

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TAMING LARGE LANGUAGE MODELS FOR FREE-FORM GENERATION VIA REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Evaluating open-ended free-form generation is challenging because it is hard to define what clearly separates good from bad outputs. Existing methods often miss key aspects like coherence, style, or relevance, or are biased by pretraining data, making open-ended long-form evaluation an underexplored problem. To address this gap, we propose semantic evaluation, a scoring model using an LLM as reward model for evaluating open-ended free-form generation in GRPO and guiding its training to produce enough distinct rewards for good and bad outputs. Through comprehensive evaluations, including LLM-as-a-judge, human ratings, and qualitative analysis, we show that using LLM scorers trained on multi-sentence and paragraph-length responses, remains more reliable across varied long passages and aligns well with the verifiable rewards GRPO needs than standard free-form metrics. Human evaluations confirm that using trained LLM rewards as the reward signal to train policy models yields responses better aligned with human preferences than those trained with traditional metrics.

1 INTRODUCTION

Identifying the good and bad generations is the key to the success of reinforcement learning with verifiable rewards (RLVR) to improve LLMs' abilities on structured rule-based tasks such as mathematical problem-solving (Ahn et al., 2024), classification (Rouzegar & Makrehchi, 2024), and game planning (Shao et al., 2019). RLVR algorithms like Group Relative Policy Optimization (GRPO) excel in mathematical problem-solving tasks by leveraging clear, rule-based reward signals (e.g., correctness) that effectively distinguish between correct and incorrect responses (DeepSeek-AI et al., 2025). However, despite these advances, extending GRPO to open-ended, free-form text generation tasks, such as generating travel plans, creative compositions, instruction-following, remains largely underexplored. A key challenge in applying GRPO to open-ended generation is the lack of quantifiable evaluation criteria, making it difficult to distinguish high-quality responses from poor ones. (Krishna et al., 2021). Unlike structured tasks evaluated by explicit correctness criteria, free-form generation requires models to balance coherence, fluency, and informativeness which are all subjective dimensions that are hard to define with discrete rules. This makes reward design a fundamental challenge in GRPO: How do we guide a model to write better, not just longer?

A key barrier is the lack of reliable, scalable evaluation methods. Popular metrics like ROUGE (Lin, 2004) and BERTScore (Zhang et al., 2020) that measure lexical or embedding-level similarity to a reference often fail to capture qualities that humans actually care about, such as clarity, relevance, and stylistic appropriateness (Chen et al., 2019; Li et al., 2024). Thus, traditional metrics correlate poorly with human preferences, making them unreliable reward signals in GRPO pipelines. Recent work has applied general reward models (GRM) (Lambert et al., 2024) in RLHF to select preferred responses, but they are not designed as verifiable rewards for GRPO, and their large size introduces latency and high computational cost. As shown in Figure 1, traditional metrics fail to distinguish between clearly better and worse responses, assigning similar scores to both, while GRM rewards often correlate with length rather than content quality.

To address open-ended evaluation in GRPO, we propose FreeForm-RM, a LLaMA 3-based (Grattafiori et al., 2024) model trained on diverse free-form responses and human ratings to provide free-form response quality evaluation. We hypothesize that trained FreeForm-RM can provide stronger reward signals than traditional metrics, enabling GRPO to guide models that generate more meaningful free-form responses.

054			
055	Question: Sign the petition to save The Exorcist! Respond in 66 words.		
056	Model Response 1 (688 words):	Reward	
057	Signing the petition to save *The Exorcist* is a misinterpretation. *The Exorcist* is a protected work	ROUGE-I: 0.06	
058	of fiction and cultural icon, not an entity that can "be saved" in a literal sense. Petitions typically aim	BERTScore: 0.82	
059	to influence real-world issues, not protect fictional properties. Supporting its legacy means		
060	preserving it in media, education, and culture, not through real-world petitioning.		
061	...		
062	Model Response 2 (58 words):	RewardBERT	0.45
063	Absolutely, signing the petition to save The Exorcist encapsulates powerful collective action and	FreeForm-LM: 0.37	
064	passion, aligning personal love for the iconic film with broader efforts to preserve cultural treasures.	Human Rating: 1	
065	Each signature amplifies voices, highlighting why this beloved work deserves protection, fostering		
066	community around shared cultural heritage and ensuring timeless stories		
067	endure, resonating across generations just like The Exorcist does now and forever.		
068	Reference Answer (66 words):	Reward	
069	FOX has canceled The Exorcist , but we won't let it end here. Let's bring it back — to Netflix, Prime Video, Hulu, SYFY, or	ROUGE-I: 0.08	
070	ABC.	BERTScore: 0.80	
071	Join Agni Flasza and over 12,000 supporters in demanding a new home for this powerful series. Together, we can revive The		
072	Exorcist and keep the story alive.		
073	Sign and share the petition: Save The Exorcist !...		
074			
075	Traditional Metrics (ROUGE-I, BERTScore): Not distinguish the good and bad responses		
076	General Reward Model (GRM-llama-3B) & BERTReward: Explicitly trained with human rating data and correlates with		
077	human ratings		

Figure 1: Differentiating between good and bad outputs is important for incorporating open-ended generation into the RLVR frameworks. However, a key challenge in rewarding open-ended responses is measuring semantic similarity between reference and model-generated responses. Training a reward model on free-form responses with human ratings can address this challenge by generating more reliable rewards that better correlate with human judgments.

Through extensive evaluations—including LLM-as-a-judge point-wise scoring, pairwise Bradley-Terry ranking analyses (Bradley & Terry, 1952), and human rating and qualitative evaluation—we show that leveraging stronger, FreeForm-RM improves the quality of open-ended text generation across three free-form datasets—EL15 (Fan et al., 2019), Alpaca (Taori et al., 2023a), LongForm (Köksal et al., 2023). Our results show that using trained evaluators as reward signals in GRPO leads to better alignment with human preferences for open-ended response generation compared to traditional string comparison and word overlapping metrics. Furthermore, smaller models (e.g., Qwen-2.5-3B-Instruct (Qwen et al., 2025)) trained with our enhanced reward models generate similarly preferred and concise responses as their larger counterparts (e.g., Qwen-2.5-32/72B-Instruct), and outperform models trained with traditional supervised fine-tuning (SFT) in preference quality. Our contributions are:

- We introduce FreeForm-RM, a lightweight free-form reward model that can be easily extended to GRPO training. We validate using FreeForm-RM in GRPO to train models on across multiple open-ended generation benchmarks (EL15, Alpaca, LongForm), showing resulting model have an overall higher alignment with human preferences compared to traditional metrics and SFT training.
- Through human expert annotations, we further confirm that models trained with FreeForm-RM align better with human preferences than traditional metrics as rewards, showing a promising direction for using GRPO to improve open-ended generation.

2 RELATED WORK

RLVR for LLM alignment: RLVR is pivotal in aligning LLMs with human preferences by optimizing non-differentiable objectives, making it valuable for tasks like dialogue (Li et al., 2016), summarization (Roit et al., 2023), code generation (Le et al., 2022) and question generation (Huang et al., 2025). Popular RLHF methods include DPO, which applies a classification loss over preference data, and PPO, which trains a reward model to guide generation (Wu et al., 2023). However, both of them require substantial human-annotated data or computational resources. To address

108 this, GRPO (DeepSeek-AI et al., 2025) leverages self-generated data and simple, verifiable reward
 109 functions to reduce annotation needs, especially for tasks with clear correctness signals like math(Liu
 110 et al., 2025). Extensions such as DAPO(Yu et al., 2025), GRPO-LEAD(Zhang & Zuo, 2025) and
 111 DISCO (Zhou et al., 2025b) broaden GRPO’s capabilities in math problem solving. However, these
 112 approaches still rely on rule-based reward designs, leaving their application to open-ended, free-form
 113 generation task underexplored.

114
 115 **Free-form and open-ended evaluation:** Evaluating free-form and open-ended generation in LLMs
 116 remains difficult (Krishna et al., 2021; Chen et al., 2019). Unlike short-form tasks with clear
 117 correctness signals, free-form outputs, like summaries, dialogues, or open-ended answers, lack
 118 binary ground truths and require assessing coherence, factuality, structure, and helpfulness (Chiang
 119 et al., 2024; Fabbri et al., 2021; Li et al., 2025a). Traditional metrics such as ROUGE(Lin, 2004),
 120 BLEU(Papineni et al., 2002), and BERTScore(Zhang et al., 2020) rely on token overlap or embeddings
 121 but poorly reflect semantic or pragmatic qualities, often misaligning with human judgments(Chen
 122 et al., 2019). To overcome this, LLM-as-a-judge offers more nuanced evaluation through pairwise
 123 comparisons or Likert ratings, aligning better with human preferences (Chiang et al., 2024; Gu et al.,
 124 2025; Zheng et al., 2023; Zhou et al., 2025a). However, this approach introduces heavy computational
 125 costs, especially in GRPO where multiple generations and evaluations per prompt are needed (Luo
 126 et al., 2025), limiting accessibility for users with modest resources. Some efforts fine-tune small
 127 models using human ratings to act as open-source judges (Kim et al., 2024; Yang et al., 2024; Chen
 128 et al., 2020; Zhou & Ai, 2024), useful for ranking or evaluation (Li et al., 2024; Krumdick et al.,
 129 2025). Still, few explore using them as verifiable rewards in training, leaving this an open area for
 130 research.

131 3 CONCEPTUAL BACKGROUNDS

132 In this section, we first review GRPO training and existing verifiable rewards for free-form generation,
 133 and then introduce how FreeForm-RM can be used as a reward signal to improve learning robustness
 134 and effectiveness.

