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Abstract
Unlearning algorithms aim to remove deleted
data’s influence from trained models at a cost
lower than full retraining. However, prior guar-
antees of unlearning in literature are flawed and
don’t protect the privacy of deleted records. We
show that when people delete their data as a func-
tion of published models, records in a database
become interdependent. So, even retraining a
fresh model after deletion of a record doesn’t en-
sure its privacy. Secondly, unlearning algorithms
that cache partial computations to speed up the
processing can leak deleted information over a
series of releases, violating the privacy of deleted
records in the long run. To address these, we pro-
pose a sound deletion guarantee and show that
ensuring the privacy of existing records is nec-
essary for the privacy of deleted records. Under
this notion, we propose an optimal, computation-
ally efficient, and sound machine unlearning al-
gorithm based on noisy gradient descent.

1. Introduction
Corporations today collect their customers’ private infor-
mation to train Machine Learning (ML) models that power
a variety of services like recommendations, searches, tar-
geted ads, etc. To prevent any unintended use of personal
data, privacy policies, such as the General Data Protec-
tion Regulation and the California Consumer Privacy Act,
require that these corporations provide people the “Right
to be Forgotten” (RTBF)—if a person wants to revoke ac-
cess to their data, an organization must comply by erasing
all information about them without undue delay (usually
a month). This includes ML models trained in standard
ways as privacy attacks like membership inference (Shokri
et al., 2017) and model inversion (Fredrikson et al., 2015)
demonstrate that training data can be exfiltrated from them.
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Retraining fresh ML models from scratch after deletions is
computationally expensive and does not scale. As an alter-
native to retraining, there is a growing interest in designing
cheap Machine Unlearning algorithms for erasing the influ-
ence of deleted data from already trained models. To quan-
tify how well an unlearning algorithm deletes the requested
information in the worst-case, Ginart et al. (2019) propose
a differential privacy (DP) like (ε, δ)-indistinguishability
certification between the unlearning algorithm’s output and
that of fresh retraining without the deleted records. Sev-
eral unlearning certifications that follow the same intuition
have since been proposed and used to certify numerous un-
learning mechanisms (Izzo et al., 2021; Sekhari et al., 2021;
Neel et al., 2021; Guo et al., 2019; Ullah et al., 2021).

However, is indistinguishability from retraining a trustwor-
thy guarantee of deletion privacy? We argue that it is not.
In the real world, a person’s decision to remove their in-
formation is often influenced by what a deployed model
reveals about them. Unfortunately, the same revealed in-
formation or attempts to censor it may also affect other
people’s decisions. This phenomenon is famously known
as the Streisand effect, named after the American singer
and actress Barbara Streisand’s attempts to censor a pic-
ture of her cliff-top Malibu residence, originally taken to
document the coastal erosion under the California Coastal
Records Project. Prior to Streisand’s lawsuit, the picture
was downloaded only six times, two of which were by
Streisand’s attorneys. However, after the case gained pub-
lic attention, the site received over 420,000 visitors in the
following months (Adelman & Adelman, 2002). This kind
of adaptivity in real-world interactions creates interdepen-
dencies among the records in a database—some patterns
in stored records simply wouldn’t exist unless specific in-
formation about a target record that influenced others was
previously revealed. Even after removing the requested
records from the training database and retraining a model
from scratch, we demonstrate that an attacker can still iden-
tify the deleted records by solely examining the retrained
model, all due to the predictability of adaptive, yet unseen,
past interactions. As such, we argue that any deletion cer-
tification based on being indistinguishable from retraining,
as done in all prior unlearning definitions including Gupta
et al. (2021)’s adaptive unlearning certification, is funda-
mentally flawed.
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Is indistinguishability from retraining a reliable measure
of deletion privacy when requests are non-adaptive? Once
again, we argue that it is not. A reliable guarantee of dele-
tion privacy should ensure that deleted records cannot be
recovered by an observer who has access to multiple (po-
tentially all) model releases after processing the deletion
request. However, approximate indistinguishability from
retraining implies that deleted data cannot be accurately
recovered from a single unlearned model only, which we
assert is insufficient. We show that some unlearning al-
gorithms can generate models indistinguishable from re-
training beyond any arbitrarily small threshold while still
exposing the deleted data over multiple releases. This vul-
nerability arises in algorithms that retain partial computa-
tions in the form of internal data-dependent states to ex-
pedite subsequent deletions. Such internal states can carry
information about previously deleted records and influence
several future releases, which may eventually expose the
deleted records. Therefore, prior unlearning guarantees are
myopic and unreliable in sequential deletion scenarios.

Lastly, we contend that indistinguishability from retraining
based notions of deletion privacy are also incomplete be-
cause they disregard perfectly valid deletion mechanisms.
For instance, a (useless) mechanism that outputs a fixed un-
trained model in response to any deletion request is a valid
deletion algorithm. However, since its output is easy to tell
apart from that of retraining done by any sensible learning
algorithm, the mechanism cannot satisfy any deletion cer-
tification based on being indistinguishable from retraining.

This paper proposes a definition of deletion privacy that
does not suffer from the aforementioned shortcomings. Our
framework considers an unlearning mechanism reliable if
A) its output is not influenced by any internal states de-
pendent on previously deleted records; and if B) for any
deletion request, one can demonstrate indistinguishability
between its output and some random variable independent
of the records deleted. Avoiding reliance on any internal
states contaminated by previously deleted records makes
the unlearning mechanism a post-processing operation for
the deleted records—once records have been deleted in the
ML model, they stay permanently deleted throughout all
future steps. Additionally, our framework is reliable even
for adaptive requests as we measure deletion privacy based
on indistinguishability from a random variable indepen-
dent of the deleted records by construction, rather than
the output of retraining which may become dependent on
deleted records under adaptivity.

Unlike prior works on machine unlearning, we provide a
rigorous proof of the soundness of our deletion privacy cer-
tification. We show that if the certification holds, no at-
tacker, regardless of the number of the post-unlearning re-
leases observed or their understanding of how people might

have responded in the past, can successfully disambiguate
a deleted record. Furthermore, our deletion privacy cer-
tification can certify valid deletion mechanisms that prior
unlearning definitions cannot. For example, it can certify
the fixed-output mechanism mentioned earlier, thanks to
the flexibility of design for a random variable construction
in our definition.

We note that the concept of deletion privacy differs from
the conventional notion of differential privacy in terms of
the information they restrict. While standard differential
privacy limits the information related to individual records
currently present in the database, deletion privacy focuses
on the information concerning records that have been pre-
viously deleted from the database. We explore the rela-
tionship between these two privacy certifications for an un-
learning mechanism and present two complementary find-
ings. First, we prove that when requests are adaptive, an
unlearning mechanism must preserve the privacy of the re-
maining records in order to ensure privacy for the deleted
records. Failure to do so can introduce undesired corre-
lations among records, such as when a Streisand effect oc-
curs, which can hinder deletion in the information-theoretic
sense. On the other hand, we also establish that if an un-
learning algorithm satisfies deletion privacy guarantees for
non-adaptive edit requests and is additionally differentially
private, then it also satisfies deletion privacy for adap-
tive requests. This reduction greatly simplifies the design
of a reliable unlearning mechanism in the real-world set-
ting, as designers can focus on creating unlearning mecha-
nisms that are both differentially private and provide dele-
tion privacy guarantees under the assumption that deletion
requests are independent to models released in the past.

