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ABSTRACT

Evaluating open-ended free-form generation is challenging because it is hard to define
what clearly separates good from bad outputs. Existing methods often miss key aspects
like coherence, style, or relevance, or are biased by pretraining data, making open-ended
long-form evaluation an underexplored problem. To address this gap, we propose semantic
evaluation, a scoring model using an LLM as reward model for evaluating open-ended
free-form generation in GRPO and guiding its training to produce enough distinct rewards
for good and bad outputs. Through comprehensive evaluations, including LLM-as-a-judge,
human ratings, and qualitative analysis, we show that using LLM scorers trained on multi-
sentence and paragraph-length responses, remains more reliable across varied long passages
and aligns well with the verifiable rewards GRPO needs than standard free-form metrics.
Human evaluations confirm that using trained LLM rewards as the reward signal to train
policy models yields responses better aligned with human preferences than those trained
with traditional metrics.

1 INTRODUCTION

Identifying the good and bad generations is the key to the success of reinforcement learning with
verifiable rewards (RLVR) to improve LLMs’ abilities on structured rule-based tasks such as mathe-
matical problem-solving (Ahn et al., 2024), classification (Rouzegar & Makrehchi, 2024), and game
planning (Shao et al., 2019). RLVR algorithms like Group Relative Policy Optimization (GRPO)
excel in mathematical problem-solving tasks by leveraging clear, rule-based reward signals (e.g.,
correctness) that effectively distinguish between correct and incorrect responses (DeepSeek-AI et al.,
2025). However, despite these advances, extending GRPO to open-ended, free-form text generation
tasks, such as generating travel plans, creative compositions, instruction-following, remains largely
underexplored. A key challenge in applying GRPO to open-ended generation is the lack of quantifiable
evaluation criteria, making it difficult to distinguish high-quality responses from poor ones. (Krishna
et al., 2021). Unlike structured tasks evaluated by explicit correctness criteria, free-form generation
requires models to balance coherence, fluency, and informativeness which are all subjective dimen-
sions that are hard to define with discrete rules. This makes reward design a fundamental challenge
in GRPO: How do we guide a model to write better, not just longer?

A key barrier is the lack of reliable, scalable evaluation methods. Popular metrics like ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2020) that measure lexical or embedding-level similarity to a
reference often fail to capture qualities that humans actually care about, such as clarity, relevance,
and stylistic appropriateness (Chen et al., 2019; Li et al., 2024). Thus, traditional metrics correlate
poorly with human preferences, making them unreliable reward signals in GRPO pipelines. Recent
work has applied general reward models (GRM) (Lambert et al., 2024) in RLHF to select preferred
responses, but they are not designed as verifiable rewards for GRPO, and their large size introduces
latency and high computational cost. As shown in Figure 1, traditional metrics fail to distinguish
between clearly better and worse responses, assigning similar scores to both, while GRM rewards
often correlate with length rather than content quality.

To address open-ended evaluation in GRPO, we propose FreeForm-RM, a LLaMA 3-based (Grattafiori
et al., 2024) model trained on diverse free-form responses and human ratings to provide free-form
response quality evaluation. We hypothesize that trained FreeForm-RM can provide stronger reward
signals than traditional metrics, enabling GRPO to guide models that generate more meaningful
free-form responses.
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Question: Sign the petition to save The Exorcist! Respond in 66 words.

Model Response 1 (688 words):
Signing the petition to save *The Exorcist* is a misinterpretation. *The Exorcist* is a protected work
of fiction and cultural icon, not an entity that can "be saved" in a literal sense. Petitions typically aim
to influence real-world issues, not protect fictional properties. Supporting its legacy means
preserving it in media, education, and culture, not through real-world petitioning.
…
**Depth and Insight**: Adds context about copyright, cultural preservation, and the multifaceted
ways to …

Model Response 2 (58 words):
Absolutely, signing the petition to save The Exorcist encapsulates powerful collective action and
passion, aligning personal love for the iconic film with broader efforts to preserve cultural treasures.
Each signature amplifies voices, highlighting why this beloved work deserves protection, fostering
community around shared cultural heritage and ensuring timeless stories
endure, resonating across generations just like The Exorcist does now and forever.

Reference Answer (66 words):
FOX has canceled The Exorcist, but we won’t let it end here. Let’s bring it back — to Netflix, Prime Video, Hulu, SYFY, or
ABC.
Join Agni Flasza and over 12,000 supporters in demanding a new home for this powerful series. Together, we can revive The
Exorcist and keep the story alive.
Sign and share the petition: Save The Exorcist!...

Traditional Metrics (ROUGE-l, BERTScore): Not distinguish the good and bad responses
General Reward Model (GRM-llama-3B) & BERTReward: Explicitly trained with human rating data and correlates with
human ratings

Reward
ROUGE-l: 0.06
BERTScore: 0.82

RewardBERT: 0.45
FreeForm-LM: 0.37
Human Rating: 1

Reward
ROUGE-l: 0.08
BERTScore: 0.80

RewardBERT: 0.82
FreeForm-LM: 0.22
Human Rating: 4

Figure 1: Differentiating between good and bad outputs is important for incorporating open-ended
generation into the RLVR frameworks. However, a key challenge in rewarding open-ended responses
is measuring semantic similarity between reference and model-generated responses. Training a
reward model on free-form responses with human ratings can address this challenge by generating
more reliable rewards that better correlate with human judgments.

Through extensive evaluations—including LLM-as-a-judge point-wise scoring, pairwise Bradley-Terry
ranking analyses (Bradley & Terry, 1952), and human rating and qualitative evaluation—we show
that leveraging stronger, FreeForm-RM improves the quality of open-ended text generation across
three free-form datasets– ELI5 (Fan et al., 2019), Alpaca (Taori et al., 2023a), LongForm (Köksal
et al., 2023). Our results show that using trained evaluators as reward signals in GRPO leads to
better alignment with human preferences for open-ended response generation compared to traditional
string comparison and word overlapping metrics. Furthermore, smaller models (e.g., Qwen-2.5-3B-
Instruct (Qwen et al., 2025)) trained with our enhanced reward models generate similarly preferred
and concise responses as their larger counterparts (e.g., Qwen-2.5-32/72B-Instruct), and outperform
models trained with traditional supervised fine-tuning (SFT) in preference quality. Our contributions
are:

• We introduce FreeForm-RM, a lightweight free-form reward model that can be easily
extended to GRPO training. We validate using FreeForm-RM in GRPO to train models on
across multiple open-ended generation benchmarks (ELI5, Alpaca, LongForm), showing
resulting model have an overall higher alignment with human preferences compared to
traditional metrics and SFT training.

• Through human expert annotations, we further confirm that models trained with FreeForm-
RM align better with human preferences than traditional metrics as rewards, showing a
promising direction for using GRPO to improve open-ended generation.