135 3.1 PRELIMINARIES ON GRPO

136 GRPO is an RL algorithm designed to refine language model policies, π_ϕ , using reward signals
 137 contextualized within a group of candidate responses. Given a prompt x from dataset \mathcal{D} , GRPO
 138 samples G responses $y_i = y_1, \dots, y_G$ from the old policy $\pi_{\phi_{\text{old}}}(y|x)$. Each response y_i is assigned
 139 a scalar reward $r(x, y_i)$ (detailed in the following subsections). The group-normalized advantage
 140 $A(x, y_i)$ is then computed as:

$$141 A(x, y_i) = \frac{r(x, y_i) - \bar{r}(x)}{\sigma_r(x)}, \quad (1)$$

142 where $\bar{r}(x) = \frac{1}{G} \sum_{j=1}^G r(x, y_j)$ and $\sigma_r(x)$ are the mean and standard deviation, respectively, of
 143 rewards $r(x, y_j)$ within the group Y . This normalization contextualizes each advantage relative to
 144 the group’s current performance.

145 The new policy $\pi_\phi(y|x)$ is optimized by maximizing the GRPO objective, which combines a clipped
 146 surrogate loss with a Kullback-Leibler (KL) divergence penalty (Kullback & Leibler, 1951) against a
 147 reference model $\pi_{\text{ref}}(y|x)$ for regularization (Equation 6, in Appendix B).

148 Although originally applied to tasks with explicit, rule-based rewards (e.g., correctness or win/loss),
 149 GRPO’s reliance on advantage estimation and KL-regularized updates allows it to learn from scalar
 150 feedback, making it well-suited for open-ended tasks where response quality lies on a spectrum rather
 151 than binary correctness.

152 3.2 EXISTING POPULAR METHODS FOR SCORING OPEN-ENDED GENERATION

153 Current scoring methods for open-ended generation mainly fall into two categories. The first are
 154 reference-based metrics, a method commonly used in natural language generation. These methods
 155 score the generations over metrics like string overlap or embedding similarity. While easy to apply,
 156 they correlate poorly with human preferences on free-form outputs (Chen et al., 2019; 2020; Kim

162 et al., 2024; Li et al., 2024; Gu et al., 2025; Li et al., 2025b; Zhou et al., 2025c). The alternative is
 163 to train BERT-based transformer models (Warner et al., 2024) on free-form rating data to generate
 164 rewards–BERTReward. Li et al. (2024); Bulian et al. (2022) show that finetuning BERT-based
 165 models leads to better human correlation than simple BERTscore on answer judgments. In our work,
 166 we use two reference-based metrics, ROUGE and BERTScore, and one reward model–based method,
 167 BERTReward, as baselines.

168 ROUGE (Lin, 2004) is a reference-based metric that measures n -gram overlap between generated
 169 and reference texts. Variants include ROUGE-1, ROUGE-2, and ROUGE-L, which capture unigram/bi-
 170 gram matches and the longest common subsequence, respectively.

172 BERTScore (Zhang et al., 2020) is a reference-based metric that measures semantic similarity
 173 between the reference and generation using contextual embeddings. It has shown a stronger correlation
 174 with human judgments than token overlap metrics like ROUGE on free-form generation and translation
 175 tasks. However, its reliability diminishes on modern datasets and models (Bhandari et al., 2020).

177 **BERTReward** is adopted from Li et al. (2024); Bulian et al. (2022) that training a BERT-based
 178 model leads to better correlation with human judgments than ROUGE and BERTScore. Thus, we
 179 train BERTReward, a 150M parameters model that provides finetuned reward signals for GRPO
 180 training. Built on ModernBERT (Warner et al., 2024), the model is trained on triplets $(x_i^{\text{ref}}, x_i^{\text{gen}}, s_i)$
 181 from Prometheus-preference (Kim et al., 2024) and MOCHA (Chen et al., 2020) datasets, where
 182 reference and generated answers are concatenated with $[SEP]$ tokens and passed through a linear
 183 regression head with sigmoid activation to predict normalized Likert scores $\hat{r}_i \in (0, 1)$ via MSE loss
 184 minimization. This approach offers a more robust alternative to BERT-based evaluation than simple
 185 untrained BERTScore.

186 3.3 TRAINING FREEFORM-RM

188 To ensure a more robust and semantic rich reward evaluation, we fine-tune a causal Llama-3-
 189 3B (Grattafiori et al., 2024) backbone on triplets $(x_i^{\text{ref}}, x_i^{\text{gen}}, s_i)$ with the Prometheus free-form quality
 190 rating dataset (Kim et al., 2024), where $s_i \in \{1, 2, 3, 4, 5\}$ represents the human Likert score. We
 191 normalize each score to the $[0, 1]$ range as:

$$192 \quad 193 \quad r_i = \frac{s_i - 1}{4}, \quad \text{where } r_i \in [0, 1] \quad (2)$$

195 Each example is serialized using explicit tags as:

$$196 \quad 197 \quad x_i^{\text{prompt}} = \langle \text{s} \rangle \langle \text{REF} \rangle x_i^{\text{ref}} \langle / \text{REF} \rangle \langle \text{CAND} \rangle x_i^{\text{gen}} \langle / \text{CAND} \rangle \langle \text{s} \rangle \quad (3)$$

198 The input is tokenized using the Llama sentence-piece tokenizer with right-padding and a maximum
 199 length of 1,024 tokens.

200 **Reward Value Head Adapter.** Let $f_\theta : \mathcal{X} \rightarrow \mathbb{R}^d$ denote the Llama encoder, and let $h_i =$
 201 $f_\theta(x_i^{\text{prompt}})_0$ be the hidden state corresponding to the $\langle \text{s} \rangle$ token. We employ a single-neuron value
 202 head that maps h_i to a normalized prediction:

$$204 \quad 205 \quad \hat{r}_i = \sigma(w^\top h_i + b), \quad \text{where } \sigma(z) = \frac{1}{1 + e^{-z}} \quad (4)$$

206 This ensures $\hat{r}_i \in (0, 1)$. The affine parameters $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ are randomly initialized.

208 **Training Objective** We minimize the mean squared error loss between predicted and normalized
 209 scores:

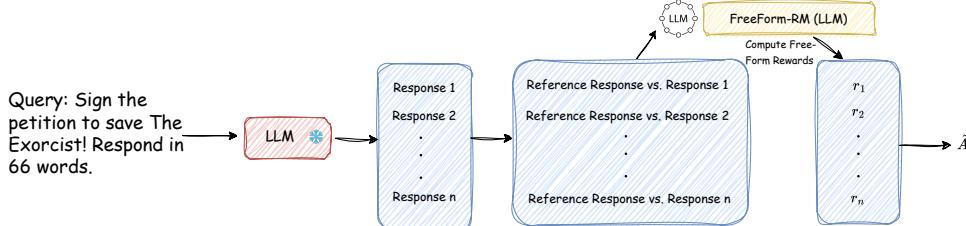
$$210 \quad 211 \quad \mathcal{L} = \frac{1}{N} \sum_{i=1}^N (\hat{r}_i - r_i)^2 \quad (5)$$

212 where N is the batch size. Label smoothing of 0.05 is applied to r_i to improve calibration.¹

214 ¹We use 4-bit LoRA adapters on $\{\text{q_proj}, \text{v_proj}\}$ layers with rank $r = 32$ and scaling factor $\alpha = 64$. We
 215 use AdamW optimizer with initial learning rate $\eta_0 = 5 \times 10^{-5}$, cosine decay schedule, effective batch size of
 16 (4 gradient accumulation steps), and 3 training epochs with maximum sequence length of 1024.

216 **4 EXPERIMENT SETUP**

218 With the background on GRPO and the various reward signals established, we now outline our
 219 experimental setup, including the datasets, base models, and training methods.
 220



221
 222
 223
 224 Figure 2: For each open-ended query, the policy model generates n candidate responses, which are
 225 then evaluated by FreeForm-RM to obtain quality scores that are used to compute advantages for
 226 GRPO training.
 227

228 **4.1 FREE-FORM AND OPEN-ENDED DATASETS**

229 We use three datasets featuring free-form responses that span a broad spectrum of topics. They cover
 230 diverse styles of free-form responses averaging 185 words, requiring evaluation across long sentences
 231 rather than correctness.² More details on each dataset are in §C.
 232

233 **ELI5** (Fan et al., 2019) is a collection of questions and answers from Reddit’s r/explainlikeimfive
 234 community.³ We sample 10,444 questions as the train set and 1,056 as the test set.
 235

236 **Alpaca** (Taori et al., 2023b) is a collection of 52K instruction-response pairs generated by OpenAI’s
 237 text-davinci-003 in the style of Self-Instruct (Wang et al., 2022). We use 10,444 examples as the train
 238 set and 1,334 as the test set.
 239

240 **LongForm** (Köksal et al., 2023) is built from English documents (e.g., Wikipedia (Wikipedia
 241 contributors, 2025), C4 (Dodge et al., 2021)) paired with reverse-instruction prompts generated by
 242 LLMs. We exclude coding tasks, sampling 8,648 training and 956 test examples.
 243

244 We merge the three sampled datasets together as our free-form train/test set.
 245

246 **4.2 TRAINING SETUP**

247 **GRPO for open-ended generation:** We train policy models using GRPO within the OpenRLHF
 248 framework (Hu et al., 2024), optimizing each of the four reward signals from Section 3 separately:
 249 ROUGE-L, BERTScore, BERTReward, and FreeForm-RM,. We use two base models, Qwen2.5-1.5B-
 250 Instruct and Qwen2.5-3B-Instruct (Qwen et al., 2025). In the training prompt, we encourage models
 251 to be relevant, clear, concise, and complete (more details in Appendix Table 5).⁴

252 **Supervised Finetuning (SFT):** We run SFT on Qwen2.5-Instruct size 1.5B and 3B and use the
 253 reference responses as ground truth labels.⁵

254 **5 AUTOMATIC EVALUATION**

255 We use our test set to evaluate our trained models, as well as larger off-the-shelf models: Qwen2.5-
 256 Instruct 7B, 32B, and 72B. For evaluation, we use LLM-as-a-judge to evaluate the quality of the
 257

²Examples in §Table 4.

³<https://www.reddit.com/r/explainlikeimfive/>

⁴All GRPO models are trained on 4 A6000 GPUs for one epoch, with a global batch size of 128, group size of 4, and learning rate of 1e-6. We set both max prompt length and max generation length to 1024.

