RMSE. Results
are reported as mean (standard deviation) over three runs with different seeds using scaffold split.
Top-1 results are highlighted in bold, and the second best are underlined.

Methods Lipo Esol Freesolv

GraphLoG (Xu et al., 2021) 1.104(0.024) 2.335(0.073) 4.174(1.077)
GROVER (Rong et al., 2020) 0.752(0.010) 0.928(0.027) 2.991(1.052)
MolCLR (Wang et al., 2022) 0.729(0.052) 1.249(0.082) 2.741(0.408)
MoleculeSTM (Liu et al., 2023) 0.706(0.032) 1.161(0.078) 3.244(0.634)
MoleBERT (Xia et al., 2023) 0.690(0.023) 1.185(0.083) 2.801(0.602)
KPGT (Li et al., 2023a) 0.600(0.010) 0.803(0.008) 2.121(0.837)
SPMM (Chang & Ye, 2024) 0.690(0.029) 0.872(0.054) 2.131(0.790)
PharmaVQA (ours) 0.590(0.016) 0.841(0.026) 1.921(0.859)

Table 3: Classification performance of Phar-
maVQA versus six methods on the Bind-
ingDB dataset.

DTI AUC AUPR

GraphDTA (Nguyen et al., 2020) 0.929 0.917
DrugVQA (Zheng et al., 2020) 0.936 0.928
TransformerCPI (Chen et al., 2020) 0.951 0.949
CoaDTI (Huang et al., 2022) 0.959 0.957
MINN-DTI (Li et al., 2022a) 0.961 0.970
PMF-CPI (Song et al., 2023) 0.990 0.990
PharmaVQA (ours) 0.991 0.991

Table 4: Regression performance of Phar-
maVQA versus four methods on the Bind-
ingDB dataset.

DTA MSE Pearson

DeepAffinity (Karimi et al., 2019) 0.548 0.840
DeepDTA (Öztürk et al., 2018) 0.612 0.848
MONN (Li et al., 2020) 0.584 0.858
PMF-CPI (Song et al., 2023) 0.474 0.884
PharmaVQA (ours) 0.453 0.890

0.991 in both AUC and AUPR, demonstrating outstanding performance in BindingDB classification
prediction tasks. Furthermore, for the comparison on the BindingDB regression dataset (as shown
in Table 4), although all methods have displayed some predictive ability, PharmaVQA once again
stands out with the lowest MSE value of 0.453 and the highest Pearson value of 0.890, significantly
better than other methods. This result indicates that our method has higher accuracy and stronger
correlation in predicting the affinity between drugs and targets, providing a more reliable basis for
drug design and discovery. In summary, our method demonstrates excellent performance in both
BindingDB classification and regression tasks, proving its effectiveness in drug development.

5.5 DISCOVERY OF POTENTIAL LIGANDS

To validate that our representation model can effectively uncover potential ligands, we conducted a
series of experiments as follows.

Predicting Binding Affinity on three Ligand Datasets. Initially, we trained our model on binding
affinity datasets of three targets, HPK1, FGFR1, and VIM-1. Hematopoietic progenitor kinase 1
(HPK1) plays a pivotal role in negatively regulating immune functions (Si et al., 2020). Fibroblast
growth factor receptor (FGFR1) is a transmembrane receptor tyrosine kinase that is frequently over-
expressed or mutated in various diseases such as myeloproliferative syndromes and multiple cancers
(Acevedo et al., 2007; Nguyen et al., 2013). Lastly, Verona integron-encoded metallo-β-lactamase
1 (VIM-1) can hydrolyze carbapenem β-lactam antibiotics, which leads to serious drug-resistant
infections (Boyd et al., 2020).

The prediction results were subsequently compared with the current leading method to assess perfor-
mance, as detailed in Appendix D. Our model distinctly surpasses the KPGT method across all three
ligand datasets with respect to both Spearman and Pearson correlation coefficients. Specifically,
HPK1 demonstrated enhancements of 0.032 and 0.024 in the Spearman and Pearson correlation co-
efficients, respectively. FGFR1 showed improvements of 0.035 and 0.018 for these metrics. Lastly,
VIM-1 experienced increases of 0.017 in Spearman and 0.010 in Pearson correlation coefficients.

Finding Potential Ligands on FDA-approved Dataset. To highlight the effectiveness of our model
in identifying potential ligands, we utilized the trained model to uncover potential ligands among
FDA-approved compounds from DrugBank. Specifically, we used the model to predict binding
affinity and rank the results. We analyzed the Top-20 molecules with the highest ligand potential
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Figure 2: Ligands identified by PharmaVQA with the lowest docking scores.