It is important to emphasize that we are not advocating
for unlearning solely through differentially private mech-
anisms, as they uniformly limit the information content of
all records, whether deleted or not. Instead, an effective
unlearning algorithm should offer two distinct information
reattainment bounds: one for the records currently present
in the database, provided by a differential privacy guaran-
tee, and a significantly smaller bound for the records pre-
viously deleted, ensured through a deletion privacy guaran-
tee. Based on our findings, we redefine the problem of data-
deletion in ML as designing a mechanism that (1.) satisfies
a deletion privacy guarantee against non-adaptive deletion
requests, (2.) is differentially private for remaining records,
and (3.) has the same utility guarantee as retraining under
identical differential privacy constraints. On top of these
objectives, a data-deletion mechanism must also be com-
putational cheaper than retraining for being useful.

We present a data-deletion solution that utilizes fine-
tuning through noisy gradient descent (Noisy-GD), a popu-
lar differentially-private learning algorithm (Bassily et al.,
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2014; Abadi et al., 2016). Our solution achieves all the
three objectives while providing substantial computation
savings for both convex and non-convex losses. No-
tably, we demonstrate a powerful synergy between dele-
tion privacy and differential privacy, where the same noise
needed for privacy of present database records also en-
sures the erasure of information related to the deleted
records. For convex and smooth losses, we certify that
under a (q, εdd)-Rényi non-adaptive deletion-privacy and
(q, εdp)-Rényi differential-privacy constraint, our Noisy-
GD based data-deletion mechanism for d-dimensional
models over n-sized databases with requests that modify
up to r records at a time can maintain the pareto-optimal
excess empirical risk of the order O

(
qd

εdpn2

)
while being

Ω(n log(min{nr , n
√

εdd

qd }) cheaper than retraining in gra-

dient complexity. For non-convex, bounded and smooth
losses, we show a computational saving of Ω(dn log n

r ) in
gradient complexity under the same constraints with an ex-
cess risk of Õ

(
qd

εdpn2 + 1
n

√
q
εdp

)
. Compared to our results,

prior works offer a worse computation savings under the
same utility constraints (Izzo et al., 2021; Guo et al., 2019;
Sekhari et al., 2021; Ullah et al., 2021), violate RTBF un-
der adaptivity (Bourtoule et al., 2021; Gupta et al., 2021),
or require internal states that depend on previously deleted
records for matching our utility bounds (Neel et al., 2021).

2. Preliminaries
2.1. Indistinguishability and Differential Privacy

We provide the basics of indistinguishability of random
variables (with more details in Appendix B). Let Θ,Θ′ be
two random variables in spaceO with probability densities
ν,ν′ respectively.

Definition 2.1 ((ε, δ)-indistinguishability (Dwork et al.,
2014)). We say Θ and Θ′ are (ε, δ)-indistinguishable (de-

noted by Θ
ε,δ
≈ Θ′) if, for all O ⊂ O,

P [Θ ∈ O] ≤ eεP [Θ′ ∈ O] + δ and

P [Θ′ ∈ O] ≤ eεP [Θ ∈ O] + δ.
(1)

Definition 2.2 (Rényi divergence (Rényi et al., 1961)).
When ν is absolutely continuous w.r.t. ν′ (denoted as
ν� ν′), Rényi divergence of ν w.r.t. ν′ is defined as

Rq (ν‖ν′) =
1

q − 1
log Eq (ν‖ν′) , (2)

where order q > 1 and

Eq (ν‖ν′) = E
θ∼ν′

[(
ν(θ)

ν′(θ)

)q]
. (3)

If ν 6� ν′, we’ll say Rq (ν‖ν′) =∞.

Definition 2.3 ((Rényi) Differential Privacy (Dwork
et al., 2014; Mironov, 2017)). A randomized mecha-
nism M : Xn → O is said to be (ε, δ)-differentially pri-

vate if M(D)
ε,δ
≈ M(D′) for all neighbouring databases

D,D′ ∈ Xn. Similarly, M is (q, ε)-Rényi differentially
private if Rq (M(D)‖M(D′)) ≤ ε.

2.2. (Adaptive) Machine Unlearning

Let X be the data domain. A database D is an ordered set
of n records fromX . We useO to denote the space of mod-
els. A learning algorithm A : Xn → O inputs a database
D ∈ Xn and returns a model in O. Suppose a database D
can be modified by a replacement edit request1 as follows.

Definition 2.4 (Edit request). A replacement operation
〈ind,y〉 ∈ [n]×X on a databaseD = (x1, · · · ,xn) ∈ Xn
performs the following modification:

D ◦ 〈ind,y〉 = (x1, · · · ,xind−1,y,xind+1, · · · ,xn). (4)

Let r ≤ n and Ur = [n]r × X r. An edit request u =
{〈ind1,y1〉, · · · , 〈indr,yr〉} ∈ Ur on D is defined as a
set of r replacement operations modifying distinct indices
atomically, i.e.

D ◦ u = D ◦ 〈ind1,y1〉 ◦ · · · ◦ 〈indr,yr〉, (5)

where indi 6= indj for all i 6= j.

Similar to Ginart et al. (2019), we define a deletion or an
unlearning algorithm as a (possibly stochastic) mapping
Ā : Xn × Ur ×O → O. This algorithm takes a database
D ∈ Xn, an edit request u ∈ Ur and the current model
in O, and produces an updated model in O. Since edit re-
quests needs to be processed monthly under RTBF guide-
lines, we adopt the online setting introduced by Neel et al.
(2021) in which a stream of edit requests (ui)i≥1

def
=

(u1, u2, · · · ), with ui ∈ Ur, arrives sequentially. As per
this formulation, the data curator, characterized by algo-
rithms (A, Ā, fpub), executes the learning algorithm A on
the initial database D0 ∈ Xn during the setup stage be-
fore arrival of the first edit request to generate the initial
model Θ̂0 ∈ O, i.e., Θ̂0 = A(D0). Thereafter at any edit
step i ≥ 1, to reflect an incoming edit request ui ∈ Ur
that transforms Di−1 ◦ ui → Di, the curator executes
the unlearning algorithm Ā on current database Di−1, the
edit request ui, and the current model Θ̂i−1 for generating
the next model Θ̂i ∈ O, i.e., Ā(Di−1, ui, Θ̂i−1) = Θ̂i.
Additionally, the curator keeps the sequence (Θ̂i)i≥0 =

(Θ̂0, Θ̂1, · · · ) of learned/unlearned models secret and only
releases publishable objects φi = fpub(Θ̂i) for all i ≥ 0.

