
ML for Computer Architecture and Systems (MLArchSys), ISCA 2025

Limiting Network Bandwidth to Unleash
Throughput for Serverless Systems

Prasoon Sinha∗, Sidharth Babu†, and Neeraja J. Yadwadkar∗
∗University of Texas at Austin prasoon.sinha@utexas.edu, neeraja@austin.utexas.edu

†Carnegie Mellon University sidhartb@andrew.cmu.edu

Abstract—Serverless computing relieves developers from the
burden of managing resources for their cloud applications.
However, commercial providers require users to set a memory
limit for their serverless function and then proportionally allocate
(i.e., couple) the other resource types (CPU, network bandwidth).

A few works show the inefficiencies with coupling CPU and
memory, and instead make independent allocations for the two
resource types. However, despite right-sizing CPU and memory
allocations, we empirically find that these systems fall short
in meeting the desired throughput (function invocations per
second or requests per second). We make a key observation that
the throughput of serverless systems is limited due to network
congestion. The root cause of this congestion is that existing
systems ignore right-sizing network bandwidth for serverless
functions, thereby increasing contention for this resource type.

In this work, we study commonly deployed serverless functions
and find that network bandwidth is crucial to meet performance
needs: a function’s execution time can vary by 10× depending
on the amount of network bandwidth allocated. However, our
analysis reveals that determining the required amount of network
bandwidth to allocate is challenging: it depends on multiple
factors, including the number of allocated CPU cores, function
semantics, and function inputs.

To this end, we build SoloTune, a holistic resource management
framework for serverless systems. SoloTune uses online learning
to predict a function’s compute time and then estimates the
required network bandwidth to meet SLOs using an analytical
model. Our initial experiments reveal that by just making
intelligent network bandwidth allocations, we can reduce SLO
violations by 1.3× at high load compared to state-of-the-art
solutions.

I. INTRODUCTION

Serverless computing simplifies cloud usage for program-
mers: users simply upload their code while providers manage
resources and auto-scaling on behalf of the users [1], [6], [16],
[17], [19], [27]. However, commercial providers, including
AWS Lambda [6] and Google Cloud Functions [16], require
users to specify a memory limit for each function and allocate
a proportional share of CPU and network bandwidth. Having
to specify the memory limit forces users to reverse-engineer
the implications of their specification on latency and cost.

Previous works attempt to automatically find the memory
limit that will reduce user cost [9], [28]. A few works show
the inefficiencies of proportional (i.e., “coupled”) resource
allocations and completely re-haul the resource allocation
policy, making independent decisions for the amount of CPU
and memory to allocate on behalf of the user [12], [41].

However, we empirically observe that despite right-sizing
the amount of memory and CPU cores to allocate, these

Compress Matmult ImgProc MobileNet Resnet50 SentAnal

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e
(s

)

Fig. 1. Variation in execution time for six serverless functions as the amount
of network bandwidth allocated varies from 16-1024 Mbps. The number of
cores, amount of memory allocated, and function inputs are fixed. See § I.

systems still fail to meet the desired throughput (requests
per second (RPS)) for function invocations. We make a key
observation that the root cause behind the limited throughput
of serverless computing systems is often due to network
congestion.

Existing systems ignore right-sizing network bandwidth for
each function, even when the most widely used functions
heavily rely on this resource type to (1) download/upload data
objects from external stores [13], [23], [37], and/or (2) transmit
intermediate data between function workflows [38], [41].

Through our measurement study, we find that the amount
of network bandwidth allocated can lead to a 10× difference
in execution time for the same function (Figure 1).

We study 11 representative serverless functions, including
machine learning (ML) training/inference, scientific applica-
tions, image/video processing, and web services, from existing
benchmark suites [13], [23], [37] widely used in previous
works [4], [5], [15], [24], [25], [28], [29], [40].

We make two key findings: (a) not limiting network band-
width usage quickly inflates execution time and increases
service level objective (SLO) violations, as functions burst
and consume large amounts of network bandwidth, creating
contention for this resource type, and (b) coupling the amount
of network bandwidth allocated with user-specific memory
limits, as done by commercial providers [7], increases cost for
the user and resource waste for the provider. Thus, it is im-
perative that serverless systems right-size network bandwidth
to improve the system’s throughput while meeting SLO for
functions.

However, determining the amount of network bandwidth
to allocate a function is challenging: our measurement study
reveals that determining the network bandwidth and number
of CPU cores needed for a serverless function is a joint opti-
mization problem. The required amount of network bandwidth
depends on the (a) number of cores allocated, (b) function

1

mailto:prasoon.sinha@utexas.edu
mailto:neeraja@austin.utexas.edu
mailto:sidhartb@andrew.cmu.edu

semantics, and (c) function inputs.
Using our insights, we introduce SoloTune, a resource

management framework for serverless systems that makes
independent allocation decisions for each resource type, con-
sidering function semantics and inputs, to meet latency SLOs.
SoloTune leverages an online learning agent that uses linear
regressors to predict a function’s compute time (the time it
spends executing on CPU resources) given an invocation’s
input. It then uses this prediction with an analytical model
to estimate the network bandwidth required to meet SLOs.

We summarize our contributions as follows:
• We empirically show that not limiting the amount of

network bandwidth a function can use or coupling the
amount of network bandwidth allocated with memory is
suboptimal: both lead to performance degradation and/or
resource waste.

• We characterize real-world serverless functions and find
that allocating network bandwidth depends on the number
of cores allocated, function semantics, and inputs.