Figure 3: Visualization of molecules for the Donor question. The top row shows molecules with
highlighted donor atoms, while the middle and bottom rows display sorted query characters related
to donor atoms, highlighting the Top-5.

by searching for supporting evidence for their roles. Our initial exploration involved a comparative
analysis of two significant targets, HPK1 and FGFR1, which are interested in the KPGT model.
Interestingly, our model identified 10 and 15 potential ligands, respectively, among the Top-20 pre-
dicted molecules, whereas KPGT, as published, identified 12 and 13. This initial analysis demon-
strates our approach’s competitive advantage.

Besides, we explored molecules from DrugBank targeting VIM-1, an important zinc ion-binding
protein. VIM-1 poses a distinct challenge due to its interaction with zinc ions. Our model identified
16 of the Top-20 molecules interacting with zinc ion-binding proteins, proving its reliability and
precision. Details of these Top-20 molecules are in Appendix E. Moreover, our model identified six
HPK1 ligands and four unique FGFR1 ligands not found by KPGT, demonstrating its distinct ability
to explore and identify potential ligands. We also visualized the ligands with the lowest docking
scores for each of the three targets (PDB IDs: 5A4C for FGFR1, 7SIU for HPK1, and 5N5H for
VIM-1), shown in Figure 2. Additional visualizations of unique ligands are in Appendix F.

5.6 CASE STUDY FOR MODEL INTERPRETABILITY

We analyzed the attention map within the final layer of the BAN module to ascertain its proficiency
in highlighting vital information related to pharmacophore questions. For this investigation, if the
model assigns significant weight to relevant textual information when questioning pharmacophores,
it would serve as an indication that the model is adept at extracting pharmacophore-related textual
cues, thereby demonstrating its ability to mine meaningful information about drug efficacy.

In this study, we focused on training a model using the Lipo training dataset and then derived
pharmacophore-related attention maps for the Lipo test set. Our model produced a donor-specific

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

attention map for the task of identifying pharmacophores related to donors. This attention map
yielded a weight vector relevant to text tokens corresponding to nodes. By sorting this vector and
highlighting the Top-5 tokens of related pharmacophore-related atoms, we sought to determine if
essential textual information pertinent to donor pharmacophores was among these high-ranking to-
kens. As shown in Figure 3, it clearly demonstrates that our model effectively captures essential
textual information related to donor atoms. Specifically, it significantly emphasizes important terms
such as ‘hydrogen’, ‘bond’, and ‘donors’, suggesting that the model has adeptly recognized these as
critical components within the framework of donor pharmacophores.

6 CONCLUSIONS

In this work, we propose PharmaVQA, a novel deep-learning framework designed to enhance drug
discovery by integrating information retrieval techniques to extract pharmacophore-related molecule
features. PharmaVQA simplifies feature extraction by directly retrieving key data from molecular li-
braries, thereby providing more precise insights into drug-target interactions. By employing VQA to
construct knowledge prompts, our model enriches molecular representations, ultimately improving
the quality of data utilized in downstream tasks. Experimental results across 46 datasets demonstrate
PharmaVQA’s superiority over existing methods, highlighting its strong generalization capabilities
and effectiveness in diverse settings. PharmaVQA’s practical utility in drug discovery was vali-
dated through experiments on three ligand datasets (HPK1, FGFR1, and VIM-1). Notably, a signif-
icant proportion of molecules of PharmaVQA’s Top-20 predictions derived from the FDA-approved
molecule dataset, have been verified as viable ligands confirmed by literature reports, indicating its
potential for identifying promising drug candidates. Case study experiments reveal PharmaVQA’s
ability to identify meaningful characters in related questions corresponding to pharmacophores, thus
showcasing the model’s interpretability. Future work will focus on expanding PharmaVQA to in-
clude additional molecular interaction factors, as well as incorporating 3D structural data to further
enhance prediction accuracy (Li et al., 2024). Additionally, integrating more diverse datasets could
broaden its applicability to drug design, enabling more comprehensive analyses. Overall, Phar-
maVQA presents a promising advancement in drug discovery and design, combining innovative
information retrieval with practical, real-world applications.
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A PHARMACOPHORES-BASED QUESTION DESIGN

In this section, we formulate questions related to pharmacophores. Due to the ubiquitous presence
of pharmacophores in most molecules, constructing samples based on the question of whether phar-
macophores exist would result in a significant positive sample bias. To avoid this issue, we refor-
mulated the question to inquire about the number of pharmacophores present, thereby transforming
the binary classification problem into a regression problem. This change enabled the model to learn
from informative examples. We then used the RDkit tool to identify seven common pharmacophores
within the molecules and created specific question templates for each. To enhance semantic rich-
ness, we incorporated descriptive textual attributes related to the pharmacophores in the questions,
extending beyond simple enumeration. Additionally, to diversify the question texts, we formulated
two distinct questions for some pharmacophores, aiming to explore their unique characteristics and
potential applications from various angles. Table 5 presents a detailed overview of questions tailored
to different pharmacophore designs.