⁵All SFT models are trained on 4 A6000 GPUs for three epochs, with a global batch size of 128, learning rate of 1e-5, and max tokens of 4096.

Model	Mean Likert Scores				Success Rates with Score ≥ 4 (%)				Bradley-Terry Win Rate (%)			
	EL15	LongForm	Alpaca	Overall	EL15	LongForm	Alpaca	Overall	EL15	LongForm	Alpaca	Overall
Base LLM												
Qwen2.5-72B-Instruct	4.13	3.12	3.88	3.79	86.63	22.38	72.41	65.73	8.48	6.38	6.40	7.28
Qwen2.5-32B-Instruct	4.10	2.96	3.89	3.74	87.02	18.62	73.61	65.37	7.59	4.57	6.26	6.38
Qwen2.5-7B-Instruct	4.04	2.95	3.82	3.69	77.38	18.83	66.64	59.10	7.10	4.69	5.60	6.01
Qwen2.5-3B-Instruct	3.90	2.88	3.75	3.59	66.00	17.99	63.57	53.22	4.85	3.95	4.94	4.78
Qwen2.5-1.5B-Instruct	3.61	2.26	3.44	3.21	49.16	10.25	47.38	38.87	2.52	1.41	2.71	2.34
RL-Finetuned Policy Models (GRPO)												
3B-FreeForm-RM	4.39	3.56	4.23	4.13	96.59	38.91	87.93	79.25	21.11	19.23	15.35	18.55
3B-BERTReward	4.28	3.52	4.29	4.10	94.15	37.55	89.51	78.47	14.80	17.68	19.81	17.38
3B-BERTScore	3.79	2.79	3.63	3.49	60.73	11.09	59.30	47.89	3.23	3.05	3.54	3.42
3B-ROUGE-L	3.66	2.69	3.51	3.37	51.16	7.32	52.55	40.74	2.28	2.47	2.64	2.58
1.5B-FreeForm-RM	4.29	3.37	4.07	3.99	91.97	30.02	77.51	71.55	15.18	12.10	10.95	12.92
1.5B-BERTReward	4.09	3.54	4.16	3.98	84.64	28.87	84.41	70.70	7.55	17.51	11.95	11.03
1.5B-ROUGE-L	2.66	1.98	3.04	2.62	5.72	1.05	17.92	8.79	0.28	0.67	0.86	0.64
1.5B-BERTScore	2.34	1.86	3.05	2.47	0.90	0.42	17.39	6.50	0.14	0.52	0.84	0.48
Supervised Finetuning (SFT)												
3B-sft	2.19	2.21	3.32	2.59	2.51	1.78	36.58	14.14	0.12	1.06	1.59	0.77
1.5B-sft	2.18	2.15	3.33	2.57	2.63	1.67	37.93	14.64	0.12	1.02	1.65	0.77

Table 1: Evaluation of model outputs via GPT-4 as a judge across different instruction tuning and reward optimization strategies. Groupings show comparisons between SoTA baselines, l-finetuned models using various reward functions, and supervised finetuning (SFT). Larger models are generally stronger, though models fine-tuned with better-aligned reward functions (e.g., FreeForm-RM) may show inflated automatic metrics due to biases like verbosity.

responses for different models as they can be strong alternative evaluators of humans (Chiang & yi Lee, 2023b). Overall, models trained with our lightweight BERTReward performs competitively with those trained with the much larger FreeForm-RM, and both substantially outperform models trained with token-overlap metrics or SFT. In addition, BERTReward-trained models at 1.5B and 3B scale rival or exceed the performance of Qwen2.5-7B-Instruct, despite having far fewer parameters.

5.1 EVALUATION METRICS

Point-wise evaluation: Point-wise evaluation assigns an absolute overall quality score to each response on a Likert scale (Fabbri et al., 2021). We use GPT-4 as a judge to first provide some reasoning, then assign a score between 1 to 5 to the generated response, considering aspects like factuality, relevance, clarity and organization, conciseness, and completeness (detailed prompt in Table 7).⁶ We use two metrics—*mean Likert score* (the average overall score) and *success rate* (the percentage of responses that receive a score ≥ 4)—to evaluate the quality of model responses.

Pairwise preference evaluation: From the Likert scores, we derive pairwise comparisons to compute Bradley-Terry win rates. This approach reduces rating noise by focusing on relative preferences rather than absolute scales, which has been shown to yield more reliable comparisons in subjective evaluation settings (Bai et al., 2022; Stiennon et al., 2022). For each prompt, we compare the LLM ratings between every pair of models. A tie is recorded when both receive the same rating, and a win is assigned to the model with the higher rating. We use the Bradley-Terry model to compute the probability *win rate* of each model on the three datasets.

5.2 RESULTS AND DISCUSSION

Table 1 summarizes model performance across instruction-following tasks using Likert scores, success rates, and Bradley-Terry win rates and §Figure 5.3 shows the training curves of the 3B policy models. Below, we discuss our findings.

3B-FreeForm-RM has the highest overall average scores and success rates among all the trained models. In addition, policy models trained with BERTReward and FreeForm-RM achieve the higher ratings from LLM-as-a-judge than other evaluated policy models. The higher performance in BERTReward and FreeForm-RM trained reward models provide more robust and reliable reward signals for RL training than traditional metrics or untuned models (BERTScore). In addition, as discussed later in Section 6.2, human evaluations reveal that FreeForm-RM models also tend to

⁶Chiang & yi Lee (2023a) shows that first analyze the response then give a rating score yields the best correlation with human judgments.

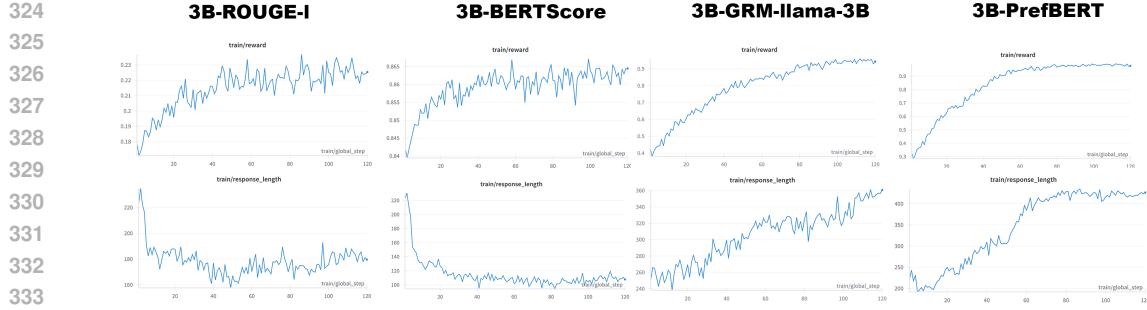


Figure 3: Reward curves during GRPO training show key differences across reward functions. Traditional metrics show minimal reward change—only 0.05 for ROUGE-L and 0.25 for BERTScore—indicating limited model improvement across all global training steps. In contrast, 3B-FreeForm-RM’s reward is strongly correlated with response length; by step 60, it already generates the maximum allowed tokens (1,024), causing reward values to plateau around 0.6. BERTReward shows a more meaningful reward progression, not strictly tied to length, suggesting it favors responses of an optimal length rather than simply longer outputs.

produce more structured and organized responses, which likely leads to higher LLM and human preferences.

FreeForm-RM-trained models are comparable to much larger models. Despite smaller size, of 3B-FreeForm-RM, FreeForm-RM-trained models at 1.5B and 3B scale match or exceed the performance of Qwen2.5-32B-Instruct across all metrics. For example, 3B-BERTReward outperforms Qwen2.5-32B-Instruct in Likert score (4.13 vs. 3.74), success rate (**79.3%** vs. 65.4%), and win rate (**18.5%** vs. 6.4%). These results show how a well-aligned reward model can enable smaller LLMs to compete with much larger ones on open-ended free-form generations.

The pattern that using semantic verifiable reward for training produces better policy models than using traditional metric-based rewards in free-form generation remains consistent across model sizes. Models trained with standard metrics, such as 1.5B-ROUGE-L and 1.5B-BERTScore, perform worse across all evaluation dimensions compared to 1.5B-BERTReward and 1.5B-FreeForm-RM; this trend also holds for the 3B model sizes.

SFT underperforms across the board. Policy models trained with SFT achieve lower scores across all evaluation dimensions than all models trained with GRPO, regardless of the reward used, except for 1.5B-BERTScore. Their success and win rates are the lowest across all datasets. Even the small 1.5B-BERTReward and 1.5B-FreeForm-RM substantially outperform the 3B-SFT model on average Likert score by around 1.1, success rate by 50% and Bradley-Terry win rate by 7%.

5.3 REWARD LEARNING CURVES

We examine the reward learning curves of models trained with the four types of rewards. Reward curves in Figure 3 during GRPO training show key differences across reward functions. Traditional metrics show minimal reward change, only 0.05 for ROUGE-L and 0.25 for BERTScore, indicating limited model improvement across all global training steps. 3B-FreeForm-RM and 3B-BERTReward show a more meaningful reward progression, suggesting it favors responses of an optimal length rather than simply longer outputs.

6 HUMAN EVALUATION

While LLM-as-a-judge evaluation often correlates with human judgments at the system level (Gu et al., 2025), LLMs tend to have biases on responses with certain patterns (Zheng et al., 2023). To better assess output quality, we conducted a human evaluation of responses from seven models: Qwen2.5-72B-Instruct, Qwen2.5-3B-Instruct, 3B-FreeForm-RM, 3B-BERTReward, 3B-RougeL, 3B-BERTScore, and 3B-SFT. Human preferences largely align with LLM-as-a-judge rankings (Table 2).