• We build SoloTune atop OpenWhisk using online learn-
ing with linear regression. Our preliminary results show
that by simply making intelligent network bandwidth al-
location per invocation, we can reduce SLO violations by
1.3× at high load compared to state-of-the-art baselines.

II. BACKGROUND & MOTIVATION

We describe the resource allocation policies of state-of-
the-art serverless platforms. We then empirically show the
inefficiencies of existing policies to motivate the need for
better network bandwidth resource allocations.

A. Existing Serverless Resource Management Policies

Commercial providers (e.g., AWS Lambda [6], Google
Cloud Functions [16]) and open-source platforms (e.g., Open-
Whisk [30], OpenFaaS [2]) use similar policies to allocate
memory and CPU to serverless functions: they allocate a
proportional CPU share to the user-specified memory limit.

However, these platforms differ in their policies for allo-
cating network bandwidth. AWS Lambda continues to rely on
resource coupling, allocating functions a network bandwidth
limit proportional to the memory limit [7], while Open-
Whisk/OpenFaaS do not place any limits, allowing functions
to consume large amounts of network bandwidth.

State-of-the-art serverless resource management frameworks
also ignore limiting network bandwidth.

Cypress [10], Golgi [24], and Kraken [11] provision con-
tainers with high CPU and memory capacity per function to
consolidate multiple concurrent invocations in one container.
OFC [29] leverages spare memory across functions to dynam-
ically scale in-memory caches, reducing external data retrieval
time.

While these systems couple CPU and memory, Bilal et
al. [12] and Aquatope [41] decouple and make independent
allocation decisions for CPU and memory. However, none of
these systems limit network bandwidth, allowing functions
to burst and consume large amounts of this resource type.

64 128 256 512 1024
Memory Allocation (MB)

0
10
20
30

Ex
ec

ut
io

n
Ti

m
e

(s
) ImgProc

Network Time
Compute Time

64 128 256 512 1024
Memory Allocation (MB)

0
10
20
30 MobileNet

Network Time
Compute Time

Fig. 2. Under a coupled resource allocation policy, allocating more memory
reduces network time since the amount of network bandwidth allocated
increases proportionately. However, this comes at the cost of memory un-
derutilization. See § II-B.

5 10 15 20
Load (requests/second)

0.0
0.5
1.0
1.5
2.0

Ex
ec

ut
io

n
Ti

m
e

(s
)

MobileNet

5 10 15 20
Load (requests/second)

0

20

40
Compress

Network Time Compute Time

Fig. 3. Change in network and compute time as load increases for two
functions placed on a single server without network bandwidth limits. Network
time for both functions grows as network bandwidth bottlenecks. Compute
time remains unchanged, as many cores remained unused. See § II-C.

Parrotfish [28] and AWS Lambda’s Power Tuning [9] are
offline profiling tools that select the best memory limit to
minimize user cost. However, as these tools run atop AWS
Lambda, they assume the platform’s coupled allocation of
network bandwidth, CPU, and memory. In the next sections,
we show the inefficiencies of (1) coupling network bandwidth
with memory, and (2) ignoring allocating network bandwidth
altogether.

B. Why Not Couple Network with Memory Allocations?

Previous works study the inefficiencies of coupling CPU and
memory but ignore network bandwidth [12], [41]. We extend
these studies and evaluate the impact of coupling network
bandwidth with memory. Figure 2 shows the execution time
for two functions (ImgProc, MobileNet) as we vary the amount
of memory allocated. We use AWS’ policy [7] to allocate
network bandwidth in proportion to the amount of memory
allocated. We break down execution time into (1) network
time, the time the function downloads/uploads data from/to
external datastores like S3, and (2) compute time, the time
the function executes on CPU cores.

ImgProc takes ∼ 30 seconds to download its 30MB image
when allocated 64MB memory, as it is allocated 8 Mbps
network bandwidth. This download time alone violates the
SLO (7 seconds). If the request’s compute time is 4.4 seconds,
download time must complete within 2.6 seconds to meet
the SLO. Hence, the request requires 92 Mbps (30MB × 8
bits / 2.6 sec). To obtain an allocation of 92 Mbps network
bandwidth, users need to request > 512MB of memory under
a coupled allocation policy. However, ImgProc only consumes
at most 59MB, resulting in > 88% memory underutilization.
Takeaway #1: Serverless systems need to make independent
allocation decisions for network bandwidth and memory to
reduce resource waste for the provider while meeting perfor-
mance requirements for the user.

C. Why Limit Network Bandwidth Usage?

Although we show the importance of independently allocat-
ing network bandwidth and memory, we next evaluate whether

2

0 20 40 60
Time (s)

0
10
20
30

Se
rv

er
Ut

iliz
at

io
n

(%
) CPU Memory

5 10 15 20
Load (requests/second)

0

50

100

SL
O

At
ta

in
m

en
t (

%
)

No Bandwidth Restriction
Bandwidth Restriction

Fig. 4. Left: Server CPU/memory utilization at RPS 20. These resources
are not the cause of SLO violations (<50% util). Right: Placing network
bandwidth limits per function improves SLO attainment. See § II-C.

restricting network bandwidth is necessary; we could simply
let the host OS (e.g., Linux) multiplex network bandwidth
across concurrent requests without placing any restrictions.
To do this, we observe the SLO attainment of functions on
OpenWhisk with and without network bandwidth limits as we
increase load (RPS). We deploy OpenWhisk on a cluster of
four bare-metal servers, each containing 96 cores and a 10
Gbps NIC. We use Azure’s production serverless trace [33] to
create a realistic invocation arrival pattern (see § V-A workload
creation). We set each function’s SLO to 1.5× its execution
time observed in isolation and execute only single-threaded
functions with a 1-core allocation to ensure suboptimal core
allocations are not the cause of SLO violations.

