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ABSTRACT

Offline reinforcement learning (RL) has emerged as a promising paradigm for
real world applications, since it aims to train policies directly from datasets of
past interactions with the environment. The past few years, algorithms have been
introduced to learn policies from high-dimensional observational states in an of-
fline settings. The general idea of these methods is to encode the environment
into a smaller latent space and train policies on the top of this smaller representa-
tion. In this paper, we extend this general method to stochastic environments (i.e.
where the reward function is stochastic) and considering a risk measure instead
of the classical expected return. First, we show that under some assumptions it is
equivalent to minimize a risk measure in the latent space and in the natural space.
Based on this result, we present Latent Offline Distributional Actor-Critic (LO-
DAC), an algorithm which is able to train policies in high-dimensional stochastic
and offline settings to minimize a given risk measure. Empirically, we show that
using LODAC to minimize Conditional Value-at-Risk (CVaR), outperforms pre-
vious methods in term of CVaR and return on stochastic environments.

1 INTRODUCTION

In a lot of context, human decisions are stored and build interesting datasets. With the successes of
modern machine learning tools comes the hope to exploit them to build useful decision helpers. To
achieve this, we could use an imitation learning approach (Hussein et al., 2017). But, in this case, we
will at best be as good as humans. Moreover, the performance of this approach depends heavily on
the quality of the training dataset. In this work we would like to avoid these behaviours and thus, we
consider another framework: reinforcement learning (RL). In recent years, RL achieved impressive
results in a number of challenging areas, including games (Silver et al., 2016; 2018), robotic control
(Gu et al., 2017; Haarnoja et al., 2018) or even healthcare (Shortreed et al., 2011; Wang et al., 2018).
In particular, offline RL seems to be really interesting for real world application since its goal is to
train agents from a dataset of past interactions with the environment (Deisenroth et al., 2013).

With the digitization of society, more and more features could be used to represent the environment.
Unfortunately, classical RL algorithms are not able to work with high-dimensional states. Obviously,
we could manually choose a feature subset. However, this choice is not straightforward and it could
have a huge impact on the performance. Therefore, it may be be more practical to use RL algorithms
capable of learning from high-dimensional states.

It is common to evaluate RL algorithms on deterministic (in the sense that the reward function is
deterministic) environment such as the DeepMind Control suite (Tassa et al., 2018). However, in
a lot of real world applications, environments are not deterministic but stochastic. Therefore, it
might be important to develop algorithms which are able to train policies in these special cases. The
motivation of this paper is to provide a method for training policies in an offline settings and working
in a high-dimensional stochastic environment.

In this paper, we present Latent Distributional Actor-Critic (LODAC) an algorithm which is able to
train policies in a high-dimensional, stochastic environment and in an offline settings. The main idea
is to learn a smaller representation and to train the agent directly in this latent space. But instead
of considering the expected return, we take into account a risk measure. First, assuming some
hypothesis, we show that minimizing this risk measure in the latent space is equivalent to minimize
the risk measure directly in the natural state. This theoretical result provides a natural framework :
train a latent variable model to encode the natural space into a latent space and then train a policy on
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the top of this latent space using a risk-sensitive RL algorithm. In the experimental part, we evaluate
our algorithm on high-dimensional stochastic datasets. In the best of our knowledge, we are the first
authors to propose an algorithm to train policies in high-dimensional, stochastic and offline settings.

2 RELATED WORK

Before going further into our work, we present some related work.

Offline RL. Offine RL (Levine et al., 2020) is a particular approach of RL where the goal is to learn
policies directly from past interactions with the environment.This is a promising framework for real-
world applications since it allows the deployment of already trained policies. Thus, it is not really
surprising that offline RL has received a lot of attention the recent years (Wiering & Van Otterlo,
2012; Levine et al., 2020; Yang et al., 2021; Chen et al., 2021b; Liu et al., 2021; Yu et al., 2021a;
Wang et al., 2021).

One of the main problem in offline RL is that the Q-function is too optimistic in the case of out-of-
distribution (OOD) states-actions pairs for which observational data is limited (Kumar et al. (2019)).
Different approaches have been introduced to deal with this problem. For example, there are algo-
rithms that extend the importance sampling method (Nachum et al., 2019; Liu et al., 2019) or extend
the dynamic programming approach (Fujimoto et al., 2019; Kumar et al., 2019). Other authors build
a conservative estimation of the Q-function for OOD states-actions pairs (Kumar et al., 2020; Yu
et al., 2021b). Finally it is also feasible to extend the model-based approach, (Rafailov et al., 2021;
Argenson & Dulac-Arnold, 2020).

Learning with high-dimensional states. In the previous years, algorithms were proposed to train
policies directly from high-states, like images (Lange & Riedmiller, 2010; Levine et al., 2016; Finn
& Levine, 2017; Ha & Schmidhuber, 2018; Chen et al., 2021a). Previous work has observed that
learning a good representation of the observation is a key point for this type of problem (Shelhamer
et al., 2016). In some works, authors use data augmentation techniques to learn the best repre-
sentation possible (Kostrikov et al., 2020; Laskin et al., 2020; Kipf et al., 2019). But, it has been
intensively studied how we should encode the high-dimensional states into the latent space (Nair
et al., 2018; Gelada et al., 2019; Watter et al., 2015; Finn et al., 2016). Then, it is a common ap-
proach to train the policies using a classical RL algorithm, like Soft Actor-Critic (SAC) (Haarnoja
et al., 2018), on the top of this latent representation (Han et al., 2019; Lee et al., 2020). Further-
more, it is also possible to make some planifications in this latent space to improve the performance
(Hafner et al., 2019b;a).

