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Abstract

We study an unsupervised domain adaptation problem where the source domain consists of
subpopulations defined by the binary label Y and a binary background (or environment) A.
We focus on a challenging setting in which one such subpopulation in the source domain
is unobservable. Naively ignoring this unobserved group can result in biased estimates and
degraded predictive performance. Despite this structured missingness, we show that the
prediction in the target domain can still be recovered. Specifically, we rigorously derive
both background-specific and overall prediction models for the target domain. For practical
implementation, we propose the distribution matching method to estimate the subpopu-
lation proportions. We provide theoretical guarantees for the asymptotic behavior of our
estimator, and establish an upper bound on the prediction error. Experiments on both
synthetic and real-world datasets show that our method outperforms the naive benchmark
that does not account for this unobservable source subpopulation.

Key Words: Unsupervised domain adaptation, Structured missingness, Distribution matching

1 Introduction

Unsupervised domain adaptation (UDA) (Kouw & Loog, 2019) addresses the challenge of transferring pre-
dictive models from a labeled source domain to an unlabeled target domain under distributional shifts (Koh
et al., 2021; Sagawa et al., 2022). In this area, research methods aim to reduce domain discrepancy by align-
ing feature distributions, using statistical measures such as maximum mean discrepancy (MMD) (Tzeng
et al., 2014) and higher-order moment matching (HoMM) (Chen et al., 2020). Deep adaptation frame-
works, such as deep adaptation network (DAN) (Long et al., 2015) and domain-adversarial neural network
(DANN) (Ganin et al., 2016), are also popularly used due to their strong empirical performance. There are
also other approaches that integrate reconstruction objectives to disentangle domain-invariant and domain-
specific components (Ghifary et al., 2016). These approaches often assume access to a representative and
diverse set of source examples. However, real-world datasets may violate this assumption in systematic and
non-random ways.

In this work, we focus on a more challenging and practically relevant UDA setting where a structured
subpopulation is entirely missing from the source domain. Specifically, we consider binary label Y and a
binary background or environment variable A, and study the case where one subpopulation, defined by a
particular combination of Y and A, is unobserved in the source. This structured missingness is not merely
a sampling artifact, but often reflects real-world constraints in data collection. For instance, in the widely
studied Waterbirds dataset (Sagawa et al., 2019), waterbirds (Y = 1) photographed in water environments
(A = 1) can be rare or entirely absent due to the difficulty of capturing such images in the wild. This issue
arises in many other disciplines as well. In healthcare, certain patient subgroups, defined jointly by disease
status and demographics, may be underrepresented or absent in historical datasets due to restrictive inclusion
criteria or changes in clinical practice over time. When such models are applied to broader populations,
unobserved subgroups can suffer from systematic mispredictions. This structured missingness (Mitra et al.,
2023) fundamentally changes some statistical properties when comparing the source and target domains, and,
if unaddressed, can lead to severely biased estimation and unreliable prediction in the target domain. These
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structured gaps pose new challenges that are not adequately addressed by conventional UDA techniques,
which motivates our work.

To tackle this challenge, we develop a theoretical framework that accounts for the structured absence of a
subpopulation, such as (Y = 1, A = 1), in the source domain. Our key idea is to model how prediction in
the target domain can still be recovered by relating it to the observable parts of the source and target data.
Under a mild assumption that the distribution of features X given (Y, A) stays the same across domains,
we derive closed-form expressions for making accurate predictions in the target domain. These expressions
depend on the proportions of different subgroups in the target, which are unknown. To estimate them, we
propose a practical method based on distribution matching that avoids modeling complex feature distribu-
tions directly. Specifically, we frame the problem as estimating finite-dimensional mixture proportions under
structured conditional invariance, and propose a KL-divergence-based objective that can be optimized using
only observable quantities. We also provide theoretical guarantees, showing that our approach yields statis-
tically consistent estimates and deriving upper bounds on the prediction error of the resulting target-domain
classifiers. Overall, our framework provides the first rigorous characterization of model adaptation under
structured subpopulation absence, and enables robust domain adaptation in such a challenging scenario.

We validate our approach through experiments on both synthetic and real-world datasets. We simulate
domain adaptation scenarios where one subpopulation is systematically excluded from the source data and
evaluate our method against baseline approaches that do not account for this missing group. Across a
range of settings, our method consistently achieves higher accuracy and F1 scores, particularly on the
subpopulation absent from the source. These results highlight the practical value of explicitly modeling
structured missingness and demonstrate that our approach leads to more reliable predictions in the target
domain. To summarize, this paper makes the following novel contributions:

• We consider a new unsupervised domain adaptation setting where an entire label-background sub-
population is missing from the source domain, a scenario motivated by real-world data collection
constraints.

• We develop a theoretical framework that enables accurate prediction in the target domain by estimat-
ing subpopulation proportions through distribution matching, and we provide rigorous guarantees
and error bounds for our method.

• We demonstrate the effectiveness of our approach on both synthetic and real-world datasets. Our
method outperforms standard baselines that ignore structured missingness, particularly in recovering
performance on the unobserved subpopulation.

2 Related Work

Out-of-distribution (OOD) generalization OOD generalization refers to the ability of a prediction
model to perform well on test data drawn from a distribution that differs from the training data. In our
context, the subpopulation (Y = 1, A = 1) in the target can be regarded as the OOD data while the other
three subpopulations are in-distribution data. For a comprehensive overview of OOD generalization, we refer
the readers to the excellent survey (Liu et al., 2021), which reviewed real-world datasets, evaluation protocols,
and key challenges in this area. In the OOD generalization literature, different methods were proposed
with different emphases: (Arjovsky et al., 2019) emphasized the need to minimize invariant risk across
different environments to ensure consistent model performance, whereas (Sagawa et al., 2019) underscored the
importance of distributionally robust optimization (DRO) and various regularization techniques in reducing
performance disparities across subgroups. In addition, (Bahng et al., 2020) introduced adversarial training as
a method for learning de-biased representations, which is critical for promoting fairness in machine learning
models, and (Sohoni et al., 2020) examined the issue of robustness in classification tasks involving coarse
classes that contain finer subclasses, enhancing model performance across all subclasses.

OOD detection OOD detection is the task of identifying inputs at test time that do not come from the
same distribution as the training data. Its goal is to prevent a model from making confident but incorrect
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predictions on unfamiliar or anomalous inputs by flagging them as OOD. There are a variety of techniques
developed for OOD detection in the literature. For example, (Hendrycks & Gimpel, 2017) introduced a
simple yet effective method for detecting both misclassified and OOD inputs in neural networks. Liang
et al. (2018) (ODIN) proposed an improved method for detecting OOD inputs by applying temperature
scaling to the softmax outputs and adding small input perturbations during inference. ODIN significantly
outperformed previous baseline methods, including the maximum softmax probability approach, and set a
new standard for OOD detection in classification tasks. Other techniques include but not limited to, outlier
exposure (Hendrycks et al., 2018; Papadopoulos et al., 2021), ConfGAN (Sricharan & Srivastava, 2018) and
OodGAN (Marek et al., 2021). In addition, Fort et al. (2021) provided an extensive empirical study of OOD
detection methods across a wide range of datasets, architectures, and training regimes.

Spurious correlation Spurious correlation is a major obstacle to OOD generalization, where models
often rely on non-causal features that can degrade performance, particularly when these correlations do
not generalize across domains. For example, a model trained to classify cows might rely on green pastures
(background) instead of the cow itself. On a desert background, it fails. This is also the case in the
Waterbirds dataset where the spurious correlation exists between label Y and background A. Different
learning strategies were proposed to discover and mitigate the impact of spurious correlation on model
performance, as well as to improve model robustness. For example, (Wu et al., 2023) introduced an attention-
based approach to automatically identify spurious concepts and apply adversarial training to reduce reliance
on them. Another approach proposed by (Kumar et al., 2023) used causal regularization to detect and
discourage spurious dependencies, allowing for scalable robustness across shifts. In addition, (Sagawa et al.,
2020) investigated why overparameterization exacerbates spurious correlations, and (Kirichenko et al., 2022)
found that retraining only the final layer on a small, balanced dataset can restore robustness against spurious
correlations. Also, (Wang & Wang, 2024) developed a theoretical model to analyze the influence of spurious
correlation strength, sample size, and feature noise on learning. Spurious correlations were also investigated
in feature learning (Izmailov et al., 2022; Qiu et al., 2024), reinforcement learning (Ding et al., 2023), OOD
detection (Ming et al., 2022), and text classification (Wang & Culotta, 2020). One can also resort to a
comprehensive survey paper (Ye et al., 2024) on this topic.

3 Problem Setup and Notation

In our UDA setting, Y ∈ {0, 1} denotes the binary label, which is observed in the source domain but not
in the target. Let A ∈ {0, 1} be a binary background or environment variable and X ∈ Rq a vector of all
other attributes. Let R ∈ {0, 1} be a domain indicator, with R = 1 corresponding to the source and R = 0
to the target. In our notation, we consistently use the order of (R, Y, A) for indicator function I{·}, sample
size n{·}, and population probability p{·}.

We define π = pr(R = 1). For y = 1, 0, a = 1, 0, we define αya = pr(Y = y, A = a | R = 1), and
βya = pr(Y = y, A = a | R = 0). For clarity, the total source sample size is n1 = n101 + n110 + n100, and the
target sample size is n0 = n0·1 + n0·0, so that the total sample size is n = n1 + n0. Table 1 summarizes the
observed data structure and key notation.