2 RELATED WORK

RLVR for LLM alignment: RLVR is pivotal in aligning LLMs with human preferences by op-
timizing non-differentiable objectives, making it valuable for tasks like dialogue (Li et al., 2016),
summarization (Roit et al., 2023), code generation (Le et al., 2022) and question generation (Huang
et al., 2025). Popular RLHF methods include DPO, which applies a classification loss over prefer-
ence data, and PPO, which trains a reward model to guide generation (Wu et al., 2023). However,
both of them require substantial human-annotated data or computational resources. To address
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this, GRPO (DeepSeek-AI et al., 2025) leverages self-generated data and simple, verifiable reward
functions to reduce annotation needs, especially for tasks with clear correctness signals like math(Liu
et al., 2025). Extensions such as DAPO(Yu et al., 2025), GRPO-LEAD(Zhang & Zuo, 2025) and
DISCO (Zhou et al., 2025b) broaden GRPO’s capabilities in math problem solving. However, these
approaches still rely on rule-based reward designs, leaving their application to open-ended, free-form
generation task underexplored.

Free-form and open-ended evaluation: Evaluating free-form and open-ended generation in LLMs
remains difficult (Krishna et al., 2021; Chen et al., 2019). Unlike short-form tasks with clear
correctness signals, free-form outputs, like summaries, dialogues, or open-ended answers, lack
binary ground truths and require assessing coherence, factuality, structure, and helpfulness (Chiang
et al., 2024; Fabbri et al., 2021; Li et al., 2025a). Traditional metrics such as ROUGE(Lin, 2004),
BLEU(Papineni et al., 2002), and BERTScore(Zhang et al., 2020) rely on token overlap or embeddings
but poorly reflect semantic or pragmatic qualities, often misaligning with human judgments(Chen
et al., 2019). To overcome this, LLM-as-a-judge offers more nuanced evaluation through pairwise
comparisons or Likert ratings, aligning better with human preferences (Chiang et al., 2024; Gu et al.,
2025; Zheng et al., 2023; Zhou et al., 2025a). However, this approach introduces heavy computational
costs, especially in GRPO where multiple generations and evaluations per prompt are needed (Luo
et al., 2025), limiting accessibility for users with modest resources. Some efforts fine-tune small
models using human ratings to act as open-source judges (Kim et al., 2024; Yang et al., 2024; Chen
et al., 2020; Zhou & Ai, 2024), useful for ranking or evaluation (Li et al., 2024; Krumdick et al.,
2025). Still, few explore using them as verifiable rewards in training, leaving this an open area for
research.

3 CONCEPTUAL BACKGROUNDS

In this section, we first review GRPO training and existing verifiable rewards for free-form generation,
and then introduce how FreeForm-RM can be used as a reward signal to improve learning robustness
and effectiveness.

3.1 PRELIMINARIES ON GRPO

GRPO is an RL algorithm designed to refine language model policies, πϕ, using reward signals
contextualized within a group of candidate responses. Given a prompt x from dataset D, GRPO
samples G responses yi = y1, . . . , yG from the old policy πϕold(y|x). Each response yi is assigned
a scalar reward r(x, yi) (detailed in the following subsections). The group-normalized advantage
A(x, yi) is then computed as:

A(x, yi) =
r(x, yi)− r̄(x)

σr(x)
, (1)

where r̄(x) = 1
G

∑︁G
j=1 r(x, yj) and σr(x) are the mean and standard deviation, respectively, of

rewards r(x, yj) within the group Y . This normalization contextualizes each advantage relative to
the group’s current performance.

The new policy πϕ(y|x) is optimized by maximizing the GRPO objective, which combines a clipped
surrogate loss with a Kullback-Leibler (KL) divergence penalty (Kullback & Leibler, 1951) against a
reference model πref(y|x) for regularization (Equation 6, in Appendix B).

Although originally applied to tasks with explicit, rule-based rewards (e.g., correctness or win/loss),
GRPO’s reliance on advantage estimation and KL-regularized updates allows it to learn from scalar
feedback, making it well-suited for open-ended tasks where response quality lies on a spectrum rather
than binary correctness.

3.2 EXISTING POPULAR METHODS FOR SCORING OPEN-ENDED GENERATION

Current scoring methods for open-ended generation mainly fall into two categories. The first are
reference-based metrics, a method commonly used in natural language generation. These methods
score the generations over metrics like string overlap or embedding similarity. While easy to apply,
they correlate poorly with human preferences on free-form outputs (Chen et al., 2019; 2020; Kim
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et al., 2024; Li et al., 2024; Gu et al., 2025; Li et al., 2025b; Zhou et al., 2025c). The alternative is
to train BERT-based transformer models (Warner et al., 2024) on free-form rating data to generate
rewards–BERTReward. Li et al. (2024); Bulian et al. (2022) show that finetuning BERT-based
models leads to better human correlation than simple BERTscore on answer judgments. In our work,
we use two reference-based metrics, ROUGE and BERTScore, and one reward model–based method,
BERTReward, as baselines.

ROUGE (Lin, 2004) is a reference-based metric that measures n-gram overlap between generated
and reference texts. Variants include ROUGE-1, ROUGE-2, and ROUGE-L, which capture unigram/bi-
gram matches and the longest common subsequence, respectively.

BERTScore (Zhang et al., 2020) is a reference-based metric that measures semantic similarity
between the reference and generation using contextual embeddings. It has shown a stronger correlation
with human judgments than token overlap metrics like ROUGE on free-form generation and translation
tasks. However, its reliability diminishes on modern datasets and models (Bhandari et al., 2020).

BERTReward is adopted from Li et al. (2024); Bulian et al. (2022) that training a BERT-based
model leads to better correlation with human judgments than ROUGE and BERTScore. Thus, we
train BERTReward, a 150M parameters model that provides finetuned reward signals for GRPO
training. Built on ModernBERT (Warner et al., 2024), the model is trained on triplets (xref

i , xgen
i , si)

from Prometheus-preference (Kim et al., 2024) and MOCHA (Chen et al., 2020) datasets, where
reference and generated answers are concatenated with [SEP] tokens and passed through a linear
regression head with sigmoid activation to predict normalized Likert scores r̂i ∈ (0, 1) via MSE loss
minimization. This approach offers a more robust alternative to BERT-based evaluation than simple
untrained BERTScore.

3.3 TRAINING FREEFORM-RM

To ensure a more robust and semantic rich reward evaluation, we fine-tune a causal Llama-3-
3B (Grattafiori et al., 2024) backbone on triplets (xref

i , xgen
i , si) with the Prometheus free-form quality

rating dataset (Kim et al., 2024), where si ∈ {1, 2, 3, 4, 5} represents the human Likert score. We
normalize each score to the [0, 1] range as:

ri =
si − 1

4
, where ri ∈ [0, 1] (2)

Each example is serialized using explicit tags as:

xprompt
i = <s> <REF> xref

i </REF> <CAND> xgen
i </CAND> </s> (3)

The input is tokenized using the Llama sentence-piece tokenizer with right-padding and a maximum
length of 1,024 tokens.

Reward Value Head Adapter. Let fθ : X → Rd denote the Llama encoder, and let hi =
fθ(x

prompt
i )0 be the hidden state corresponding to the <s> token. We employ a single-neuron value

head that maps hi to a normalized prediction:

r̂i = σ(w⊤hi + b), where σ(z) =
1

1 + e−z
(4)

This ensures r̂i ∈ (0, 1). The affine parameters w ∈ Rd and b ∈ R are randomly initialized.