Risk-sensitive RL. Risk-sensitive RL is a particular approach to safe RL (Garcıa & Fernández,
2015). In safe RL, policies are trained to maximize performance while respecting some safety con-
straints during training and/or in the deployment. In risk-sensitive RL, instead of maximizing the
expectation of the cumulative rewards, we are more interesting in minimizing a measure of the risk
induced by the cumulative rewards. Risk-sensitive RL has raised some attention the last few years
(Fei et al., 2021; Zhang et al., 2021). Depending on the context, we might consider different risk
measures, like Exponential Utility (Rabin, 2013) Cumulative Prospect Theory (Tversky & Kah-
neman, 1992) or Conditional Value-at-Risk (CVaR) (Rockafellar & Uryasev, 2002). Conditional
Value-at-Risk has strong theoretical properties and is quite intuitive (Sarykalin et al., 2008; Artzner
et al., 1999). Therefore, CVaR is really popular and has been strongly studied in a context of RL
(Chow & Ghavamzadeh, 2014; Chow et al., 2015; Singh et al., 2020; Urpı́ et al., 2021; Ma et al.,
2021; 2020; Ying et al., 2021). Previous work suggest that taking into account Conditional Value-
at-Risk instead of the classical expectation, could prevent from the gap of performance between
simulation and real world application (Pinto et al., 2017).

3 PRELIMINARIES

In this section, we introduce notations and recall concepts we will use later.

Coherent Risk Measure. Let (Ω,F ,P) a probability space and L2 := L2(Ω,F ,P). A functional
R : L2 → (−∞,+∞] is called a coherent risk measure (Rockafellar, 2007) if

1. R(C) = C for all constants C.
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2. R((1− λ)X + λX) ≤ (1− λ)R(X) + λR(X) for λ ∈ (0, 1).
3. R(X) ≤ R)(X ′) when X ≤ X ′.
4. R(X) ≤ 0 when ‖Xk −X‖2 → 0 withR(Xk) ≤ 0.
5. R(λX) = λR(X) for λ > 0.

Coherent risk measures have some interesting properties. In particular, a risk measure is coherent if
and only if, there is a risk envelope U such that

R(X) = sup
δ∈U

E[δX] (1)

(Artzner et al., 1999; Delbaen, 2002; Rockafellar et al., 2002). A risk envelope is a nonempty convex
subset of P that is closed and where P := {δ ∈ L2 | δ ≥ 0, E[δ] = 1}.
The definition of a risk measure R might depends on a probability distribution p. In some cases,
it may be useful to specify which distribution we are working with. Thus, we sometimes use the
notation Rp. There exists a lot of different coherent risk measures, for example the Wang risk
measure (Wang, 2000), the entropic Value-at-Risk (Ahmadi-Javid, 2011) or Conditional Value-at-
Risk (Rockafellar et al., 2000; Rockafellar & Uryasev, 2002).

Conditional Value-at-Risk (CVaRα) with probability level α ∈ (0, 1) is defined as

CVaRα(X) := min
t∈R
{t+

1

1− α
E[max{0, X − t}]} (2)

Moreover the risk envelope associated to CVaRα, can be written as U = {δ ∈ P | E[δ] = 1, 0 ≤
δ ≤ 1

α} (Rockafellar et al., 2006; 2002).

This rigorous definitions may be not really intuitive, but roughly speaking CVaRα is the expectation
of X in the conditional distribution of its upper α-tail, and thus is corresponds to the (1− α) worst
case. In this paper, we follow the classical definition of Conditional Value-at-Risk presented in risk
measure literature. In particular, X should be interpreted as a loss function.

Offline RL. We consider a Markov Decision Process (MDP), (S,A, p, r, µ0, γ) where S is the en-
vironment space, A the action space, r the reward distribution ( rt ∼ r(·|st, at)), p is the transition
probability distribution (st+1 ∼ p(·|st, at)), µ0 is the initial state distribution and γ ∈ (0, 1) denotes
the discount factor. For the purpose of the notation, we define p(s0) := µ0(s0) and we write the
MDP (S,A, p, r, γ).

Actions are taking following a policy π which depends on the environment state, (i.e at ∼ π(·|st)).
A sequence on the MDP (S,A, p, r, γ), τ = s0, a0, r0, . . . sH , with si ∈ S and ai ∈ A is called
a trajectory. A trajectory of fixed length H ∈ N is called an episode. Given a policy π, a rollout
from state-action (s, a) ∈ S×A is a random sequence {(s0, a0, r0), (s1, a1, r1), . . .} where a0 = a,
s0 = s, st+1 ∼ p(·|st, at), rt ∼ r(·|st, at) and at ∼ π(·|st). Given a policy π and a fixed length H ,
we have a trajectory distribution given by

pπ(τ) = p(s0)

H−1∏
t=0

π(at|st)p(st+1|st, at)r(rt|st, at)

The goal of classical risk-neutral RL algorithms is to find a policy which maximizes the expected
discounted return Eπ[

∑H
t=0 γ

trt] where H might be infinite. Equivalently, we can look for the
policy which maximizes the Q-function which is defined as Qπ : S × A → R, Qπ(st, at) :=

Eπ[
∑H
t′=t γ

t′−trt′)]. Instead of this classical objective function, other choices are possible. For
example, the maximum entropy RL objective function Eπ[

∑H
t=0 rt +H(π(·|st))], whereH denotes

the entropy. This function has an interesting connection with variational inference (Ziebart, 2010;
Levine, 2018) and it has shown impressive results in recent years (Haarnoja et al., 2018; Lee et al.,
2019; Rafailov et al., 2021).