Table 1: Data structure and key notation used throughout the paper.
R Y A X Sample Size Proportion Prediction Models

Source
1
1
1

0
1
0

1
0
0

✓
✓
✓

n101
n110
n100

p101 = α01π
p110 = α10π
p100 = α00π

ξ1(x) = pr(Y = 1 | X = x, A = 1, R = 1)
ξ0(x) = pr(Y = 1 | X = x, A = 0, R = 1)

ξ(x) = pr(Y = 1 | X = x, R = 1)

Target

0 ? 1 ✓
n0·1 p0·1 = (β11 + β01)(1 − π) η1(x) = pr(Y = 1 | X = x, A = 1, R = 0)

η0(x) = pr(Y = 1 | X = x, A = 0, R = 0)
η(x) = pr(Y = 1 | X = x, R = 0)

0 ? 1 ✓

0 ? 0 ✓
n0·0 p0·0 = (β10 + β00)(1 − π)0 ? 0 ✓
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In our context, we have α10 + α01 + α00 = 1, α11 = 0, and 0 < α10, α01, α00 < 1. The parameters can
be consistently estimated by

α̂10 = n110/n1, α̂01 = n101/n1, α̂00 = n100/n1, π̂ = n1/n. (1)

More formally, α11 = 0 is the following structured missingness condition:

pr(Y = 1, A = 1 | R = 1) = 0. (2)

Note that this assumption is made without loss of generality, as alternative combinations, such as (Y =
0, A = 1), (Y = 1, A = 0), or (Y = 0, A = 0), can be similarly assumed to have zero probability. To
characterize the distributional connection between the two domains, we impose a structured conditional
invariance assumption:

p(X | Y, A, R = 1) = p(X | Y, A, R = 0) = p(X | Y, A) ≡ pya(X), (3)

that is, the conditional distribution of features X given (Y, A) remains the same across domains. This can
be regarded as a conditional version, or, more nuanced version, of label shift where the marginal distribution
of labels (now, the combination of both label and background) varies across domains (e.g., Du Plessis &
Sugiyama, 2014; Garg et al., 2020; Iyer et al., 2014; Lipton et al., 2018; Nguyen et al., 2016; Tasche, 2017;
Tian et al., 2023; Zhang et al., 2013). It indicates, conditional on background A, the label shift assumption
holds. It is equivalent to p(R|X, Y, A) = p(R|Y, A), the independence between R and X, conditional on
(Y, A). In practice, this assumption may be suitable in many applications. Below we give two examples to
illustrate the rationality of this assumption. For instance, we aim to predict user clicks on advertisements
for a new batch of users (target domain, R = 0) using historical data (source domain, R = 1). Conditional
on the advertisement type A and whether the user clicks Y , the distribution of browsing behavior features X
is assumed to remain stable across time periods. This is because user clicks are fundamentally determined
by ad content and user interests, not by the time period in which data are collected. As another example,
suppose we have datasets from two hospitals (R = 1 indicates the source hospital and R = 0 indicates the
target hospital). Here, X represents imaging features, Y is the disease type, and A denotes patient attributes
such as gender or age group. Then, conditional on the disease type Y and demographic attributes A, the
distribution of imaging features X is expected to remain the same across hospitals. This is because imaging
characteristics for a given disease and demographic group are not systematically altered by the hospital. The
main difference between hospitals lies in sampling proportions rather than in conditional distributions.

This framework captures real-world scenarios in which a certain label-background subpopulation is absent
from the source domain. For example, in the Waterbirds dataset, waterbirds on water backgrounds (label
Y = 1, background A = 1) are rarely observed, or even completely absent, in the training set, making the
adaptation to target domains particularly challenging. For illustration purposes, Table 2 below shows the
three observed subpopulations in the source as well as the four subpopulations in the target in two real-world
datasets.

Table 2: Illustrations in Waterbirds and CelebA datasets. Note that the (Y = 1, A = 1) combination does
not exist in the source domain but does in the target domain.

Dataset Source Data Target Data

(Y, A) (0, 1) (1, 0) (0, 0) (1, 1) (0, 1) (1, 0) (0, 0)

Waterbirds

Y=0:Landbird
A=1:Water background

Y=1:Waterbird
A=0:Land background

Y=0:Landbird
A=0:Land background

Y=1:Waterbird
A=1:Water background

Y=0:Landbird
A=1:Water background

Y=1:Waterbird
A=0:Land background

Y=0:Landbird
A=0:Land background

CelebA

Y=0:Blond hair
A=1:Male

Y=1:Dark hair
A=0:Female

Y=0: Blond hair
A=0:Female

Y=1:Dark hair
A=1:Male

Y=0:Blond hair
A=1:Male

Y=1: Dark hair
A= 0:Female

Y=0:Blond hair
A=0:Female
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4 Proposed Methodology

Our goal in this work is to correctly identify and successfully implement, under our UDA setting, the two
background-specific prediction models η1(x) and η0(x) and the overall prediction model η(x), in the target
domain. All of the three models were precisely defined in Table 1.

4.1 The naive benchmark

As the benchmark, one may naively apply the three source domain prediction models ξ1(x), ξ0(x), and ξ(x)
to the target. First, one can use the observed data to implement the overall source domain prediction model
ξ(x) and one background-specific prediction model ξ0(x) as

ξ(x) = pr(Y = 1 | x, R = 1), and ξ0(x) = pr(Y = 1 | x, R = 1, A = 0). (4)

Afterwards, even though the subpopulation (Y = 1, A = 1) is entirely absent in the source, still one can
compute the other background-specific prediction model

ξ1(x) = ξ(x) − ξ0(x){1 − τ1(x)}
τ1(x) , where (5)

τ1(x) = pr(A = 1 | X = x, R = 1), (6)

can also be implemented using the observed data.

4.2 Model adaptation from source to target

The most challenging aspect of this work is to adapt the model for the A = 1 background since the component
(Y = 1, A = 1) is entirely absent in the source. Nevertheless, we can still correctly derive the three prediction
models for the target domain, as shown below.
Proposition 1. Define the model τ0(x) = pr(A = 1 | X = x, R = 0) and the model

κ(x) = pr(R = 1 | x, A = 1), (7)

both of which can be implemented using the observed data in our UDA setting. Then the three prediction
models in the target domain are given by:

η1(x) = 1 − β01

α01
· 1 − π

π
· κ(x)

1 − κ(x) , η0(x) =
β10
α10

ξ0(x)
β10
α10

ξ0(x) + β00
α00

{1 − ξ0(x)}
, and

η(x) = η1(x)τ0(x) + η0(x){1 − τ0(x)}.

(8)

The proof of this result is provided in Appendix A.1. Proposition 1 illustrated that, in general, the naive
method presented in Section 4.1 fails. There are no explicit relations between η1(x) and ξ1(x) or be-
tween η(x) and ξ(x). For the relation between η0(x) and ξ0(x), they coincide only in the special case that
β10/α10 = β00/α00, which corresponds to a proportionality condition between the class-conditional densities
across domains. Outside of this narrow scenario, the naive approach systematically misestimates the target
posterior, leading to biased predictions.

This result also implies that model adaptation fundamentally relies on estimating the proportions of key
subgroups in the target population. In particular, for individuals with A = 1, one only needs to estimate
β01, while for those with A = 0, it suffices to estimate the ratio β10/β00. Denote β = (β10, β00)T. It can
be seen that, accurate estimation of the parameter β in the target domain enables valid model adaptation
across domains. Before developing methods for estimating β in Section 4.4, we first present some model
identification considerations.
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4.3 Model identification considerations

The identifiability structure of our problem closely resembles that of the open set label shift (OSLS) framework
(Garg et al., 2022). Note that our target distribution consists of a mixture over four joint distributions:
pr(Y = 1, A = 1), pr(Y = 1, A = 0), pr(Y = 0, A = 0), and pr(Y = 0, A = 1). By treating the joint label
(Y, A) as the response, this setting can be viewed as a special case of the OSLS framework. However, our
setup is considerably simpler due to the availability of the auxiliary variable A in the target domain. As a
result, we can restrict attention to the subset A = 1, thereby discarding the A = 0 portion of the distribution.
This reduction simplifies the problem to recovering pr(Y = 1, A = 1) from a mixture of pr(Y = 1, A = 1)
and pr(Y = 0, A = 1), given direct access to pr(Y = 0, A = 1). This is a canonical positive-unlabeled
(PU) learning problem. Identifiability in this setting is governed by the standard anchor set condition (see
Definition 8 of Ramaswamy et al. (2016)): there exists a measurable subset xanchor ∈ X such that

p(X ∈ xanchor|Y = 0, A = 1) > 0 and p(X ∈ xanchor|Y = 1, A = 1)
p(X ∈ xanchor|Y = 0, A = 1) = 0.

This condition ensures that the positive class (Y = 1, A = 1) has no support on a subset of the feature
space that is occupied by the negative class (Y = 0, A = 1), which is necessary for identifiability. Under the
assumption (3), the primary difficulty arises from the fact that the component p11(x), corresponding to the
subgroup (Y = 1, A = 1), is not directly observable in either the source or target domain.

To elucidate this observation, we denote p0(x) = {p10(x), p00(x)}T, and then the observed data log-likelihood
of one generic observation in our UDA setting is proportional to:

I110logp10(x) + I101logp01(x) + I100logp00(x)
+I0·1log

{
β11p11(x) + (1 − β11 − β⊤1)p01(x)

}
+ I0·0log

{
β⊤p0(x)

}
.