Training Objective We minimize the mean squared error loss between predicted and normalized
scores:

L =
1

N

N∑︂
i=1

(r̂i − ri)
2 (5)

where N is the batch size. Label smoothing of 0.05 is applied to ri to improve calibration.1

1We use 4-bit LoRA adapters on {q_proj, v_proj} layers with rank r = 32 and scaling factor α = 64. We
use AdamW optimizer with initial learning rate η0 = 5× 10−5, cosine decay schedule, effective batch size of
16 (4 gradient accumulation steps), and 3 training epochs with maximum sequence length of 1024.

4
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4 EXPERIMENT SETUP

With the background on GRPO and the various reward signals established, we now outline our
experimental setup, including the datasets, base models, and training methods.

FreeForm-RM (LLM)

LLM

Query: Sign the
petition to save The
Exorcist! Respond in
66 words.

Response 1

Response 2

Response n

Reference Response vs. Response 1

Reference Response vs. Response 2

Reference Response vs. Response n

Compute Free-
Form Rewards

Figure 2: For each open-ended query, the policy model generates n candidate responses, which are
then evaluated by FreeForm-RM to obtain quality scores that are used to compute advantages for
GRPO training.

4.1 FREE-FORM AND OPEN-ENDED DATASETS

We use three datasets featuring free-form responses that span a broad spectrum of topics. They cover
diverse styles of free-form responses averaging 185 words, requiring evaluation across long sentences
rather than correctness.2 More details on each dataset are in §C.

ELI5 (Fan et al., 2019) is a collection of questions and answers from Reddit’s r/explainlikeimfive
community.3 We sample 10,444 questions as the train set and 1,056 as the test set.

Alpaca (Taori et al., 2023b) is a collection of 52K instruction-response pairs generated by OpenAI’s
text-davinci-003 in the style of Self-Instruct (Wang et al., 2022). We use 10,444 examples as the train
set and 1,334 as the test set.

LongForm (Köksal et al., 2023) is built from English documents (e.g., Wikipedia (Wikipedia
contributors, 2025), C4 (Dodge et al., 2021)) paired with reverse-instruction prompts generated by
LLMs. We exclude coding tasks, sampling 8,648 training and 956 test examples.

We merge the three sampled datasets together as our free-form train/test set.

4.2 TRAINING SETUP

GRPO for open-ended generation: We train policy models using GRPO within the OpenRLHF
framework (Hu et al., 2024), optimizing each of the four reward signals from Section 3 separately:
ROUGE-L, BERTScore, BERTReward, and FreeForm-RM,. We use two base models, Qwen2.5-1.5B-
Instruct and Qwen2.5-3B-Instruct (Qwen et al., 2025). In the training prompt, we encourage models
to be relevant, clear, concise, and complete (more details in Appendix Table 5).4

Supervised Finetuning (SFT): We run SFT on Qwen2.5-Instruct size 1.5B and 3B and use the
reference responses as ground truth labels.5

5 AUTOMATIC EVALUATION

We use our test set to evaluate our trained models, as well as larger off-the-shelf models: Qwen2.5-
Instruct 7B, 32B, and 72B. For evaluation, we use LLM-as-a-judge to evaluate the quality of the

2Examples in §Table 4.
3https://www.reddit.com/r/explainlikeimfive/
4All GRPO models are trained on 4 A6000 GPUs for one epoch, with a global batch size of 128, group size of

4, and learning rate of 1e-6. We set both max prompt length and max generation length to 1024.
5All SFT models are trained on 4 A6000 GPUs for three epochs, with with a global batch size of 128, learning

rate of 1e-5, and max tokens of 4096.

5
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Mean Likert Scores Success Rates with Score ≥ 4 (%) Bradley–Terry Win Rate (%)

Model ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall

Base LLM

Qwen2.5-72B-Instruct 4.13 3.12 3.88 3.79 86.63 22.38 72.41 65.73 8.48 6.38 6.40 7.28
Qwen2.5-32B-Instruct 4.10 2.96 3.89 3.74 87.02 18.62 73.61 65.37 7.59 4.57 6.26 6.38
Qwen2.5-7B-Instruct 4.04 2.95 3.82 3.69 77.38 18.83 66.64 59.10 7.10 4.69 5.60 6.01
Qwen2.5-3B-Instruct 3.90 2.88 3.75 3.59 66.00 17.99 63.57 53.22 4.85 3.95 4.94 4.78
Qwen2.5-1.5B-Instruct 3.61 2.26 3.44 3.21 49.16 10.25 47.38 38.87 2.52 1.41 2.71 2.34

RL-Finetuned Policy Models (GRPO)
3B-FreeForm-RM 4.39 3.56 4.23 4.13 96.59 38.91 87.93 79.25 21.11 19.23 15.35 18.55
3B-BERTReward 4.28 3.52 4.29 4.10 94.15 37.55 89.51 78.47 14.80 17.68 19.81 17.38
3B-BERTScore 3.79 2.79 3.63 3.49 60.73 11.09 59.30 47.89 3.23 3.05 3.54 3.42
3B-ROUGE-L 3.66 2.69 3.51 3.37 51.16 7.32 52.55 40.74 2.28 2.47 2.64 2.58
1.5B-FreeForm-RM 4.29 3.37 4.07 3.99 91.97 30.02 77.51 71.55 15.18 12.10 10.95 12.92
1.5B-BERTReward 4.09 3.54 4.16 3.98 84.64 28.87 84.41 70.70 7.55 17.51 11.95 11.03
1.5B-ROUGE-L 2.66 1.98 3.04 2.62 5.72 1.05 17.92 8.79 0.28 0.67 0.86 0.64
1.5B-BERTScore 2.34 1.86 3.05 2.47 0.90 0.42 17.39 6.50 0.14 0.52 0.84 0.48

Supervised Finetuning (SFT)
3B-sft 2.19 2.21 3.32 2.59 2.51 1.78 36.58 14.14 0.12 1.06 1.59 0.77
1.5B-sft 2.18 2.15 3.33 2.57 2.63 1.67 37.93 14.64 0.12 1.02 1.65 0.77

Table 1: Evaluation of model outputs via GPT-4 as a judge across different instruction tuning and
reward optimization strategies. Groupings show comparisons between SoTA baselines,l-finetuned
models using various reward functions, and supervised finetuning (SFT). Larger models are generally
stronger, though models fine-tuned with better-aligned reward functions (e.g., FreeForm-RM) may
show inflated automatic metrics due to biases like verbosity.

responses for different models as they can be strong alternative evaluators of humans (Chiang &
yi Lee, 2023b). Overall, models trained with our lightweight BERTReward performs competitively
with those trained with the much larger FreeForm-RM, and both substantially outperform models
trained with token-overlap metrics or SFT. In addition, BERTReward-trained models at 1.5B and 3B
scale rival or exceed the performance of Qwen2.5-7B-Instruct, despite having far fewer parameters.

5.1 EVALUATION METRICS

Point-wise evaluation: Point-wise evaluation assigns an absolute overall quality score to each
response on a Likert scale (Fabbri et al., 2021). We use GPT-4 as a judge to first provide some
reasoning, then assign a score between 1 to 5 to the generated response, considering aspects like
factuality, relevance, clarity and organization, conciseness, and completeness (detailed prompt in
Table 7).6 We use two metrics—mean Likert score (the average overall score) and success rate (the
percentage of responses that receive a score ≥ 4)—to evaluate the quality of model responses.