1Over a month, some individuals may request additions, while
others may request deletions. We model this using batched re-
placement edits and handle any disparity in the number of addi-
tions and deletions by inserting or replacing dummy records.
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The publish function fpub : O → Φ generates these pub-
lishable objects in some space Φ, which can represent any
downstream usage such as making predictions.

Ginart et al. (2019) note that in real world, deletion re-
quests could often be adaptive, i.e., may depend on the
prior published objects. For instance, security researchers
may demonstrate privacy attacks targeting a minority sub-
population on publicly available models, causing people in
that subpopulation to request deletion of their information
from training data. Gupta et al. (2021) model such an inter-
active environment through an adaptive update requester.
We provide the following generalized definition of Gupta
et al. (2021)’s update requester and describe its interaction
with a data curator in Algorithm 1.
Definition 2.5 (Update requester (Gupta et al., 2021)). The
edit sequence (ui)i≥1 is generated by an update requester
Q that inputs a subset of interaction history between her-
self and the curator (A, Ā, fpub), and outputs a new edit
request for the current round. We quantify the strength
of Q with two integers (p, r). Here p is the maximum
number of prior published objects that the requester Q
has access to for generating the subsequent request and
r is the number of records that can be edited per re-
quest. More formally, a p-adaptive r-requester is a map-
ping Q : Φ≤p × Ur∗ → Ur. Given a sorted list of observ-
able indices ~s = (s1, · · · , sp) ∈ Np the ith edit request ui
generated by Q on interaction with (A, Ā) is defined as

ui = Q(φs1 , φs2 , · · · , φsj︸ ︷︷ ︸
def
= φ~s<i

;u1, u2, · · · , ui−1︸ ︷︷ ︸
def
= u<i

), (6)

where sj is the largest index in ~s that is less than i.

Algorithm 1 Interacting curator (A, Ā, fpub) & requester Q
Require: Database D0 ∈ Xn, observable indices ~s ∈ Np.

1: Initialize Θ̂0 ← A(D0)
2: Publish φ0 ← fpub(Θ̂0)
3: for i = 1, 2, · · · do
4: Get next request ui ← Q(φ~s<i;u<i)
5: Update model Θ̂i ← Ā(Di−1, ui, Θ̂i−1)
6: Publish φi ← fpub(Θ̂i)
7: Update database Di ← Di−1 ◦ ui
8: end for

A 0-adaptive requester is considered as non-adaptive and
by∞-adaptivity we mean requesters that have access to the
entire history of interaction transcript (φ<i;u<i) at step i.

We present the definitions of unlearning and adaptive un-
learning2 proposed by Neel et al. (2021) and Gupta et al.
(2021) respectively (along with other widely-used data
deletion definitions provided in Appendix C.1).

2Definition 2.6 of adaptive unlearning is stronger than Gupta
et al. (2021)’s since theirs require only one-sided indistinguisha-
bility with (1− γ) probability over generated edit requests u≤i.

Definition 2.6 (Machine unlearning (Neel et al., 2021;
Gupta et al., 2021)). We say that Ā is an (ε, δ)-unlearning
algorithm for A under a publish function fpub, if for all ini-
tial databases D0 ∈ Xn and all non-adaptive 1-requesters
Q, the following condition holds. For every edit step i ≥ 1,
and for all generated edit sequences u≤i

def
= (u1, · · · , ui),

fpub(Ā(Di−1, ui, Θ̂i−1))
∣∣
u≤i

ε,δ
≈ fpub(A(Di)). (7)

If (7) holds for all∞-adaptive 1-requestersQ, we say that
Ā is an (ε, δ)-adaptive-unlearning algorithm for A.

3. Existing Data-Deletion and Unlearning
Guarantees are Unsound and Incomplete

The controller shall have the obligation to erase personal
data without undue delay where ... the data subject
withdraws consent on which the processing is based ...

Article 17(1)(b), GDPR.

In this section we analyze the limitations of prior data dele-
tion certifications intended to uphold the “Right to be For-
gotten”. We present a realistic threat model that data cura-
tors must address according to the standard interpretation
of the RTBF guidelines. Subsequently, we highlight mul-
tiple reasons why both adaptive and non-adaptive machine
unlearning, as described in Definition 2.6 (along with other
established definitions detailed in Appendix C.1), are inad-
equate in addressing this threat model.

Building a threat model for RTBF-compliance. The
RTBF guidelines in GDPR and CCPA require permanent
deletion of personal information, regardless of its form,
without undue delay after receipt of a legitimate deletion
request from the user. Considering that data curators are
given a grace period to process deletion requests, we as-
sume in our threat model that an attacker targeting a record
deleted at the ith step can only observe releases by the cura-
tor after deletion3. In other words, the attacker has access
to the entire published sequence post-deletion, which we
denote as φ≥i

def
= (φi, φi+1, · · · ).

Furthermore, we assume that users may interact adaptively
with the curator. Although the attacker cannot see the inter-
action history until the ith step, we assume that the attacker
may be aware of any dependency relationship between the
published objects φ<i

def
= (φ0, · · · , φi−1) and the corre-

sponding edit requests u<i
def
= (u1, · · · , ui−1). The as-

sumption is based on the fact that real-world users often ex-
hibit predictable behaviour. However, it is crucial to ensure
that an attacker cannot extract deleted information from un-

3Our threat model doesn’t include attacks which involve com-
paring releases before and after deletion (such as Chen et al.
(2021)’s). Succeeding in such attacks technically do not violate
RTBF as they need information published before a request arrives.
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learned models, regardless of their understanding of gen-
eral human behaviour patterns. To account for the worst-
case scenario, we model the attacker as having complete
knowledge about the adaptive requester Q (as defined in
Definition 2.5), which represents any form of dependence
relationships between published outcomes and subsequent
requests. However, the attacker does not observe the inter-
action transcript (φ<i;u<i) of Q.

Unsoundness due to adaptivity. We highlight the problem
with certifying data deletion based on indistinguishability
from retraining under adaptive requests with a simple ex-
ample. For a data domain X = {−2,−1, 1, 2}, consider
the following learning and unlearning algorithms (A, Ā).
For any database D ⊂ X and any subset S ⊂ D of records
to be deleted,

A(D) =
∑
x∈D

x, and Ā(D, S,A(D)) =
∑

x∈D\S

x. (8)

Note that the unlearning algorithm Ā perfectly imitates the
learning algorithm A as Ā(D, S,A(D)) = A(D \ S) for
any S ⊂ D. Now consider two neighbouring databases
D−1 = {−2,−1, 2}, D1 = {−2, 1, 2} and the following
dependence between the learned model A(D) and deletion
request S:

S =

{
{x ∈ X |x < 0} if A(D) < 0,

{x ∈ X |x ≥ 0} otherwise.
(9)

Knowing this dependence, an attacker can distinguish
whetherD isD−1 orD1 by looking only at Ā(D,x,A(D)).
This is because if D = D−1, then the output after deletion
is positive, and if D = D1 the output is negative. Note
that even though Ā perfectly imitates retraining via A and
the attacker does not observe either the model A(D) or the
request S, she can still ascertain the identity (−1 or 1) of
a deleted record. This example demonstrates two things:
A) adaptive requests can cause the curator’s database to
have patterns specific to the identity of a target record be-
ing deleted, and B) an attacker knowing the relationship
between unobserved releases and deletion requests can in-
fer the identity of the target record by observing only the
unlearned model, even if the curator did full retraining.