Table 5: Questions on seven different pharmacophores.

Pharmacophores Questions

Donor How many strongly electronegative atoms that is covalently bonded to hy-
drogen atoms does the molecule have?
How many hydrogen bond donors does the molecule have?

Acceptor How many electronegative atoms that has at least one available lone pair
does the molecule have?
How many hydrogen bond Acceptors does the molecule have?

NegIonizable How many atoms with negatively charges does this molecule have?
How many negative ionized groups does the molecule have?

PosIonizable How many positive ionized groups does the molecule have?
Aromatic How many Aromatic rings does the molecule have?
Hydrophobe How many continuous lipophilic contribution atoms that are not connected

to charged atoms does the molecule include?
LumpedHydrophobe How many continuous lipophilic contribution atoms that are not connected

to charged atoms or electronegative center inring does the molecule include?

B IMPLEMENTATION DETAILS

All experiments conducted in this study are executed utilizing the PyTorch deep learning framework,
leveraging a single GPU which is NVIDIA GeForce RTX 4090. The training process is designed
with 50 epochs, with an early stopping criterion of 20 epochs to prevent overfitting. The graph
encoder employed in this work is a pre-trained encoder from (Li et al., 2023a), maintaining the
same parameters as outlined in the original paper. For the text encoder, the pre-trained SciBERT is
implemented from (Liu et al., 2023), following its original parameter configurations.

To save memory usage, our strategy involves freezing the main part of the Encoderg(·) used for
molecular representation extraction and the Encodert(·) used for textual representation extraction.
This allows only the top Multi-Layer Perceptron (MLP) layers to be trained. This method preserves
the foundational information embedded in these encoders while fine-tuning selectively layers most
relevant to the task. Besides, the entire encoder Encoder′g(·) is trained to fully adapt to downstream
tasks.

The batch size is set to 8. The projection, answering and fusion modules are all Multi-Layer Per-
ceptron (MLP) consisting of 2 layers, employing the GELU activation function. In the bilinear
attention module, we set the parameter of a glimpse to 4, and the hidden layer dimension was 768.
The parameters α and β are consistently set to 1 across Li’s molecular property prediction datasets,
BindingDB classification and regression datasets, and three ligand datasets. For the MoleculeACE
benchmark datasets, α and β are adjusted to 0.5 and 0.1, respectively.
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C COMPARISON PHARMAVQA WITH OTHER METHODS ON MOLECULEACE
BENCHMARK

Table 6 and Table 7 display the results of our method against other methods, examined using two
metrics: RMSE and R2 score over thirty datasets in the MoleculeACE benchmark. These tables
highlight our approach’s superior performance in predicting molecules’ Ki or EC50 values.

Table 6: RMSE results of PharmaVQA compared with seven models on thirty MolecularACE
datasets.

RMSE GraphLoG MolCLR GROVER MoleculeSTM MolBERT KPGT SPMM PharmaVQA (ours)