378 Among the 3B models, 3B-FreeForm-RM is the top performer. Additionally, we observe that SFT
 379 models often produce shallow outputs and does not generalize, whereas GRPO models, trained
 380 with strong verifiable reward signals, better leverages the model’s internal capabilities to produce
 381 higher-quality responses.
 382

383 6.1 HUMAN EVALUATION SETUP

385 We randomly sample 150 test prompts (50 from each dataset’s test set), then collect responses from
 386 Qwen2.5-72B-Instruct, Qwen2.5-3B-Instruct, 3B-FreeForm-RM, 3B-BERTReward, 3B-RougeL,
 387 3B-BERTScore, and 3B-SFT. We use an annotation tool (§.Figure 4), where for each response, the
 388 annotator needs to give a Likert score between 1-5 using the same evaluation criteria as the criteria
 389 given to LLMs in §Table 7. We have four author annotators annotating a total of 150 examples. For
 390 each prompt, the annotator also needs to give rankings of the responses of the seven models. All the
 391 model names are hidden for a fair comparison.
 392

393 6.2 RESULTS AND QUALITATIVE ANALYSIS

395 Model	Mean Likert Scores				Success Rates with Score ≥ 4 (%)				Bradley–Terry Win Rate (%)			
	EL15	LongForm	Alpaca	Overall	EL15	LongForm	Alpaca	Overall	EL15	LongForm	Alpaca	Overall
Base LLM												
Qwen2.5-72B-Instruct	3.85	3.9	3.4	3.61	70.0	65.0	47.5	57.3	16.67	21.54	17.62	19.2
Qwen2.5-3B-Instruct	3.31	3.3	3.2	3.21	40.0	55.0	30.0	37.80	15.24	14.06	12.60	14.7
RL Finetuned Policy Models (GRPO)												
3B-FreeForm-RM	3.8	3.45	3.7	3.5	65.0	50.0	60.0	61	12.86	8.16	10.76	17.6
3B-BERTReward	3.55	3.6	3.5	3.36	60.0	55.0	55.0	51.0	21.19	19.72	21.38	17.6
3B-BERTScore	2.95	3.3	3.3	3.23	40.0	45.0	42.5	41.46	15.95	12.02	17.62	14.7
3B-ROUGE-L	3.40	2.9	3.3	3.31	53.0	43.5	27.5	41.66	15.24	19.04	16.43	9.6
Supervised Finetuning (SFT)												
3B-SFT	2.0	2.8	1.4	1.93	10.0	25.0	10.0	13.41	0.03	5.44	3.98	6.5

404 Table 2: Selected human evaluation is mostly consistent with automatic evaluations. Although Qwen-
 405 72B remains the most preferred by humans, model trained with FreeForm-RM is more preferred by
 406 humans than all other trained policy models.

407 Table 2 shows that Qwen2.5-72B-
 408 Instruct achieves the highest aver-
 409 age human Likert rating (3.61) and
 410 success rate (57%), followed by 3B-
 411 FreeForm-RM with a rating of 3.5 and
 412 a 61% success rate. In contrast, 3B-
 413 BERTScore and 3B-ROUGE-L perform
 414 only slightly better than the 3B base
 415 model, each improving success rates
 416 by approximately 3%. 3B-FreeForm-
 417 RM, however, achieves a much larger
 418 gain of around 20%. 3B-SFT receives
 419 the lowest human rating, suggesting
 420 the lack of generalization of SFT to
 421 adopt to free-form generations. An-
 422 notators prefer policy models trained
 423 with learned reward models over those
 424 trained with traditional metrics. In
 425 general, we observe a consistent ranking between human judgments and the rankings produced by
 426 LLM-as-a-judge. We elaborate on these human evaluation findings below.

Model	Markdown (%)	Repetition Rate (%)	Response Length
Qwen2.5-72B-Instruct	47.48	6.25	220
Qwen2.5-3B-Instruct	28.89	4.69	194
3B-FreeForm-RM	96.80	4.2	212
3B-BERTReward	81.31	4.34	258
3B-BERTScore	24.00	4.55	180
3B-ROUGE-L	21.92	8.59	182
3B-SFT	15.96	8.29	146

Table 3: Average words per response for each group by model. Repetition rate is the percentage of bigrams that are repeated. Markdown is a regular expression that checks whether a response follows a particular structure and returns a boolean (§Table 6).

427 **What distinguishes 3B-FreeForm-RM from the base model?** We further analyze 20 of the
 428 examples where 3B-FreeForm-RM is preferred over the base model. The improvements fall into two
 429 main categories: **instruction following** and **tone and fluency**. On prompts with explicit constraints
 430 (e.g., “explain in 2 sentences”), the base model often fails to comply, producing responses that are
 431 either too long or overly brief. In contrast, 3B-FreeForm-RM reliably adheres to such constraints.
 Additionally, its writing is more polished and human-like. While the base model tends to sound

432 mechanical—producing fragmented sentences reminiscent of stitched-together search results—3B-
 433 FreeForm-RM generates fluent, cohesive answers. See Appendix Figure 7 and Figure 8 for qualitative
 434 examples.

436 **Policy models trained with finetuned reward models use structured outputs more often than**
 437 **using ROUGE or BERTScore as free-form rewards.** In Table 3, we observe that 3B-FreeForm-RM
 438 and 3B-BERTReward tend to use markdown formatting more frequently than other models (96.8%
 439 and 81.3%, respectively). As a result, annotators often note that their outputs have better **readability**
 440 and structure. For example, FreeForm-RM and BERTReward policy models often generate responses
 441 with list style format to enhance clarity and logical flows: *Query: Describe the functionalities of*
 442 *Tesla Model 3; Response: Certainly! Highlighting the new functions of the Tesla Model 3 and how*
 443 *they elevate the driving experience showcases Tesla’s commitment to innovation and user-centric*
 444 *design. Here’s a concise breakdown, seamlessly intertwining functionality, clarity, and depth: 1.*
 445 ***Autopilot Advanced Driver Assistance Systems**...2...* (See qualitative examples in Appendix
 446 (Figure 5)).

447 **3B-ROUGE-L and 3B-BERTScore tend to be generic and sometimes repetitive.** These models
 448 often respond to prompts such as “*Categorize the AI technologies mentioned below: Machine Learning,*
 449 *Natural Language Processing, Robotics*” with generic definitions (e.g., “*Machine Learning is a*
 450 *subset of artificial intelligence that involves training algorithms...*”) rather than actually categorizing
 451 or differentiating between the terms. Additionally, Table 3 shows that 3B-ROUGE-L can be highly
 452 repetitive. In §5.3, we find that ROUGE-L and BERTScore show little reward variance across the
 453 training curve, which could indicate that the training signal is too weak, potentially causing the
 454 trained models to output vague and surface-level outputs. In contrast, 3B-FreeForm-RM provides
 455 clearer categorizations and contextual explanations for each term, demonstrating stronger **content**
 456 **logic.** See detailed qualitative analysis in Appendix Figure 6 and Figure 9.

457 **3B-SFT responses are often vague and overly simplified.** In annotated examples, 3B-SFT re-
 458 sponds explicitly avoid answering the question—sometimes stating “I don’t know” or offering no
 459 meaningful explanation. For instance, in response to the prompt “*Why is the Big Bang seen as a*
 460 *singular event?*”, the model deflects the question without addressing the core scientific reasoning.
 461 Additionally, on LongForm prompts—especially those derived from Alpaca-style or open-ended
 462 datasets—3B-SFT tends to produce overly simplified, shallow explanations. These responses often
 463 lack both technical depth and structural clarity, which diminishes their informativeness and readability.
 464 This trend is also reflected in Table 3, where 3B-SFT produces the shortest responses on average.
 465 We attribute this issue in part to the nature of the training data from sources such as EL15, which
 466 contains casual, informal responses—many of which may be low-quality or factually incorrect. This
 467 results in a model that mimics the tone and content of noisy or imprecise reference answers. While
 468 GRPO-trained models demonstrate better performance over SFT in open-ended free-form generation
 469 in our experiments, we do not dismiss SFT as an ineffective approach. When high-quality, human-
 470 annotated datasets are available, SFT remains a valuable strategy—particularly in domains like code
 471 generation (Zhou et al., 2023), where reference outputs are well-defined and reliable.

473 7 CONCLUSION

475 RLVR especially GRPO has been a success for its ability to fully leverage LLMs’ abilities to self-
 476 improve without massive amount of labeled data on many rule-based evaluation tasks. However,
 477 extending GRPO study on free-form and open-ended generation has been underexplored for the
 478 challenges of evaluating free-form responses. We propose using a fine-tuned language model
 479 (FreeForm-RM) to evaluate free-form responses through semantic quality assessment rather than
 480 simple word-level matching, providing reward signals for GRPO training. Our results show that models
 481 trained with FreeForm-RM generate higher-quality responses than those trained with traditional
 482 metrics (ROUGE, BERTScore) or generalized preference reward models, achieving performance that
 483 approaches larger models with the same backbone. Future work can expand upon current work on
 484 more diverse open-ended generation tasks such as training more efficient and stronger verifiable
 485 reward models and apply them on creative writings, creative research and design, or open-ended math
 486 problems.