Given that people typically behave adaptively and mali-
cious attackers exploit common behavioral patterns, we
argue that several data deletion definitions in the litera-
ture, such as those proposed by Ginart et al. (2019), Guo
et al. (2019), and Sekhari et al. (2021), which advocate
for data deletion based on indistinguishability from retrain-
ing, do not provide reliable certifications for the “Right to
be Forgotten” (further detailed in Appendix C.1). Further-
more, we present a theorem that shows how Definition 2.6
of adaptive unlearning guarantee by Gupta et al. (2021),
specifically designed to ensure RTBF under adaptive dele-
tion requests, also fails under adaptivity.

Theorem 3.1. There exists an algorithm pair (A, Ā) sat-
isfying (0, 0)-adaptive-unlearning under publish function
fpub(θ) = θ such that by designing a 1-adaptive 1-
requester Q, an attacker can infer the identity of a record
deleted by edit ui, at any arbitrary step i > 3, with proba-
bility at-least 1 − (1/2)i−3 from a single post-edit release
φi, even with no access to Q’s transcript (φ<i;u<i).

Unsoundness due to secret states. Both adaptive and non-
adaptive unlearning guarantees in Definition 2.6 are bounds
on information leakage about a deleted record through a
single released output. However, our adversary can observe
multiple (potentially infinite) releases after deletion. We
identify a yet another reason for violation of RTBF under
Definition 2.6, even when edit requests are non-adaptive.
This vulnerability arises because Definition 2.6 permits
the curator to store secret models while requiring indis-
tinguishability only over the output of a publishing func-
tion fpub. These secret models may propagate encoded in-
formation about records even after their deletion from the
database. So, every subsequent release by an unlearning al-
gorithm can reveal new information about a record that was
purportedly erased multiple edits earlier. We demonstrate
in the following theorem that a certified unlearning algo-
rithm can reveal a limited amount of information about a
deleted record per release so as not to break the unlearn-
ing certification, yet eventually reveal everything about the
record to an adversary that observes enough future releases.

Theorem 3.2. For every ε > 0, there exists a pair (A, Ā)
of algorithms that satisfy (ε, 0)-unlearning under some
publish function fpub such that for all non-adaptive 1-
requesters Q, their exists an attacker that can correctly in-
fer the identity of a record deleted at any arbitrary edit step
i ≥ 1 by observing only the post-edit releases φ≥i.

Several unlearning definitions, such as those by Ginart et al.
(2019), Guo et al. (2019) and Sekhari et al. (2021) (detailed
in Appendix C.1), directly measure the indistinguishability
for unlearned models rather than through a publish function
fpub. However, the aforementioned vulnerability can still
arise if unlearning algorithms satisfying these definitions
rely on hidden states that depend on deleted records. It is
worth noting that Ginart et al. (2019), in their online formu-
lation, advocates a deletion operation to maintain “arbitrary
metadata like data structures or partial computations that
can be leveraged to help with subsequent deletions”, mak-
ing it susceptible to the vulnerability we have described.

Incompleteness. Prior unlearning definitions measure the
effectiveness of a deletion algorithm by assessing how
closely its output resembles that of retraining. We argue
that resembling the output of retraining is not necessary
for erasing deleted information. Consequently, many valid
deletion algorithms do not meet existing definitions. For
example, let’s consider a (useless) mechanism Ā that out-
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puts a fixed predetermined model θ ∈ O regardless of its
inputs. It is evident that Ā is a valid deletion algorithm for
any learning algorithm, as Ā(·, ·, ·) does not rely on the in-
put database or the learned model (nor does fpub(Ā(·, ·, ·))
for any fpub). Yet Ā fails to satisfy Definition 2.6 for any
sensible learning algorithm A. Similarly, definitions by Gi-
nart et al. (2019), Guo et al. (2019) and Sekhari et al. (2021)
are also incomplete (refer to Appendix C.1).

4. Redefining Deletion in Machine Learning
In this section, we introduce a new data-deletion certifi-
cation for Machine Unlearning algorithms to address the
issues demonstrated in Section 3. We prove its trustwor-
thiness and contend that it offers a more accurate measure
of a mechanism’s data-deletion abilities. We also study its
connections to differential privacy and redefine the data-
deletion problem in Machine Learning based on our results.

We noted previously in Theorem 3.2 that using partial com-
putations that depend on deleted records to speed up un-
learning can violate RTBF. Firstly, to prevent such viola-
tions, we advocate for designing unlearning algorithms that
do not rely on any internal states affected by deleted records
and to directly quantify deletion privacy for an unlearned
model rather than after applying any publish function (i.e.,
setting fpub(θ) = θ in Algorithm 1). By doing so, we en-
sure that the only source of any information about a deleted
record that can ever be released by the curator in the fu-
ture is accounted for. In essence, future unlearning steps
become post-processing operations for the deleted records,
meaning that a valid certification of deletion privacy for the
immediate unlearned model applies to all future releases.

Secondly, we propose a new definition of deletion privacy.
As demonstrated previously, adaptive requests can encode
patterns specific to a target record which persists in the
database even after deletion of the target record, making
indistinguishable-from-retraining based deletion certifica-
tions unreliable. Our following definition accounts for the
worst-case influence adaptive requests by measuring the
indistinguishability of an unlearning mechanism’s output
from that of some mechanism that is not allowed to see the
deleted record or edit requests influenced by it.

Definition 4.1 ((q, ε)-deletion-privacy under p-adaptive
r-requesters). Let q > 1, ε ≥ 0, and p, r ∈ N. We say that
an algorithm pair (A, Ā) satisfies (q, ε)-deletion-privacy
under p-adaptive r-requesters if the following condition
holds for all p-adaptive r-requester Q. For every step
i ≥ 1, there exists a randomized mapping πQi : Xn → O
such that for all initial databases D0 ∈ Xn,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ ε, (10)

for all ui ∈ Ur and all 〈ind,y〉 ∈ ui.