Pairwise preference evaluation: From the Likert scores, we derive pairwise comparisons to
compute Bradley–Terry win rates. This approach reduces rating noise by focusing on relative
preferences rather than absolute scales, which has been shown to yield more reliable comparisons in
subjective evaluation settings (Bai et al., 2022; Stiennon et al., 2022). For each prompt, we compare
the LLM ratings between every pair of models. A tie is recorded when both receive the same rating,
and a win is assigned to the model with the higher rating. We use the Bradley-Terry model to compute
the probability win rate of each model on the three datasets.

5.2 RESULTS AND DISCUSSION

Table 1 summarizes model performance across instruction-following tasks using Likert scores, success
rates, and Bradley–Terry win rates and §Figure 5.3 shows the training curves of the 3B policy models.
Below, we discuss our findings.

3B-FreeForm-RM has the highest overall average scores and success rates among all the trained
models. In addition, policy models trained with BERTReward and FreeForm-RM achieve the
higher ratings from LLM-as-a-judge than other evaluated policy models. The higher performance in
BERTReward and FreeForm-RM trained reward models provide more robust and reliable reward
signals for RL training than traditional metrics or untuned models (BERTScore). In addition, as
discussed later in Section 6.2, human evaluations reveal that FreeForm-RM models also tend to

6Chiang & yi Lee (2023a) shows that first analyze the response then give a rating score yields the best
correlation with human judgments.

6
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Figure 3: Reward curves during GRPO training show key differences across reward func-
tions. Traditional metrics show minimal reward change—only 0.05 for ROUGE-L and 0.25 for
BERTScore—indicating limited model improvement across all global training steps. In contrast, 3B-
FreeForm-RM’s reward is strongly correlated with response length; by step 60, it already generates
the maximum allowed tokens (1,024), causing reward values to plateau around 0.6. BERTReward
shows a more meaningful reward progression, not strictly tied to length, suggesting it favors responses
of an optimal length rather than simply longer outputs.

produce more structured and organized responses, which likely leads to higher LLM and human
preferences.

FreeForm-RM-trained models are comparable to much larger models. Despite smaller size,s
of 3B-FreeForm-RM, FreeForm-RM-trained models at 1.5B and 3B scale match or exceed the
performance of Qwen2.5-32B-Instruct across all metrics. For example, 3B-BERTReward outperforms
Qwen2.5-32B-Instruct in Likert score (4.13 vs. 3.74), success rate (79.3% vs. 65.4%), and win rate
(18.5% vs. 6.4%). These results show how a well-aligned reward model can enable smaller LLMs to
compete with much larger ones on open-ended free-form generations.

The pattern that using semantic verifiable reward for training produces better policy models
than using traditional metric-based rewards in free-form generation remains consistent across
model sizes. Models trained with standard metrics, such as 1.5B-ROUGE-L and 1.5B-BERTScore,
perform worse across all evaluation dimensions compared to 1.5B-BERTReward and 1.5B-FreeForm-
RM; this trend also holds for the 3B model sizes.

SFT underperforms across the board. Policy models trained with SFT achieve lower scores across
all evaluation dimensions than all models trained with GRPO, regardless of the reward used, except
for 1.5B-BERTScore. Their success and win rates are the lowest across all datasets. Even the small
1.5B-BERTReward and 1.5B-FreeForm-RM substantially outperform the 3B-SFT model on average
Likert score by around 1.1, success rate by 50%m and Bradley-Terry win rate by 7%.

5.3 REWARD LEARNING CURVES

We examine the reward learning curves of models trained with the four types of rewards. Reward
curves in Figure 3 during GRPO training show key differences across reward functions. Traditional
metrics show minimal reward change, only 0.05 for ROUGE-L and 0.25 for BERTScore, indicating
limited model improvement across all global training steps. 3B-FreeForm-RM and 3B-BERTReward
show a more meaningful reward progression, suggesting it favors responses of an optimal length
rather than simply longer outputs.

6 HUMAN EVALUATION

While LLM-as-a-judge evaluation often correlates with human judgments at the system level (Gu
et al., 2025), LLMs tend to have biases on responses with certain patterns (Zheng et al., 2023). To
better assess output quality, we conducted a human evaluation of responses from seven models:
Qwen2.5-72B-Instruct, Qwen2.5-3B-Instruct, 3B-FreeForm-RM, 3B-BERTReward, 3B-RougeL, 3B-
BERTScore, and 3B-SFT. Human preferences largely align with LLM-as-a-judge rankings (Table 2).
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Among the 3B models, 3B-FreeForm-RM is the top performer. Additionally, we observe that SFT
models often produce shallow outputs and does not generalize, whereas GRPO models, trained
with strong verifiable reward signals, better leverages the model’s internal capabilities to produce
higher-quality responses.

6.1 HUMAN EVALUATION SETUP

We randomly sample 150 test prompts (50 from each dataset’s test set), then collect responses from
Qwen2.5-72B-Instruct, Qwen2.5-3B-Instruct, 3B-FreeForm-RM, 3B-BERTReward, 3B-RougeL,
3B-BERTScore, and 3B-SFT. We use an annotation tool (§.Figure 4), where for each response, the
annotator needs to give a Likert score between 1-5 using the same evaluation criteria as the criteria
given to LLMs in §Table 7. We have four author annotators annotating a total of 150 examples. For
each prompt, the annotator also needs to give rankings of the responses of the seven models. All the
model names are hidden for a fair comparison.

6.2 RESULTS AND QUALITATIVE ANALYSIS

Mean Likert Scores Success Rates with Score ≥ 4 (%) Bradley–Terry Win Rate (%)

Model ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall

Base LLM

Qwen2.5-72B-Instruct 3.85 3.9 3.4 3.61 70.0 65.0 47.5 57.3 16.67 21.54 17.62 19.2
Qwen2.5-3B-Instruct 3.31 3.3 3.2 3.21 40.0 55.0 30.0 37.80 15.24 14.06 12.60 14.7

RL Finetuned Policy Models (GRPO)
3B-FreeForm-RM 3.8 3.45 3.7 3.5 65.0 50.0 60.0 61 12.86 8.16 10.76 17.6
3B-BERTReward 3.55 3.6 3.5 3.36 60.0 55.0 55.0 51.0 21.19 19.72 21.38 17.6
3B-BERTScore 2.95 3.3 3.3 3.23 40.0 45.0 42.5 41.46 15.95 12.02 17.62 14.7
3B-ROUGE-L 3.40 2.9 3.3 3.31 53.0 43.5 27.5 41.66 15.24 19.04 16.43 9.6

Supervised Finetuning (SFT)
3B-sft 2.0 2.8 1.4 1.93 10.0 25.0 10.0 13.41 0.03 5.44 3.98 6.5

Table 2: Selected human evaluation is mostly consistent with automatic evaluations. Although Qwen-
72B remains the most preferred by humans, model trained with FreeForm-RM is more preferred by
humans than all other trained policy models.

Model Markdown
(%)

Repetition
Rate (%)

Response
Length

Qwen2.5-72B-Instruct 47.48 6.25 220
Qwen2.5-3B-Instruct 28.89 4.69 194
3B-FreeForm-RM 96.80 4.2 212
3B-BERTReward 81.31 4.34 258
3B-BERTScore 24.00 4.55 180
3B-ROUGE-L 21.92 8.59 182
3B-SFT 15.96 8.29 146

Table 3: Average words per response for each group by
model. Repetition rate is the percentage of bigrams that
are repeated. Markdown is a regular expression that checks
whether a response follows a particular structure and returns
a boolean (§Table 6).