In offline RL, we have access to a fixed datasetD = {(st, at, rt, st+1)}, where st ∈ S, at ∈ A, rt ∼
r(st, at) and st+1 ∼ p(·|st, at), and we aim to learn policies without interaction with the environ-

ment. A such dataset comes with the empirical behaviour policy πβ(a|s) :=
∑

(st,at)∈D
1(st=s,at=a)∑

st∈S
1st=s

.
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Latent variable model. There are different methods to learn directly from high-dimensional states
(Kostrikov et al., 2020; Hafner et al., 2019a;b). But in this work, we build on the top of the frame-
work presented in Stochastic Latent Actor-Critic (SLAC) (Lee et al., 2019). The main idea of this
work is to train a latent variable model to encode the natural MDP (S,A, p, r, γ) into a latent space
(Z,A, q, r, γ) and to train policies directly in this space. To achieve this, the variational distribu-
tion q(z1:H , at+1:H |s1:t, a1:t) is factorized into a product of inference term q(zi+1|zi, si+1ai), latent
dynamic term q(zt+1|zt, at) and policy term π(at|s1:t, a1:t−1) as follow

q(z1:H , at+1:H |s1:t, a1:t) =

t∏
i=0

q(zi+1|zi, si+1ai)

H−1∏
i=t+1

q(zt+1|zt, at)
H−1∏
i=t+1

π(at|s1:t, a1:t−1)

Using this factorization, the evidence lower bound (ELBO) (Odaibo, 2019) and a really interesting
theoretical approach (Levine, 2018), the following objective function for the latent variable model
is derived

Ez1:t,at+1:H∼q

[
t∑
i=0

logD(st+1|zt+1)−DKL(q(zt+1|st+1, st, at)||q(st+1|st, at))

]
(3)

where DKL is the Kullback-Leibler divergence and D a decoder.

Distributional RL. The goal of distributional RL is to learn the distribution of the discounted cu-
mulative negative rewards Zπ := −

∑H
t γ

trt. Zπ is a random variable. A classical approach
of distributional RL is to learn Zπ implicitly using its quantile function F−1

Z(s,a) : [0, 1] → R,
which is defined as F−1

Z(s,a)(y) := inf{x ∈ R | y ≤ FZ(s,a)(x)} and where FZ(s,a) is the cu-
mulative density function of the random variable Z(s, a). A model Qθ(η, s, a) is used to ap-
proximate F−1

Z(s,a)(η). For (s, a, r, s′) ∼ D, a′ ∼ π(·|s′), η, η′ ∼ Uniform[0, 1], we define δ as
δ := r + γQθ′(η

′, s′, a′) −Qθ(η, s, a). Qθ is trained using the τ -Huber quantile regression loss at
threshold k (Huber, 1992)

Lk(δ, η) :=

{
|η − 1δ<0|(δ2/2k) if |δ| < k
|η − 1δ<0|(|δ| − k/2) otherwise. (4)

With this function FZ(s,a), different risk measures can be computed, like Cumulative Probability
Weight (CPW) (Tversky & Kahneman, 1992), Wang measure (Wang, 2000) or Conditional Value-
at-Risk. For example, the following equation (Acerbi, 2002) is used to compute CVaRα

CVaRα(Zπ) =
1

1− α

∫ 1

α

FZ−1(s,a)(τ)dτ (5)

It is also possible to extend distributional RL in a offline settings. For example, O-RAAC (Urpı́
et al., 2021) and following a previous work (Fujimoto et al., 2019), decomposes the actor into two
different component an imitation actor and a perturbation model. CODAC (Ma et al., 2021) extends
DSAC (Duan et al., 2021) in a offline settings. More precisely, the Qθ(η, s, a) are trained using the
following loss function

αEη∼U

[
Es∼D

[
log
∑
a

exp(Qθ(η, s, a))

]
− E(s,a)∼D [Qθ(η, s, a)]

]
+ Lk(δ, η′) (6)

where U = Uniform[0, 1]. The first term of the equation, and based on previous work (Kumar et al.,
2020), is introduced to prevent for too optimistic estimation for OOD state-action pairs. The second
term, Lk(δ, τ), is the classical objective function used to train the Q-function in a distributional
settings.

4 THEORETICAL CONSIDERATIONS

In this paper, we aim to train policies in a high-dimensional stochastic and offline settings. For a
practical point of view, our idea is quite straightforward. Since training with high dimensional space
directly failed and following previous work (Rafailov et al., 2021; Lee et al., 2019), we encode our
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high-dimensional states in more compact representation using φ : S → Z, where Z = φ(S). Using
φ, we build a MDP on the latent space and train policies directly on the top of this space.

However, for a theoretical point of view, this general idea is not really clear. Is this latent MDP
always well defined ? If we find a policy which minimizes a risk measure in the latent space, will it
also minimize the risk measure in the natural state ?

The first goal of this section is to rigorously construct a MDP in the latent space. Then, we show
that for special coherent risk measure and assuming some hypothesis, minimizing the risk measure
in the latent space and in the natural space is equivalent. In particular, we show that is the case for
Conditional Value-at-Risk.

4.1 THEORETICAL RESULTS

First, we make the following assumptions

1. ∀a ∈ A we have r(·|s, a) = r(·|s′, a) if φ(s) = φ(s′).

2. We note P(·|st, at) the probability measure with probability density function p(·|st, at).
We suppose that if st, s′t ∈ S satisfy φ(st) = φ(s′t), then P(·|st, at) = P(·|s′t, at).