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our research, we provide detailed information regarding our data
489 and experimental setup. All datasets used in this work will be publicly available upon conference
490 decision date; we provide details on data sources, any postprocess steps in Appendix.
491492 REFERENCES
493494 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
495 for mathematical reasoning: Progresses and challenges. *arXiv preprint arXiv:2402.00157*, 2024.496 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
497 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
498 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
499 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
500 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
501 Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
502 URL <https://arxiv.org/abs/2204.05862>.503 Manik Bhandari, Pranav Narayan Gour, Atabak Ashfaq, Pengfei Liu, and Graham Neubig. Re-
504 evaluating evaluation in text summarization. In Bonnie Webber, Trevor Cohn, Yulan He, and
505 Yang Liu (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language
506 Processing (EMNLP)*, pp. 9347–9359, Online, November 2020. Association for Computational
507 Linguistics. doi: 10.18653/v1/2020.emnlp-main.751. URL [https://aclanthology.org/2020.emnlp-main.751/](https://aclanthology.org/2020.emnlp-main.751).509 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
510 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952. ISSN 00063444, 14643510. URL
511 <http://www.jstor.org/stable/2334029>.513 Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Boerschinger, and Tal Schuster.
514 Tomayto, tomahto. beyond token-level answer equivalence for question answering evaluation.
515 *arXiv preprint arXiv:2202.07654*, 2022.516 Anthony Chen, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. Evaluating question answering
517 evaluation. In Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi
518 Chen (eds.), *Proceedings of the 2nd Workshop on Machine Reading for Question Answering*, pp.
519 119–124, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
520 10.18653/v1/D19-5817. URL <https://aclanthology.org/D19-5817/>.521 Anthony Chen, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. Mocha: A dataset for
522 training and evaluating generative reading comprehension metrics. In *Proceedings of the
523 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Association
524 for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.528. URL
525 <http://dx.doi.org/10.18653/v1/2020.emnlp-main.528>.526 Cheng-Han Chiang and Hung yi Lee. A closer look into automatic evaluation using large language
527 models, 2023a. URL <https://arxiv.org/abs/2310.05657>.529 Cheng-Han Chiang and Hung yi Lee. Can large language models be an alternative to human
530 evaluations?, 2023b. URL <https://arxiv.org/abs/2305.01937>.531 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios N. Angelopoulos, Tianle Li, Dacheng Li,
532 Banghua Zhu, Hao Zhang, Michael I. Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
533 an open platform for evaluating llms by human preference. In *Proceedings of the 41st International
534 Conference on Machine Learning*, ICML’24. JMLR.org, 2024.535 DeepSeek-AI, Daya Guo, and et al. Deepseek-r1: Incentivizing reasoning capability in llms via
536 reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.538 Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
539 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
colossal clean crawled corpus, 2021. URL <https://arxiv.org/abs/2104.08758>.

540 Aarohi Srivastava et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of
 541 language models, 2023. URL <https://arxiv.org/abs/2206.04615>.

542

543 Alexander R. Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and
 544 Dragomir Radev. Summeval: Re-evaluating summarization evaluation, 2021. URL <https://arxiv.org/abs/2007.12626>.

545

546 Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. Eli5:
 547 Long form question answering, 2019. URL <https://arxiv.org/abs/1907.09190>.

548

549 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 550 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 551 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
 552 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
 553 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
 554 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
 555 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
 556 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
 557 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
 558 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
 559 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
 560 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
 561 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
 562 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
 563 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
 564 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
 565 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
 566 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
 567 Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
 568 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 569 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 570 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
 571 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
 572 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
 573 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
 574 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
 575 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 576 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 577 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
 578 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
 579 Sharan Narang, Sharath Raparthi, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
 580 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
 581 Sydnye Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
 582 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
 583 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
 584 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
 585 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
 586 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
 587 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 588 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
 589 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei
 590 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
 591 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
 592 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
 593 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,

594 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 595 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 596 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 597 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
 598 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
 599 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
 600 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
 601 Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
 602 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
 603 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
 604 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
 605 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
 606 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
 607 Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
 608 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
 609 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
 610 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
 611 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
 612 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 613 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandini Santhanam,
 614 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 615 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
 616 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 617 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 618 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 619 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
 620 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
 621 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
 622 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
 623 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
 624 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
 625 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
 626 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
 627 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
 628 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
 629 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
 630 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
 631 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
 632 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 633 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
 634 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
 635 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

636 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
 637 Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni,
 638 and Jian Guo. A survey on llm-as-a-judge, 2025. URL <https://arxiv.org/abs/2411.15594>.

639 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
 640 easy-to-use, scalable and high-performance rlhf framework. *arXiv preprint arXiv:2405.11143*,
 641 2024.

642 Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
 643 Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. *arXiv
 644 preprint arXiv:2508.05004*, 2025.

645 Yuki Ichihara, Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, Kenshi Abe, Mitsuki Sakamoto, and Eiji
 646 Uchibe. Evaluation of best-of-n sampling strategies for language model alignment, 2025. URL
 647 <https://arxiv.org/abs/2502.12668>.

648 Seungone Kim, Juyoung Suk, Shayne Longpre, Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
 649 Neubig, Moontae Lee, Kyungjae Lee, and Minjoon Seo. Prometheus 2: An open source language

648 model specialized in evaluating other language models, 2024. URL <https://arxiv.org/abs/2405.01535>.
 649
 650

651 Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. Hurdles to progress in long-form question answering,
 652 2021. URL <https://arxiv.org/abs/2103.06332>.
 653
 654

655 Michael Krumdick, Charles Lovering, Varshini Reddy, Seth Ebner, and Chris Tanner. No free labels:
 656 Limitations of llm-as-a-judge without human grounding, 2025. URL <https://arxiv.org/abs/2503.05061>.
 657
 658

659 S. Kullback and R. A. Leibler. On information and sufficiency. *The Annals of Mathematical Statistics*,
 660 22(1):79–86, 1951. doi: 10.1214/aoms/1177729694. URL <https://doi.org/10.1214/aoms/1177729694>.
 661
 662

663 Abdullatif Köksal, Timo Schick, Anna Korhonen, and Hinrich Schütze. Longform: Effective
 664 instruction tuning with reverse instructions, 2023.
 665
 666

667 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 668 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
 669 Rewardbench: Evaluating reward models for language modeling, 2024. URL <https://arxiv.org/abs/2403.13787>.
 670
 671

672 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi. Coderl:
 673 Mastering code generation through pretrained models and deep reinforcement learning, 2022. URL
 674 <https://arxiv.org/abs/2207.01780>.
 675
 676

677 Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
 678 ment learning for dialogue generation, 2016. URL <https://arxiv.org/abs/1606.01541>.
 679
 680

681 Zongxia Li, Ishani Mondal, Yijun Liang, Huy Nghiem, and Jordan Lee Boyd-Graber. Pedants: Cheap
 682 but effective and interpretable answer equivalence, 2024. URL <https://arxiv.org/abs/2402.11161>.
 683
 684

685 Zongxia Li, Xiyang Wu, Hongyang Du, Fuxiao Liu, Huy Nghiem, and Guangyao Shi. A survey
 686 of state of the art large vision language models: Benchmark evaluations and challenges. In
 687 *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR) Workshops*, pp.
 688 1587–1606, June 2025a.
 689
 690

691 Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh Manocha,
 692 and Jordan Lee Boyd-Graber. Videohallu: Evaluating and mitigating multi-modal hallucinations
 693 on synthetic video understanding, 2025b. URL <https://arxiv.org/abs/2505.01481>.
 694
 695

696 Zongxia Li, Wenhao Yu, Chengsong Huang, Rui Liu, Zhenwen Liang, Fuxiao Liu, Jingxi Che, Dian
 697 Yu, Jordan Boyd-Graber, Haitao Mi, and Dong Yu. Self-rewarding vision-language model via
 698 reasoning decomposition, 2025c. URL <https://arxiv.org/abs/2508.19652>.
 699
 700

701 Chin-Yew Lin. Rouge: a package for automatic evaluation of summaries. In *Proceedings of the*
 702 *Workshop on Text Summarization Branches Out*, 2004.
 703
 704

705 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 706 Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL <https://arxiv.org/abs/2503.20783>.
 707
 708

709 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 710 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 711 with a 1.5b model by scaling rl, 2025. Notion Blog.
 712
 713

714 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 715 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association for*
 716 *Computational Linguistics*, ACL '02, pp. 311–318, USA, 2002. Association for Computational Lin-
 717 guistics. doi: 10.3115/1073083.1073135. URL <https://doi.org/10.3115/1073083.1073135>.
 718
 719

702 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 703 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 704 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 705 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 706 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 707 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 708 <https://arxiv.org/abs/2412.15115>.

709 Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi, Matthieu
 710 Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, Nikola Momchev, Sabela Ramos, Piotr
 711 Stanczyk, Nino Vieillard, Olivier Bachem, Gal Elidan, Avinatan Hassidim, Olivier Pietquin,
 712 and Idan Szpektor. Factually consistent summarization via reinforcement learning with textual
 713 entailment feedback, 2023. URL <https://arxiv.org/abs/2306.00186>.

714 Hamidreza Rouzegar and Masoud Makrehchi. Enhancing text classification through llm-driven active
 715 learning and human annotation. *arXiv preprint arXiv:2406.12114*, 2024.

716 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 717 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

718 Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep
 719 reinforcement learning in video games, 2019. URL <https://arxiv.org/abs/1912.10944>.

720 Stack Exchange contributors. Stack Exchange. [https://\[site\].stackexchange.com/questions/{question_id}](https://[site].stackexchange.com/questions/{question_id}), 2025. [Online; accessed 5-May-2025].

721 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 722 Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL
 723 <https://arxiv.org/abs/2009.01325>.

724 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 725 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 726 https://github.com/tatsu-lab/stanford_alpaca, 2023a.

727 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 728 Liang, and Tatsunori B. Hashimoto. Alpaca: A strong, replicable instruction-following model.
 729 <https://crfm.stanford.edu/2023/03/13/alpaca.html>, 2023b. [Online; accessed 5-May-
 730 2025].

731 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 732 Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions,
 733 2022.

734 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 735 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin
 736 Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
 737 tional encoder for fast, memory efficient, and long context finetuning and inference, 2024. URL
 738 <https://arxiv.org/abs/2412.13663>.

739 Wikipedia contributors. Wikipedia, the free encyclopedia, 2025. URL <https://en.wikipedia.org/>. [Online; accessed 5-May-2025].

740 Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, and Jiantao Jiao.
 741 Pairwise proximal policy optimization: Harnessing relative feedback for llm alignment, 2023.
 742 URL <https://arxiv.org/abs/2310.00212>.

743 Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
 744 enables learning generalizable reward model for llms, 2024. URL <https://arxiv.org/abs/2406.10216>.

745 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 746 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 747 *arXiv preprint arXiv:2503.14476*, 2025.

756 Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
757 for concise mathematical reasoning in language models. *arXiv preprint arXiv:2504.09696*, 2025.
758

759 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
760 text generation with bert, 2020. URL <https://arxiv.org/abs/1904.09675>.

761 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
762 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
763 Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL <https://arxiv.org/abs/2306.05685>.