In this formulation, the parameter with finite dimension is β. The model involves four nonparametric
nuisance components: p11(x), p10(x), p01(x), and p00(x).
Lemma 1. Assume β11 = 0 and p10(x) ̸= p00(x), then all components except p11(x) are identifiable. Assume
0 < β11 < 1 and is known, and p10(x) ̸= p00(x), then all components in the model are identifiable.

The proof of Lemma 1 is provided in Appendix A.1. The identification conditions in Lemma 1 are intuitive
and reasonable. If β11 = 0, it degenerates to the situation that the source and target domains have the
same support on both label Y and background A, then the component p11(x) is no longer relevant. Also, if
p10(x) = p00(x), the subpopulations of (Y = 1, A = 0) and (Y = 0, A = 0) become indistinguishable, and
hence the individual probabilities β10 and β00 are not separately identifiable. Overall, these conditions are
natural to ensure the problem is well-posed.

4.4 Estimating parameters of interest

To estimate the parameter β, we consider the distribution of attributes x in the subpopulation defined by
(R = 0, A = 0). By the law of total probability, we have

p(x | R = 0, A = 0)pr(R = 0, A = 0) = p10(x) β10(1 − π) + p00(x) β00(1 − π), (9)

subject to the constraint

pr(R = 0, A = 0) = β10(1 − π) + β00(1 − π). (10)

Note that the distribution p(x | R = 0, A = 0) is identifiable from the target population. The distributions
p10(x) and p00(x) can be consistently estimated from the source population subgroups (R = 1, Y = 1, A =
0) and (R = 1, Y = 0, A = 0), respectively. Thus, the parameters β = (β00, β10)T can be estimated
by minimizing a suitable discrepancy measure between the two sides of (9), such as an L2 norm or a
divergence-based criterion (e.g., Kullback–Leibler divergence), subject to the constraint in (10). Therefore,
we reformulate the estimation of β as a constrained distribution matching problem:

β̂ = argminβD {p̂(x | R = 0, A = 0)∥{p̂10(x)β10 + p̂00(x)β00}/p̂r(A = 0|R = 0)} , (11)
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subject to p̂r(A = 0|R = 0) = β10 + β00, where D denotes a discrepancy measure between probability
distributions over the covariate space X . Among various choices for D, we adopt the Kullback–Leibler (KL)
divergence due to its favorable analytical and computational properties. To facilitate optimization, we relax
the constraint in (11) and reformulate the objective under KL divergence, as summarized in the following
lemma.
Lemma 2. Let D be the Kullback–Leibler divergence. Then the solution β̂10 to the minimization problem
(11) is given by

arg max
β10

Ê
(

log[ξ̂0(X)̂b−1
1 β10 + {1 − ξ̂0(X)}(1 − b̂1)−1(ϱ̂ − β10)]

∣∣∣R = 0, A = 0
)

, (12)

where, for simplicity, b1 = pr(Y = 1|R = 1, A = 0), ϱ = pr(A = 0|R = 0) and Ê represents the empirical
average.

The proof of Lemma 2 is provided in Appendix A.1. A key advantage of minimizing the KL divergence is
that it circumvents the need to explicitly estimate the generative models p10(x) and p00(x), which are often
difficult to model accurately in high dimensions. Instead, it suffices to estimate one background-specific
prediction model ξ0(x) using standard classification techniques on the source domain restricted to A = 0.
Finally, based on all of the above discussions, we summarize the implementation details of our proposed
method in Algorithm 1.

Algorithm 1 Implementation details of our proposed method.
Input: Observed source domain data {(Xi, Yi, Ai, Ri = 1)}n1

i=1 and target domain data {(Xi, Ai, Ri =
0)}n0

i=1.
Output: Estimated benchmark prediction models ξ̂(x), ξ̂1(x) and ξ̂0(x), proposed prediction models for

the target η̂(x), η̂1(x) and η̂0(x); and subpopulation proportions α̂ya, β̂ya.
1: Estimate ξ(x) (defined in (4)) using data {(Xi, Yi, Ri = 1) : i = 1, · · · , n1}, as ξ̂(x);
2: Estimate ξ0(x) (defined in (4)) using data {(Xi, Yi, Ai = 0, Ri = 1) : i = 1, · · · , n1}, as ξ̂0(x);
3: Estimate τr(x) (defined in (6)) using data {(Xi, Ai, Ri = r) : i = 1, · · · nr}, r = 0, 1, as τ̂r(x);
4: Estimate ξ1(x) following (5), as ξ̂1(x);
5: Estimate κ(x) (defined in (7)) using data {(Xi, Ri, Ai = 1) : i = 1, · · · n}, as κ̂(x);
6: Estimate β and αy,a following (12) and (1), as β̂ and α̂ya for (y, a) ∈ {0, 1};
7: Estimate η1(x), η0(x) and η(x) following (8), as η̂1(x), η̂0(x) and η̂(x).

The above method adopts the idea of distribution matching. Alternatively, one may consider matching only
certain moments rather than the full distribution. Due to space constraints, we defer the details to Appendix
A.1.

4.5 Downstream tasks

With any loss function ℓ(·), for the background-specific prediction model with A = 0, the conditional risk is

E[ℓ{h(X), Y } | R = 0, A = 0] = E[ℓ{h(X), Y } w(Y ) | R = 1, A = 0], (13)

where, for simplicity, we write w(y) = pr(y|R=0,A=0)
pr(y|R=1,A=0) . One can derive that w(1) = β10(α00+α10)

α10(β00+β10) and
w(0) = β00(α00+α10)

α00(β00+β10) . To evaluate the performance of the prediction model, it can be approximated as
Ê[ℓ{h(X), Y } ŵ(Y ) | R = 1, A = 0]. Furthermore, the model can be fine-tuned specifically for the target
subgroup by minimizing the reweighted empirical risk:

ĥ
ŵ

∈ arg min
h∈F

Ê[ℓ{h(X), Y } ŵ(Y ) | R = 1, A = 0], (14)

where F is a suitable function class.
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For the interest of space, for the other two prediction models, we only present the relations analogous
to (13) without elaborations. For the background-specific prediction model with A = 1, one can derive
E[ℓ{h(X), Y }|R = 0, A = 1] as

E[ℓ{h(X), Y = 1}|R = 0, A = 1] − E ([ℓ{h(X), Y = 1} − ℓ{h(X), Y = 0}] |Y = 0, A = 1) β01

β01 + β11
.

For the overall prediction model, the conditional risk E[ℓ{h(X), Y }|R = 0] is

E[ℓ{h(X), Y } w(Y ) | R = 1, A = 0](β10 + β00) + E[ℓ{h(X), Y = 1}|R = 0, A = 1](β01 + β11)
−E ([ℓ{h(X), Y = 1} − ℓ{h(X), Y = 0}] |Y = 0, A = 1) β01.

5 Theoretical Results

For the interest of space, we only present the results for the background-specific prediction model with A = 0.
The results for the other two prediction models are parallel and can be similarly developed. To facilitate the
analysis, we begin by formally defining the population-level (expected) objective function:

L(ξ0, b1, β10, ϱ) = E
(
log[ξ0(X)b−1

1 β10 + {1 − ξ0(X)}(1 − b1)−1(ϱ − β10)]
∣∣R = 0, A = 0

)
,

with its empirical version L̂(ξ0, b1, β10, ϱ).
Assumption 1. Define f(x) = {f0(x), f1(x)}T, where f0(x) = log{ξ0(x)} − 1

2 [log{ξ0(x)} + log{1 − ξ0(x)}]
and f1(x) = log{1 − ξ0(x)} − 1

2 [log{ξ0(x)} + log{1 − ξ0(x)}], and the corresponding estimate is {f̂k(x)}1
k=0.

There exist a constant c > 0 and a sequence rn1·0 → 0 such that, for almost every x, we have

pr
(

∥f̂(x) − f(x)∥2 > t
)

≤ exp
{

−t2/(c2r2
n1·0

)
}

, ∀ t > 0.

Remark 1. Note that the tail bound described in Assumption 1 is intended to hold uniformly for every
n1·0 when estimating f̂k for k = 0, 1. In other words, for each subsample size n1·0, we have a rn10̇ such
that the corresponding estimators f̂k for k = 0, 1 are required to satisfy the stated concentration inequality.
This inequality is analogous to Hoeffding’s inequality and provides a non-asymptotic concentration bound on
the estimation error. Similar assumptions have also been adopted in recent work (e.g., Maity et al. (2022),
Tsybakov & Audibert (2007)).

Theorem 1. Suppose Assumption 1 holds. Define χn = rn1·0

√
log(n0·0)+n

−1/2
1·0 +n

−1/2
0·0 . Then, there exists

a constant c10 > 0 such that for any δ > 0, with probability at least 1 − 6δ, we have

∥β̂ − β∥1 ≤ c10χn

√
log(1/δ).

The proof of Theorem 1 is provided in Appendix A.2. Theorem 1 establishes the consistency of the estimator
β̂, provided that rn1·0

√
log(n0·0) → 0 as n1·0, n0·0 → ∞.

Next, we establish a generalization bound for the fitted model (14), which is obtained via weighted empirical
risk minimization over the source subgroup. Let F denote the hypothesis class of classifiers. For any
h ∈ F and a weight function w(y) : y → R, we define the population-level weighted loss and its empirical
counterpart based on the source subgroup data as follows:

L1(h, w) = E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]

,

L̂1(h, w) = Ê
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]

.

We also define the population loss on the target subgroup as: L0(h) = E
[
ℓ{h(X), Y }

∣∣R = 0, A = 0
]
. Clearly,

L1(h, w) = L0(h).