3. We note Q(·|zt, at) the probability image of P(·|st, at) by φ and where st is any element
of φ−1(zt). We suppose Q(·|zt, at) admits a probability density functions q(·|zt, at).

Under these assumptions, φ induces a MDP (Z,A, q, r′, γ) where the reward distribution r′ is de-
fined as r′(·|z, a) := r(·|s, a) for any s ∈ φ−1(z). r′ is well defined by surjectivity of φ and by
assumption (1). Q is well defined by hypothesis (2).

Obviously, for a given policy π′ on the MDP (Z,A, q, r′, γ) and fixed lengthH , we have a trajectory
distribution

qπ′(τ
′) = q(z0)

H−1∏
t=0

π′(at|zt)q(zt+1|zt, at)r′(rt|zt, at)

Given a policy π and a fixed length H , we denote Ω the set of all trajectories on the MDP
(S,A, p, r, γ), F the σ-algebra generated by these trajectories and Pπ the probability with prob-
ability distribution pπ . Following the same idea and given a policy π′, we denote Ω′ the set of
trajectories of length H on the MDP (Z,A, q, r′), F ′ the σ-algebra generated by these trajectories
and Qπ′ the probability with probability distribution qπ′ . (Ω,F ,Pπ) and (Ω′,F ′,Qπ′) are proba-
bility spaces.

φ : S → Z induces a map

Ω: → Ω′

(s0, a0, r0, . . . , sH) 7→ (φ(s0), a0, r0, . . . , φ(s0))

With a slight abuse of notation, we write it φ.

We denote Π the set of all policies π on the MDP (S,A, p, r) which satisfies π(a|s) = π(a|s′) if
φ(s) = φ(s′). If π ∈ Π, then π induces a policy π′ on the MDP (Z,A, q, r′), taking π′(a|z) :=
π(a|s) where s is any element of φ−1(z).

For any π ∈ Π we denote π′ the associated policy on the MDP (Z,A, q, r′) as defined above.
Furthermore, we note Π′ := {π′ | π ∈ Π}. If π′ ∈ Π′, a policy π ∈ Π can be defined π(a|s) :=
π′(a|φ(s)). X is a random variable on Ω and X ′ a random variable on Ω′.

With all these notations, we can introduce our first result.

Lemma 4.1.1. Let π ∈ Π. Then, Qπ′ is the probability image of Pπ by φ.

This result is not really surprising but it has an interesting implication. Indeed, it applies that if
X ′ ◦ φ = X , then Eqπ′ [X

′] = Epπ [X]. And thus, we get the following result.

Corollary 4.1.2. Suppose X ′ ◦ φ = X . Then, if a policy π′? satisfies

π′? = arg min
π′∈Π′

Eqπ′ [X
′]
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its associated policy π? satisfies
π? = arg min

π∈Π
Epπ [X]

For a coherent risk measure R, we write U the risk envelope associated to R in Ω and U ′ the
corresponding associated risk envelope in Ω. If ∀δ ∈ U , ∃δ′ ∈ U ′ such that δ = δ′ ◦ φ and ∀δ′ ∈ U ′
∃δ ∈ U with δ = δ′ ◦ φ almost everywhere, we write U = U ′ ◦ φ.
Proposition 4.1.3. Let R be a coherent risk measure. Suppose that X ′ ◦ φ = X and U = U ′ ◦ φ.
Then, if a policy π′? satisfies

π′? = argminπ′∈Π′R(X ′)

its associated policy π? verifies
π? = argminπ∈ΠR(X)

This last result points out the role of the risk envelope in this equivalence.

However, the result of the last proposition is also verifies if supδ′∈U ′ Eqπ′ [δ
′X ′] = supδ∈U Epπ [δX].

Fortunately, this is the case for Conditional Value-at-Risk.
Lemma 4.1.4. Let U , U ′ the risk envelopes associated to CVaRα(X) and CVaRα(X ′) respectively.
Then, we have

sup
δ′∈U ′

Eqπ′ [δ
′X ′] = sup

δ∈U
Epπ [δX]

Therefore, we can deduce the following result.
Corollary 4.1.5. Suppose that X ′ ◦ φ = X . Then, if a policy π′? satisfies

π′? = argminπ′∈Π′CVaRα(X ′)

its associated policy π? verifies

π? = argminπ∈ΠCVaRα(X)

In particular, for X(τ) =
∑H
t=0−γtrt−βH(π(·|st)), and X ′(τ ′) :=

∑H
t=0−γtrt−βH(π′(·|zt)),

(with β ∈ R) we have

(X ′ ◦ φ)(τ) =

H∑
t=0

−γtrt − βH(π′(·|φ(st))) =

H∑
t=0

−γtrt − βH(π(·|st)) = X(τ)

Thus, we obtain the following result.

Corollary 4.1.6. LetX : Ω→ R andX ′ : Ω′ → R defined asX(τ) :=
∑H
t=0−γtrt−βH(π(·|st))

and X ′(τ ′) :=
∑H
t=0−γtrt − βH(π′(·|zt)). Then, if a policy π′? satisfies

π′? = argminπ′∈Π′CVaRα(X ′)

its associated policy π? verifies

π? = argminπ∈ΠCVaRα(X)

4.2 DISCUSSION

The results presented in the last section provide a theoretical equivalence between minimizing the
risk measure in the latent space and in the natural space. However, to obtain this guarantee we need
to make some assumptions.

Assumptions (1), (2) guarantee that the reward distribution r(·|st, at) and the probability measure
P(·|st, at) are insensitive to any change in φ−1(zt). Moreover π ∈ Π ensures that the policy distri-
bution is stable to any change in φ−1(zt). Thus, and roughly speaking these assumptions guarantee
we do not loss information encoding st into φ(st), in term of reward distribution, transition proba-
bility measure and the optimal policy.