CHEMBL204Ki 0.923(0.005) 0.898(0.003) 1.017(0.125) 0.857(0.007) 0.956(0.010) 0.678(0.013) 0.818(0.006) 0.667(0.006)
CHEMBL214Ki 0.754(0.015) 0.716(0.005) 0.953(0.091) 0.703(0.004) 0.753(0.014) 0.633(0.003) 0.765(0.005) 0.641(0.004)
CHEMBL218EC50 0.769(0.020) 0.733(0.004) 0.793(0.028) 0.755(0.029) 0.771(0.011) 0.654(0.002) 0.787(0.015) 0.639(0.001)
CHEMBL219Ki 0.859(0.011) 0.843(0.003) 0.941(0.054) 0.783(0.004) 0.872(0.011) 0.700(0.013) 0.783(0.003) 0.695(0.006)
CHEMBL228Ki 0.796(0.012) 0.804(0.022) 0.887(0.040) 0.765(0.013) 0.833(0.008) 0.687(0.006) 0.720(0.008) 0.687(0.001)
CHEMBL231Ki 0.820(0.006) 0.757(0.021) 0.789(0.031) 0.714(0.007) 0.785(0.019) 0.646(0.010) 0.716(0.014) 0.634(0.002)
CHEMBL233Ki 0.884(0.008) 0.800(0.002) 0.948(0.081) 0.804(0.016) 0.862(0.003) 0.672(0.001) 0.800(0.010) 0.671(0.002)
CHEMBL234Ki 0.764(0.003) 0.760(0.038) 0.924(0.016) 0.743(0.011) 0.752(0.005) 0.601(0.009) 0.692(0.007) 0.590(0.004)
CHEMBL235EC50 0.745(0.009) 0.698(0.011) 0.844(0.078) 0.730(0.008) 0.740(0.005) 0.616(0.003) 0.660(0.003) 0.622(0.003)
CHEMBL236Ki 0.904(0.008) 0.785(0.007) 0.936(0.042) 0.762(0.010) 0.844(0.013) 0.640(0.003) 0.798(0.007) 0.636(0.003)
CHEMBL237EC50 1.000(0.024) 0.956(0.002) 1.006(0.035) 0.871(0.017) 0.915(0.046) 0.704(0.021) 0.850(0.010) 0.724(0.002)
CHEMBL237Ki 0.840(0.027) 0.764(0.011) 0.958(0.116) 0.742(0.010) 0.797(0.010) 0.679(0.004) 0.789(0.008) 0.653(0.004)
CHEMBL238Ki 0.708(0.008) 0.681(0.007) 0.789(0.009) 0.662(0.011) 0.706(0.008) 0.565(0.004) 0.655(0.016) 0.556(0.004)
CHEMBL239EC50 0.777(0.004) 0.741(0.011) 0.821(0.008) 0.772(0.016) 0.777(0.007) 0.645(0.009) 0.717(0.004) 0.643(0.001)
CHEMBL244Ki 0.932(0.010) 0.845(0.036) 1.117(0.119) 0.782(0.005) 0.892(0.010) 0.667(0.004) 0.853(0.017) 0.666(0.009)
CHEMBL262Ki 0.848(0.010) 0.859(0.004) 0.846(0.007) 0.780(0.005) 0.781(0.020) 0.657(0.010) 0.736(0.007) 0.646(0.008)
CHEMBL264Ki 0.727(0.006) 0.672(0.009) 0.745(0.048) 0.663(0.009) 0.736(0.011) 0.551(0.004) 0.650(0.004) 0.556(0.000)
CHEMBL287Ki 0.835(0.003) 0.784(0.071) 0.843(0.013) 0.822(0.022) 0.816(0.006) 0.723(0.005) 0.802(0.015) 0.700(0.001)
CHEMBL1862Ki 0.802(0.004) 0.818(0.043) 0.833(0.026) 0.757(0.037) 0.776(0.022) 0.637(0.006) 0.750(0.014) 0.624(0.003)
CHEMBL1871Ki 0.707(0.013) 0.712(0.011) 0.770(0.005) 0.743(0.009) 0.727(0.010) 0.637(0.005) 0.721(0.004) 0.624(0.003)
CHEMBL2034Ki 0.857(0.017) 0.775(0.013) 0.724(0.006) 0.761(0.023) 0.800(0.023) 0.676(0.002) 0.775(0.010) 0.666(0.002)
CHEMBL2047EC50 0.663(0.005) 0.620(0.025) 0.870(0.061) 0.658(0.013) 0.643(0.009) 0.580(0.012) 0.641(0.024) 0.583(0.001)
CHEMBL2147Ki 0.943(0.054) 0.772(0.007) 0.820(0.015) 0.689(0.016) 0.952(0.062) 0.583(0.003) 0.840(0.036) 0.563(0.002)
CHEMBL2835Ki 0.480(0.007) 0.462(0.025) 0.499(0.035) 0.471(0.022) 0.466(0.022) 0.402(0.008) 0.426(0.011) 0.387(0.004)
CHEMBL2971Ki 0.821(0.007) 0.773(0.022) 0.754(0.026) 0.660(0.008) 0.777(0.024) 0.599(0.015) 0.704(0.019) 0.589(0.004)
CHEMBL3979EC50 0.854(0.013) 0.771(0.005) 0.898(0.018) 0.763(0.010) 0.799(0.010) 0.681(0.002) 0.756(0.013) 0.662(0.002)
CHEMBL4005Ki 0.705(0.007) 0.668(0.024) 0.717(0.013) 0.652(0.008) 0.708(0.010) 0.567(0.004) 0.670(0.015) 0.560(0.007)
CHEMBL4203Ki 0.970(0.006) 0.914(0.017) 0.971(0.042) 0.905(0.014) 0.799(0.012) 0.864(0.012) 0.916(0.019) 0.840(0.008)
CHEMBL4616EC50 0.747(0.006) 0.690(0.007) 0.746(0.064) 0.667(0.008) 0.748(0.012) 0.595(0.012) 0.716(0.030) 0.574(0.012)
CHEMBL4792Ki 0.818(0.014) 0.788(0.018) 0.807(0.015) 0.744(0.015) 0.800(0.014) 0.614(0.006) 0.744(0.007) 0.604(0.001)

D BINDING AFFINITY OF PHARMAVQA COMPARED WITH KPGT ON THREE
LIGAND DATASETS

The comparison of binding affinity performance between PharmaVQA and KPGT is assessed using
both the spearman correlation coefficient and the pearson correlation coefficient. Table 8 presents
binding affinity results for three ligand datasets.