To establish our generalization bound, we utilize the concept of Rademacher complexity (Bartlett & Mendel-
son, 2002), denoted as Rn(G) (see Appendix A.2 for details), and impose the following assumption on the
loss function:

8
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Assumption 2. The loss function ℓ is uniformly bounded; that is, there exists a constant B > 0 such that

|ℓ{h(x), y}| ≤ B for any h ∈ F , x ∈ X ⊂ Rq, and y ∈ {0, 1}.

We now present the generalization bound for the learned model, with its proof provided in Appendix A.2.
Proposition 2. Under Assumptions 1 and 2, let ĥ

ŵ
= argminh∈F L̂1(h, ŵ) be the classifier obtained by

minimizing the reweighted empirical risk on the source subgroup. Then, there exist constants c, d > 0 such
that, with probability at least 1 − 7δ, the following generalization bound holds:

L0(ĥ
ŵ

) − min
h∈F

L0(h) ≤ 2Rn1·0(G) + dB∥β̂ − β∥1 + c


√

log(1/δ)
n1·0

+

√
log(1/δ)

n0

 ,

where G = {w(y)ℓ{h(x), y} : h ∈ F}, and Rn1·0(G) denotes its Rademacher complexity as defined in Ap-
pendix A.2.
Remark 2. Proposition 2 indicates that the generalization bound depends on the estimation error ∥β̂ −
β∥1, which can be directly controlled based on the conditions listed in Assumption 1, implying that different
estimation procedures for β will yield different upper bounds. In Theorem 1, we established an upper bound
for the estimation error of β̂, which directly leads to a refined generalization bound for the learned classifier
ĥ

ŵ
. Specifically, for any δ > 0, with probability at least 1 − 13δ, the following inequality holds:

L0(ĥ
ŵ

) − min
h∈F

L0(h) ≤ 2Rn1·0(G) + dBc10χn

√
log(1/δ) + c


√

log(1/δ)
n1·0

+

√
log(1/δ)

n0

 ,

where c10 is the constant appearing in Theorem 1, and αn characterizes the convergence rate of β̂.

6 Synthetic Data Results

We consider a structured data-generating process in which the covariates X ∈ R4 are drawn from a distri-
bution conditioned on a latent pair (Y, A), where Y ∈ {0, 1} denotes the class label and A ∈ {0, 1} denotes
the background. The generation begins by sampling (Y, A) according to a predefined distribution.

In the source domain, we consider (Y, A) ∈ {(0, 0), (0, 1), (1, 0)}, each occurring with probability 1/3. The
covariates X ∈ R4 are generated as X ∼ N(µYA, I4), where µYA denotes the mean vector for each combi-
nation and I4 is the 4 × 4 identity matrix. The stratum (1, 1) is excluded from the source. In the target
domain, all four combinations (Y, A) ∈ {0, 1}2 appear with equal probability 1/4, and X is drawn from the
same distribution N(µYA, I4) with distinct means:

µ00 = (1, 0, 0, 0)T, µ01 = (0, 0, 1, 0)T, µ10 = (0, 1, 0, 0)T, µ11 = (0, 0, 0, 1)T.

For model estimation, we utilize the known data-generating distribution to compute the conditional probabil-
ity models required by both our proposed estimators and the benchmark method. Specifically, we calculate
the five key conditional probabilities needed for implementation: ξ0(x), ξ(x), τ0(x), τ1(x), and κ(x), which
together determine the models η0(x), η1(x) and η(x) for our method, and ξ0(x), ξ1(x) and ξ(x) for the
benchmark. Additionally, the parameters {βya : y = 0, 1; a = 0, 1} and {αya : y = 0, 1; a = 0, 1} are treated
as known. The classification threshold is set to 0.5, consistent with the standard Bayesian decision rule; that
is, a sample is classified as positive if the predicted probability exceeds 0.5.

To assess the performance of the proposed estimators, we conduct 100 simulations for each configuration
and report the results using boxplots that compare {η̂1(x), ξ̂1(x)} and {η̂(x), ξ̂(x)} across varying sample
sizes. The left panel of Figure 1 illustrates the performance of {η̂1(x), ξ̂1(x)} for n0 = 1000 and 6000,
with n1 ranging from 1000 to 8000. The right panel of Figure 1 shows the corresponding performance of
{η̂(x), ξ̂(x)} under the same settings. Performance is evaluated using two standard metrics: accuracy and F1
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score. In both cases, the proposed estimators consistently outperform the benchmark estimators. Moreover,
as n0 increases, the variance of the estimators decreases, suggesting improved stability and reliability. In
particular, for the F1 score of η̂(x), performance steadily improves as n0 increases, further demonstrating
the robustness and effectiveness of the proposed method. Comparable patterns are also observed when n1
is fixed at 1000 and 6000 while n0 varies from 1000 to 8000, as shown in Figure 2.
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Figure 1: The left panel displays the performance of the F1 score and accuracy for η1(x) and ξ1(x) across
different scenarios, while the right panel presents the corresponding results for η(x) and ξ(x).
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Figure 2: The left panel displays the performance of the F1 score and accuracy for η1(x) and ξ1(x) across
different scenarios, while the right panel presents the corresponding results for η(x) and ξ(x).

7 Experiments

In this section, we study the Waterbirds dataset (Sagawa et al., 2019), which consists of 11,788 images.
This public dataset is widely used to investigate spurious correlations in image classification. It is also well
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aligned with our problem setting of unsupervised domain adaptation under structured missingness, where
specific combinations of labels and backgrounds are systematically absent in the labeled source domain,
while labels are entirely unobserved in the target domain. The label Y = 1 denotes a waterbird and Y = 0
landbird. The background A = 1 corresponds to a water background and A = 0 a land background. It yields
four label–background subpopulations, as summarized in Table 3.

Table 3: Empirical joint distribution of (Y, A) in the Waterbirds dataset, with varied values of a, b and c,
0 < a, b, c < 1.

Y A Description Count Total Proportion Proportion in Source Proportion in Target
1 1 Waterbird on water 1832 0.155 0 0.155
0 1 Landbird on water 2905 0.246 0.246a 0.246(1 − a)
1 0 Waterbird on land 831 0.071 0.071b 0.071(1 − b)
0 0 Landbird on land 6220 0.528 0.528c 0.528(1 − c)

To construct a structured domain adaptation problem, we partition the full dataset into a source domain
(R = 1) and a target domain (R = 0). Specifically, we allocate samples from three subgroups—(Y = 0, A =
1), (Y = 1, A = 0), and (Y = 0, A = 0)—into the source domain, with allocation rates denoted by parameters
a, b, and c, respectively. The remaining subgroup, (Y = 1, A = 1), is deliberately excluded from the source
domain and appears only in the target domain. This setting reflects real-world scenarios in which a specific
combination of label and background is structurally missing from labeled datasets due to systematic data
collection biases or constraints. In the target domain, all four subgroups are retained, but the label variable
Y is treated as unobserved.

To implement the proposed method, we apply the distribution matching approach to estimate the subclass
proportions in the target domain. For feature extraction, we embed each image into a 512-dimensional
feature vector using a ResNet-18 model (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009),
without additional fine-tuning. These embeddings serve as covariates X ∈ R512 in our downstream analysis.
Based on these feature vectors, we fit logistic regression models with L2-regularization to estimate five key
conditional probabilities required by both our proposed method and benchmark procedures: ξ0(x), ξ(x),
τ0(x), τ1(x) and κ(x).
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Figure 3: Performance comparison of our proposed estimators η1(x), η(x), and the benchmark method ξ1(x),
ξ(x) under the setting a = 0.5 with either c = 0.5 and varying b or b = 0.5 and varying c.

For empirical evaluation, we fix the subclass sampling rate at a = 0.5 in the source domain and systematically
vary the remaining subclass inclusion rates by setting either b = 0.5 with c ∈ {0.1, 0.2, . . . , 0.9}, or c = 0.5
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with b ∈ {0.1, 0.2, . . . , 0.9}. For each configuration, the data generation process is repeated 50 times to
account for sampling variability. We assess performance using two widely adopted classification metrics:
accuracy and F1 score. Figure 3 presents boxplots summarizing the distribution of these metrics across
repetitions for our proposed estimators η̂1(x) and η̂(x), alongside benchmark estimators ξ̂1(x) and ξ̂(x). The
results demonstrate that the proposed methods consistently outperform the benchmarks in both accuracy
and F1 score, suggesting enhanced robustness to structured subpopulation missingness in the unsupervised
domain adaptation setting. Additional results are provided in Appendix A.3.

8 Discussions and Conclusions

In this paper, we introduce a novel unsupervised domain adaptation setting where an entire label-background
subpopulation is absent from the source domain, a scenario motivated by real-world data collection con-
straints. Despite this structured missingness, we show that accurate prediction in the target domain is still
achievable. We develop a theoretical framework that enables such prediction by estimating subpopulation
proportions in the target through distribution matching. We provide rigorous guarantees, including statis-
tical consistency as well as upper bounds on the target-domain prediction error. Empirically, our method
outperforms standard baselines that overlook structured missingness, especially in prediction performance
for the unobserved subpopulation. Overall, our framework provides a rigorous characterization of model
adaptation under subpopulation structured missingness, and enables robust domain adaptation in such a
challenging scenario.