Table 2 shows that Qwen2.5-72B-
Instruct achieves the highest aver-
age human Likert rating (3.61) and
success rate (57%), followed by 3B-
FreeForm-RM with a rating of 3.5 and
a 61% success rate. In contrast, 3B-
BERTScore and 3B-ROUGE-L perform
only slightly better than the 3B base
model, each improving success rates
by approximately 3%. 3B-FreeForm-
RM, however, achieves a much larger
gain of around 20%. 3B-SFT receives
the lowest human rating, suggesting
the lack of generalization of SFT to
adopt to free-form generations. An-
notators prefer policy models trained
with learned reward models over those
trained with traditional metrics. In
general, we observe a consistent ranking between human judgments and the rankings produced by
LLM-as-a-judge. We elaborate on these human evaluation findings below.

What distinguishes 3B-FreeForm-RM from the base model? We further analyze 20 of the
examples where 3B-FreeForm-RM is preferred over the base model. The improvements fall into two
main categories: instruction following and tone and fluency. On prompts with explicit constraints
(e.g., “explain in 2 sentences”), the base model often fails to comply, producing responses that are
either too long or overly brief. In contrast, 3B-FreeForm-RM reliably adheres to such constraints.
Additionally, its writing is more polished and human-like. While the base model tends to sound
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mechanical—producing fragmented sentences reminiscent of stitched-together search results—3B-
FreeForm-RM generates fluent, cohesive answers. See Appendix Figure 7 and Figure 8 for qualitative
examples.

Policy models trained with finetuned reward models use structured outputs more often than
using ROUGE or BERTScore as free-form rewards. In Table 3, we observe that 3B-FreeForm-RM
and 3B-BERTReward tend to use markdown formatting more frequently than other models (96.8%
and 81.3%, respectively). As a result, annotators often note that their outputs have better readability
and structure. For example, FreeForm-RM and BERTReward policy models often generate responses
with list style format to enhance clarity and logical flows: Query: Describe the functionalities of
Tesla Model 3; Response: Certainly! Highlighting the new functions of the Tesla Model 3 and how
they elevate the driving experience showcases Tesla’s commitment to innovation and user-centric
design. Here’s a concise breakdown, seamlessly intertwining functionality, clarity, and depth: 1.
**Autopilot Advanced Driver Assistance Systems**...2... (See qualitative examples in Appendix
(Figure 5).

3B-ROUGE-L and 3B-BERTScore tend to be generic and sometimes repetitive. These models
often respond to prompts such as “Categorize the AI technologies mentioned below: Machine Learn-
ing, Natural Language Processing, Robotics” with generic definitions (e.g., “Machine Learning is a
subset of artificial intelligence that involves training algorithms...”) rather than actually categorizing
or differentiating between the terms. Additionally, Table 3 shows that 3B-ROUGE-L can be highly
repetitive. In §5.3, we find that ROUGE-L and BERTScore show little reward variance across the
training curve, which could indicate that the training signal is too weak, potentially causing the
trained models to output vague and surface-level outputs. In contrast, 3B-FreeForm-RM provides
clearer categorizations and contextual explanations for each term, demonstrating stronger content
logic. See detailed qualitative analysis in Appendix Figure 6 and Figure 9.

3B-SFT responses are often vague and overly simplified. In annotated examples, 3B-SFT re-
sponses explicitly avoid answering the question—sometimes stating “I don’t know” or offering no
meaningful explanation. For instance, in response to the prompt “Why is the Big Bang seen as a
singular event?”, the model deflects the question without addressing the core scientific reasoning.
Additionally, on LongForm prompts—especially those derived from Alpaca-style or open-ended
datasets—3B-SFT tends to produce overly simplified, shallow explanations. These responses often
lack both technical depth and structural clarity, which diminishes their informativeness and readability.
This trend is also reflected in Table 3, where 3B-SFT produces the shortest responses on average.
We attribute this issue in part to the nature of the training data from sources such as ELI5, which
contains casual, informal responses—many of which may be low-quality or factually incorrect. This
results in a model that mimics the tone and content of noisy or imprecise reference answers. While
GRPO-trained models demonstrate better performance over SFT in open-ended free-form generation
in our experiments, we do not dismiss SFT as an ineffective approach. When high-quality, human-
annotated datasets are available, SFT remains a valuable strategy—particularly in domains like code
generation (Zhou et al., 2023), where reference outputs are well-defined and reliable.

7 CONCLUSION

RLVR especially GRPO has been a success for its ability to fully leverage LLMs’ abilities to self-
improve without massive amount of labeled data on many rule-based evaluation tasks. However,
extending GRPO study on free-form and open-ended generation has been underexplored for the
challenges of evaluating free-form responses. We propose using a fine-tuned language model
(FreeForm-RM) to evaluate free-form responses through semantic quality assessment rather than
simple word-level matching, providing reward signals for GRPO training. Our results show that models
trained with FreeForm-RM generate higher-quality responses than those trained with traditional
metrics (ROUGE, BERTScore) or generalized preference reward models, achieving performance that
approaches larger models with the same backbone. Future work can expand upon current work on
more diverse open-ended generation tasks such as training more efficient and stronger verifiable
reward models and apply them on creative writings, creative research and design, or open-ended math
problems.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide detailed information regarding our data
and experimental setup. All datasets used in this work will be publicly available upon conference
decision date; we provide details on data sources, any postprocess steps in Appendix.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models (LLMs) as assistive tools in this research, with
usage limited to refining grammar and improving language clarity in the manuscript, writing utility
scripts for data preprocessing and postprocessing, and debugging; all outputs from these models
were meticulously reviewed, revised, and verified by the authors, who retain full responsibility for all
content presented in this paper.

B TECHNICAL DETAILS

In this section, we provide additional technical details for GRPO mentioned in Section 3, further
illustrating the regularization terms used in GRPO and the specifics of the Bradley-Terry loss employed
by GRM.

B.1 GRPO REGULARIZATION OBJECTIVE

JGRPO(ϕ) = Ex,{yi}

[︄
1

G

G∑︂
i=1

min

(︄
ρi(ϕ)A(x, yi),

clip (ρi(ϕ), 1− ϵ, 1 + ϵ)A(x, yi)

)︄]︄
− β Ex∼D[KL(πϕ(·|x)||πref(·|x))], (6)

where ρi(ϕ) =
πϕ(yi|x)
πϕold (yi|x) is the probability ratio for yi, ϵ is the clipping hyperparameter and β is the

KL penalty coefficient.

B.2 BERTREWARD TECHNICAL DETAILS

Creating training data for BERTReward: Each training example has a reference answer, a
generated answer, and a Likert score from 1-5 that rates the quality of the generated answer against
the reference. To ensure balanced quality ratings across both long and short free-form responses, we
incorporate training data from the Prometheus-preference (Kim et al., 2024) and MOCHA (Chen
et al., 2020).7 We combine the two datasets and split them into 80% for training and 20% for testing.
The resulting training set contains 19K examples—substantially smaller than the 80K examples used
to train FreeForm-RM.