E EVIDENCE OF POTENTIAL LIGANDS FOR FGFR1, HPK1, AND VIM-1 IN
THE TOP-20 PREDICTIONS

Our method predicted the Top-20 molecules from the FDA-approved DrugBank dataset and identi-
fied relevant literature reports respectively. The results are presented in the following Table 9, Table
10 and Table 11.

F PROTEIN-LIGAND INTERACTION VISUALIZATION

The following Figure 4, Figure 5 and Figure 6 showcase the interactions between the molecules and
the related target. The HPK1 and FGFR1 ligands are newly discovered within the predicted Top-20
ligands candidates on FDA approved dataset, as compared to the KPGT’s result, which represents
the current SOTA method in this field. For the VIM-1 ligands, we chose to visualize five of the
newly discovered molecules to highlight our approach’s distinct contributions.
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Table 7: R2 results of PharmaVQA compared with seven models on thirty MolecularACE datasets.

R2 GraphLoG MolCLR GROVER MoleculeSTM MolBERT KPGT SPMM PharmaVQA (ours)

CHEMBL204Ki 0.643(0.004) 0.662(0.003) 0.560(0.112) 0.692(0.005) 0.617(0.008) 0.810(0.008) 0.720(0.004) 0.813(0.003)
CHEMBL214Ki 0.584(0.016) 0.588(0.066) 0.331(0.122) 0.639(0.004) 0.586(0.015) 0.706(0.003) 0.572(0.006) 0.700(0.003)
CHEMBL218EC50 0.437(0.030) 0.528(0.066) 0.401(0.042) 0.456(0.042) 0.433(0.016) 0.595(0.003) 0.409(0.022) 0.611(0.001)
CHEMBL219Ki 0.410(0.015) 0.431(0.004) 0.290(0.082) 0.510(0.004) 0.392(0.016) 0.612(0.014) 0.510(0.004) 0.614(0.006)
CHEMBL228Ki 0.570(0.013) 0.561(0.024) 0.466(0.049) 0.603(0.013) 0.529(0.009) 0.678(0.006) 0.648(0.008) 0.680(0.001)
CHEMBL231Ki 0.590(0.006) 0.651(0.019) 0.620(0.030) 0.689(0.006) 0.624(0.018) 0.740(0.008) 0.688(0.012) 0.755(0.002)
CHEMBL233Ki 0.546(0.009) 0.628(0.002) 0.474(0.092) 0.624(0.015) 0.568(0.003) 0.735(0.001) 0.628(0.009) 0.738(0.001)
CHEMBL234Ki 0.578(0.004) 0.654(0.070) 0.383(0.022) 0.602(0.011) 0.591(0.005) 0.742(0.007) 0.654(0.007) 0.749(0.003)
CHEMBL235EC50 0.505(0.012) 0.566(0.013) 0.361(0.114) 0.525(0.010) 0.512(0.006) 0.657(0.003) 0.612(0.004) 0.655(0.003)
CHEMBL236Ki 0.542(0.008) 0.655(0.006) 0.507(0.045) 0.674(0.008) 0.600(0.012) 0.767(0.003) 0.643(0.006) 0.773(0.002)
CHEMBL237EC50 0.495(0.024) 0.539(0.002) 0.488(0.036) 0.617(0.015) 0.576(0.043) 0.739(0.015) 0.635(0.009) 0.735(0.002)
CHEMBL237Ki 0.611(0.025) 0.679(0.009) 0.488(0.128) 0.697(0.008) 0.650(0.009) 0.765(0.003) 0.658(0.007) 0.765(0.003)
CHEMBL238Ki 0.609(0.009) 0.639(0.008) 0.515(0.011) 0.658(0.011) 0.611(0.009) 0.751(0.003) 0.665(0.016) 0.760(0.004)
CHEMBL239EC50 0.517(0.005) 0.561(0.013) 0.461(0.011) 0.523(0.019) 0.518(0.008) 0.671(0.010) 0.589(0.004) 0.670(0.001)
CHEMBL244Ki 0.684(0.007) 0.739(0.022) 0.542(0.095) 0.777(0.003) 0.710(0.007) 0.836(0.002) 0.735(0.011) 0.838(0.005)
CHEMBL262Ki 0.377(0.014) 0.361(0.006) 0.380(0.010) 0.473(0.006) 0.471(0.026) 0.630(0.012) 0.530(0.009) 0.638(0.008)
CHEMBL264Ki 0.538(0.008) 0.605(0.010) 0.512(0.065) 0.616(0.01) 0.526(0.015) 0.737(0.004) 0.630(0.004) 0.729(0.001)
CHEMBL287Ki 0.448(0.004) 0.456(0.009) 0.437(0.017) 0.465(0.028) 0.473(0.007) 0.585(0.005) 0.490(0.018) 0.612(0.001)
CHEMBL1862Ki 0.684(0.003) 0.670(0.035) 0.658(0.021) 0.718(0.027) 0.703(0.017) 0.802(0.004) 0.723(0.010) 0.808(0.002)
CHEMBL1871Ki 0.516(0.018) 0.508(0.015) 0.425(0.007) 0.464(0.013) 0.488(0.014) 0.61(0.007) 0.496(0.005) 0.623(0.003)
CHEMBL2034Ki 0.325(0.026) 0.448(0.018) 0.456(0.009) 0.467(0.032) 0.412(0.033) 0.588(0.002) 0.448(0.014) 0.592(0.003)
CHEMBL2047EC50 0.543(0.007) 0.601(0.032) 0.782(0.031) 0.550(0.018) 0.571(0.012) 0.640(0.014) 0.572(0.032) 0.647(0.001)
CHEMBL2147Ki 0.743(0.030) 0.829(0.003) 0.807(0.007) 0.863(0.006) 0.739(0.033) 0.902(0.001) 0.797(0.017) 0.909(0.001)
CHEMBL2835Ki 0.744(0.007) 0.763(0.026) 0.722(0.039) 0.753(0.022) 0.759(0.022) 0.822(0.007) 0.798(0.011) 0.833(0.004)
CHEMBL2971Ki 0.661(0.006) 0.699(0.017) 0.714(0.020) 0.781(0.006) 0.696(0.019) 0.824(0.009) 0.751(0.013) 0.826(0.003)
CHEMBL3979EC50 0.413(0.018) 0.523(0.006) 0.352(0.026) 0.532(0.013) 0.487(0.013) 0.632(0.002) 0.540(0.016) 0.648(0.002)
CHEMBL4005Ki 0.504(0.009) 0.554(0.031) 0.488(0.018) 0.575(0.010) 0.500(0.014) 0.677(0.004) 0.552(0.020) 0.687(0.008)
CHEMBL4203Ki 0.182(0.009) 0.273(0.026) 0.178(0.072) 0.288(0.022) 0.444(0.017) 0.338(0.017) 0.269(0.03) 0.386(0.012)
CHEMBL4616EC50 0.357(0.010) 0.452(0.011) 0.355(0.112) 0.488(0.012) 0.357(0.020) 0.585(0.016) 0.409(0.050) 0.621(0.015)
CHEMBL4792Ki 0.410(0.020) 0.452(0.025) 0.426(0.022) 0.512(0.019) 0.435(0.020) 0.664(0.007) 0.512(0.009) 0.678(0.000)