Our theoretical framework is built upon structured conditional invariance and mixture proportion estima-
tion. These tools naturally generalize to multi-class labels for ny species and multi-level (or even continuous)
environment variables for na species. In fact, the identification strategy and distribution-matching estima-
tion carry over to larger joint label-environment spaces, though at the cost of heavier notation and more
complex optimization. Technically, at this general multi-label and multi-background situation, the model
identification considerations (see discussion in Section 4.3) becomes more complex. At this situation, one
can identify both pr(X, A = a|R = 0) as well as pr(A = a|R = 0), which in total 2na − 1 quantities,
while one has in total nyna unknown quantities, including pr(Y = y, A = a|R = 0) and the unobservable
subpopulation distribution pr(X|Y = 1, A = 1). To make sure this model is identifiable, one needs to make
(ny − 2)na + 1 anchor set assumptions. For example, when ny = 3 and na = 2, 3 anchor set assumptions are
needed. Interestingly, as long as the label is binary ny = 2, one anchor set assumption is sufficient if only
one subpopulation is missing in the source. In the setting we consider in the paper, ny = na = 2, so we only
need to make one anchor set assumption.
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A Appendix

A.1 Proofs and More Details in Section 4

Proof of Proposition 1. For A = 1 case, note that

p(x | R = 0, A = 1)pr(R = 0, A = 1)
= p(x | R = 0, Y = 1, A = 1)p011 + p(x | R = 0, Y = 0, A = 1)p001.

Thus,

p11(x) = p(x | R = 0, A = 1)pr(R = 0, A = 1) − p01(x)p001

p011
.

Then,

pr(Y = 1 | x, R = 0, A = 1) = p11(x)p011

p(x, R = 0, A = 1)

= p(x | R = 0, A = 1)pr(R = 0, A = 1) − p01(x)p001

p(x | R = 0, A = 1)pr(R = 0, A = 1)

= p(x | R = 0, A = 1)p0·1 − p01(x)β01(1 − π)
p(x | R = 0, A = 1)p0·1

Note that

pr(R = 1 | x, A = 1) = p01(x)α01π

p01(x)α01π + p(x | R = 0, A = 1)p0·1

gives

p01(x)
p(x | R = 0, A = 1)p0·1

= pr(R = 1 | x, A = 1)
α01π{1 − pr(R = 1 | x, A = 1)} .
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Hence,

pr(Y = 1 | x, R = 0, A = 1) = 1 − β01(1 − π)
α01π

pr(R = 1 | x, A = 1)
1 − pr(R = 1 | x, A = 1) .

Note that

pr(R = 1 | x, A = 1) = p(x | R = 1, A = 1)α01π

p(x | R = 1, A = 1)α01π + p(x | R = 0, A = 1)p0·1

gives

p(x | R = 1, A = 1)
p(x | R = 0, A = 1)p0·1

= pr(R = 1 | x, A = 1)
α01π{1 − pr(R = 1 | x, A = 1)} .

Hence,

pr(Y = 1 | x, R = 0, A = 1) = 1 − β01(1 − π)
α01π

pr(R = 1 | x, A = 1)
1 − pr(R = 1 | x, A = 1)

{
p(x|Y = 0, A = 1)
p(x|R = 1, A = 1)

}
.

For A = 0 case, note that

pr(Y = 1 | x, R = 0, A = 0) = pr(Y = 1, x, R = 0, A = 0)
pr(Y = 1, x, R = 0, A = 0) + pr(Y = 0, x, R = 0, A = 0)

=
pr(x, Y = 1, R = 1, A = 0)pr(Y =1,R=0,A=0)

pr(Y =1,R=1,A=0)

pr(x, Y = 1, R = 1, A = 0)pr(Y =1,R=0,A=0)
pr(Y =1,R=1,A=0) + pr(x, Y = 0, R = 1, A = 0)pr(Y =0,R=0,A=0)

pr(Y =0,R=1,A=0)

=
β10
α10

ξ0(x)
β10
α10

ξ0(x) + β00
α00

{1 − ξ0(x)}
.

By Bayes’ rule, we obtain the following equation

η(x) = η1(x)τ0(x) + η0(x){1 − τ0(x)}.

Proof of Lemma 1. It is easy to see that, π, α10, α01, p10(x), p01(x) and p00(x) are all identifiable. Now
suppose that there are two different sets p11(x), β10, β00 and p̃11(x), β̃10, β̃00 such that

β11p11(x) + (1 − β11 − β10 − β00)p01(x) = β11p̃11(x) + (1 − β11 − β̃10 − β̃00)p01(x),
β10p10(x) + β00p00(x) = β̃10p10(x) + β̃00p00(x). (15)

Now taking the integral with respect to x on both sides of the second equation above, it is clear that

β10 + β00 = β̃10 + β̃00.

Plugging in back to the first equation above, we obtain

β11{p11(x) − p̃11(x)} = 0.

Since β11 > 0, we obtain p11(x) = p̃11(x). Finally, (15) leads to (β10 − β̃10)p10(x) = (β̃00 − β00)p00(x), which
can only hold if β10 = β̃10 and β̃00 = β00 since p10(x) ̸= p00(x). This completes the proof.

16
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Proof of Lemma 2.

D

{
p(x|R = 0, A = 0)

∥∥∥∥∥
1∑

k=0
p(x|Y = k, A = 0)βk0

1 − π

pr(R = 0, A = 0)

}

=
∫

p(x|R = 0, A = 0)log p(x|R = 0, A = 0)∑1
k=0 p(x|Y = k, A = 0)βk0

1−π
pr(R=0,A=0)

dx

=
∫

p(x|R = 0, A = 0)logp(x|R = 0, A = 0)
p(x|R = 1, A = 0)dx

−
∫

p(x|R = 0, A = 0)log
∑1

k=0 p(x|Y = k, A = 0)βk0
1−π

pr(R=0,A=0)

p(x|R = 1, A = 0) dx

=
∫

p(x|R = 0, A = 0)logp(x|R = 0, A = 0)
p(x|R = 1, A = 0)dx

−
∫

p(x|R = 0, A = 0)log
1∑

k=0

pr(Y = k|x, R = 1, A = 0)βk0(1 − π)pr(R = 1, A = 0)
pr(R = 1, Y = k, A = 0)pr(R = 0, A = 0) dx.

Minimizing the above equation is equivalent to maximizing

argmaxβE

{
log

1∑
k=0

pr(Y = k|x, R = 1, A = 0) βk0

pr(Y = k|R = 1, A = 0)

∣∣∣∣∣R = 0, A = 0
}

,

subject to pr(R = 0, A = 0) = β10(1 − π) + β00(1 − π).

We enforce this restriction as a constraint in the distribution matching problem: where D is a discrepancy
between probability distributions on X .

Define

L(ξ0, b1, β10, ϱ) = E
(
log[ξ0(X)b−1

1 β10 + {1 − ξ0(X)}(1 − b1)−1(ϱ − β10)]
∣∣R = 0, A = 0

)
.

Its empirical version is

L̂(ξ0, b1, β10, ϱ) = Ê
(
log[ξ0(X)b−1

1 β10 + {1 − ξ0(X)}(1 − b1)−1(ϱ − β10)]
∣∣R = 0, A = 0

)
.

An Alternative Approach for Estimating β

In the main text, we explore the use of distribution matching for estimating β. Alternatively, it is sufficient
to only consider some moments instead of the whole distribution. For any measurable function m(x), the
law of total expectation yields the identity:

E{m(x) | R = 0, A = 0}pr(R = 0, A = 0)
= E{m(x) | 1, 0}β10(1 − π) + E{m(x) | 0, 0}β00(1 − π). (16)

Rewriting equation (16), we obtain the following linear system:

(1 − π)p−1
0·0 [E{m(x) | 1, 0}, E{m(x) | 0, 0}] β = E{m(x) | R = 0, A = 0},

which leads to the expression

β = (1 − π)−1p0·0 [E{m(x) | 1, 0}, E{m(x) | 0, 0}]−1
E{m(x) | R = 0, A = 0},

provided that the 2 × 2 matrix [E{m(x) | 1, 0}, E{m(x) | 0, 0}] is invertible. To use the idea of moment
matching, one has the flexibility of choosing different moments m(x). Certainly, a further research ques-
tion of interest is to identify the optimal choice of this moment function, say, mopt(x), by borrowing the
semiparametric techniques (Bickel et al., 1993; Tsiatis, 2006).

17
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A.2 Proofs and More Details in Section 5

We define the Rademacher complexity (Bartlett & Mendelson, 2002) that has been frequently used in machine
learning literature to establish a generalization bound. Instead of considering the Rademacher complexity
on F we define the class of weighted losses G(ℓ, F) = [w(x, y)ℓ{g(x), y} : g ∈ F ] and n ∈ N we define its
Rademacher complexity measure as

Rn(G) := Eui,vi

(
Eξi

[
sup
h∈F

1
n

n∑
i=1

ξiw(ui, vi)ℓ{g(ui), vi}

])
,

where {ξi}n
i=1 are i.i.d. Rademacher random variables, taking values ±1 with equal probability 1/2.

Proof of Theorem 1. For a probabilistic classifier: {ξ0(x), 1 − ξ0(x)} : X → ∆2, and the parameter βT =
(β10, β00) and b1 = pr(Y = 1|R = 1, A = 0), we define the centered logit function f : X → R2 as
f0(x) = logξ0(x) − 1

2 [logξ0(x) + log{1 − ξ0(x)}] and f1(x) = log{1 − ξ0(x)} − 1
2 [logξ0(x) + log{1 − ξ0(x)}].