These theoretical considerations points out that to learn a good latent representation of the natural
MDP, we should consider all components of the MDP and not only focus on the environment space.
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5 LATENT OFFLINE DISTRIBUTIONAL ACTOR-CRITIC

The theoretical results presented above justify our really natural idea: encode the natural environ-
ment space S into a smaller representation Z and then use a risk-sensitive offline RL algorithm to
learn a policy on the top of this space. This is the general idea of LODAC.

5.1 PRACTICAL IMPLEMENTATIONS OF LODAC

In this section, we present the practical implementation of LODAC. First, we need to learn a latent
variational latent model. To train a such model, and similar to Rafailov et al. (2021), the following
objective function is used

Eqθ

[
H−1∑
t=0

logD(st+1|zt+1)−DKL(φθ(zt+1|st+1, zt, at)||qθ(zt+1|zt, at))

]
(7)

Then, the dataset D is encoded into the latent space and stored into a replay buffer Blatent. More
precisely, Blatent contain transitions of the form (z1:H , r1:H , a1:H) where z1:H ∼ φθ(·|s1:H , aH−1)
and s1:H , r1:H−1, a1:H−1 ∼ D. After that, we introduce a latent buffer Bsynthetic which contains
rollouts transitions performed using the policy πθ, the latent model qθ and a reward estimator rθ.

The actor πθ and the critic Qθ are trained on B := Bsynthetic ∪ Blatent. To achieve this, we could
use any offline risk-sensitive RL algorithm. But based on our empirical results we follow Ma et al.
(2021). Thus, the critic Qθ(η, zt, at) is used to approximate the inverse quantile function. Qθ is
iteratively chosen to minimize

αEη∼U

[
Ez∼B

[
log
∑
a

exp(Qθ(η, z, a))

]
− E(z,a)∼B [Qθ(η, z, a)]

]
+ Lk(δ, η′) (8)

where U = Uniform[0, 1], δ = rt + γQθ(η
′, zt+1, at+1) − Qθ(η, zt, at), with (zt, at, rt) ∼ B,

at+1 ∼ πθ(·|zt) and Lk is the τ -Huber quantile regression loss as defined is (4). The actor is trained
to minimize Conditional Value-at-Risk of the negative cumulative reward, which can be computed
using the formula

CVaRα(Zπ) =
1

1− α

∫ 1

α

FZ−1(s,a)(τ)dτ (9)

Following previous works (Rafailov et al., 2021; Yu et al., 2021b), batches of equal data mixed from
Blatent and Bsynthetic are used to train πθ and Qθ. A summary of LODAC can be found in Appendix
D.

5.2 EXPERIMENTAL SETUP

In this section, we evaluate the performance of LODAC.

First, our method is compared with LOMPO (Rafailov et al., 2021), which is an offline high-
dimensional risk-free algorithm. Then, we build a version of LODAC where the actor and the
critic are trained using O-RAAC (Urpı́ et al., 2021). We denote it LODAC-O. Moreover, it is also
possible to use a risk-free offline RL. Thus, a risk-free policy is also trained in the latent space using
COMBO (Yu et al., 2021b).

These algorithms are evaluated using the standard walker walk task from the DeepMind Control
suite (Tassa et al., 2018), but here, we learn directly from the pixels. As a standard practice, each
action is repeated two times on the ground environment and episode of length 1000 are used. These
algorithms are tested on three different datasets : expert, medium and expert-replay. Each dataset
consists of 100K transitions steps.

For the stochastic environment, we transform the reward using the following formula

rt ∼
(
r(st, at)− λ1r(st,at)>rBp0

)
where r is the classical reward function. r, λ are hyperparameters and Bp0 is a Bernoulli distribution
of parameter p0. In our experiments, we choose λ = 8 and p0 = 0.1. Different value of r are used
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Table 1: Performance for the stochastic offline high-dimensional walker walk task on expert,
medium and expert replay datasets. We compare the mean and the CVaR0.7 of the returns. LODAC
outperforms other algorithms on the medium and expert replay datasets while achieving comparable
results on the expert dataset. We bold the highest score across all methods.

Dataset type Algorithm Mean CVaR0.7

expert LOMPO 8.67 1.92
expert COMBO 10.96 3.72
expert LODAC-O 18.54 4.92
expert LODAC 18.70 4.32

medium LOMPO 19.03 13.31
medium COMBO 16.25 11.18
medium LODAC-O 21.31 14.99
medium LODAC 27.85 21.37
expert replay LOMPO 23.22 16.03
expert replay COMBO 20.01 14.12
expert replay LODAC-O 5.73 0.28
expert replay LODAC 39.4 30.14

Table 2: Performance for the deterministic offline high-dimensional walker walk task on expert,
medium and expert replay datasets. We compare the mean and the CVaR0.7 of the returns. We bold
the highest score across all methods.

Dataset type Algorithm Mean CVaR0.7

expert LOMPO 14.56 0.99
expert COMBO 16.74 1.97
expert LODAC-O 13.25 2.79
expert LODAC 16.03 0.0

medium LOMPO 52.2 42.56
medium COMBO 43.71 25.89
medium LODAC-O 37.33 31.12
medium LODAC 33.08 5.79

expert replay LOMPO 55.86 35.10
expert replay COMBO 62.88 27.69
expert replay LODAC-O 15.81 2.90
expert replay LODAC 48.01 27.25

for each dataset such that about the half of the states verify r(st, at) > r. More details regarding the
construction of these datasets can be found in Appendix B.