764

765 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivas Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
766 Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
767 Lima: Less is more for alignment, 2023. URL <https://arxiv.org/abs/2305.11206>.

768

769 Yuhang Zhou and Wei Ai. Teaching-assistant-in-the-loop: Improving knowledge distillation from
770 imperfect teacher models in low-budget scenarios. *arXiv preprint arXiv:2406.05322*, 2024.

771

772 Yuhang Zhou, Giannis Karamanolakis, Victor Soto, Anna Rumshisky, Mayank Kulkarni, Furong
773 Huang, Wei Ai, and Jianhua Lu. Mergeme: Model merging techniques for homogeneous and
774 heterogeneous models. *arXiv preprint arXiv:2502.00997*, 2025a.

775

776 Yuhang Zhou, Jing Zhu, Shengyi Qian, Zhuokai Zhao, Xiyao Wang, Xiaoyu Liu, Ming Li, Paiheng
777 Xu, Wei Ai, and Furong Huang. Disco balances the scales: Adaptive domain-and difficulty-aware
778 reinforcement learning on imbalanced data. *arXiv preprint arXiv:2505.15074*, 2025b.

779

780 Yujun Zhou, Zhenwen Liang, Haolin Liu, Wenhao Yu, Kishan Panaganti, Linfeng Song, Dian Yu,
781 Xiangliang Zhang, Haitao Mi, and Dong Yu. Evolving language models without labels: Majority
782 drives selection, novelty promotes variation. *arXiv preprint arXiv:2509.15194*, 2025c.

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
811812 We acknowledge the use of large language models (LLMs) as assistive tools in this research, with
813 usage limited to refining grammar and improving language clarity in the manuscript, writing utility
814 scripts for data preprocessing and postprocessing, and debugging; all outputs from these models
815 were meticulously reviewed, revised, and verified by the authors, who retain full responsibility for all
816 content presented in this paper.
817818 B TECHNICAL DETAILS
819820 In this section, we provide additional technical details for GRPO mentioned in Section 3, further
821 illustrating the regularization terms used in GRPO and the specifics of the Bradley-Terry loss employed
822 by GRM.
823824 B.1 GRPO REGULARIZATION OBJECTIVE
825

826
827
$$\mathcal{J}_{\text{GRPO}}(\phi) = \mathbb{E}_{x, \{y_i\}} \left[\frac{1}{G} \sum_{i=1}^G \min \left(\rho_i(\phi) A(x, y_i), \right. \right. \\ 828 \left. \left. \text{clip}(\rho_i(\phi), 1 - \epsilon, 1 + \epsilon) A(x, y_i) \right) \right] \\ 829 - \beta \mathbb{E}_{x \sim \mathcal{D}} [\text{KL}(\pi_\phi(\cdot|x) || \pi_{\text{ref}}(\cdot|x))], \quad (6)$$

830
831
832
833
834

835 where $\rho_i(\phi) = \frac{\pi_\phi(y_i|x)}{\pi_{\phi_{\text{old}}}(y_i|x)}$ is the probability ratio for y_i , ϵ is the clipping hyperparameter and β is the
836 KL penalty coefficient.
837838 B.2 BERTREWARD TECHNICAL DETAILS
839840 **Creating training data for BERTReward:** Each training example has a reference answer, a
841 generated answer, and a Likert score from 1-5 that rates the quality of the generated answer against
842 the reference. To ensure balanced quality ratings across both long and short free-form responses, we
843 incorporate training data from the Prometheus-preference (Kim et al., 2024) and MOCHA (Chen
844 et al., 2020).⁷ We combine the two datasets and split them into 80% for training and 20% for testing.
845 The resulting training set contains 19K examples—substantially smaller than the 80K examples used
846 to train FreeForm-RM.
847848 **Technical Details.** We train ModernBERT (Warner et al., 2024) on triplets $(x_i^{\text{ref}}, x_i^{\text{gen}}, s_i)$ where
849 $s_i \in \{1, \dots, 5\}$. We first normalize each gold Likert score to

850
$$r_i = \frac{s_i - 1}{4} \in [0, 1],$$

851

852 where s_i is the gold Likert scale, r_i is the normalized Likert score on the $[0, 1]$ scale, x^{ref} is the
853 reference answer, and x^{gen} is the generated response. Thus, given x^{ref} and x^{gen} , we concatenate
854 them as a single string:
855

856
$$x^{\text{pair}} = [\text{CLS}] x^{\text{ref}} [\text{SEP}] x^{\text{gen}}, \quad (7)$$

857 where x^{pair} is the input string feeds into ModernBERT. Let $\mathbf{h}_i \in \mathbb{R}^d$ be the pooled ModernBERT
858 embedding of x^{pair} . A linear regressor plus sigmoid yields a prediction

859
$$\hat{r}_i = \sigma(\mathbf{w}^\top \mathbf{h}_i + b), \quad (8)$$

860

861 ⁷Specifically, Prometheus-preference contains 200K fine-grained Likert preference ratings spanning ten
862 categories of evaluation including e.g. adaptive communication, emotional intelligence; the data is primarily
863 long free-form answers where each answer is above 150 tokens. MOCHA contains mid to long length answer
evaluation data to judge the overall correctness of the generated response.

864 where $\mathbf{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$ are the regressor weights and bias, $\sigma(z) = 1/(1 + e^{-z})$ is the sigmoid
 865 activation. $\hat{r}_i \in (0, 1)$ is the predicted normalized score, and is taken as the reward signal of GRPO.
 866 Training minimizes the mean-squared error
 867

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^N (\hat{r}_i - r_i)^2, \quad (9)$$

871 where \mathcal{L} is the batch-averaged MSE loss, and N is the number of examples in the batch.
 872

873 B.3 GRM BRADLEY AND TERRY LOSS

875 The FreeForm-RM is trained to minimize the Bradley-Terry Loss:
 876

$$L_{\text{reward}}(\theta) = -\mathbb{E}_{(x, y_c, y_r)} [\log \sigma(r_\theta(x, y_c) - r_\theta(x, y_r))] \quad (10)$$

880 where $r_\theta(x, y)$ denotes the reward score predicted by the model and $\sigma(\cdot)$ is the sigmoid function.
 881 Generally, the GRM $r_\theta(x, y)$ is used in RLHF training, either for selection in Best-of- n (BoN)
 882 decoding or as the optimization objective in reinforcement learning (e.g., PPO (Schulman et al.,
 883 2017), GRPO (DeepSeek-AI et al., 2025; Li et al., 2025c; Ichihara et al., 2025)). We use FreeForm-
 884 RM as a GRM to provide reward signals for GRPO, rather than for ranking models or as a PPO reward
 885 model. We use a sigmoid function to normalize its real-valued outputs to the $[0, 1]$.⁸
 886

Dataset	# Train	# Test	Example Input	Example Reference Response
EL15	10,444	1,056	Could we theoretically create an infinite echo?	The perfect conditions would be a wall of atoms that will not move at all when bumped. Considering the fact that heat is defined by the movement of atoms...
LongForm	8,648	956	Explain how Venezuela raised its minimum wage.	Venezuela raised its minimum wage to 1 million bolivars per month on Monday, the third increase this year that puts the figure at just \$1.61 at the black market exchange rate. President Nicolas Maduro...
Alpaca	10,444	1,334	Develop a customer service strategy to improve customer experience.	Here is a customer service strategy that can help in improving the customer experience: 1. Identify your customers' needs...

891 Table 4: Overview of the datasets used in our experiments. All datasets contain long-form, open-
 892 ended questions spanning diverse domains (e.g., science, instruction following), with responses
 893 averaging 185 words.
 894

901 C DATASET DETAILS

905 Table 4 presents details of the datasets used in our work, including the sizes of the training and testing
 906 sets, as well as example inputs and reference responses.
 907

908 **Explain Like I'm 5 (EL15)** is a dataset derived from Reddit's r/explainlikeimfive community (Fan
 909 et al., 2019).⁹ It contains 270K threads where users ask open-ended questions and receive simple,
 910 easy-to-understand explanations—framed as if explaining to a five-year-old. The topics span a
 911 wide range of domains, including chemistry, psychology, biology, and earth science. The dataset
 912 is intended to help models learn to explain complex topics in accessible ways. We sample 10,444
 913 questions for training and 1,056 for testing.
 914

915 ⁸We choose FreeForm-RM for its best performance as the smallest model on RewardBench (Lambert et al.,
 916 2024), which offers a good trade-off between quality and efficiency without the heavy GPU demands of larger
 917 models.

918 ⁹<https://www.reddit.com/r/explainlikeimfive/>

918 **Alpaca** is a collection of 52K instruction-response pairs generated by OpenAI’s text-davinci-003 to
 919 fine-tune the LLaMA 7B model (Taori et al., 2023b).¹⁰ It features diverse prompts and long-form
 920 responses in the style of Self-Instruct (Wang et al., 2022). We use a cleaned version of Alpaca (Taori
 921 et al., 2023a) that removes instances with hallucinated answers, empty responses, or instructions to
 922 generate images. Additionally, we filter out examples with responses shorter than 50 words, resulting
 923 in a final set of 10,444 training and 1,334 test examples.

924
 925 **LongForm** is constructed by applying reverse instruction generation to an English corpus, following
 926 the approach in (Köksal et al., 2023). It includes a diverse set of human-written documents sourced
 927 from Wikipedia (Wikipedia contributors, 2025), C4 (Dodge et al., 2021), Stack Exchange (Stack
 928 Exchange contributors, 2025), and BigBench (et al., 2023). Instructions are generated by LLMs,
 929 covering a wide range of tasks such as question answering, email writing, story or poem generation,
 930 and text summarization. We exclude examples requiring code generation, as they fall outside our
 931 intended scope. The final dataset contains 8,648 training examples and 956 test examples.

932 D PROMPT TEMPLATE

933 We show the prompt template used for training in Table 5, the template for point-wise evaluation in
 934 Table 7, and the template for pairwise preference evaluation in Table 8.