We define the functions µ(f0, b1) = ξ0(x)b−1
1 − {1 − ξ0(x)}(1 − b1)−1 and ω(f0, b1, β10, ϱ) = ξ0(x)b−1

1 β10 +
{1 − ξ0(x)}(1 − b1)−1(ϱ − β10), and notice that the objective is

L̂(f0, b1, β10, ϱ) = Ê {logω(f0, b1, β10, ϱ)|R = 0, A = 0} ,

whereas the true objective is

L(f0, b1, β10, ϱ) = E {logω(f0, b1, β10, ϱ)|R = 0, A = 0} ,

We see that the first-order optimality conditions in estimating β̂10 are

0 = ∂β10L̂(f̂0, b̂1, β̂10, ϱ̂) (17)

= ∂β10

[
Ê
{

logω(f̂0, b̂1, β̂10, ϱ̂)
∣∣∣R = 0, A = 0

}]
= Ê

[
∂β10{ω(f̂0, b̂1, β̂10, ϱ̂)}

ω(f̂0, b̂1, β̂10, ϱ̂)

∣∣∣∣∣R = 0, A = 0
]

.

Similarly, the first order optimality condition at truth (for β10) are

0 = ∂β10L(f0, b1, β10, ϱ)
= ∂β10 [E {logω(f0, b1, β10, ϱ)|R = 0, A = 0}]

= E

[
∂β10{ω(f0, b1, β10, ϱ)}

ω(f0, b1, β10, ϱ)

∣∣∣∣R = 0, A = 0
]

.

We decompose (17) using the Taylor expansion and obtain:

0 = ∂β10L̂(f0, b̂1, β̂10, ϱ̂) + ⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩

where f̃0 is a function in the bracket [f0, f̂0], i.e. for every x, f̃0(x) is a number between f̂0(x) and f0(x).
Bound on ⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩:

To bound the term, we define ζ0 = f̂0 − f0 and notice that

⟨ζ0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩

=
〈

ζ0, ∂f0

[
Ê

{
µ(f̃0, b̂1)

ω(f̃0, b̂1, β̂10, ϱ̂)

∣∣∣∣∣R = 0, A = 0
}]〉

= Ê

(
ζ0

2ξ̃0(1 − ξ̃0)
ω(f̃0, b̂1, β̂10, ϱ̂)

[
b̂−1

1 + (1 − b̂1)−1

− µ(f̃0, b̂1)
ω(f̃0, b̂1, β̂10, ϱ̂)

{
b̂−1

1 β̂10 − (1 − b̂1)−1(ϱ̂ − β̂10)
}]∣∣∣∣∣R = 0, A = 0

)
.

18



Under review as submission to TMLR

The derivative in third equality in the above display is calculated in Lemma 3. Assume ϱ − ϵ > β10 > ϵ > 0
and 1 − ϵ1 > b1 > ϵ1 > 0, i.e., there exist a c1 > 0 such that∣∣∣∣ 2ξ̃0(1−ξ̃0)

ω(f̃0 ,̂b1,β̂10,ϱ̂)

[
b̂−1

1 + (1 − b̂1)−1 − µ(f̃0 ,̂b1)
ω(f̃0 ,̂b1,β̂10,ϱ̂)

{
b̂−1

1 β̂10 − (1 − b̂1)−1(ϱ̂ − β̂10)
}]∣∣∣∣ < c1. This implies the fol-

lowings: we have ∣∣∣∣∣Ê
(

ζ0
2ξ̃0(1 − ξ̃0)

ω(f̃0, b̂1, β̂10, ϱ̂)

[
b̂−1

1 + (1 − b̂1)−1

− µ(f̃0, b̂1)
ω(f̃0, b̂1, β̂10, ϱ̂)

{
b̂−1

1 β̂10 − (1 − b̂1)−1(ϱ̂ − β̂10)
}]∣∣∣∣∣R = 0, A = 0

)∣∣∣∣∣
≤ c1Ê{|ζ0(x)||R = 0, A = 0}.

It follows from Assumption 1 with probability at least 1 − δ it holds supi∈[n0·0] ∥f̂(xi) − f(xi)∥2 ≤
crn1·0

√
log(n0·0)log(1/δ), we conclude that

|⟨ζ0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩| ≤ cc1rn1·0

√
log(n0·0)log(1/δ)

holds with probability at least 1 − δ.

Bound on ∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ̂).

Using the taylor expansion, we have

∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ̂) = ⟨̂b1 − b1, ∂b1∂β10L̂(f0, b̃1, β̂10, ϱ̂)⟩

=
〈

b̂1 − b1, ∂b1

[
Ê

{
µ(f0, b̃1)

ω(f0, b̃1, β̂10, ϱ̂)

∣∣∣∣∣R = 0, A = 0
}]〉

= Ê

{
(̂b1 − b1)

[
−ξ0(x)̃b−2

1 − {1 − ξ0(x)}(1 − b̃1)−2

ω(f0, b̃1, β̂10, ϱ̂)

− µ(f0, b̃1)
ω(f0, b̃1, β̂10, ϱ̂)

−ξ0(x)̃b−2
1 β̂10 + {1 − ξ0(x)}(1 − b̃1)−2(ϱ̂ − β̂10)

ω(f0, b̃1, β̂10, ϱ̂)

]}
.

Assume ϱ − ϵ > β10 > ϵ > 0 and 1 − ϵ1 > b1 > ϵ1 > 0, i.e., there exist a c2 > 0 such that∣∣∣∣[−ξ0(x)̃b−2
1 −{1−ξ0(x)}(1−̃b1)−2

ω(f0 ,̃b1,β̂10,ϱ̂)
− µ(f0 ,̃b1)

ω(f0 ,̃b1,β̂10,ϱ̂)
−ξ0(x)̃b−2

1 β̂10+{1−ξ0(x)}(1−̃b1)−2(ϱ̂−β̂10)
ω(f0 ,̃b1,β̂10,ϱ̂)

]∣∣∣∣ < c2. This implies the fol-
lowings: we have ∣∣∣∣∣Ê

{
(̂b1 − b1)

[
−ξ0(x)̃b−2

1 − {1 − ξ0(x)}(1 − b̃1)−2

ω(f0, b̃1, β̂10, ϱ̂)

− µ(f0, b̃1)
ω(f0, b̃1, β̂10, ϱ̂)

−ξ0(x)̃b−2
1 β̂10 + {1 − ξ0(x)}(1 − b̃1)−2(ϱ̂ − β̂10)

ω(f0, b̃1, β̂10, ϱ̂)

]} ∣∣∣∣∣
≤ c2 |̂b1 − b1|.

We apply Hoeffing’s concentration inequality for a sample mean of i.i.d. sub-gaussian random variable Yi

and obtain a c3 > 0 such that for any δ > 0 with probability at least 1 − δ it holds

|̂b1 − b1| = |p̂r(Y = 1|R = 1, A = 0) − pr(Y = 1|R = 1, A = 0)| ≤ c3

√
log(1/δ)

n1·0
.

Bound on ∂β10L̂(f0, b1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ).
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Using the taylor expansion, we have

∂β10L̂(f0, b1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) = ⟨ϱ̂ − ϱ, ∂ϱ∂β10L̂(f0, b1, β̂10, ϱ̃)⟩

= Ê

[
(ϱ̂ − ϱ)−µ(f0, b1){1 − ξ0(x)}(1 − b1)−1

ω2(f0, b1, β̂10, ϱ̃)

∣∣∣∣∣R = 0, A = 0
]

.

Assume ϱ − ϵ > β10 > ϵ > 0 and 1 − ϵ1 > b1 > ϵ1 > 0, i.e., there exist a c4 > 0 such that∣∣∣∣−µ(f0,b1){1−ξ0(x)}(1−b1)−1

ω2(f0,b1,β̂10,ϱ̃)

∣∣∣∣ < c4. This implies the followings: we have∣∣∣∣∣Ê
[

(ϱ̂ − ϱ)−µ(f0, b1){1 − ξ0(x)}(1 − b1)−1

ω2(f0, b1, β̂10, ϱ̃)

∣∣∣∣∣R = 0, A = 0
]∣∣∣∣∣ ≤ c4|ϱ̂ − ϱ|.

We apply Hoeffing’s concentration inequality for a sample mean of i.i.d. sub-gaussian random variable Ai

and obtain a c5 > 0 such that for any δ > 0 with probability at least 1 − δ it holds

|ϱ̂ − ϱ| = |p̂r(A = 0|R = 0) − pr(A = 0|R = 0)| ≤ c5

√
log(1/δ)

n0
.

The term ∂β10L̂(f0, b̂1, β̂10, ϱ̂): We have

∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) + ∂β10L̂(f0, b1, β̂10, ϱ)
= ∂β10L̂(f0, b1, β̂10, ϱ) + Op(|̂b1 − b1| + |ϱ̂ − ϱ|).

Now, we study the term ∂β10L̂(f0, b1, β̂10, ϱ), use strong convexity of −L(f0, b1, β10, ϱ) with β10 and the
convergence of the loss that

sup
β10∈(0,ϱ)

|L̂(f0, b1, β10, ϱ) − L(f0, b1, β10, ϱ)| n0·0→∞−−−−−→ 0

for β10 ∈ (0, ϱ) in Wellner et al. (2013)(see Corollary 3.2.3) to conclude that β̂10 → β10 in probability and
hence β̂10 is a consistent estimator for β10.

Following the consistency of β̂10 we see that for sufficiently large n0·0, we have |β̂10 − β10| ≤ δβ(δβ is chosen
bound by β10

2 ∧ ϱ−β10
2 ) with probability at least 1 − δ and on the event it holds: β̂10 ∈ [β10 − δβ , β10 + δβ ].