Soundness. Definition 4.1 reliably safeguards the “Right
to be Forgotten” as the random variable πQi (D0 ◦ 〈ind,y〉)
stays independent of the deleted record D0[ind] by design,
even when the update requesterQ is∞-adaptive. When an
attacker aims to identify a record at index ‘ind’ inD0 that is
being replaced by record y ∈ X through one of the replace-
ment operations in edit request ui ∈ Ur, the bounded Rényi
divergence in inequality (10) ensures that any observer of
the unlearned model Ā(Di−1, ui, Θ̂i−1) cannot be overly
certain that the observation was not πQi (D0 ◦ 〈ind,y〉)
instead4. Consequently, the unlearned model itself must
possess minimal information regarding the deleted record
D0[ind]. This argument allows us to establish the follow-
ing guarantee of soundness.

Theorem 4.1 (Definition 4.1 safeguards RTBF). If the al-
gorithm pair (A, Ā) satisfies (q, ε)-deletion-privacy guar-
antee under all p-adaptive r-requesters, then even with
complete knowledge of a p-adaptive r-requester Q that in-
teracts with the curator before a target record D0[ind] in
the initial database D0 is deleted at step i ≥ 1 by request
ui, any attacker MI : O∗ → {0, 1} observing only the post-
deletion models Θ̂≥i = (Θ̂i, Θ̂i+1, · · · ) has an advantage

Adv(MI)def
=P

[
MI(Θ̂≥i)=1

∣∣x]−P
[
MI(Θ̂≥i)=1

∣∣x′] (11)

for disambiguating between two possible values x,x′ ∈ X
of the deleted record D0[ind] bounded as follows.

Adv(MI) ≤ min

{√
2ε,

qeε(q−1)/q

q − 1
[2(q − 1)]

1
q − 1

}
(12)

As q → ∞, r.h.s. of (12) approaches min
{√

2ε, eε − 1
}

.
Note that r.h.s. of (12) also goes to 0 as ε → 0, implying
Definition 4.1 is sound.

Remark 4.2 (Deletion-Privacy generalizes prior unlearn-
ing definitions under non-adaptivity). A non-adaptive re-
quester Q is equivalent to fixing the request sequence
(ui)i≥1 a-priori. Since Di = (D0 ◦ 〈ind,y〉) ◦u1 ◦ · · · ◦ui
when 〈ind,y〉 ∈ ui, note that database Di is a function of
D0 ◦ 〈ind,y〉 when Q is non-adaptive. Consequently, for
non-adaptiveQ, we can set πQi (D0 ◦ 〈ind,y〉) = π(Di) in
(10) for any randomized map π : Xn → O, including the
learning algorithm A.

Completeness. Our Definition 4.1 allows for the certi-
fication of fixed-output unlearning mechanisms described
in Section 3, which prior unlearning definitions based on
indistinguishability to retraining cannot accomplish. This

4Refer to Theorem B.1 in Appendix B to see that (10) implies
a one-sided indistinguishability. This is enough for the purpose of
ensuring RTBF as we only want to prevent events that makes an
attacker confident that some deleted information was leaked; we
don’t care if attacker becomes confident that nothing was leaked.
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flexibility stems from the freedom of choice for mechanism
πQi (see Remark 4.2), which can be set to consistently pro-
duce the same fixed output.

However, our Definition 4.1 may not be complete. This
is because it explicitly prohibits unlearning algorithms
from relying on hidden states influenced by previously
deleted records. We acknowledge the potential for design-
ing RTBF-compliant unlearning algorithms that utilize par-
tial computations affected by deleted records. However,
certifying such algorithms presents greater challenges, as
it necessitates establishing bounds on information leakage
across all future releases. As shown in Theorem 3.2, state-
ful unlearning algorithms of this nature can unveil new in-
formation to observers with each subsequent release.

4.1. Link to Differential Privacy

A differential privacy guarantee on A and Ā sets a limit on
the information present in an unlearned model regarding in-
dividual records that remain in the database. However, our
concept of deletion privacy specifically restricts the infor-
mation concerning only the deleted records. Nonetheless,
these two properties are somewhat interconnected in the
case of adaptive edit requests. We argue that when A and
Ā are both differentially private, they prevent an adaptive
requester from establishing dependencies between records
in the curator’s database. By leveraging this property, we
establish a reduction from adaptive to non-adaptive dele-
tion privacy in the following theorem, assuming that A and
Ā also satisfy Rényi differential privacy.

Theorem 4.3 (From adaptive to non-adaptive deletion). If
an algorithm pair (A, Ā) satisfies (q, εdd)-deletion-privacy
under all non-adaptive r-requesters and is also (q, εdp)-
Rényi DP with respect to records not being deleted, then
it also satisfies (q, εdd + pεdp)-deletion-privacy under all
p-adaptive r-requesters.

Remark 4.4. Gupta et al. (2021) also prove a reduction
from adaptive to non-adaptive unlearning (Definition 2.6)
under differential privacy. We remark that our reduction
is fundamentally different from theirs as they require DP
to hold with regard to a change of description of internal
randomness as opposed to standard data item replacement
in ours. We discuss the key differences in Appendix D.1.

Theorem 4.3 simplifies the certification process for un-
learning algorithms to ensure RTBF compliance. Under the
assumption that deletion requests are independent of previ-
ous releases, showing that the algorithm is both differen-
tially private and provides deletion privacy is sufficient.

Furthermore, we contend that in order to guarantee dele-
tion privacy for erased records in the real-world setting, it
is essential for the unlearning algorithm to uphold the pri-
vacy of records that remain undeleted. This is because the

only effective means of preventing the adaptive world from
reacting to the presence of a target record before deletion is
by ensuring it never becomes aware of its existence.
Theorem 4.5 (Privacy of remaining records is necessary
for adaptive deletion privacy). Let Test : O → {0, 1}
be a membership inference test for A to distinguish be-
tween neighbouring databases D,D′ ∈ Xn. Similarly, let
Test : O → {0, 1} be a membership inference test for Ā
to distinguish between D̄, D̄′ ∈ Xn that are neighbour-
ing after applying edit ū ∈ U1. If Adv(Test) > δ and
Adv(Test) > δ, then the pair (A, Ā) cannot satisfy (q, ε)-
deletion-privacy under 1-adaptive 1-requester for any

ε < max

{
δ4

2
, log(q − 1) +

q

q − 1
log

(
1 + δ2

q21/q

)}
. (13)

4.2. (Un)Learning Framework: ERM

Let space of model parameters be Rd and `(θ;x) : Rd ×
X → R be a loss function of a parameter θ ∈ Rd for a
record x ∈ X . We consider the problem of empirical risk
minimization (ERM) of the average `(θ;x) over records in
the database D ∈ Xn under L2 regularization, that is, the
minimization objective is

LD(θ) =
1

n

∑
x∈D

`(θ;x)+r(θ), with r(θ) =
λ ‖θ‖22

2
. (14)

The excess empirical risk of a model Θ on D is defined as

err(Θ;D) = E [LD(Θ)− LD(θ∗D)] , (15)

where θ∗D = arg min
θ∈Rd

LD(θ), and expectation is over Θ.