Technical Details. We train ModernBERT (Warner et al., 2024) on triplets (xref
i , xgen

i , si) where
si ∈ {1, . . . , 5}. We first normalize each gold Likert score to

ri =
si − 1

4
∈ [0, 1],

where si is the gold Likert scale, ri is the normalized Likert score on the [0, 1] scale, xref is the
reference answer, and xgen is the generated response. Thus, given xref and xgen, we concatenate
them as a single string:

xpair = [CLS] xref [SEP] xgen, (7)

where xpair is the input string feeds into ModernBERT. Let hi ∈ Rd be the pooled ModernBERT
embedding of xpair. A linear regressor plus sigmoid yields a prediction

r̂i = σ
(︁
w⊤hi + b

)︁
, (8)

7Specifically, Prometheus-preference contains 200K fine-grained Likert preference ratings spanning ten
categories of evaluation including e.g. adaptive communication, emotional intelligence; the data is primarily
long free-form answers where each answer is above 150 tokens. MOCHA contains mid to long length answer
evaluation data to judge the overall correctness of the generated response.
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where w ∈ Rd and b ∈ R are the regressor weights and bias, σ(z) = 1/(1 + e−z) is the sigmoid
activation. r̂i ∈ (0, 1) is the predicted normalized score, and is taken as the reward signal of GRPO.
Training minimizes the mean-squared error

L =
1

N

N∑︂
i=1

(︁
r̂i − ri

)︁2
, (9)

where L is the batch-averaged MSE loss, and N is the number of examples in the batch.

B.3 GRM BRADLEY AND TERRY LOSS

The FreeForm-RM is trained to minimize the Bradley-Terry Loss:

Lreward(θ) = −E(x,yc,yr) [log σ (rθ(x, yc)− rθ(x, yr))] (10)

where rθ(x, y) denotes the reward score predicted by the model and σ(·) is the sigmoid function.
Generally, the GRM rθ(x, y) is used in RLHF training, either for selection in Best-of-n (BoN)
decoding or as the optimization objective in reinforcement learning (e.g., PPO (Schulman et al.,
2017), GRPO (DeepSeek-AI et al., 2025; Li et al., 2025c; Ichihara et al., 2025)). We use FreeForm-
RM as a GRM to provide reward signals for GRPO, rather than for ranking models or as a PPO reward
model. We use a sigmoid function to normalize its real-valued outputs to the [0, 1].8

Dataset # Train # Test Example Input Example Reference Response

ELI5 10,444 1,056 Could we theoretically create an infinite
echo?

The perfect conditions would be a wall
of atoms that will not move at all when
bumped. Considering the fact that heat is
defined by the movement of atoms...

LongForm 8,648 956 Explain how Venezuela raised its mini-
mum wage.

Venezuela raised its minimum wage to 1
million bolivars per month on Monday,
the third increase this year that puts the
figure at just $1.61 at the black market ex-
change rate. President Nicolas Maduro...

Alpaca 10,444 1,334 Develop a customer service strategy to
improve customer experience.

Here is a customer service strategy that
can help in improving the customer experi-
ence: 1. Identify your customers’ needs...

Table 4: Overview of the datasets used in our experiments. All datasets contain long-form, open-
ended questions spanning diverse domains (e.g., science, instruction following), with responses
averaging 185 words.

C DATASET DETAILS

Table 4 presents details of the datasets used in our work, including the sizes of the training and testing
sets, as well as example inputs and reference responses.

Explain Like I’m 5 (ELI5) is a dataset derived from Reddit’s r/explainlikeimfive community (Fan
et al., 2019).9 It contains 270K threads where users ask open-ended questions and receive simple,
easy-to-understand explanations—framed as if explaining to a five-year-old. The topics span a
wide range of domains, including chemistry, psychology, biology, and earth science. The dataset
is intended to help models learn to explain complex topics in accessible ways. We sample 10,444
questions for training and 1,056 for testing.

8We choose FreeForm-RM for its best performance as the smallest model on RewardBench (Lambert et al.,
2024), which offers a good trade-off between quality and efficiency without the heavy GPU demands of larger
models.

9https://www.reddit.com/r/explainlikeimfive/
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Alpaca is a collection of 52K instruction-response pairs generated by OpenAI’s text-davinci-003 to
fine-tune the LLaMA 7B model (Taori et al., 2023b).10 It features diverse prompts and long-form
responses in the style of Self-Instruct (Wang et al., 2022). We use a cleaned version of Alpaca (Taori
et al., 2023a) that removes instances with hallucinated answers, empty responses, or instructions to
generate images. Additionally, we filter out examples with responses shorter than 50 words, resulting
in a final set of 10,444 training and 1,334 test examples.

LongForm is constructed by applying reverse instruction generation to an English corpus, following
the approach in (Köksal et al., 2023). It includes a diverse set of human-written documents sourced
from Wikipedia (Wikipedia contributors, 2025), C4 (Dodge et al., 2021), Stack Exchange (Stack
Exchange contributors, 2025), and BigBench (et al, 2023). Instructions are generated by LLMs,
covering a wide range of tasks such as question answering, email writing, story or poem generation,
and text summarization. We exclude examples requiring code generation, as they fall outside our
intended scope. The final dataset contains 8,648 training examples and 956 test examples.

D PROMPT TEMPLATE

We show the prompt template used for training in Table 5, the template for point-wise evaluation in
Table 7, and the template for pairwise preference evaluation in Table 8.

Training Prompt Template

The user asks a question, and the Assistant answers it. The assistant provides
the user with the answer that strictly follows the following guidelines.
The answer should be enclosed within <answer> </answer> tags, respectively,
i.e., <answer> ANSWER HERE </answer>. Your answer should follow these rubric
criteria:
Rubric:
Factual Accuracy: The answer must be factually correct and does not contradict
the reference answer.
Relevance and Completeness: The answer should directly address the specific
question, covering all essential aspects.
Clarity and Organization: The answer should be well-structured, coherent, and
easy to follow.
Conciseness: The answer should avoid unnecessary repetition and be as clear
and succinct as possible.
Completeness: The answer is complete and not repetitive.
Response Format rules:
- Always start your response with <answer> tag and end with </answer>.
- Do not include any text or commentary before the opening <answer> tag and
after the closing </answer> tag.
For example, your response should follow this format:
<answer>
[Your final detailed answer goes here]
</answer>
Question: {question}

Table 5: Training prompt template for LLMs to generate responses.

E MARKDOWN EXPRESSION CHECK

We provide Table 6 to exhibit the markdowns, which is a regular expression that checks whether a
response follows a particular structure We provide Table 6 to present the markdown patterns—regular
expressions used to check whether a response follows a specific structure and return a boolean value,
as described in the caption of Table 3.