Figure 3 shows the average network time and compute time
as load increases for two functions, MobileNet and Compress,
that OpenWhisk places on the same server. Both functions’
compute time only slightly increases with load, suggesting that
CPU resources are not saturated even at RPS 20. Figure 4a
confirms this: server CPU and memory utilization is <40% at
RPS 20. However, network time grows by 3-4×, indicating
the server’s 10 Gbps NIC bottlenecks. This manifests into
several SLO violations: when not restricting bandwidth, SLO
violations begin when RPS >10 and SLO attainment drops by
25% at merely RPS 20 (Figure 4b). While all the requests to
Compress meet SLOs despite its inflated network time, every
request to MobileNet violates SLOs at RPS 20. To meet its
SLOs, MobileNet requires >448 Mbps to ensure network time
<0.65 seconds (2-second SLO − 1.35-second compute time).
However, MobileNet is only given 375 Mbps on average, since
the requests to Compress, which download larger input files,
use 600 Mbps on average and saturate the NIC, despite only
requiring 460 Mbps to meet SLOs. By placing the optimal
network bandwidth limits on each function (MobileNet 448
Mbps, Compress 460 Mbps), we do not violate any SLOs,
even at RPS 20, thereby doubling the effective throughput the
serverless system can support (Figure 4b).
Takeaway #2: To meet the throughput demands of server-
less workloads while also meeting SLOs across users and
functions, serverless systems should allocate only the required
amount of network bandwidth to each function invocation.

III. CHARACTERIZATION

In § II, we motivate the need to intelligently allocate
network bandwidth. While we fixed the amount of cores
allocated in § II (1 core), we next study the impact of different
combinations of network bandwidth and CPU allocations on
execution time. We also study the impact of function inputs

on network and compute time. We omit memory from our
analysis; memory does not affect latency since, traditionally,
serverless platforms do not provide swap space [6], [16], [27].
Impact of network bandwidth & CPU allocations. Figure 5
presents the execution time of six representative functions
under varying amounts of network bandwidth and CPU cores
allocated. We keep each function’s input fixed to isolate the
impact of variable allocations on execution time.

The effect of both resource types on Matmult and VidProc’s
execution time shows that for multi-threaded functions, deter-
mining the amount of network bandwidth and cores to allocate
is a joint optimization problem. For example, to achieve a 150-
second execution time, we could allocate Matmult 3 cores
with 512 Mbps, 4 cores with 384 Mbps, or 8 cores with
256 Mbps. Increasing the amount of network bandwidth and
cores allocated significantly reduces execution time: Matmult’s
latency reduces by 25% when increasing the cores allocated
from 2 to 16 and further reduces by 75% when increasing the
network bandwidth allocated from 64 to 512 Mbps.

However, for other multi-threaded functions (e.g, MLTrain,
ResNet50), increasing the amount of network bandwidth al-
located has little impact on execution time: given 16 cores,
increasing network bandwidth from 64 to 512 Mbps only
reduces latency by 15% for MLTrain and 11% for ResNet50.
Meanwhile, these functions greatly benefit from more cores:
MLTrain’s execution time reduces by 58% when increasing
cores allocated from 2 to 16 with a fixed 64 Mbps network
bandwidth. These types of functions may not require larger
amounts of network bandwidth to meet SLOs.

Unlike the multi-threaded functions, increasing the num-
ber of cores allocated for ImgProc and Compress has little
effect on execution time (<0.01% variation) as these func-
tions are single-threaded. Meanwhile, providing more network
bandwidth greatly impacts execution time: ImgProc’s latency
reduces by 49% by increasing network bandwidth from 64 to
512 Mbps.

Meeting SLOs for single-threaded functions likely requires
generous network bandwidth allocations—insufficient alloca-
tions due to contention or poor provisioning can rapidly lead
to violations.
Takeaway #3: The impact of allocated network bandwidth
and CPU cores is function-specific. The required network
bandwidth heavily depends on the allocated number of CPU
cores and function semantics (thread-bounded parallelism).
Impact of function inputs. We next observe the impact of
varying inputs on network time and compute time. We fix the
amount of network bandwidth (256 Mbps) and CPU (1 core)
allocated across inputs. Figure 6 shows this data for VidProc;
however, our findings hold for other functions. Across all
functions, the only input property affecting network time is
an input’s size: downloading two videos of the same size (2.2
MB) takes the same amount of time (0.07 seconds). However,
their compute times differ greatly: two videos of the same size
differ by up to 3.02× in compute time. Videos in Set 1 exhibit
a seemingly unpredictable relationship between input size and
execution time, while Set 2 shows a steady growth in compute

3

5 10 15
of Cores Allocated
0

200

400

Ex
ec

ut
io

n
Ti

m
e

(s
)

Matmult

5 10 15
of Cores Allocated

0.0
2.5
5.0
7.5

10.0 VidProc

5 10 15
of Cores Allocated
0

50

100

150 MLTrain

5 10 15
of Cores Allocated
0

200

400
ResNet50

5 10 15
of Cores Allocated

0.0
2.5
5.0
7.5

10.0 ImgProc

5 10 15
of Cores Allocated
0

50
100
150
200 Compress

Network Bandwidth Allocation: 64Mbps 128Mbps 256Mbps 384Mbps 512Mbps

Fig. 5. Change in execution time of six serverless functions as the amount of network bandwidth and number of cores allocated vary. See § III.