Problem Definition. Let constants q > 1, 0 < εdd ≤ εdp,
and α > 0. Our goal in this paper is to design a learning
mechanism A : Xn → Rd and an unlearning mechanism
Ā : Xn × Ur × Rd → Rd for ERM such that

(1.) both A and Ā satisfy (q, εdp)-Rényi DP with respect
to individual records in the input database,

(2.) pair (A, Ā) satisfies (q, εdd)-deletion-privacy guaran-
tee for all non-adaptive r-requesters Q,

(3.) and, all models (Θ̂i)i≥0 produced by (A, Ā,Q) on
any D0 ∈ Xn have err(Θ̂i;Di) ≤ α.

Objectives (1.) and (2.) together ensure that (A, Ā) satis-
fies deletion-privacy for adaptive requests as well, and ob-
jective (3.) ensures (un)learned models are useful5.

A deletion algorithm Ā is only useful if it is computation-
ally cheaper than retraining with A. We judge the benefit
of Ā over A for ith request ui by the difference in retraining
Cost(A;Di−1 ◦ ui) and deletion Cost(Ā;Di−1, ui, Θ̂i−1).

5Constraint α in (3.) should be close to the optimal excess risk
attainable by ERM on Di under (q, εdp)-Rényi DP.
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5. Deletion Using Noisy Gradient Descent
This section proposes a simple and effective data-deletion
solution based on Noisy-GD (Abadi et al., 2016), a popu-
lar privacy-preserving ERM mechanism described in Algo-
rithm 2. Appendix G.3 provides its Rényi DP guarantees.

Algorithm 2 Noisy-GD: Noisy Gradient Descent

Require: Database D ∈ Xn, model Θ ∈ Rd, number of
iterations K ∈ N.

1: Initialize Θ0 = Θ
2: for k = 0, 1, · · · ,K − 1 do
3: ∇LD(Θηk) = 1

n

∑
x∈D∇`(Θηk;x) +∇r(Θηk)

4: Θη(k+1) = Θηk− η∇LD(Θηk) +
√

2ηN
(
0, σ2Id

)
5: end for
6: return ΘηK

Our proposed approach falls under the Descent-to-Delete
framework proposed by Neel et al. (2021), wherein, after
each deletion request ui, we run Noisy-GD starting from
the previous model Θ̂i−1 and perform a small number of
gradient descent steps over records in the modified database
Di = Di−1 ◦ ui; sufficient to erase information regard-
ing deleted records in the subsequent model Θ̂i. Our algo-
rithms (ANoisy-GD, ĀNoisy-GD) is defined as follows.

Definition 5.1 (Noisy-GD based data-deletion solution).
Let KA,KĀ ∈ N and ρ be a Gaussian weight initializa-
tion distribution in Rd. For any D ∈ Xn, our learning
algorithm ANoisy-GD : Xn → Rd is defined as

ANoisy-GD(D) = Noisy-GD(D,Θ,KA), (16)

where Θ ∼ ρ. And, for any edit request u ∈ Ur on
database D ∈ Xn and any model Θ ∈ Rd, our unlearning
algorithm ĀNoisy-GD : Xn × Ur × Rd → Rd is defined as

ĀNoisy-GD(D, u,Θ) = Noisy-GD(D ◦ ui,Θ,KĀ). (17)

Our curator (ANoisy-GD, ĀNoisy-GD) with any initial database
D0 ∈ Xn interacts with any update requester Q as de-
scribed in Algorithm 1 with publish function fpub(θ) = θ.

For this setup, our objective is to provide conditions un-
der which the algorithm pair (ANoisy-GD, ĀNoisy-GD) satis-
fies objectives (1.), (2.), and (3.) as stated in the problem
definition and analyze the computational savings of using
ĀNoisy-GD over ANoisy-GD in terms of gradient complexity.

5.1. Deletion and Utility Under Convexity

We give the following guarantees on the algorithm pair
(ANoisy-GD, ĀNoisy-GD) when loss function `(θ;x) is convex.

Theorem 5.1 (Utility, privacy, deletion, and computation
tradeoffs). Let constants λ, β, L > 0, constant q > 1, and
constants εdp ≥ εdd > 0. Define constant κ = λ+β

λ . Let

the loss function `(θ;x) be twice differentiable, convex, L-
Lipschitz, and β-smooth, and let the regularizer be r(θ) =
λ
2 ‖θ‖

2
2. If the learning rate is η = 1

2(λ+β) , the gradient

noise variance is σ2 = 4qL2

λεdpn2 , and the weight initializa-

tion distribution is ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)
, then

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for
any KA,KĀ ≥ 0,

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-deletion-
privacy all non-adaptive r-requesters

if KĀ ≥ 4κ log
εdp

εdd
, (18)

(3.) and all models in sequence (Θ̂i)i≥0 produced by the
interactions between (ANoisy-GD, ĀNoisy-GD) and Q on
any D0 ∈ Xn, where Q is any r-requester, have an
excess empirical risk err(Θ̂i;Di) = O

(
qd

εdpn2

)
if

KA ≥ 4κ log

(
εdpn

2

4qd

)
, and

KĀ ≥ 4κ log max

{
5κ,

8εdpr
2

qd

}
.

(19)

Our utility upper bound in Theorem 5.1 matches the
theoretical lower bound of Ω(min

{
1, d

ε2n2

}
) by Bassily

et al. (2014) on the optimal empirical risk attainable by
any (ε, δ)-DP algorithms on Lipschitz, smooth, strongly-
convex loss functions6. Consequently, our unlearning algo-
rithm ĀNoisy-GD maintains the optimal privacy-utility trade-
offs of retraining with ANoisy-GD, while being a lot cheaper.
Specifically, it offers a saving of Ω(n log min{nr , n

√
εdd

qd })
in gradient complexity per-request (i.e., n(KA − KĀ))
while guaranteeing adaptive deletion privacy, differential
privacy and optimal utility. This level of saving surpasses
that of all existing unlearning algorithms known to us, and
we provide a detailed comparison in Table 1.

It is worth noting that in order to satisfy (q, εdp)-Rényi
differential privacy and (q, εdd)-deletion privacy for non-
adaptive r-requesters, the necessary number of iterations
KĀ remains constant regardless of the size, r, of the dele-
tion batch, depending solely on the ratio εdd

εdp
. However,

the number of iterations required to ensure optimal utility
under DP increases as r grows. Importantly, when deletion

batches are sufficiently small, specifically when r ≤
√

qd
εdd

,
performing an adequate number of unlearning iterations to
satisfy the deletion privacy guarantee is also sufficient to
ensure optimal utility of the unlearned model.

6Refer to Theorem B.1 to see that (q, εdp)-Rényi DP implies
(ε, δ)-DP for q = 1 + 2

ε
log(1/δ) and εdp = ε/2. When ε =

Θ(log(1/δ)), one can evaluate that q
εdp

= Θ( log(1/δ)

ε2
).

8



Forget Unlearning: Towards True Data-Deletion in Machine Learning

Unlearning Algorithm Requires internal states that
depend on deleted records?