935 Training Prompt Template

936 The user asks a question, and the Assistant answers it. The assistant provides
 937 the user with the answer that strictly follows the following guidelines.
 938 The answer should be enclosed within `<answer> </answer>` tags, respectively,
 939 i.e., `<answer> ANSWER HERE </answer>`. Your answer should follow these rubric
 940 criteria:
 941 Rubric:
 942 Factual Accuracy: The answer must be factually correct and does not contradict
 943 the reference answer.
 944 Relevance and Completeness: The answer should directly address the specific
 945 question, covering all essential aspects.
 946 Clarity and Organization: The answer should be well-structured, coherent, and
 947 easy to follow.
 948 Conciseness: The answer should avoid unnecessary repetition and be as clear
 949 and succinct as possible.
 950 Completeness: The answer is complete and not repetitive.
 951 Response Format rules:
 952 - Always start your response with `<answer>` tag and end with `</answer>`.
 953 - Do not include any text or commentary before the opening `<answer>` tag and
 954 after the closing `</answer>` tag.
 955 For example, your response should follow this format:
 956 `<answer>`
 957 `[Your final detailed answer goes here]`
 958 `</answer>`
 959 Question: {question}

960
 961 Table 5: Training prompt template for LLMs to generate responses.

962 E MARKDOWN EXPRESSION CHECK

963 We provide Table 6 to exhibit the markdowns, which is a regular expression that checks whether a
 964 response follows a particular structure. We provide Table 6 to present the markdown patterns—regular
 965 expressions used to check whether a response follows a specific structure and return a boolean value,
 966 as described in the caption of Table 3.