2.2 3.8 4.9 5.6 6.1
Video size (MB)

0.00
0.05
0.10
0.15
0.20

Ne
tw

or
k

Ti
m

e
(s

)

2.2 3.8 4.9 5.6 6.1
Video Size (MB)

0
2
4

Co
m

pu
te

Ti
m

e
(s

)Input Set 1 Input Set 2

Fig. 6. Network time and compute time of two sets of inputs to VidProc.
Both sets contain the same size, but different unique inputs. Each input is
given 256 Mbps and 1 core. See § III.

Workers

Dispatcher

 Resource Allocator

Fr
on

te
nd

Metadata

Cluster Controller(s)

Daemon
C1 C2 C3

Prediction: cores
bandwidth, mem

Predicted
allocObserved Metrics:

util, perf

Invocations

Fig. 7. SoloTune’s architecture (green components) and workflow. See § IV.

time with video size. We found that all videos in Set 2 have
the same resolution (1280x720), whereas the resolution varies
in Set 1 videos, causing wide variation in execution time.
Takeaway #4: Serverless resource managers need to be input-
aware. While the amount of required network bandwidth
depends on just input size, determining the number of CPU
cores needed requires being holistically input-aware (i.e., we
need to consider characteristics of inputs beyond just size).

IV. DESIGN & IMPLEMENTATION

We leverage our findings from § II and III to build
SoloTune, a resource management framework for serverless
systems that makes input-aware and independent allocation
decisions for all three resource types: network bandwidth,
CPU, and memory. SoloTune provides the minimum resource
requirements to meet each function’s latency SLO.
SoloTune’s workflow. Figure 7 describes SoloTune’s work-
flow. 1 The Frontend receives invocations specifying the
function, input(s), and a latency SLO. It then forwards these
invocations to SoloTune’s Resource Allocator. 2 To make
input-aware allocation decisions, the Allocator extracts readily
available metadata (e.g., image resolution) specific to the input
type in the payload and feeds this metadata as features to
its function-specific online machine learning (ML) agent to
predict the required resource allocation to meet the latency
SLO. 3 The Dispatcher then places the invocation with
the predicted resource allocation on a server with available
resources. 4 On each worker, SoloTune deploys a lightweight
daemon to collect performance metrics per invocation. When
an invocation completes, the daemon sends this data to

5 SoloTune’s Allocator to update its model and learn the
evolving relationship between inputs, allocated resources, and
function performance.
Allocating network bandwidth. To determine the required
network bandwidth for an invocation, we break down the
E2E latency of serverless invocations. Traditional serverless
functions have two distinct phases of execution: time using
network bandwidth to access the inputs, and time using CPU
cores. Hence, the E2E latency of a serverless invocation can
be formally decomposed as

Le2e(i) = Ln(i) + Lc(i) (1)

where Le2e(i) is the E2E latency for the given input i, Ln(i)
is the network time, and Lc(i) is the compute time. For an
invocation to meet its SLO, SoloTune needs to allocate enough
resources to ensure Le2e(i) ≤ α×SLO(i), where 0 < α ≤ 1
to provide some slack. Substituting this into Equation (1) and
rearranging terms, we solve for network time Ln(i) as

Ln(i) = α× SLO(i)− Lc(i) where 0 < α ≤ 1 (2)

We also know the network time equals the input’s size
si divided by the amount of network bandwidth allocated
BWalloc(i) (Figure 6a). Hence, we can determine the required
amount of network bandwidth to meet the SLO for input i
given it has a size si MB and Lc(i) compute time as

BWalloc(i) = si × (α× SLO(i)− Lc(i))
−1 (3)

We can retrieve the input’s size upon invocation time by
analyzing its properties; however, estimating the compute time
before runtime requires understanding the effect of inputs and
cores allocated on compute time (§ IV-A).
Allocating CPU and memory. In this work, we focus on
predicting compute time for commonly used single-threaded
functions [4], [5], [13], [15], [23]–[25], [28], [29], [40] that
utilize only one core.

Hence, the number of cores allocated is fixed; we only
model the effect of different inputs on compute time. We leave
predicting compute time for multi-threaded functions allocated
multiple cores as future work. We also leave predicting mem-
ory as future work. We describe how we predict compute time
for single-threaded functions next.

A. Predicting Compute Time

We approach predicting compute time as a regression prob-
lem. We use online learning that leverages linear regression to
predict compute time.