Compute savings
for ith edit

Noisy-m-A-SGD [Thm. 1, (Ullah et al., 2021)] No Ω
(√

d
(

1−
√
d
n

))
Perturbed-GD [Thm. 9, (Neel et al., 2021)] Yes Ω

(
n log

(
εn√
d

))
Perturbed-GD [Thm. 28, (Neel et al., 2021)] No Ω

(
n log

(
εn

log2(id)
√
d

))
Noisy-GD [Thm. 5.1, Ours] No Ω

(
n log min

{
n, εn√

d

})
Table 1: Comparison of the computation savings in gradient complexity per edit request along with requirement of secret
states with prior unlearning algorithms. Edit requests are non-adaptive and modify r = 1 record in n-sized databases. We
assume the loss `(θ;x) of models in Rd to be convex, 1-Lipschitz, and O(1)-smooth, and L2 regularization constant to be
O(1). For a fair comparison, we require that each of them satisfy (1 + 2

ε log(1/δ), ε2 )-deletion-privacy guarantee (which
implies one-sided (ε, δ)-unlearning (cf. Theorem B.1 & Remark 4.2)) and have the same excess empirical risk α = O(1).

5.2. Deletion and Utility under Non-Convexity

For a non-convex loss function `(θ;x), we provide the fol-
lowing set of guarantees on the pair (ANoisy-GD, ĀNoisy-GD).

Theorem 5.2 (Accuracy, privacy, deletion, and computa-
tion tradeoffs). Let constants λ, β, L, σ2, η > 0, constants
q,B > 1, and constants d > εdp ≥ εdd > 0. Let the loss

function `(θ;x) be σ2 log(B)
4 -bounded, L-Lipschitz and β-

smooth, the regularizer be r(θ) = λ
2 ‖θ‖

2
2, and the weight

initialization distribution be ρ = N
(

0, σ
2

λ Id
)

. Then,

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for
any η ≥ 0 and any KA,KĀ ≥ 0 if

σ2 ≥ qL2

εdpn2
· ηmax{KA,KĀ}, (20)

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-deletion-
privacy under all non-adaptive r-requesters for any
σ2 > 0, if learning rate is η ≤ λεdd

64dqB(β+λ)2 and the
number of iterations satisfy

KA ≥
2B

λη
log

(
q log(B)

εdd

)
, and

KĀ ≥ KA −
2B

λη
log

(
log(B)

2
(
εdd + r

n log(B)
)) , (21)

(3.) and all models in the sequence (Θ̂i)i≥0 pro-
duced by interactions between (ANoisy-GD, ĀNoisy-GD)
and Q on any D0 ∈ Xn, where Q is
an r-requester, have an excess empirical risk

err(Θ̂i;Di) = Õ

(
dq

εdpn2 + 1
n

√
qεdd

εdp

)
when inequal-

ities in (21) and (20) are equalities.

Previous studies on unlearning under non-convexity mainly
focused on empirical analysis for utility. To the best of our

knowledge, we are the first to offer utility guarantees in
this context. Furthermore, our non-convex utility bound
only exceeds the optimal privacy-preserving utility under
convexity by approximately Õ

(
1
n

√
qεdd

εdp

)
. This term be-

comes negligible when dealing with large databases or a
small deletion privacy to differential privacy budget ratio.

Our results show a significant computational advantage on
unlearning with ĀNoisy-GD in scenarios where the proportion
of edited records in a single edit request satisfies r

n ≤
1
2 −

εdd

logB . For instance, in the deletion regime where we desire
εdd = log(B)/4, employing ĀNoisy-GD instead of retraining
with ANoisy-GD requires Ω(dn log n

r ) fewer gradient steps.

Remark 5.3. Both Theorems 5.1 and 5.2 also hold when
gradients ∇`(θ;x) are clipped to L instead of assuming
L-Lipschitzness. Appendix F.1 discusses how gradient clip-
ping is compatible with other assumptions we make.

6. Conclusions
We showed that prior unlearning certifications in literature
are unreliable in real-world scenarios, and proposed a new
deletion privacy guarantee that safeguards the “Right to
be Forgotten”. We also showed the perils of caching par-
tial computations, the importance of protecting the privacy
of existing records in order to ensure privacy of deleted
records under adaptive deletions, and established connec-
tions between deletion privacy and differential privacy. Our
results on a Noisy-GD based unlearning algorithm show a
significant computation saving compared to retraining at no
loss in utility, for both convex and non-convex losses.
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A. Table of Notations

Table 2: Symbol reference.

Symbol Meaning
O Arbitrary model parameter space.
Φ Space of publishable objects.
d,Rd Dimension of model parameters and d-dimensional Euclidean space.
n Database size.
X ,Xn Data universe and Domain of all datasets of size n.
ν,ν′,π,µ Arbitrary distributions on O or on Rd.
Q An edit requester.
r, p Integers representing the power of an adaptive requester.
U ,Ur Space of singular and batched replacement edits in [n]×X .
u, ui, Ui Arbitrary edit request, ith edit request in Ur and its random variable.
D,Di An example database and database after ith update.
x,y Singular data records from universe X .
η Step size or learning rate in Noisy-GD.
σ2 Variance scaling used in weight initialization distribution or gradient noise.
`(θ;x) Twice continuously differentiable loss function on models in Rd.
r(θ) L2 regularizer λ ‖θ‖22 /2.
L(θ),LD(θ) Arbitrary optimization objective and an r(θ) regularized objective on D over `(θ;x).
err(Θ;D) Excess empirical risk of random model Θ over objective LD.
π(D) An mapping from Xn to distributions on Rd; sometimes distributions are Gibbs.
ΛD Normalization constant of the Gibbs distribution π(D).
πQi An imaginary mechanism designed to prove deletion privacy of a data-deletion solution.
Tk A map over Rd.
ρ Weight initialization distribution for Noisy-GD.
v,v′ Vector fields on Rd.
θ∗D, θ

∗
Di Risk minimizer for LD and LDi .

q Order of Rényi divergence.
εdp, εdd Differential privacy budget and deletion privacy budget in q-Rényi divergence.
ε, δ Parameters for DP-like indistinguishability.
A,ANoisy-GD Learning algorithm and Noisy-GD based learning algorithm respectively.
Ā, ĀNoisy-GD Data-deletion algorithm and Noisy-GD based unlearning algorithm respectively.
KA,KĀ Number of learning and data-deletion iterations in Noisy-GD.
k, t Index of a Noisy-GD iteration and continuous time variable for tracing diffusions.
Θηk,Θ

′
ηk Parameters at iteration k of Noisy-GD.

Θt,Θ
′
t Parameters at time t of tracing diffusion for Noisy-GD.

µt,µ
′
t Probability density for Θt,Θ

′
t.

Id d-dimensional identity matrix.
Z,Zk,Z

′
k Random variables taken from N (0, Id).

dZt,dZ
′
t Two independent Weiner process.