967
 968 ¹⁰<https://openai.com>

Table 6: Markdown Expression Check

Pattern	Description
^#{1,6}\s	ATX-style headings (e.g. # Heading)
^[-*+]\s	Unordered list items (e.g. - item)
^\d+\.\s	Ordered list items (e.g. 1. item)
>\s	Blockquotes (e.g. > quote)
```[\s\S]+?```	Fenced code blocks
`[^`\n]+?`	Inline code spans
\ \  .+\ \	Tables using pipe separators

## F ANNOTATION TOOL

We present the annotation tool for response quality annotation in Figure 4. Annotators will be displayed with the question prompt, the answers for the seven models, where they need to slide due to limited screen width. Annotators can then put their Likert scores (1-5) and comments or notes for each response, and then finally rank the responses based on their preferences and ratings.

## Qualitative Analysis Annotation Platform

Prompt: Describe the benefits of using primary-replica database replication.			
A	B	C	D
242 words <answer> The benefits of using primary-replica database replication include:  1. **High Availability**: Replication ensures that a copy of the database is always available, even if the primary database fails. This minimizes	322 words <answer> Primary-replica database replication offers several benefits, including improved data availability, enhanced disaster recovery capabilities, and the ability to scale read operations.	736 words <answer> Primary-replica database replication offers several key benefits that enhance data availability, reliability, and performance. Here are the primary advantages, each addressing different aspects of database management and user needs:  1. **Improved Data	382 words <answer> Certainly! Primary-replica database replication offers robust benefits, seamlessly balancing data consistency, availability, and performance. Here's a concise breakdown highlighting key advantages, tailored to each benefit:
Score <input type="button" value="Up"/> <input type="button" value="Down"/>	Score <input type="button" value="Up"/> <input type="button" value="Down"/>	Score <input type="button" value="Up"/> <input type="button" value="Down"/>	Score <input type="button" value="Up"/> <input type="button" value="Down"/>
Enter note... <input type="text"/>	Enter note... <input type="text"/>	Enter note... <input type="text"/>	Enter note... <input type="text"/>
Overall Ranking (e.g., "ABCDEFG"):		<input type="text"/>	Next <input type="button"/>
Download Annotations <input type="button"/>		Labeled: 0	

Figure 4: Our annotation tool for response quality annotation. Annotators will be displayed with the question prompt, the answers for the seven models, where they need to slide due to limited screen width. Annotators can then put their Likert scores (1-5) and comments or notes for each response, and then finally rank the responses based on their preferences and ratings.

## G SHOWCASES FOR QUALITATIVE ANALYSIS

We present qualitative examples to accompany our analysis in Section 6.2. See Figure 5 (Readability), Figure 6 (Content Logic), Figure 7 (Instruction Following), Figure 8 (Tone and Fluency), and Figure 9 (Failure cases of SFT).

1026

1027

1028

**Point-wise Evaluation Template**

1029 You will be given a user question, a reference answer, and a system answer. Your task is to provide an overall  
 1030 rating scoring how well the system answer addresses the user question against the reference answer. Give your  
 1031 answer as an integer on a scale of 1 to 5, where 1 means that the system answer is not informative, and 5 means  
 1032 that the answer addresses the question according to the criteria below.

Rubric:

Factual Accuracy: The answer must be factually correct and not contradict the reference answer.

1033 Relevance and Completeness: The answer should directly address the specific question, covering all essential  
 1034 aspects.

Clarity and Organization: The answer should be well-structured, coherent, and easy to follow.

Conciseness: The answer should avoid unnecessary repetition and be clear and succinct.

1035 Completeness: The answer is complete and not repetitive.

Please base your overall rating on how well the system answer performs in these areas.

Question: {question}

Reference Answer: {reference_answer}

System Answer: {answer}

Please be as strict and as critical and harsh as possible.

Provide your feedback as follows:

Feedback:::

Final rating: (your rating, as an integer between 1 and 5)

1044

1045

1046

1047

1048

1049

1050

**Pairwise Preference Evaluation Template**

1051 You are a fair judge assistant tasked with providing clear, objective feedback  
 1052 based on specific criteria, ensuring each assessment reflects the absolute  
 1053 standards set for performance.

1054 Your task is to provide your preferred response as either A or B. Please  
 1055 strictly follow the output format as:

Feedback: Reason why you choose this answer

[RESULT] A or B&lt;/s&gt;

Rubric:

1056 Factual Accuracy: The answer must be factually correct and does not contradict  
 1057 the reference answer.

1058 Relevance and Completeness: The answer should directly address the specific  
 1059 question, covering all essential aspects.

1060 Clarity and Organization: The answer should be well-structured, coherent, and  
 1061 easy to follow.

1062 Conciseness: The answer should avoid unnecessary repetition and be as clear  
 1063 and succinct as possible.

1064 Completeness: The answer is complete and not repetitive.

1065 Write a detailed feedback that assesses the quality of two responses strictly  
 1066 based on the given score rubric, not evaluating in general.

1067 After writing a feedback, choose a better response between Response A and  
 1068 Response B. You should refer to the score rubric.

Question: {question}

Reference Answer: {reference_answer}

Answer A: {answer_A}

Answer B: {answer_B}

Please be as strict and as critical and harsh as possible.

Provide your feedback as follows:

Feedback:::

Final rating: (your rating, as an integer between 1 and 5)

1078

1079

Table 8: Prompt template for pairwise evaluation.

1080  
1081  
1082  
1083  
1084**Qualitative Analysis: Readability**1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133**Prompt:** Describe the new functions of the Tesla Model 3, and how they improve the driving experience**Dataset:** Instruction**Models Compared:** 3B-FreeForm-RM v.s. Qwen2.5-3B-ROUGE-L & Qwen2.5-3B-BERTScore**Reference Answer (Qwen2.5-72B-Instruct):**

The Tesla Model 3 has several advanced features and functions that significantly enhance the driving experience. Here are some key highlights: 1. **Autopilot and Full Self-Driving (FSD) Capabilities**: ...

**3B-FreeForm-RM**

Certainly! Highlighting the new functions of the Tesla Model 3 and how they elevate the driving experience showcases Tesla's commitment to innovation and user-centric design. Here's a concise breakdown, seamlessly intertwining functionality, clarity, and depth: 1. **Autopilot Advanced Driver Assistance Systems**: ...

**Analysis:** This answer uses more complex language, longer sentences, and a promotional tone that may appeal to a more technical or marketing-savvy reader but reduces overall clarity and ease of comprehension.

**Qwen2.5-3B-ROUGE-L**

The Tesla Model 3 has several new functions that enhance the driving experience. One of the most notable improvements is the Autopilot system, which includes features like automatic emergency braking, adaptive cruise control, and lane centering. These features help drivers maintain a safe distance from other vehicles and stay within their lane, reducing the workload and stress of driving...

**Analysis:** This answer presents information in dense, uniform paragraphs with minimal structural guidance, making it harder for readers to scan and retain key points. It also repeats ideas (e.g., mentioning safety features like automatic emergency braking twice) and lacks cohesion, which disrupts the logical flow.

**Qwen2.5-3B-BERTScore**

The Tesla Model 3 has several advanced features designed to enhance the driving experience. One of its notable improvements is the Autopilot system, which allows for semi-autonomous driving capabilities. This includes automatic steering, acceleration, and braking under certain conditions, reducing the driver's workload and enhancing safety...

**Analysis:** This answer presents information in long, uniform paragraphs without visual structure, making it harder for readers to quickly locate and retain key points. The dense formatting in this answer lacks clear segmentation, which forces readers to parse multiple features at once without guidance or emphasis. Additionally, the transitions between topics are minimal, and the writing style is more monotonous, reducing engagement.

Figure 5: **Qualitative Analysis: Readability.** We present showcases comparing the readability of BERTReward against baseline models, accompanied by detailed analysis.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

## Qualitative Analysis: Content Logic

**Prompt:** Categorize the AI technologies mentioned below. Machine Learning, Natural Language Processing, Robotics

**Dataset:** Alpaca Cleaned

**Models Compared:** 3B-FreeForm-RM v.s. Qwen2.5-3B-ROUGE-L & Qwen2.5-3B-BERTScore

### Reference Answer (Qwen2.5-72B-Instruct):

Machine Learning is a subset of artificial intelligence that involves algorithms and statistical models that enable computer systems to improve their performance on a specific task over time with experience. Natural Language Processing (NLP) is a field of AI that focuses on the interaction between humans and computers using natural language, aiming to read, decipher, understand, and make sense of human language in a valuable and meaningful way. Robotics is a branch of AI that deals with the design, construction, operation, and use of robots, as well as computer systems for their control, sensory feedback, and information processing.

### 3B-FreeForm-RM

Certainly! Categorizing the AI technologies mentioned—Machine Learning (ML), Natural Language Processing (NLP), and Robotics—brings insightful clarity to their roles and intersections within broader AI landscapes. Here's a nuanced breakdown: 1. **Machine Learning (ML):** ...

**Analysis:** This answer not only defines Machine Learning, Natural Language Processing, and Robotics clearly, but also organizes the explanation into a structured, interconnected framework. It highlights how each domain functions independently while also emphasizing their synergies, particularly how Machine Learning underpins both NLP and Robotics, and how NLP enables human-machine interaction in robotic systems. This layered, relational presentation offers a more comprehensive and coherent understanding of the AI landscape.

### Qwen2.5-3B-ROUGE-L

Machine Learning is a subset of artificial intelligence that involves training algorithms to make predictions or decisions without being explicitly programmed. Natural Language Processing is a field within AI that focuses on the interaction between computers and humans using natural language. Robotics is the design, construction, and operation of robots, often involving AI to enable them to perform tasks autonomously or with human assistance.

**Analysis:** This answer provides basic, isolated definitions of Machine Learning, Natural Language Processing, and Robotics without addressing the instruction's likely intent: to offer an integrated and analytical understanding of how these technologies relate within the AI ecosystem.

### Qwen2.5-3B-BERTScore

Machine Learning is a subset of artificial intelligence that involves training algorithms to make predictions or decisions based on data without being explicitly programmed. It includes techniques such as supervised learning, unsupervised learning, and reinforcement learning. Natural Language Processing (NLP) is a field ...

**Analysis:** This answer merely defines each term in isolation without addressing their relationships, broader context, or the purpose of categorization implied in the instruction. It reads more like a set of encyclopedia entries than a response that synthesizes information into a cohesive, categorized explanation.

Figure 6: **Qualitative Analysis: Content Logic.** We present showcases comparing the content logic of BERTReward against baseline models, accompanied by detailed analysis.

1188  
 1189  
 1190  
 1191  
 1192  
 1193  
 1194  
 1195  
 1196  
 1197

1198 **Qualitative Analysis: Instruction Following**

1199  
 1200 **Prompt:** Who is Jagadeesh Kanna? Respond in 3 sentences.  
 1201 **Dataset:** Chatbot  
 1202 **Models Compared:** 3B-FreeForm-RM v.s. Qwen2.5-3B-Instruct  
 1203

1204 **Reference Answer (Qwen2.5-72B-Instruct):**

1205 Jagadeesh Kanna is an Indian film actor, director, and producer, primarily known for  
 1206 his work in Kannada cinema. He has appeared in numerous films and has won several  
 1207 awards for his performances, including a Filmfare Award. Kanna is also recognized  
 1208 for his philanthropic efforts and contributions to the film industry.

1209 **3B-FreeForm-RM**

1210 Certainly! Exploring Jagadeesh Kanna reveals him as a pioneering figure in Indian  
 1211 tech entrepreneurship, particularly known for founding and leading Urban Ladder, a  
 1212 leading online home decor and furniture marketplace in India. His journey showcases  
 1213 resilience and innovation, starting with a small online store during college,  
 1214 scaling it into a billion-dollar company through strategic pivots and partnerships,  
 1215 ultimately inspiring countless aspiring entrepreneurs...

1216 **Analysis:** This answer clearly aligns with a prompt that likely asked for a thoughtful,  
 1217 analytical overview of Jagadeesh Kanna's entrepreneurial contributions, providing depth,  
 1218 context, and narrative structure.

1219 **Qwen2.5-3B-Instruct**

1220 Jagadeesh Kanna is an Indian film actor and producer known for his work primarily in  
 1221 Malayalam cinema. He began his career in the early 2000s and has since become one of  
 1222 the leading actors in the industry, often taking on challenging roles that showcase  
 1223 his versatility. Kanna has received several accolades for his performances and is  
 1224 recognized for his dedication to acting and his contributions to Malayalam films.

1225 **Analysis:** This answer fails to align with the implied instruction to provide a  
 1226 thoughtful, contextualized, and analytically rich overview of Jagadeesh Kanna. Instead,  
 1227 Answer 1 offers a generic and surface-level biography focused on his film career,  
 1228 without delving into the broader significance or impact of his work.

1229  
 1230 **Figure 7: Qualitative Analysis: Instruction Following.** We present showcases comparing the  
 1231 instruction following of BERTReward against baseline models, accompanied by detailed analysis.

1233  
 1234  
 1235  
 1236  
 1237  
 1238  
 1239  
 1240  
 1241

1242  
1243  
1244  
1245  
1246

## 1247 Qualitative Analysis: Tone &amp; Fluency

1248

1249 **Prompt:** Describe the new functions of the Tesla Model 3, and how they improve  
1250 the driving experience1251 **Dataset:** Instruction1252 **Models Compared:** 3B-FreeForm-RM v.s. Qwen2.5-3B-Instruct

1253

1254 **Reference Answer (Qwen2.5-72B-Instruct):**1255 Bruce Straley, a well-known industry veteran and co-director of "The Last of Us,"  
1256 left Naughty Dog in 2018. His departure was announced on January 24, 2018, via a  
1257 tweet from Naughty Dog's official account. Straley cited the need for a change of  
1258 pace and personal growth as reasons for leaving the studio. He had been with Naughty  
1259 Dog for over 17 years, contributing to numerous award-winning titles, including "Jak  
1260 and Daxter," "Uncharted," and "The Last of Us." His exit marked a significant  
1261 transition for the studio, highlighting the challenges and pressures of developing  
1262 AAA games and the importance of personal well-being in the industry.

1262

1263 **3B-FreeForm-RM**1264 Certainly! Highlighting Bruce Straley's departure from Naughty Dog (now part of  
1265 Sony Interactive Entertainment) underscores key shifts in game development  
1266 strategies and team dynamics, offering deep insight into his impactful tenure.  
1267 Here's a concise breakdown that meticulously follows the request, ensuring clarity,  
1268 organization, depth, and insight: 1. **Contextual Setting**:...1268 **Analysis:** This answer adopts a more polished, engaging, and analytical tone,  
1269 providing a well-structured narrative that balances professional detail with personal  
1270 insight. The language is fluid and varied, with transitions that guide the reader through  
1271 each thematic point.

1272

1273 **Qwen2.5-3B-Instruct**1274 Bruce Straley departed from Naughty Dog in 2016. At the time, he was serving as the  
1275 studio's co-founder and lead designer on several critically acclaimed games such as  
1276 "Uncharted" series. His departure was announced alongside the studio's decision to  
1277 shut down its development operations. Straley left due to personal reasons, but his  
1278 exit marked a significant change for the company, which was already facing financial  
1279 difficulties. After leaving Naughty Dog, Straley joined Sony Interactive  
1280 Entertainment, where he led the development of PlayStation VR and other virtual  
1281 reality projects. His departure from Naughty Dog is often seen as a turning point in  
1282 the studio's history, as it coincided with a period of transition and restructuring  
1283 within the company. Despite the challenges, Straley's contributions to the industry,  
1284 particularly through the "Uncharted" series, remain influential in the field of  
1285 video game design.1285 **Analysis:** This answer suffers from factual inconsistencies (e.g., Straley was not a  
1286 co-founder of Naughty Dog, nor did the studio shut down operations) and awkward  
1287 phrasing, which undermines both tone and fluency.1288  
1289Figure 8: **Qualitative Analysis: Tone and Fluency.** We present showcases comparing the tone and fluency of BERTReward against baseline models, accompanied by detailed analysis.1290  
1291  
1292  
1293  
1294  
1295

1296  
1297  
1298  
1299  
1300  
1301  
1302  
1303  
1304  
1305

1306 **Qualitative Analysis: Failure of SFT**

1307

1308 **Prompt:** Describe the new functions of the Tesla Model 3, and how they improve  
1309 the driving experience  
1310 **Dataset:** Instruction  
1311 **Models Compared:** 3B-FreeForm-RM v.s. Qwen2.5-3B-SFT

1312

1313 **Reference Answer (Qwen2.5-72B-Instruct):**  
1314 The Big Bang is seen as a singular event by most scientists because it marks the  
1315 beginning of the universe as we know it. According to the Big Bang theory, the  
1316 universe expanded from an extremely hot and dense state approximately 13.8 billion  
1317 years ago. This initial expansion, often referred to as the "Big Bang," is not a  
1318 continuous process but a specific moment in time when the universe began to expand  
1319 rapidly. Several key pieces of evidence support the Big Bang as a singular event:...

1320 **3B-FreeForm-RM**  
1321 Certainly! Understanding why the Big Bang is often viewed as a singular event rather  
1322 than a continuous process hinges on key scientific insights and observations, neatly  
1323 summarized in a few key points: 1. ****Expanding Evidence**:** ...  
1324 **Analysis:** This answer is more conversational and attempts to be engaging, but it  
1325 lacks precision in places (e.g., "expanding evidence" is vague, and "a single, expanding  
1326 'now'" is misleading). It also introduces less central ideas (like "Big Bounce" theory)  
1327 without sufficient context, making it slightly less focused.

1328 **Qwen2.5-3B-SFT**  
1329 We don't know. It's just the best model we have right now. There are other models,  
1330 but they're all based on the idea of a Big Bang, so we can't really say which one is  
1331 "right". There are also some theories that suggest that our universe may be part of  
1332 an infinite number of universes, each with its own Big Bang. We don't know.  
1333 **Analysis:** This answer is vague, repetitive, and lacks clarity or substance—it admits  
1334 uncertainty but fails to elaborate on the current understanding or evidence supporting the  
1335 Big Bang theory.

1336

1337

1338 Figure 9: **Qualitative Analysis: Failure of SFT.** We present showcases comparing the readability of  
1339 BERTReward against baseline models, accompanied by detailed analysis.  
1340

1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349