4

Why online ML? § III highlights the complexity of making
accurate resource allocations. Input properties beyond size
(e.g., video resolution) affect compute time. Moreover, the
impact of the number of cores allocated on performance can
greatly differ between functions due to differences in function
semantics. Thus, we use ML to predict the compute time
per invocation in a data-driven manner. We further design
SoloTune’s Resource Allocator to use online ML for four
reasons. (1) Online ML enables our agent to observe and adapt
to dynamically changing runtime environments. (2) Represen-
tative function inputs may not be available offline to train
accurate models. (3) Models trained offline are susceptible
to data drift if the distribution of inputs, functions, or SLOs
changes over time. (4) Training ML models offline may not
generalize to new, previously unseen functions and inputs.
Inputs to online agent. The input to SoloTune’s online agent
is an invocation’s input. We construct input-specific feature
vectors consisting of readily available metadata commonly
used to describe input types (e.g., video/image resolution,
file size, bit rate). Using readily available metadata ensures
fast and resource-efficient vector construction. Table I lists
the input types SoloTune extracts metadata for; these input
types are commonly seen in commercial serverless applica-
tions [8] and research [4], [5], [10], [12], [23], [24], [28],
[29], [37], [39]. This metadata helps the agent learn input
features affecting a function’s execution time. SoloTune infers
the input type from the file extension if not specified. If
SoloTune has not seen the input type (e.g., XML), developers
can specify the input’s descriptive features during function
registration; otherwise, SoloTune defaults to input size as
the feature. SoloTune concatenates the input’s metadata to
construct its feature vector for model prediction. We assume
SoloTune can access input metadata since inputs are embedded
in an invocation’s payload. However, if not embedded, we
can deploy SoloTune’s featurizer as a small service that users
submit inputs to for featurization.
Feedback and model updates. We update SoloTune’s agent
after each retired invocation using the observed compute
time (execution time - input size / bandwidth allocation).
SoloTune bootstraps its online agent by observing the first few
invocations under intentionally large allocations: it does not
use its compute time predictions to make network bandwidth
allocation decisions. These initial invocations help the agent
learn the relationship between inputs and execution time
without negatively affecting user invocations. A confidence
threshold determines how many invocations to observe before
switching to predictive allocations.

B. Implementation

We implement SoloTune on Apache OpenWhisk (OW) [30].
SoloTune’s Resource Allocator is a shim layer atop OW,
sitting on the same node as the dispatcher. SoloTune’s online
agent uses Vowpal Wabbit’s lightweight and efficient linear
regressors [3]. We write simple C++ functions to obtain input
metadata within µs. For initial invocations (20 invocations),
we default the amount of network bandwidth allocated (256

Functions # Threads # Inputs Input Sizes
Encrypt single file (36) 2-24KB
SentAnal single json (23) 63KB-5MB
ImgProc single image (64) 184KB-4.5MB
ResNet50 multiple image (64) 184KB-4.5MB
MobileNet single image (64) 184KB-4.5MB
VidProc multiple video (28) 2.2-6.1MB
Linpack multiple matrix (22) 5.3MB-1.7GB
Speech2Txt multiple audio (32) 48KB-12MB
Compress single file (28) 64MB-2GB
Matmult multiple matrix (25) 5.3MB-1.7GB
MLTrain multiple csv (4) 10-100MB

TABLE I
FUNCTIONS USED IN THIS WORK. SEE § V-A.

Mbps) while the agent learns. We limit the network band-
width of containers using Linux’s token bucket filter queuing
discipline [36] and augment OW to support allocating network
bandwidth per invocation. SoloTune’s per-worker daemon col-
lects execution time per invocation and sends it (via gRPC) to
SoloTune’s Allocator to update its agent online.

V. EVALUATION

In this section, we provide preliminary results that show the
efficacy of making intelligent network bandwidth allocations
to better meet the throughput demands of serverless workloads
while reducing SLO violations across loads and functions.

A. Evaluation Methodology

Testbed. We deploy SoloTune on 4 servers in Chameleon
Cloud [22] connected via a BCM57414 NetXtreme-E 10Gb
RDMA Ethernet Controller. Each server has two Intel Xeon
Gold 6240R CPUs (96 cores) at 2.40 GHz, 192GB memory,
and runs Ubuntu LTS 20.0.4. One server hosts OpenWhisk’s
Controller, CouchDB, Dispatcher, and SoloTune’s central
components (allocator and metadata store). The other servers
host an OpenWhisk Invoker and SoloTune’s daemon.
Functions. Serverless production traces [20], [32], [33] con-
ceal the details about actual functions executed. Thus, we
use representative functions (Table I) from several serverless
benchmark suites [13], [23], [37] commonly used in recent
works [4], [5], [10], [12], [15], [18], [24], [25], [28], [29],
[35], [40]. As we focus on single-threaded functions in this
work, we use five functions: MobileNet, ImgProc, Compress,
SentAnal, and Encrypt. We use inputs with multiple descrip-
tive features (e.g., size, resolution).
Workload. We follow the methodology of previous
works [10], [21], [24], [34], [35] to create our workload.
We use Azure’s production serverless trace [33] to evaluate
SoloTune with realistic arrival patterns. As the trace only
provides timestamps of arriving invocations without detailing
the function/input, we select a function/input uniformly at
random for each timestamp. We set every function’s SLO to
1.5× its median observed execution time. Like commercial
providers [14], [26], [31], we generate low, medium, and high
load to reflect cluster utilization of 25% (20 RPS), 50% (60
RPS), and 75% (100 RPS).
Baselines. We compare SoloTune against two state-of-the-art
baselines: Parrotfish [28] and Bilal et al. [12]. As Parrotfish
runs atop AWS Lambda, it couples network bandwidth with
its recommended memory allocation per function. Meanwhile,

5

No violations

Fig. 8. By only making intelligent network bandwidth allocations (core
allocations are the same across systems, 1-core), SoloTune reduces the SLO
violations across loads (left plot) and functions (right) by 1.3×. See § V-B.

ImgProc MobileNet SentAnal Compress Encrypt0
25
50
75

100

Av
g.