Algorithms have been tested using the following procedure. First of all, to avoid computation time
and for a more accurate comparison, we use the same latent variable model for all algorithms. We
evaluate each algorithm using 100 episodes, reporting the mean and CVaRα of the returns. LODAC
and LODAC-O are trained to minimize CVaR0.7. LOMPO and COMBO are trained to maximize the
return. We run 4 different random seeds. As introduced in Fu et al. (2020), we use the normalized
score to compare our algorithms. More precisely, a score of 0 corresponds to a fully random policy
and a score of 100 corresponds to an expert policy on the deterministic task. However, and as
suggested in Agarwal et al. (2021), instead of taking the mean and the results , we consider the
interquantile means (IQN).
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5.3 RESULTS DISCUSSION

In this section, we discuss the results of our experiments. Our experimental results can be read in
the table 1 for the stochastic environment in table 2 for the deterministic environment. We bold the
highest score across all methods. Complete results of all different tests can be found in Appendix E.

Stochastic environment. The first general observation is that LODAC and LODAC-O gener-
ally outperform risk-free algorithms. The only exception is with the expert replay dataset where
LODAC-O provides worse results. This is not really surprising since actors trained with O-RAAC
contains an imitation component and obviously the imitation agent obtains really poor performance
on this dataset. Then, it can be noticed, that LODAC provides really interesting results. Indeed it
significantly outperforms risk-free algorithm in term of CVaR0.7 and return on all datasets. More-
over, it provides better results than LODAC-O on the medium and the expert replay dataset, while
achieving comparable result on the expert dataset. A final observation is that risk-free RL policies
provide generally bad performances on this stochastic environment.

Deterministic environment. First, a drop of performance between the deterministic and the
stochastic environment can be noticed. This is not really surprising since stochastic environments
are more challenging than deterministic environments. However this modification seems to affect
more risk-free algorithms than LODAC-O or LODAC. Indeed, we get a difference of more than 27%
with LOMPO and COMBO on the medium and expert replay dataset in term of return between the
deterministic and the stochastic environment. This difference even achieves 42% for COMBO on
the expert replay dataset. For LODAC-O and for the same tasks, we obtain a deterioration of less
than 17%. In the opposite to previous risk-free methods and in a lesser degree LODAC-O, adding
stochasticity in the dataset does not seem to have a big impact of the performance of LODAC. In-
deed, with this algorithm we observe a drop of performance of less than 9%. For the medium dataset,
a difference of only 5, 23% can even be noticed.

6 CONCLUSION

While offline RL appears to be an interesting paradigm for real-world application, some of these real-
world application are high-dimensional and stochastic. However, current high-dimensional offline
RL algorithms are trained and tested in deterministic environments. Our empirical results suggest
that adding stochasticity to the training dataset significantly decreases the performance of high-
dimensional risk-free offline RL algorithms.

Based on this observation, we develop LODAC. LODAC can be used to train policies in high-
dimensional stochastic and offline settings. Our theoretical considerations in section 4 show that our
algorithm relies on a strong theoretical foundation. In the opposite to previous risk-free methods,
adding stochasticity in the dataset does not seem to have a big impact of the performance of LODAC.
Finally, the use of LODAC to minimize Conditional Value-at-Risk empirically outperforms previous
algorithms in term of CVaR and return on stochastic high-dimensional environments.
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A PROOFS

A.1 LEMMA 4.1.1

Lemma A.1.1. Let π ∈ Π. Then, Qπ′ is the probability image of Pπ by φ.

Proof. Let B′ := Z0 ×A0 ×R0 × . . . ZH ∈ F ′. We have

Qπ′(B′) =

∫
B′
qπ′(τ

′)dτ ′

=

∫
Z0

q(z0)

(∫
A0×R0×...×ZH

π′(a0|z0)r′(r0|a0, z0) . . . q(zz|zH−1, aH−1)da0dr0 . . . dzH

)
dz0

=

∫
φ−1(Z0)

p(s0)

(∫
A0×R0×...×ZH

π′(a0|φ(s0))r′(r0|a0, φ(s0)) . . . q(zz|zH−1, aH−1)da0dr0 . . . dzH

)
ds0

=

∫
φ−1(Z0)

p(s0)

(∫
A0×R0×...×ZH

π(a0|s0)r(r0|a0, s0) . . . q(zz|zH−1, aH−1)da0dr0 . . . dzH

)
ds0

=

∫
φ−1(Z0)×A0×R0

p(s0)π(a0|s0)r(r0|a0, s0)(∫
Z1×A1×...×ZH

q(z1|φ(s0))π′(a1|z1) . . . q(zz|zH−1, aH−1)dz1 . . . dzH

)
ds0da0dr0

=

∫
φ−1(Z0)×A0×R0×φ−1(Z1)

p(s0)π(a0|s0)r(r0|a0, s0)p(s1|s0, a0)(∫
A1×...×ZH

q(z1|φ(s0))π′(a1|z1) . . . q(zz|zH−1, aH−1)da1 . . . dzH

)
ds0da0dr0ds1

= ...