10https://openai.com
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Table 6: Markdown Expression Check

Pattern Description

^#{1,6}\s ATX-style headings (e.g. # Heading)
^[-*+]\s Unordered list items (e.g. - item)
^\d+\.\s Ordered list items (e.g. 1. item)
^>\s Blockquotes (e.g. > quote)
```[\s\S]+?``` Fenced code blocks
`[^`\n]+?` Inline code spans
\\|.+\\| Tables using pipe separators

F ANNOTATION TOOL

We present the annotation tool for response quality annotation in Figure 4. Annotators will be
displayed with the question prompt, the answers for the seven models, where they need to slide due
to limited screen width. Annotators can then put their Likert scores (1-5) and comments or notes for
each response, and then finally rank the responses based on their preferences and ratings.

Figure 4: Our annotation tool for response quality annotation. Annotators will be displayed with the
question prompt, the answers for the seven models, where they need to slide due to limited screen
width. Annotators can then put their Likert scores (1-5) and comments or notes for each response,
and then finally rank the responses based on their preferences and ratings.

G SHOWCASES FOR QUALITATIVE ANALYSIS

We present qualitative examples to accompany our analysis in Section 6.2. See Figure 5 (Readability),
Figure 6 (Content Logic), Figure 7 (Instruction Following), Figure 8 (Tone and Fluency), and Figure 9
(Failure cases of SFT).
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Point-wise Evaluation Template

You will be given a user question, a reference answer, and a system answer. Your task is to provide an overall
rating scoring how well the system answer addresses the user question against the reference answer. Give your
answer as an integer on a scale of 1 to 5, where 1 means that the system answer is not informative, and 5 means
that the answer addresses the question according to the criteria below.
Rubric:
Factual Accuracy: The answer must be factually correct and not contradict the reference answer.
Relevance and Completeness: The answer should directly address the specific question, covering all essential
aspects.
Clarity and Organization: The answer should be well-structured, coherent, and easy to follow.
Conciseness: The answer should avoid unnecessary repetition and be clear and succinct.
Completeness: The answer is complete and not repetitive.

Please base your overall rating on how well the system answer performs in these areas.

Question: {question}
Reference Answer: {reference_answer}
System Answer: {answer}

Please be as strict and as critical and harsh as possible.

Provide your feedback as follows:
Feedback:::
Final rating: (your rating, as an integer between 1 and 5)

Table 7: Prompt template for point-wise evaluation.

Pairwise Preference Evaluation Template

You are a fair judge assistant tasked with providing clear, objective feedback
based on specific criteria, ensuring each assessment reflects the absolute
standards set for performance.
Your task is to provide your preferred response as either A or B. Please
strictly follow the output format as:
Feedback: Reason why you choose this answer
[RESULT] A or B</s>
Rubric:
Factual Accuracy: The answer must be factually correct and does not contradict
the reference answer.
Relevance and Completeness: The answer should directly address the specific
question, covering all essential aspects.
Clarity and Organization: The answer should be well-structured, coherent, and
easy to follow.
Conciseness: The answer should avoid unnecessary repetition and be as clear
and succinct as possible.
Completeness: The answer is complete and not repetitive.
Write a detailed feedback that assesses the quality of two responses strictly
based on the given score rubric, not evaluating in general.
After writing a feedback, choose a better response between Response A and
Response B. You should refer to the score rubric.
Question: {question}
Reference Answer: {reference_answer}
Answer A: {answer_A}
Answer B: {answer_B}
Please be as strict and as critical and harsh as possible.
Provide your feedback as follows:
Feedback:::
Final rating: (your rating, as an integer between 1 and 5)

Table 8: Prompt template for pairwise evaluation.
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Prompt: Describe the new functions of the Tesla Model 3, and how they improve
the driving experience
Dataset: Instruction
Models Compared: 3B-FreeForm-RM v.s. Qwen2.5-3B-ROUGE-L &
Qwen2.5-3B-BERTScore

Reference Answer (Qwen2.5-72B-Instruct):
The Tesla Model 3 has several advanced features and functions that significantly
enhance the driving experience. Here are some key highlights: 1. **Autopilot and
Full Self-Driving (FSD) Capabilities**: ...

3B-FreeForm-RM
Certainly! Highlighting the new functions of the Tesla Model 3 and how they elevate
the driving experience showcases Tesla’s commitment to innovation and user-centric
design. Here’s a concise breakdown, seamlessly intertwining functionality, clarity,
and depth: 1. **Autopilot Advanced Driver Assistance Systems**: ...
Analysis: This answer uses more complex language, longer sentences, and a
promotional tone that may appeal to a more technical or marketing-savvy reader but
reduces overall clarity and ease of comprehension.

Qwen2.5-3B-ROUGE-L
The Tesla Model 3 has several new functions that enhance the driving experience. One
of the most notable improvements is the Autopilot system, which includes features
like automatic emergency braking, adaptive cruise control, and lane centering.
These features help drivers maintain a safe distance from other vehicles and stay
within their lane, reducing the workload and stress of driving...
Analysis: This answer presents information in dense, uniform paragraphs with
minimal structural guidance, making it harder for readers to scan and retain key points.
It also repeats ideas (e.g., mentioning safety features like automatic emergency braking
twice) and lacks cohesion, which disrupts the logical flow.

Qwen2.5-3B-BERTScore
The Tesla Model 3 has several advanced features designed to enhance the driving
experience. One of its notable improvements is the Autopilot system, which allows
for semi-autonomous driving capabilities. This includes automatic steering,
acceleration, and braking under certain conditions, reducing the driver’s workload
and enhancing safety...
Analysis: This answer presents information in long, uniform paragraphs without
visual structure, making it harder for readers to quickly locate and retain key points.
The dense formatting in this answer lacks clear segmentation, which forces readers to
parse multiple features at once without guidance or emphasis. Additionally, the
transitions between topics are minimal, and the writing style is more monotonous,
reducing engagement.

Qualitative Analysis: Readability

Figure 5: Qualitative Analysis: Readability. We present showcases comparing the readability of
BERTReward against baseline models, accompanied by detailed analysis.
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Prompt: Categorize the AI technologies mentioned below. Machine Learning,
Natural Language Processing, Robotics
Dataset: Alpaca Cleaned
Models Compared: 3B-FreeForm-RM v.s. Qwen2.5-3B-ROUGE-L &
Qwen2.5-3B-BERTScore

Reference Answer (Qwen2.5-72B-Instruct):
Machine Learning is a subset of artificial intelligence that involves algorithms and
statistical models that enable computer systems to improve their performance on a
specific task over time with experience. Natural Language Processing (NLP) is a
field of AI that focuses on the interaction between humans and computers using
natural language, aiming to read, decipher, understand, and make sense of human
language in a valuable and meaningful way. Robotics is a branch of AI that deals
with the design, construction, operation, and use of robots, as well as computer
systems for their control, sensory feedback, and information processing.

3B-FreeForm-RM
Certainly! Categorizing the AI technologies mentioned—Machine Learning (ML),
Natural Language Processing (NLP), and Robotics—brings insightful clarity to their
roles and intersections within broader AI landscapes. Here’s a nuanced breakdown: 1.
**Machine Learning (ML)**: ...
Analysis: This answer not only defines Machine Learning, Natural Language
Processing, and Robotics clearly, but also organizes the explanation into a structured,
interconnected framework. It highlights how each domain functions independently while
also emphasizing their synergies, particularly how Machine Learning underpins both
NLP and Robotics, and how NLP enables human-machine interaction in robotic systems.
This layered, relational presentation offers a more comprehensive and coherent
understanding of the AI landscape.

Qwen2.5-3B-ROUGE-L
Machine Learning is a subset of artificial intelligence that involves training