Table 8: Binding affinity results of PharmaVQA compared with KPGT on three ligand datasets. The
Spearman correlation coefficient (Spearman) and Pearson correlation coefficient (Pearson) are used
as metrics.

Methods HPK1 FGFR1 VIM1

Spearman Pearson Spearman Pearson Spearman Pearson

KPGT 0.866(0.009) 0.908(0.004) 0.901(0.002) 0.924(0.001) 0.886(0.047) 0.931(0.015)
PharmaVQA (ours) 0.898(0.013) 0.932(0.003) 0.936(0.022) 0.942(0.017) 0.903(0.035) 0.941(0.015)

Table 9: Top-20 predicted potential HPK1 ligands with source by PharmaVQA.

No. Drugbank Name Source

1 DB06616 Bosutinib Kd = 15 nM (Davis et al., 2011)
2 DB12267 Brigatinib Not found
3 DB01268 Sunitinib Ki = 16 nM (Davis et al., 2011)
4 DB12332 Rucaparib Not found
5 DB09073 Palbociclib Not found
6 DB12500 Fedratinib Ki = 9 nM (U.S.Patent 2018183964A1)
7 DB09063 Ceritinib Ki = 2e−5 uM (U.S.Patent WO2018183956A1)
8 DB11828 Neratinib Kd = 16 nM (Davis et al., 2011)
9 DB09079 Nintedanib IC50 = 45 nM (U.S.Patent WO2019238067A1)
10 DB15685 Selpercatinib Not found
11 DB08881 Vemurafenib Ki = 1.13e−4 uM (U.S.Patent WO2018183956A1)
12 DB09330 Osimertinib Not found
13 DB12010 Fostamatinib Kd = 72 nM (Karaman et al., 2008)
14 DB06595 Midostaurin Kd = 2100 nM (Davis et al., 2011)
15 DB12141 Gilteritinib Not found
16 DB11963 Dacomitinib Ki = 4.76e−4 uM (U.S.PatentWO2018183956A1)
17 DB12887 Tazemetostat Not found
18 DB08912 Dabrafenib Not found
19 DB00762 Irinotecan Not found
20 DB09027 Ledipasvir Not found
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Table 10: Top-20 predicted potential FGFR1 ligands with source by PharmaVQA.