 N
et

wo
rk

Ba
nd

wi
dt

h
Us

ed
 (M

bp
s)

Parrotfish Bilal SoloTune

Fig. 9. SoloTune redistributes network bandwidth across functions to better
meet SLOs (Figure 8). SoloTune limits the bandwidth usage of Encrypt and
Compress to allocate more bandwidth to the other three functions. See § V-B.

Pfish Bilal Solo
Tune

0
10
20

Ex
ec

ut
io

n
Ti

m
e

(s
) SLO

ImgProc

Pfish Bilal Solo
Tune

0

10

20 SLO
MobileNet

Pfish Bilal Solo
Tune

0
200
400

SLOEncrypt
Compute Time Network Time

Fig. 10. SoloTune reduces ImgProc and MobileNet’s network time by 1.6×
and 1.5×, respectively, while slightly increasing Encrypt’s by 1.3× to meet
SLOs across all functions. Other functions omitted for brevity. See V-B.

Bilal et al. make independent allocation decisions for CPU and
memory per function, but do not restrict bandwidth.

B. Evaluation Results

Preliminary E2E results. By simply making intelligent net-
work bandwidth allocations, SoloTune reduces SLO violations
across loads (1.3× reduction in violations at high load, Fig-
ure 8, left). Moreover, SoloTune’s allocations improve SLO
attainment across all functions (Figure 8, right). None of the
systems violate Compress or Encrypt’s SLOs: these are longer-
running functions with more slack. However, Parrotfish and
Bilal increase the SLO violations for the other three functions
by 26% compared to SoloTune.

Under Parrotfish and Bilal, Encrypt is able to consume
> 100 Mbps of bandwidth on average (Figure 9). Hence,
the plethora of requests to this function (nearly) saturate
the server’s bandwidth capacity. This reduces the available
bandwidth for ImgProc, MobileNet, and SentAnal, increasing
network time and hence overall latency/SLO violations for
these functions. Meanwhile, SoloTune reduces the amount
of network bandwidth allocated to Encrypt by over > 2×
compared to the baselines; it learns that the function can
meet SLOs even with small allocations (48 Mbps, Figure 10),
as the slack between the function’s SLO and compute time
is high. Moreover, to meet their SLOs, SoloTune increases
the allocation for ImgProc, MobileNet, and SentAnal (1.2-2×
increase compared to the baselines) to decrease network time
(Figure 10), as these functions have tighter latency constraints.
Accuracy. SoloTune’s online agent uses regression to predict
an invocation’s compute time for a given function input.

ImgProc MobileNet SentAnal Encrypt Compress0
5

10
15
20

Co
m

pu
te

 T
im

e
Pr

ed
ict

io
n

Er
ro

r (
%

)

Fig. 11. Prediction error of SoloTune’s online agent predicting compute time
per invocation. Error is reported as mean absolute percentage error. See § V-B.

Figure 11 shows the agent’s prediction error reported as the
mean absolute percentage error for the invocations sent to each
function. SoloTune’s predictions are accurate (<11% error).

Serverless functions typically complete a single task without
complex control logic that cause large variations in execution
flow for a given input. This enables SoloTune to quickly and
accurately learn the impact of different inputs on the function’s
compute time.
Overheads. SoloTune’s input featurization and model predic-
tion are on an invocation’s critical path. However, we minimize
these overheads. Regardless of the input type, featurization
only takes 20-400µs. Model predictions are always < 16µs,
and model updates take 100-300µs, however, updates are not
on an invocation’s critical path. The resource overheads are
also minimal. The input feature vectors are 40-70 bytes. The
weights comprising each function’s regressor are at most 20
bytes (<one-millionth a server’s memory). The CPU time for
input featurization and model prediction/updates is < 400µs.

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

To improve the throughput and SLO attainment of serverless
systems, we show the importance of making intelligent net-
work bandwidth allocations. We present SoloTune, a resource
management framework for serverless systems that uses online
learning to predict a function’s compute time and then esti-
mates the required network bandwidth to meet SLOs using an
analytical model. Our initial prototype reduces SLO violations
by 1.3× compared to state-of-the-art solutions, simply by
making intelligent network bandwidth allocations. However,
we make a few assumptions that require further research.
Future work. (1) Our network bandwidth allocation decisions
assume unidirectional usage of a server’s network to download
data objects before compute time. However, functions may
also transmit data to a datastore or subsequent functions
after compute time, which adds to the function’s execution
time. Accounting for this when making network bandwidth
allocation decisions requires knowledge of the data size trans-
mitted, which is unknown before runtime. We will conduct
further research to predict the transmitted data size before
runtime. (2) In this work, we focus on providing the required
network bandwidth for single-threaded functions by predicting
their compute time when only one core is allocated to them.
For multi-threaded functions, we show that determining the
network bandwidth and number of cores to allocate is a joint
optimization problem (§ III). Moreover, predicting the com-
pute time for multi-threaded functions is challenging, as the
impact of multi-core allocations is function- and input-specific.
We will build new techniques to predict compute time for
multi-threaded functions and navigate the joint optimization

6

allocation problem. (3) We show SoloTune’s initial gains while
using OpenWhisk’s memory-centric scheduler, which packs
invocations onto a single server until memory is saturated.
Hence, the scheduler continues packing invocations onto a
single server and bottlenecks CPU/network bandwidth, thereby
increasing SLO violations.

Further work is required to build a hierarchical, resource-
aware scheduler that intelligently disperses invocations across
servers to ensure no single resource type bottlenecks and
causes unnecessary SLO violations. This is especially chal-
lenging for serverless computing, as functions exhibit vast dif-
ferences in execution time and utilization of different resource
types (§ III).