=

∫
φ−1(Z0)×...φ−1(ZH)

p(s0)π(a0|s0)r(r0|a0, s0) . . . p(sH |sH−1, aH−1)ds0 . . . dsH

=

∫
φ−1(B′)

pπ(τ)dτ

= Pπ(φ−1(B′))

A.2 PROPOSITION 4.1.3

Proposition A.2.1. Let R be a coherent risk measure. Suppose that X ′ ◦ φ = X and U = U ′ ◦ φ.
Then, if a policy π′? satisfies

π′? = argminπ′∈Π′R(X ′)

its associated policy π? verifies
π? = argminπ∈ΠR(X)

Proof. Since U = U ′ ◦ φ, we have

sup
δ′∈U ′

Eqπ′ [δ
′X ′] = sup

δ∈U
Epπ [δX]

Thus
Rqπ′ (X

′) := sup
δ′∈U ′

Eqπ′ [δ
′X ′] = sup

δ∈U
Epπ [δX] = Rpπ (X)

Now, let π′? = argminπ′∈ΠRqπ′ (X
′) and π? the associated policy in S. By contradiction, suppose

there exists π1 withRpπ1 (X) < Rpπ? (X). But in this case and by the above observation, we would
haveRqπ′1 (X ′) < Rqπ′? (X ′).
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A.3 LEMMA 4.1.4

Lemma A.3.1. Let U , U ′ the risk envelopes associated to CVaRα(X) and CVaRα(X ′) respectively.
Then, we have

sup
δ′∈U ′

Eqπ′ [δ
′X ′] = sup

δ∈U
Epπ [δX]

Proof. Recall that the risk envelope of the CVaRα, takes the form U = {δ | 0 ≤ δ ≤ 1
α , E[δ] = 1}.

• Let δ′ ∈ U ′. We define δ := δ′ ◦ φ. By construction we have 0 ≤ δ ≤ 1
α ,

Epπ [δ] = Eqπ′ [δ
′] = 1 and Eqπ′ [δ

′X ′] = Epπ [δX].

• Let δ ∈ U . By definition, δpπ is a density function. Let P̃π its associated probability
measure. We consider Q̃π′ the probability image of P̃π by φ. Then, remark that Q̃π′ is
absolutely continuous with respect to Qπ′ . Indeed, if A ∈ F ′ satisfies Qπ′(A) = 0, we
have

Q̃π′(A) = P̃π(φ−1(A)) =

∫
φ−1(A)

δ(τ)pπ(τ)dτ

≤ 1

α
Pπ(φ−1(A)) =

1

α
Qπ′(A) = 0

Thus by Radon-Nikodym, there exists δ′ ≥ 0, such that for all B ∈ F ′

Q̃π′(B) =

∫
B

δ′dQπ′ =

∫
B

δ′(τ ′)qπ′(τ
′)dτ ′

We will show that à δ′ ∈ U ′. We define C := {τ ′ ∈ Ω′ | δ′(τ) > 1
α}. By contradiction,

suppose that Qπ′(C) > 0. One one hand have

Q̃π′(C) =

∫
C

δ′(τ ′)qπ′(τ
′)dτ ′ >

1

α

∫
C

qπ′(τ
′)dτ ′ =

1

α
Qπ′(C)

And the other hand, we have

Q̃π(C) = P̃π(φ−1(C)) =

∫
φ−1(C)

δ(τ)pπ(τ)dτ ≤ 1

α
Pπ(φ−1(C)) =

1

α
Qπ′(C)

And thus, we must have Qπ′(C) = 0.

Thus, 0 ≤ δ′ ≤ 1
α a.e. and therefore δ′ ∈ U ′. And since, δ′qπ′ is the density function of

the probability image of P̃π , we obtain Eδpπ [X] = Eδ′qπ′ [X
′].

B DATASETS

In this section, we describe more precisely how we build our training datasets.

• Expert. For the expert dataset, actions are chosen according to an expert policy which has
been trained online, in a risk-free environment using SAC for 500K training steps. For this
training, the states are the classical states provided by DeepMind Control suite.

• Medium. In this dataset, actions are chosen according to a policy which has been trained
using the same method as above, but here, the training has been stopped when it achieves
about the half performance of the expert policy.

• Expert replay. The expert replay dataset consists of episode which are sampled from the
expert policy during the training.
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The setup presented above allow to build the deterministic datasets.

For the stochastic environment, we transform the reward using the following formula

rt ∼
(
r(st, at)− λ1r(st,at)>rBp0

)
where r is the classical reward function. r, λ are hyperparameters and Bp0 is a Bernoulli distribution
of parameter p0. In our experiments, we choose λ = 8 and p0 = 0.1. Different value of r are used
for each dataset such that about the half of the states verify r(st, at) > r.

C IMPLEMENTATIONS DETAILS

In this section, we present some details related to our implementations.

Latent variable model. Following previous works (Rafailov et al., 2021; Yu et al., 2021b), our
latent variable model contains the following components

Image encoder : ht = Eθ(st)

Inference model : zt ∼ φθ(·|ht, zt−1, at−1)

Latent transition model : zt ∼ qθ(·|zt−1, at−1)

Reward estimator : rt ∼ rθ(·|st)
Image decoder : st ∼ Dθ(·|zt)

The image encoder Eθ is a classical Convolutional Neural Network. The inference and the latent
transition model are implemented as a Recurrent State Space Model (RSSM), (Hafner et al., 2019b).
More precisely, a latent state zt has two components zt = [dt, xt]. dt is the deterministic part and xt
the stochastic. dt is computed using a GRU cell dt = fθ(zt−1, at−1) and the stochastic component
xt is computed using, xt ∼ φθ(·|ht, dt), for the inference model, and xt ∼ qθ(·|dt, xt−1, at−1) for
the latent transition model. Both qθ and the reward estimator are implemented as MLP. Finally, the
decoder Dθ is a Deconvolutional Neural Network.