No. Drugbank Name Source

1 DB12147 Erdafitinib IC50 = 1.2 nM (Perera et al., 2017)
2 DB15149 Futibatinib (Sootome et al., 2020)
3 DB08881 Vemurafenib (Zhang et al., 2016)
4 DB08901 Ponatinib IC50 = 0.7 nM (Gao et al., 2018)
5 DB08875 Cabozantinib IC50 = 11.3 nM (Li et al., 2021)
6 DB09079 Nintedanib IC50 = 45 nM (U.S. PatentWO2019238067A1)
7 DB11886 Infigratinib IC50 = 1.1 nM (Kang, 2021)
8 DB15102 Pemigatinib IC50 = 0.4 nM (Wu et al., 2021)
9 DB12267 Brigatinib IC50 = 0.109 µM by Cell titer Glo assay (Yang et al., 2023)
10 DB09078 Lenvatinib IC50 = 46 nM (Matsui et al., 2008)
11 DB06589 Pazopanib IC50 = 0.15 nM (Karaman et al., 2008)
12 DB11853 Relugolix Not found
13 DB12010 Fostamatinib Kd = 72 nM (Karaman et al., 2008)
14 DB11986 Entrectinib IC50 = 1uM (Menichincheri et al., 2016)
15 DB08865 Crizotinib IC50 = 1000 nM (Liu et al., 2016)
16 DB11718 Encorafenib Not found
17 DB11800 Tivozanib (Vijayan et al., 2015)
18 DB14840 Ripretinib Not found
19 DB15444 Elexacaftor Not found
20 DB09042 Tedizolid phosphate Not found

Table 11: Top-20 predicted potential VIM-1 ligands with source by PharmaVQA.

No. Drugbank Name Zinc ion binding Source

1 DB11326 Boric acid Yes (Yusuf et al., 2022)
2 DB11127 Selenious acid No Not found
3 DB08906 Futicasone furoate Yes (Issar et al., 2006)
4 DB00932 Tipranavir Yes (Hudon et al., 2008; Zhou et al., 2023)
5 DB08881 Vemurafenib Yes (Satow et al., 2022)
6 DB00588 Fluticasone propionate Yes (Issar et al., 2006)
7 DB14669 Betamethasone phosphate Yes (Czock et al., 2005)
8 DB13055 Oteseconazole Yes (Warrilow et al., 2017)
9 DB13867 Fluticasone Yes (Issar et al., 2006)
10 DB09041 Tavaborole Yes (Bonardi et al., 2020)
11 DB14631 Prednisolone phosphate Yes (Czock et al., 2005)
12 DB09378 Fluprednisolone No Not found
13 DB00278 Argatroban No Not found
14 DB14657 Pharamethasone acetate No Not found
15 DB11921 Deflazacort Yes (Möllmann et al., 1995)
16 DB00596 Ulobetasol Yes (Mohandas et al., 2009)
17 DB11121 Chloroxylenol Yes (Pottel et al., 2020)
18 DB14761 Remdesivir Yes (Agostini et al., 2018; Gordon et al., 2020)
19 DB00800 Fenoldopam Yes (Martin & Broadley, 1995)
20 DB14542 Hydrocortisone phosphate Yes (GROSSMAN et al., 2006)

Figure 4: A new set of six potential HPK1 ligands were identified by PharmaVQA (target PDB ID:
7SIU).
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Figure 5: A new set of four potential FGFR1 ligands were identified by PharmaVQA (target PDB
ID: 5A4C).

Figure 6: A new set of five potential VIM-1 ligands were identified by PharmaVQA (target PDB ID:
5N5H).
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G ABLATION STUDY

We conducted two ablation studies to gain deeper insights into the effectiveness of leveraging phar-
macophore information into our VQA model as retrieval knowledge. Firstly, we aimed to validate
whether leveraging pharmacophores as part of the query in VQA is beneficial. This experiment
compared the performance of a baseline VQA model, which does not utilize pharmacophore-related
questions, against a modified model specifically designed to incorporate pharmacophore questions.
Specifically, we utilize the sentence: ”to be or not to be, it’s a question.” as the noise question.