We define empirical process

Zn0·0 = sup
β∈[β10−δβ ,β10+δβ ]

|∂βL̂(f0, b1, β, ϱ) − ∂βL(f0, b1, β, ϱ)|

for which we shall provide a high probability upper bound. We denote Zn0·0(β) = ∂βL̂(f0, b1, β, ϱ) −
∂βL(f0, b1, β, ϱ) and notice that

∂βL̂(f0, b1, β, ϱ) − ∂βL(f0, b1, β, ϱ)

= Ê

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0
}

− E

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0
}

:= A(β)

where to bound A(β) we notice that µ(f0,b1)
ω(f0,b1,β,ϱ) are i.i.d. and bounded by c0(β−1+(ϱ−β)−1 ≤ 2

β10
+ 2

ϱ−β10
≤ c0

for all x ∈ X ) and hence sub-gaussian. We apply Hoeffding’s concentration inequality for a sample mean if
i.i.d. sub-gaussian random variables and obtain a constant c6 > 0 such that for any δ > 0 with probability
at least 1 − δ it holds

A(β) = Ê

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0
}

− E

{
µ(f0, b1)

ω(f0, b1, β, ϱ)

∣∣∣∣R = 0, A = 0
}

≤ c0c6

√
log(1/δ)

n0·0
.
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Use chained arguments for ℓ1 with interval length 2δβ we obtain a uniform bound as the following: there
exists a constant c7 > 0 such that for any δ > 0 with probability at least 1 − δ if it holds

sup
β∈[β10−δβ ,β10+δβ ]

A(β) ≤ c0c6c7

√
log(1/δ)

n0·0
.

Therefore, with probability at least 1 − δ, we have

Zn0·0 ≤ c0c6c7

√
log(1/δ)

n0·0
.

Returning to the first order optimality condition for estimating β̂10 we notice that

0 = (β̂10 − β10)
{

∂β10L̂(f0, b̂1, β̂10, ϱ̂) + ⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩
}

= (β̂10 − β10)
{

∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) + ∂β10L̂(f0, b1, β̂10, ϱ)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩
}

= (β̂10 − β10)∂β10L(f0, b1, β̂10, ϱ)

+(β̂10 − β10)
{

∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩
}

.

We combine it with the first order optimality condition for β to obtain

(β̂10 − β10)
{

∂β10L(f0, b1, β̂10, ϱ) − ∂β10L(f0, b1, β10, ϱ)
}

+(β̂10 − β10)
{

∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂, ϱ̂)⟩
}

= 0,

which can be rewritten as

−(β̂10 − β10)
{

∂β10L(f0, b1, β̂10, ϱ) − ∂β10L(f0, b1, β10, ϱ)
}

(18)

= (β̂10 − β10)
{

∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩
}

.

Using the strong convexity of function −L at β10, we obtain that the left-hand side in the above equation is
lower bounded as

−(β̂10 − β10)
{

∂β10L(f0, b1, β̂10, ϱ) − ∂β10L(f0, b1, β10, ϱ)
}

≥ µ(β̂10 − β10)2. (19)

Let E be the event on which the following hold:

• |β̂10 − β10| ≤ δβ .

• |⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩| ≤ cc1rn1·0

√
log(n0·0)log(1/δ).

• Zn0·0 ≤ c0c6c7

√
log(1/δ)

n0·0
.

• |∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ)| ≤ (c2c3 + c4c5)
{√

log(1/δ)
n1·0

+
√

log(1/δ)
n0

}
.
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We notice that the event E has probability 1 − 5δ. Under the event there exists a c8 > 0 such that the
right-hand side in (18) is upper bounded as∣∣∣(β̂10 − β10)

{
∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ) + Zn0·0(β̂10) (20)

+⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ)⟩
}∣∣∣

≤ |β̂10 − β10|
{

|∂β10L̂(f0, b̂1, β̂10, ϱ̂) − ∂β10L̂(f0, b1, β̂10, ϱ)| + |Zn0·0(β̂10)|

+|⟨f̂0 − f0, ∂f0∂β10L̂(f̃0, b̂1, β̂10, ϱ̂)⟩|
}

≤ c8

rn1·0

√
log(n0·0)log(1/δ) +

√
log(1/δ)

n1·0
+

√
log(1/δ)

n0
+

√
log(1/δ)

n0·0

 |β̂10 − β10|.

Combining the bounds (19) and (20) for left and right hand sides we obtain a c10 > 0 such that on the event
E it holds

|β̂10 − β10| ≤ c10

rn1·0

√
log(n0·0)log(1/δ) +

√
log(1/δ)

n1·0
+

√
log(1/δ)

n0
+

√
log(1/δ)

n0·0

 .

Further, since Ai is bound random variable, then we can obtain a constant c9 > 0 such that for any δ > 0
with probability at least 1 − δ it holds

|β̂00 − β00| = |(ϱ̂ − β̂10) − (ϱ − β10)| ≤ |ϱ̂ − ϱ| + |β̂10 − β10| ≤ c9

√
log(1/δ)

n0
+ |β̂10 − β10|.

In summary, we have a constant c10 > 0 such that for any δ > 0 with probability at least 1 − 6δ it holds

∥β̂ − β∥1 ≤ c10

rn1·0

√
log(n0·0)log(1/δ) +

√
log(1/δ)

n1·0
+

√
log(1/δ)

n0
+ +

√
log(1/δ)

n0·0

 .

Lemma 3. (Derivatives).The following equations hold:

• ∂f0(ξ0) = 2ξ0(1 − ξ0);

• ∂f0{µ(f0, b1)} = ∂f0(ξ0){b−1
1 + (1 − b1)−1};

• ∂f0{ω(f1, b1, β10, ϱ)} = ∂f0(ξ0){b−1
1 β10 − (1 − b1)−1(ϱ − β10)};

• ∂f0

{
µ(f0,b1)

ω(f0,b1,β10,ϱ)

}
= 2ξ0(1−ξ0)

ω(f0,b1,β10,ϱ)

[
b−1

1 + (1 − b1)−1 − µ(f0,b1){b−1
1 β10−(1−b1)−1(ϱ−β10)}
ω(f0,b1,β10,ϱ)

]
.

Proof.

∂f0ξ0 = ∂f0

(
ef0

ef0 + e−f0

)
=

ef0
(
ef0 + e−f0

)
− ef0

(
ef0 − e−f0

)
(ef0 + e−f0)2 = 2ξ0(1 − ξ0),

∂f0{µ(f0, b1)} = ∂f0(ξ0){b−1
1 + (1 − b1)−1},

∂f0{ω(f0, b1, β10, ϱ)} = ∂f0(ξ0)b−1
1 β10 − ∂f0(ξ0)(1 − b1)−1(ϱ − β10)

= ∂f0(ξ0){b−1
1 β10 − (1 − b1)−1(ϱ − β10)}.
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Thus,

∂f0

{
µ(f0, b1)

ω(f0, b1, β10, ϱ)

}
= ∂f0(ξ0)[{b−1

1 + (1 − b1)−1}ω(f0, b1, β10, ϱ) − µ(f0, b1){b−1
1 β10 − (1 − b1)−1(ϱ − β10)}]

ω2(f0, b1, β10, ϱ)

= ∂f0(ξ0)
ω(f0, b1, β10, ϱ)

[
b−1

1 + (1 − b1)−1 − µ(f0, b1){b−1
1 β10 − (1 − b1)−1(ϱ − β10)}

ω(f0, b1, β10, ϱ)

]
= 2ξ0(1 − ξ0)

ω(f0, b1, β10, ϱ)

[
b−1

1 + (1 − b1)−1 − µ(f0, b1){b−1
1 β10 − (1 − b1)−1(ϱ − β10)}

ω(f0, b1, β10, ϱ)

]
.

Proof of Proposition 2. Define w(y) = pr(y|A=0,R=0)
pr(y|A=0,R=1) ,

L0(h) = E[ℓ{h(X), Y }|R = 0, A = 0]

=
∫

ℓ{h(X), Y }p(x, y|A = 0, R = 0)x. y.

=
∫

ℓ{h(X), Y }p(x, y|A = 0, R = 0)
p(x, y|A = 0, R = 1)p(x, y|A = 0, R = 1)x. y.

=
∫

ℓ{h(x), y}pr(y|A = 0, R = 0)
pr(y|A = 0, R = 1)pr(x, y|A = 0, R = 1)x. y.

= E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]

=: Ł1(h, w).

Let L1(h, w) = E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]
, then we have

L0(ĥ) − L0(h) = L1(ĥ, w) − L1(h, w)
= L1(ĥ, w) − L̂1(ĥ, w)︸ ︷︷ ︸

(a)

+ L̂1(ĥ, w) − L̂1(ĥ, ŵ)︸ ︷︷ ︸
(b)

(21)

+ L̂1(ĥ, ŵ) − L̂1(h, ŵ)︸ ︷︷ ︸
≤0

+ L̂1(h, ŵ) − L̂1(h, w)︸ ︷︷ ︸
(c)

+ L̂1(h, w) − L1(h, w)︸ ︷︷ ︸
(d)

,

where ĥ ≡ ĥ
ŵ

.