Actor-critic. First, recall that our initial critic loss function is

α Eη∼U

[
Ez∼B

[
log
∑
a

exp(Qθ(η, z, a))

]
− E(z,a)∼B [Qθ(η, z, a)]

]
+ Lk(δ, η′) (10)

But following Kumar et al. (2020); Ma et al. (2021), we add two parameters ζ, ω ∈ R>0 to the last
equation

maxα≥0 α Eη∼U

[
ω

[
Ez∼B

[
log
∑
a

exp(Qθ(η, z, a))

]
− E(z,a)∼B [Qθ(η, z, a)]

]
− ζ

]
+Lk(δ, η′)

ζ thresholds the difference between E(z,a)∼B [Qθ(η, z, a)] and the regulizer
Ez∼B [log

∑
a exp(Qθ(η, z, a))]. The parameter ω scales this difference.

Remark that if this difference (scaled to ω) is smaller than the parameter ζ, then α will be set to 0
and only the term Lk(δ, η′) will be taken into account.

Moreover, since the action space A is continuous, the computation log
∑
a exp(Qθ(η, z, a) is in-

tractable. To avoid this problem and as introduced in (Kumar et al. (2020)) we use

log
∑
a

exp(Qθ(η, z, a)) ≈ log

 1

2M

M∑
ai∼U(A)

[
exp(Qθ(η, z, a))

U(A)

]
+

1

2M

M∑
ai∼π(·|z)

[
exp(Qθ(η, z, a))

π(ai|z)

]
where U(A) = Unif(A) and we choose M = 10.

Then, we use an implicit quantile network (IQN), (Dabney et al., 2018) to represent our critic
Qθ(η, z, a) and the actor πθ(·|z) consists of a simple MLP which is trained to minimize

CVaRα(Zπ) =
1

1− α

∫ 1

α

Qθ(η, z, a)dη (11)
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D MAIN ALGORITHM

The full implementation of LODAC can be read in algorithm (1).

Algorithm 1: LODAC
Input: dataset D, models train steps, initial latent steps, number iterations, number actor-critic

steps, rollout length L
1 for models train steps do
2 Sample a batch of sequence (s1:H , a1:H−1, r1:H−1) from D and train a variational latent

model using equation (7) and a reward estimator rθ.
3 end
4 for Initial latent step do
5 Sample a batch of sequence (s1:H , a1:H−1, r1:H−1) from D
6 Sample z1:H from the latent model and add the transitions (z1:H , a1:H−1r1:H−1) to Blatent.
7 end
8 for initial synthetic latent steps do
9 Sample a batch of sequences (s1:H , a1:H−1, rH−1) from D

10 Sample a set of latent states S ∼ φθ(·|s1:H , a1:H−1) from the trained latent model. for
s0 ∈ S do

11 for h ∈ {1 : L} do
12 Sample a random action ah−1 and zh ∼ qθ(·|zh−1, ah−1); estimate the reward

rt ∼ rθ
13 Add (zh−1, ah−1, zh, rh) to Bsynthetic.
14 end
15 end
16 end
17 for number iterations do
18 for number actor-critic steps do
19 Sample transitions from Blatent ∪ Bsynthetic
20 Train the critic to minimize (8)
21 Train the actor to minimize CVaRα(Zπ) which can be computed using the Q(η, z, a)

and equation (9).
22 end
23 for rollout steps do
24 Sample a batch of sequences (s1:H , a1:H−1, rH−1) from D
25 Sample a set of latent states S ∼ φθ(·|s1:H , a1:H−1) from the trained latent model. for

s0 ∈ S do
26 for h ∈ {1 : L} do
27 Sample action ah−1 ∼ πθ(·|zh−1) and zh ∼ qθ(·|zh−1, ah−1); estimate the

reward rt
28 Add (zh−1, ah−1, zh, rh) to Bsynthetic.
29 end
30 end
31 end
32 end

E COMPLETE EXPERIMENTAL RESULTS

In this section, we present our complete empirical results. More precisely, in the table 4, all results
of the stochastic environment can be found. And on the table 3, all results on the deterministic can
be read.
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Table 3: Complete results for the deterministic offline high-dimensional walker walk task on expert,
medium and expert replay datasets. We compare the mean and the CVaR0.7 of the returns.

Expert Medium Expert replay

Mean CVaR0.7 Mean CVaR0.7 Mean CVaR0.7

LOMPO 174 65 419 298 410 274
177 98 583 501 523 341
71 26 515 437 601 411

193 37 527 428 586 387

COMBO 217 62 345 263 662 395
190 58 458 296 742 501
201 95 554 476 576 197
38 21 428 246 359 160

LODAC-O 149 68 385 334 107 59
178 44 428 357 194 104
149 73 381 309 224 51
186 67 384 321 180 78

LODAC 265 43 628 458 460 271
103 31 416 52 505 313
306 65 275 134 421 193
113 34 194 56 509 313

Table 4: Complete results for the stochastic offline high-dimensional walker walk task on expert,
medium and expert replay datasets. We compare the mean and the CVaR0.7 of the returns.

Expert Medium Expert replay

Mean CVaR0.7 Mean CVaR0.7 Mean CVaR0.7

LOMPO 150 62 219 161 258 187
129 57 227 167 259 201
114 62 201 141 252 191
108 46 214 171 238 173

COMBO 169 123 196 153 238 182
167 101 202 159 171 101
73 40 179 132 250 192

118 51 186 136 213 161

LODAC-O 210 110 238 181 60 44
173 69 241 178 97 43
214 105 237 190 92 51
228 69 208 153 118 45

LODAC 303 93 299 244 406 326
112 23 287 235 391 279
227 87 299 241 413 336
200 76 296 228 401 311
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