algorithms to make predictions or decisions without being explicitly programmed.
Natural Language Processing is a field within AI that focuses on the interaction
between computers and humans using natural language. Robotics is the design,
construction, and operation of robots, often involving AI to enable them to perform
tasks autonomously or with human assistance.
Analysis: This answer provides basic, isolated definitions of Machine Learning,
Natural Language Processing, and Robotics without addressing the instruction’s likely
intent: to offer an integrated and analytical understanding of how these technologies
relate within the AI ecosystem.

Qwen2.5-3B-BERTScore
Machine Learning is a subset of artificial intelligence that involves training
algorithms to make predictions or decisions based on data without being explicitly
programmed. It includes techniques such as supervised learning, unsupervised
learning, and reinforcement learning. Natural Language Processing (NLP) is a field
...
Analysis: This answer merely defines each term in isolation without addressing their
relationships, broader context, or the purpose of categorization implied in the instruction.
It reads more like a set of encyclopedia entries than a response that synthesizes
information into a cohesive, categorized explanation.

Qualitative Analysis: Content Logic

Figure 6: Qualitative Analysis: Content Logic. We present showcases comparing the content logic
of BERTReward against baseline models, accompanied by detailed analysis.
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Prompt: Who is Jagadeesh Kanna? Respond in 3 sentences.
Dataset: Chatbot
Models Compared: 3B-FreeForm-RM v.s. Qwen2.5-3B-Instruct

Reference Answer (Qwen2.5-72B-Instruct):
Jagadeesh Kanna is an Indian film actor, director, and producer, primarily known for
his work in Kannada cinema. He has appeared in numerous films and has won several
awards for his performances, including a Filmfare Award. Kanna is also recognized
for his philanthropic efforts and contributions to the film industry.

3B-FreeForm-RM
Certainly! Exploring Jagadeesh Kanna reveals him as a pioneering figure in Indian
tech entrepreneurship, particularly known for founding and leading Urban Ladder, a
leading online home decor and furniture marketplace in India. His journey showcases
resilience and innovation, starting with a small online store during college,
scaling it into a billion-dollar company through strategic pivots and partnerships,
ultimately inspiring countless aspiring entrepreneurs...
Analysis: This answer clearly aligns with a prompt that likely asked for a thoughtful,
analytical overview of Jagadeesh Kanna’s entrepreneurial contributions, providing depth,
context, and narrative structure.

Qwen2.5-3B-Instruct
Jagadeesh Kanna is an Indian film actor and producer known for his work primarily in
Malayalam cinema. He began his career in the early 2000s and has since become one of
the leading actors in the industry, often taking on challenging roles that showcase
his versatility. Kanna has received several accolades for his performances and is
recognized for his dedication to acting and his contributions to Malayalam films.
Analysis: This answer fails to align with the implied instruction to provide a
thoughtful, contextualized, and analytically rich overview of Jagadeesh Kanna. Instead,
Answer 1 offers a generic and surface-level biography focused on his film career,
without delving into the broader significance or impact of his work.

Qualitative Analysis: Instruction Following

Figure 7: Qualitative Analysis: Instruction Following. We present showcases comparing the
instruction following of BERTReward against baseline models, accompanied by detailed analysis.
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Prompt: Describe the new functions of the Tesla Model 3, and how they improve
the driving experience
Dataset: Instruction
Models Compared: 3B-FreeForm-RM v.s. Qwen2.5-3B-Instruct

Reference Answer (Qwen2.5-72B-Instruct):
Bruce Straley, a well-known industry veteran and co-director of "The Last of Us,"
left Naughty Dog in 2018. His departure was announced on January 24, 2018, via a
tweet from Naughty Dog’s official account. Straley cited the need for a change of
pace and personal growth as reasons for leaving the studio. He had been with Naughty
Dog for over 17 years, contributing to numerous award-winning titles, including "Jak
and Daxter," "Uncharted," and "The Last of Us." His exit marked a significant
transition for the studio, highlighting the challenges and pressures of developing
AAA games and the importance of personal well-being in the industry.

3B-FreeForm-RM
Certainly! Highlighting Bruce Straley’s departure from Naughty Dog (now part of
Sony Interactive Entertainment) underscores key shifts in game development
strategies and team dynamics, offering deep insight into his impactful tenure.
Here’s a concise breakdown that meticulously follows the request, ensuring clarity,
organization, depth, and insight: 1. **Contextual Setting**:...
Analysis: This answer adopts a more polished, engaging, and analytical tone,
providing a well-structured narrative that balances professional detail with personal
insight. The language is fluid and varied, with transitions that guide the reader through
each thematic point.

Qwen2.5-3B-Instruct
Bruce Straley departed from Naughty Dog in 2016. At the time, he was serving as the
studio’s co-founder and lead designer on several critically acclaimed games such as
"Uncharted" series. His departure was announced alongside the studio’s decision to
shut down its development operations. Straley left due to personal reasons, but his
exit marked a significant change for the company, which was already facing financial
difficulties. After leaving Naughty Dog, Straley joined Sony Interactive
Entertainment, where he led the development of PlayStation VR and other virtual
reality projects. His departure from Naughty Dog is often seen as a turning point in
the studio’s history, as it coincided with a period of transition and restructuring
within the company. Despite the challenges, Straley’s contributions to the industry,
particularly through the "Uncharted" series, remain influential in the field of
video game design.
Analysis: This answer suffers from factual inconsistencies (e.g., Straley was not a
co-founder of Naughty Dog, nor did the studio shut down operations) and awkward
phrasing, which undermines both tone and fluency.

Qualitative Analysis: Tone & Fluency

Figure 8: Qualitative Analysis: Tone and Fluency. We present showcases comparing the tone and
fluency of BERTReward against baseline models, accompanied by detailed analysis.
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Prompt: Describe the new functions of the Tesla Model 3, and how they improve
the driving experience
Dataset: Instruction
Models Compared: 3B-FreeForm-RM v.s. Qwen2.5-3B-SFT

Reference Answer (Qwen2.5-72B-Instruct):
The Big Bang is seen as a singular event by most scientists because it marks the
beginning of the universe as we know it. According to the Big Bang theory, the
universe expanded from an extremely hot and dense state approximately 13.8 billion
years ago. This initial expansion, often referred to as the "Big Bang," is not a
continuous process but a specific moment in time when the universe began to expand
rapidly. Several key pieces of evidence support the Big Bang as a singular event:...

3B-FreeForm-RM
Certainly! Understanding why the Big Bang is often viewed as a singular event rather
than a continuous process hinges on key scientific insights and observations, neatly
summarized in a few key points: 1. **Expanding Evidence**: ...
Analysis: This answer is more conversational and attempts to be engaging, but it
lacks precision in places (e.g., "expanding evidence" is vague, and "a single, expanding
’now’" is misleading). It also introduces less central ideas (like "Big Bounce" theory)
without sufficient context, making it slightly less focused.

Qwen2.5-3B-SFT
We don’t know. It’s just the best model we have right now. There are other models,
but they’re all based on the idea of a Big Bang, so we can’t really say which one is
"right". There are also some theories that suggest that our universe may be part of
an infinite number of universes, each with its own Big Bang. We don’t know.
Analysis: This answer is vague, repetitive, and lacks clarity or substance—it admits
uncertainty but fails to elaborate on the current understanding or evidence supporting the
Big Bang theory.

Qualitative Analysis: Failure of SFT

Figure 9: Qualitative Analysis: Failure of SFT. We present showcases comparing the readability of
BERTReward against baseline models, accompanied by detailed analysis.
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