Uniform bound on (a) To control (a) in (21) we establish a concentration bound on the following gener-
alization error

sup
g∈F

{L1(g, w) − L̂1(g, w)}

= sup
g∈F

{
E
[
ℓ{g(X), Y }w(Y )

∣∣A = 0, R = 1
]

− Ê
[
ℓ{g(X), Y }w(Y )

∣∣A = 0, R = 1
]}

= : F (Z1:n1·0)

where, for i > 1 we denote Z1:i = (Z1, · · · , Zi) and Zi = (Xi, Yi). First, we use a modification of McDi-
armid concentration inequality to bound F (Z1:n1·0) in terms of its expectation and a Op(1/

√
n1·0) term, as

elucidated in the following lemma.

Lemma 4. There exists a constant c1 > 0 such that with probability at least 1 − δ the following holds

F (Z1:n1·0) ≤ E{F (Z1:n1·0)} + c1

√
log(1/δ)

n1·0
. (22)

The proof is similar to Lemma A.3 of Maity et al. (2022), so we omit it.
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Next, we use a symmetrization argument (see Wellner et al. (2013), Chapter 2, Lemma 2.3.1) to bound the
expectation E{F (Z1:n1·0)} by the Rademacher complexity of the hypothesis class G, i.e.,

E{F (Z1:n1·0)} ≤ 2Rn1·0(G). (23)

Combining (22) and (23) we obtain

(a) ≤ 2Rn1·0(G) + c1

√
log(1/δ)

n1·0
(24)

with probability at least 1 − δ.

Uniform bound on (b) and (c) Denoting Zi = (Xi, Yi) and ℓg(Zi) = ℓ{g(Xi), Yi} we notice that for any
g ∈ F we have

|L̂1(g, w) − L̂1(g, ŵ)|

= |Ê [ℓ{g(X), Y } {w(Y ) − ŵ(Y )} | A = 0, R = 1] | ≤ ∥ℓg∥∞

n1·0

n1·0∑
i=1

|w(yi) − ŵ(yi)| .

Since w(y) − ŵ(y) is a sub-gaussian random variable, we use sub-gaussian concentration to establish that for
some constant c2 > 0,

for any g ∈ F , |L̂1(g, w) − L̂1(g, ŵ)| ≤ ∥ℓg∥∞

EY |w(Y ) − ŵ(Y )| + c2

√
log(1/δ)

n1·0


with probability at least 1 − δ. This provides a simultaneous bound (on the same probability event) for both
(b) and (c) with g = ĥ and g = h. Further, by Lemma 5, for some constants C1 and C2 and any g ∈ F , we
have

|L̂1(g, w) − L̂1(g, ŵ)| (25)

≤ ∥ℓg∥∞

C1∥β̂ − β∥1 + C2

√ log(1/δ)
n0

+

√
log(1/δ)

n1

+ c2

√
log(1/δ)

n1·0


with probability at least 1 − 5δ.

Uniform bound on (d) We note that

L̂1(h, w) − L1(h, w)
= Ê

[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]

− E
[
ℓ{h(X), Y }w(Y )

∣∣A = 0, R = 1
]

where [ℓ{h(Xi), Yi}w(Yi)]n1·0
i=1 are i.i.d sub-gaussian random variables. Using Hoeffding concentration bound

we conclude that there exists a constant c3 > 0 such that for any δ > 0 the following holds with probability
at least 1 − δ,

L̂1(h, w) − L1(h, w) ≤ c3

√
log(1/δ)

n1·0
. (26)

Finally, using (24) on (a) (which is true on an event of probability ≥ 1−δ), (25) on (b) and (c) (simultaneously
true on an event of probability 1−5δ), and (26) on (d) (holds on an event of probability ≥ 1−δ) we conclude
that with probability at least 1 − 7δ the following holds

L0(ĥ
ŵ

) − L0(h) ≤ 2Rn1·0(G) + CB∥β̂ − β∥1 + c


√

log(1/δ)
n1·0

+

√
log(1/δ)

n0
+

√
log(1/δ)

n1

 .

where c = c1 + ∥ℓg∥∞(C2 + c2) + c3.
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Lemma 5. Assume |βi0/αi0| ≤ B1 for any i = 0, 1. There exist constants C, c1, c2, such that with probability
at least 1 − 4δ,

|ŵ(y) − w(y)| ≤ CB1∥β̂ − β∥1 + CB1(c1 + c2)

√ log(1/δ)
n0

+

√
log(1/δ)

n1

 .

Proof.

|ŵ(y) − w(y)| =
∣∣∣∣ p̂r(y|A = 0, R = 0)
p̂r(y|A = 0, R = 1) − pr(y|A = 0, R = 0)

pr(y|A = 0, R = 1)

∣∣∣∣
=

∣∣∣∣ p̂r(y, A = 0|R = 0)
p̂r(y, A = 0|R = 1)

p̂r(A = 0|R = 1)
p̂r(A = 0|R = 0) − pr(y, A = 0|R = 0)

pr(y, A = 0|R = 1)
pr(A = 0|R = 1)
pr(A = 0|R = 0)

∣∣∣∣
≤

∣∣∣∣{ p̂r(y, A = 0|R = 0)
p̂r(y, A = 0|R = 1) − pr(y, A = 0|R = 0)

pr(y, A = 0|R = 1)

}
p̂r(A = 0|R = 1)
p̂r(A = 0|R = 0)

∣∣∣∣
+
∣∣∣∣pr(y, A = 0|R = 0)
pr(y, A = 0|R = 1)

{
p̂r(A = 0|R = 1)
p̂r(A = 0|R = 0) − pr(A = 0|R = 1)

pr(A = 0|R = 0)

}∣∣∣∣ .
For the first term, we have∣∣∣∣∣ β̂y0αy0 − βy0α̂y0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣∣
=

∣∣∣∣∣ (β̂y0 − βy0)αy0 + βy0(αy0 − α̂y0)
αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣∣
≤

∣∣∣∣ yαy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ |β̂10 − β10| +
∣∣∣∣ (1 − y)αy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ |β̂00 − β00|

+
∣∣∣∣ yβy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ (α10 − α̂10) +
∣∣∣∣ (1 − y)βy0

αy0α̂y0

n1·0

n0·0

n0

n1

∣∣∣∣ (α00 − α̂00)

≤ CB1(∥β̂ − β∥1 + |α̂00 − α00| + |α̂10 − α10|).

Here C is some constant. Since Yi and Ai are sub-gaussian random variables, we use sub-gaussian concen-
tration to establish that for some constant c > 0,

|α̂00 − α00| + |α̂10 − α10| ≤ c


√

log(1/δ)
n1


with probability at least 1 − 2δ.

For the second term, we have∣∣∣∣βy0

αy0

pr(A = 0|R = 1)p̂r(A = 0|R = 0) − pr(A = 0|R = 0)p̂r(A = 0|R = 1)
pr(A = 0|R = 0)p̂r(A = 0|R = 0)

∣∣∣∣
≤

∣∣∣∣βy0

αy0

∣∣∣∣ pr(A = 0|R = 1)
pr(A = 0|R = 0)p̂r(A = 0|R = 0) |{p̂r(A = 0|R = 0) − pr(A = 0|R = 0)}|

+
∣∣∣∣βy0

αy0

∣∣∣∣ pr(A = 0|R = 0)
pr(A = 0|R = 0)p̂r(A = 0|R = 0) |{pr(A = 0|R = 1) − p̂r(A = 0|R = 1)}|

≤
∣∣∣∣βy0

αy0

∣∣∣∣ p1·0(1 − π)n0

p0·0πn0·0
|{p̂r(A = 0|R = 0) − pr(A = 0|R = 0)}|

+
∣∣∣∣βy0

αy0

∣∣∣∣ n0

n0·0
|{pr(A = 0|R = 1) − p̂r(A = 0|R = 1)}|

≤ CB1(|{p̂r(A = 0|R = 0) − pr(A = 0|R = 0)}| + |{pr(A = 0|R = 1) − p̂r(A = 0|R = 1)}|).
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Here C is some constant. Since Ai is a sub-gaussian random variable, we use sub-gaussian concentration to
establish that for some constant c > 0,

|{p̂r(A = 0|R = 0) − pr(A = 0|R = 0)}| + |{pr(A = 0|R = 1) − p̂r(A = 0|R = 1)}|

≤ c


√

log(1/δ)
n0

+

√
log(1/δ)

n1


with probability at least 1 − 2δ.

A.3 Additional Benchmark Data Results
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Figure 4: Performance comparison of our proposed estimator η0(x), and the benchmark method ξ0(x) under
the setting a = 0.5 with either c = 0.5 and varying b or b = 0.5 and varying c.

In addition to the estimators analyzed in the main text, we further evaluate the performance of the proposed
estimator η̂0(x) and its corresponding benchmark ξ̂0(x). Figure 4 presents the results with a = 0.5 in the
source domain and systematically vary the remaining subclass inclusion rates by setting either b = 0.5 with
c ∈ {0.1, 0.2, . . . , 0.9}, or c = 0.5 with b ∈ {0.1, 0.2, . . . , 0.9}. Performance is assessed using the F1 score
and accuracy across 50 independent repetitions. The proposed estimator η̂0(x) consistently demonstrates
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Figure 5: Performance comparison of our proposed estimators η1(x), η(x), and the benchmark method ξ1(x),
ξ(x) under the setting a = 0.7 with either c = 0.5 and varying b or b = 0.5 and varying c.

superior performance compared to the benchmark ξ̂0(x), achieving higher accuracy and F1 scores across
all configurations. Similar results are observed when a = 0.7 in Figures 5 and 6, further validating the
robustness of our method.
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Figure 6: Performance comparison of our proposed estimator η0(x), and the benchmark method ξ0(x) under
the setting a = 0.7 with either c = 0.5 and varying b or b = 0.5 and varying c.
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