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful feed-
back. We thank the members of the UT-SysML research group
for their insightful discussions to improve this work. This
work was supported by the UT ECE junior faculty start-up
fund, UT iMAGiNE consortium and its industrial affiliates,
an award from the UT Machine Learning Lab (MLL), the
AMD Chair Endowment, the Cisco Research Award, and the
Amazon Research Award.

REFERENCES

[1] “Ibm cloud functions,” https://cloud.ibm.com/functions/.
[2] “Openfaas,” https://www.openfaas.com/.
[3] “Vowpal wabbit,” https://vowpalwabbit.org/index.html.
[4] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,

and V. Hilt, “SAND: Towards High-Performance serverless computing,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 923–935. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/akkus

[5] L. Ao, G. Porter, and G. M. Voelker, “FaaSnap: FaaS Made Fast Using
Snapshot-Based VMs,” in Proceedings of the Seventeenth European
Conference on Computer Systems, ser. EuroSys ’22. Rennes, France:
Association for Computing Machinery, 2022, p. 730–746. [Online].
Available: https://doi.org/10.1145/3492321.3524270

[6] “AWS Lambda,” https://aws.amazon.com/lambda/.
[7] “AWS Network Benchmark,” https://github.com/sjakthol/aws-network-

benchmark?tab=readme-ov-file.
[8] “AWS Serverless Application Repository ,” https://aws.amazon.com/

serverless/serverlessrepo/.
[9] “Profiling functions with aws lambda power tuning,” https://docs.aws.

amazon.com/lambda/latest/operatorguide/profile-functions.html.
[10] V. M. Bhasi, J. R. Gunasekaran, A. Sharma, M. T. Kandemir, and

C. Das, “Cypress: Input size-sensitive container provisioning and
request scheduling for serverless platforms,” in Proceedings of the
13th Symposium on Cloud Computing, ser. SoCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 257–272.
[Online]. Available: https://doi.org/10.1145/3542929.3563464

[11] V. M. Bhasi, J. R. Gunasekaran, P. Thinakaran, C. S. Mishra, M. T.
Kandemir, and C. Das, “Kraken: Adaptive container provisioning for
deploying dynamic dags in serverless platforms,” in Proceedings of the
ACM Symposium on Cloud Computing, ser. SoCC ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 153–167.
[Online]. Available: https://doi.org/10.1145/3472883.3486992

[12] M. Bilal, M. Canini, R. Fonseca, and R. Rodrigues, “With great
freedom comes great opportunity: Rethinking resource allocation for
serverless functions,” in Proceedings of the Eighteenth European
Conference on Computer Systems, ser. EuroSys ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 381–397.
[Online]. Available: https://doi.org/10.1145/3552326.3567506

[13] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and
T. Hoefler, “Sebs: A serverless benchmark suite for function-as-
a-service computing,” in Proceedings of the 22nd International
Middleware Conference, ser. Middleware ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 64–78. [Online].
Available: https://doi.org/10.1145/3464298.3476133

[14] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,
and R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 153–167. [Online]. Available:
https://doi.org/10.1145/3132747.3132772

[15] A. Fuerst and P. Sharma, “Faascache: keeping serverless computing
alive with greedy-dual caching,” in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 386–400.
[Online]. Available: https://doi.org/10.1145/3445814.3446757

[16] “Google cloud functions,” https://cloud.google.com/functions/.
[17] “Huawei Cloud Functions,” https://developer.huawei.com/consumer/en/

agconnect/cloud-function/.
[18] Y. Jiang, R. B. Roy, B. Li, and D. Tiwari, “Ecolife: Carbon-

aware serverless function scheduling for sustainable computing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ser. SC ’24. IEEE Press,
2024. [Online]. Available: https://doi.org/10.1109/SC41406.2024.00018

[19] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Menezes Carreira, K. Krauth, N. Yadwadkar,
J. Gonzalez, R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud
programming simplified: A berkeley view on serverless computing,”
EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2019-3, Feb 2019. [Online]. Available: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

[20] A. Joosen, A. Hassan, M. Asenov, R. Singh, L. Darlow, J. Wang, and
A. Barker, “How does it function? characterizing long-term trends in
production serverless workloads,” in Proceedings of the 2023 ACM
Symposium on Cloud Computing, ser. SoCC ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 443–458. [Online].
Available: https://doi.org/10.1145/3620678.3624783

[21] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis, “Hermod: principled
and practical scheduling for serverless functions,” in Proceedings of
the 13th Symposium on Cloud Computing, ser. SoCC ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 289–305.
[Online]. Available: https://doi.org/10.1145/3542929.3563468

[22] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association, July
2020.

[23] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), 2019, pp. 502–504.

[24] S. Li, W. Wang, J. Yang, G. Chen, and D. Lu, “Golgi: Performance-
aware, resource-efficient function scheduling for serverless computing,”
in Proceedings of the 2023 ACM Symposium on Cloud Computing,
ser. SoCC ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 32–47. [Online]. Available: https://doi.org/10.1145/
3620678.3624645

[25] Z. Li, Q. Chen, S. Xue, T. Ma, Y. Yang, Z. Song, and M. Guo,
“Amoeba: Qos-awareness and reduced resource usage of microservices
with serverless computing,” in 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2020, pp. 399–408.

[26] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-containerized
co-locating cloud workload: a view from alibaba trace,” in Proceedings
of the ACM Symposium on Cloud Computing, ser. SoCC ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
347–360. [Online]. Available: https://doi.org/10.1145/3267809.3267830

[27] “Microsoft Azure Functions,” https://azure.microsoft.com/en-
us/services/functions/.