Secondly, we sought to investigate the difference in performance between querying with multiple
pharmacophores simultaneously versus querying with a single pharmacophore individually. This
experiment involved running our pharmacophore-integrated VQA model on two scenarios: one
containing queries with a single pharmacophore and the other with queries encompassing multi-
ple pharmacophores. Specifically, We use the VQA module separately based on the seven different
pharmacophore types, testing these performances on Li’s molecular property prediction datasets,
which is shown in Table 12 and Table 13. The metric used for Li’s classification dataset is the Area
Under the Curve (AUC), while for Li’s regression dataset, the Root Mean Squared Error (RMSE) is
employed.

Table 12: An ablation study was conducted on Li’s eight classification datasets by PharmaVQA,
evaluating noise queries, single queries, and all seven queries using AUC as the metric.

BACE BBBP ClinTox SIDER Estrogen MetStab Tox21 ToxCast

Noise question 0.846(0.017) 0.901(0.023) 0.906(0.029) 0.649(0.017) 0.905(0.046) 0.872(0.046) 0.842(0.020) 0.729(0.009)
Single question 0.863(0.015) 0.912(0.014) 0.908(0.033) 0.645(0.022) 0.910(0.046) 0.886(0.060) 0.837(0.023) 0.731(0.006)
All question 0.876(0.017) 0.922(0.013) 0.946(0.011) 0.655(0.023) 0.913(0.045) 0.892(0.047) 0.850(0.029) 0.735(0.002)

Table 13: An ablation study was conducted on Li’s three regression datasets by PharmaVQA, eval-
uating noise queries, single queries, and all seven queries using RMSE as the metric.

Lipo Esol Freesolv

Noise question 0.609(0.026) 0.999(0.039) 2.202(1.108)
Single question 0.598(0.011) 0.971(0.068) 2.030(1.071)
All question 0.590(0.016) 0.841(0.026) 1.921(0.859)

By comparing the performance metrics across these two scenarios, it reveals that utilizing multiple
pharmacophore questions concurrently offers superior results than isolating a single pharmacophore
question. These findings from the ablation study illuminate the best approach to integrating phar-
macophore information into VQA models. Detailed AUC and RMSE results for seven distinct
pharmacophore questions are presented in Tables 14 and 15.

Table 14: The AUC Results for each pharmacophore question across Li’s eight classification datasets
of PharmaVQA.

Donor Accepter NegIonizable PosIonizable Aromatic Hydrophobe LumpedHydrophobe

BACE 0.856(0.027) 0.863(0.012) 0.873(0.011) 0.865(0.004) 0.852(0.019) 0.862(0.018) 0.869(0.012)
BBBP 0.911(0.013) 0.917(0.018) 0.911(0.008) 0.906(0.014) 0.916(0.017) 0.914(0.017) 0.913(0.016)
ClinTox 0.916(0.035) 0.912(0.026) 0.904(0.047) 0.901(0.035) 0.908(0.012) 0.885(0.059) 0.928(0.019)
SIDER 0.645(0.030) 0.638(0.024) 0.649(0.019) 0.647(0.019) 0.651(0.016) 0.644(0.026) 0.643(0.024)
Estrogen 0.911(0.039) 0.917(0.039) 0.913(0.043) 0.907(0.056) 0.911(0.045) 0.908(0.046) 0.902(0.052)
MetStab 0.880(0.061) 0.879(0.064) 0.872(0.016) 0.878(0.022) 0.879(0.064) 0.897(0.049) 0.872(0.070)
Tox21 0.830(0.020) 0.836(0.029) 0.835(0.015) 0.839(0.016) 0.836(0.021) 0.834(0.025) 0.836(0.025)
ToxCast 0.730(0.005) 0.734(0.009) 0.726(0.009) 0.731(0.009) 0.729(0.004) 0.732(0.007) 0.734(0.002)

Table 15: The RMSE Results for each pharmacophore question across Li’s three regression datasets
of PharmaVQA.

Donor Accepter NegIonizable PosIonizable Aromatic Hydrophobe LumpedHydrophobe

Lipo 0.614(0.008) 0.594(0.025) 0.602(0.008) 0.599(0.006) 0.596(0.010) 0.595(0.014) 0.588(0.009)
Esol 0.909(0.087) 1.027(0.100) 0.896(0.021) 0.981(0.115) 0.993(0.088) 1.018(0.047) 0.973(0.022)
Freesolv 2.040(1.053) 1.985(1.029) 2.071(1.241) 2.036(1.027) 2.000(1.085) 1.979(1.027) 2.100(1.032)
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