[28] A. Moghimi, J. Hattori, A. Li, M. Ben Chikha, and M. Shahrad,
“Parrotfish: Parametric regression for optimizing serverless functions,”
in Proceedings of the 2023 ACM Symposium on Cloud Computing,

7

https://cloud.ibm.com/functions/
https://www.openfaas.com/
https://vowpalwabbit.org/index.html
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/3492321.3524270
https://aws.amazon.com/lambda/
https://github.com/sjakthol/aws-network-benchmark?tab=readme-ov-file
https://github.com/sjakthol/aws-network-benchmark?tab=readme-ov-file
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://docs.aws.amazon.com/lambda/latest/operatorguide/profile-functions.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/profile-functions.html
https://doi.org/10.1145/3542929.3563464
https://doi.org/10.1145/3472883.3486992
https://doi.org/10.1145/3552326.3567506
https://doi.org/10.1145/3464298.3476133
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3445814.3446757
https://cloud.google.com/functions/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://developer.huawei.com/consumer/en/agconnect/cloud-function/
https://doi.org/10.1109/SC41406.2024.00018
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://doi.org/10.1145/3620678.3624783
https://doi.org/10.1145/3542929.3563468
https://doi.org/10.1145/3620678.3624645
https://doi.org/10.1145/3620678.3624645
https://doi.org/10.1145/3267809.3267830
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

ser. SoCC ’23. New York, NY, USA: Association for Computing
Machinery, 2023, p. 177–192. [Online]. Available: https://doi.org/10.
1145/3620678.3624654

[29] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget,
J. Kouam, R. Lachaize, J. Hwang, T. Wood, D. Hagimont,
N. De Palma, B. Batchakui, and A. Tchana, “Ofc: An opportunistic
caching system for faas platforms,” in Proceedings of the Sixteenth
European Conference on Computer Systems, ser. EuroSys ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
228–244. [Online]. Available: https://doi.org/10.1145/3447786.3456239

[30] “Apache OpenWhisk,” https://openwhisk.apache.org/.
[31] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.

Kozuch, “Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proceedings of the Third ACM Symposium
on Cloud Computing, ser. SoCC ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2391229.2391236

[32] A. Sahraei, S. Demetriou, A. Sobhgol, H. Zhang, A. Nagaraja,
N. Pathak, G. Joshi, C. Souza, B. Huang, W. Cook, A. Golovei,
P. Venkat, A. Mcfague, D. Skarlatos, V. Patel, R. Thind, E. Gonzalez,
Y. Jin, and C. Tang, “Xfaas: Hyperscale and low cost serverless
functions at meta,” in Proceedings of the 29th Symposium on Operating
Systems Principles, ser. SOSP ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 231–246. [Online]. Available:
https://doi.org/10.1145/3600006.3613155

[33] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the wild: Characterizing and optimizing the serverless workload
at a large cloud provider,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). USENIX Association, Jul. 2020, pp.
205–218. [Online]. Available: https://www.usenix.org/conference/atc20/
presentation/shahrad

[34] J. Stojkovic, C. Alverti, A. Andrade, N. Iliakopoulou, H. Franke,
T. Xu, and J. Torrellas, “Concord: Rethinking Distributed Coherence
for Software Caches in Serverless Environments,” in Proceedings of the
31th IEEE International Symposium on High-Performance Computer
Architecture (HPCA-31), Mar. 2025.

[35] J. Stojkovic, N. Iliakopoulou, T. Xu, H. Franke, and J. Torrellas,
“Ecofaas: Rethinking the design of serverless environments for energy
efficiency,” in 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), 2024, pp. 471–486.

[36] “TC-TBF Linux Manpage,” https://linux.die.net/man/8/tc-tbf.
[37] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Bench-

marking, analysis, and optimization of serverless function snapshots,”
in Proceedings of the 26th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’21). ACM, 2021.

[38] Z. Wen, Y. Wang, and F. Liu, “Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows,” in IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, 2022, pp. 1868–
1877.

[39] H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd, “Faasrank:
Learning to schedule functions in serverless platforms,” in 2021 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), 2021, pp. 31–40.

[40] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety,
C. Delimitrou, and R. Bianchini, “Faster and cheaper serverless
computing on harvested resources,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, ser. SOSP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
724–739. [Online]. Available: https://doi.org/10.1145/3477132.3483580

[41] Z. Zhou, Y. Zhang, and C. Delimitrou, “Aquatope: Qos-and-
uncertainty-aware resource management for multi-stage serverless
workflows,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1–14. [Online].
Available: https://doi.org/10.1145/3567955.3567960

8

https://doi.org/10.1145/3620678.3624654
https://doi.org/10.1145/3620678.3624654
https://doi.org/10.1145/3447786.3456239
https://openwhisk.apache.org/
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/3600006.3613155
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://linux.die.net/man/8/tc-tbf
https://doi.org/10.1145/3477132.3483580
https://doi.org/10.1145/3567955.3567960

	Introduction
	Background & Motivation
	Existing Serverless Resource Management Policies
	Why Not Couple Network with Memory Allocations?
	Why Limit Network Bandwidth Usage?

	Characterization
	Design & Implementation
	Predicting Compute Time
	Implementation

	Evaluation
	Evaluation Methodology
	Evaluation Results

	Conclusion, Limitations, and Future Work
	References