λ, β,B, L L2 regularizer constant and smoothness, boundedness, and Lipschitzness constants.
ClipL(·) Operator that clips vectors in Rd to a magnitude of L.
Rq (ν‖ν′) ,Eq (ν‖ν′) Rényi divergence and qth moment of likelihood ratio r.v. between ν and ν′.
I (ν‖ν′) , Iq (ν‖ν′) Fisher and q-Rényi Information of distribution of ν w.r.t ν′.
W2 (ν,ν′) Wasserstein distance between distribution ν and ν′.
KL (ν‖ν′) Kullback-Leibler divergence of distribution ν w.r.t. ν′.
Pt,G,G∗ Markov semigroup, its infinitesimal generator, and its Fokker-Planck operator.
Entπ(f2) Entropy of function f2 under any arbitrary distribution π.
H(·) Differential entropy of a distribution.
LS(c) Log-sobolev inequality with constant c.
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B. Divergence Measures and Their Properties
Let Θ,Θ′ ∈ O be two random variables with probability measures ν,ν′ respectively. We abuse the notations to denote
respective probability densities with ν,ν′ as well. We say that ν is absolutely continuous with respect to ν′ (denoted by
ν� ν′) if for all measurable sets O ⊂ O, ν(O) = 0 whenever ν′(O) = 0.

Definition B.1 ((ε, δ)-indistinguishability (Dwork et al., 2014)). We say ν and ν′ are (ε, δ)-indistinguishable if for all
O ⊂ O,

P
Θ∼ν

[Θ ∈ O] ≤ eε P
Θ′∼ν′

[Θ′ ∈ O] + δ and P
Θ′∼ν′

[Θ′ ∈ O] ≤ eε P
Θ∼ν

[Θ ∈ O] + δ. (22)

In this paper, we measure indistinguishability in terms of Rényi divergence.

Definition B.2 (Rényi divergence (Rényi et al., 1961)). Rényi divergence of ν w.r.t. ν′ of order q > 1 is defined as

Rq (ν‖ν′) =
1

q − 1
log Eq (ν‖ν′) , where Eq (ν‖ν′) = E

θ∼ν′

[(
ν(θ)

ν′(θ)

)q]
, (23)

when ν is absolutely continuous w.r.t. ν′ (denoted as ν� ν′). If ν 6� ν′, we’ll say Rq (ν‖ν′) =∞. We abuse the notation
Rq (Θ‖Θ′) to denote divergence Rq (ν‖ν′) between the measures of Θ,Θ′.

A bound on Rényi divergence implies a one-directional (ε, δ)-indistinguishability as described below.

Theorem B.1 (Conversion theorem of Rényi divergence (Mironov, 2017, Proposition 3)). Let q > 1 and ε > 0. If
distributions ν,ν′ satisfy Rq (ν‖ν′) < ε0, then for any O ⊂ O,

P
Θ∼ν

[Θ ∈ O] ≤ eε P
Θ′∼ν′

[Θ′ ∈ O] + δ, (24)

for ε = ε0 + log 1/δ
q−1 and any 0 < δ < 1.

We use the following properties of Rényi divergence in some of our proofs.

Theorem B.2 (Mononicity of Rényi divergence (Mironov, 2017, Proposition 9)). For 1 ≤ q0 < q, and arbitrary probabil-
ity measures ν and ν′ over O, Rq0 (ν‖ν′) ≤ Rq (ν‖ν′).

Theorem B.3 (Rényi composition (Mironov, 2017, Proposition 1)). If A1, · · · ,Ak are randomized algorithms satisfying,
respectively, (q, ε1)-Rényi DP, · · · , (q, εk)-Rényi DP then their composed mechanism defined as (A1(D), · · · ,Ak(D)) is
(q, ε1 + · · ·+εk)-Rényi DP. Moreover, ith algorithm can be chosen on the basis of the outputs of algorithms A1, · · · ,Ai−1.

Theorem B.4 (Weak triangle inequality of Rényi divergence (Mironov, 2017, Proposition 12)). For any distribution ρ on
O, the Rényi divergence of ν w.r.t. ν′ satisfies the following weak triangle inequality:

Rq (ν‖ν′) ≤ Rq (ν‖ρ) + R∞ (ρ‖ν′) . (25)

Another popular notion of information divergence is the Kullback-Leibler divergence.

Definition B.3 (Kullback-Leibler divergence (Kullback & Leibler, 1951)). Kullback-Leibler (KL) divergence KL (ν‖ν′)
of ν w.r.t. ν′ is defined as

KL (ν‖ν′) = E
θ∼ν

[
log

ν(θ)

ν′(θ)

]
. (26)

Rényi divergence generalizes Kullback-Leibler divergence as limq→1 Rq (ν‖ν′) = KL (ν‖ν′) (Van Erven & Harremos,
2014).

Some other divergence notions that we rely on are the following.

Definition B.4 (Wasserstein distance (Vaserstein, 1969)). Wasserstein distance between ν and ν′ is

W2 (ν,ν′) = inf
Π

E
Θ,Θ′∼Π

[
‖Θ−Θ′‖22

] 1
2

, (27)

where Π is any joint distribution on O ×O with ν and ν′ as its marginal distributions.
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Definition B.5 (Relative Fisher information (Otto & Villani, 2000)). If ν� ν′ and ν
ν′

is differentiable, then relative Fisher
information of ν with respect to ν′ is defined as

I (ν‖ν′) = E
θ∼ν

[∥∥∥∥∇ log
ν(θ)

ν′(θ)

∥∥∥∥2

2

]
. (28)

Definition B.6 (Relative Rényi information (Vempala & Wibisono, 2019)). Let q > 1. If ν� ν′ and ν
ν′

is differentiable,
then relative Rényi information of ν with respect to ν′ is defined as

Iq (ν‖ν′) =
4

q2
E

θ∼ν′

∥∥∥∥∥∇
(
ν(θ)

ν′(θ)

)q/2∥∥∥∥∥
2

2

 = E
θ∼ν′

[(
ν(θ)

ν′(θ)

)q−2 ∥∥∥∥∇( ν(θ)

ν′(θ)

)∥∥∥∥2

2

]
. (29)

C. Proofs for Section 3
Theorem 3.1. There exists an algorithm pair (A, Ā) satisfying (0, 0)-adaptive-unlearning under publish function
fpub(θ) = θ such that by designing a 1-adaptive 1-requester Q, an attacker can infer the identity of a record deleted
by edit ui, at any arbitrary step i > 3, with probability at-least 1− (1/2)i−3 from a single post-edit release φi, even with
no access to Q’s transcript (φ<i;u<i).

Proof. Let data universe X , the internal model space O, as well as publishable outcome space Φ be R. Consider the
task of releasing a sequence of medians using function med : R∗ → R in the online setting when the initial database
D0 ∈ Xn is being modified by some adaptive requesterQ. Given a database D ∈ Xn, our learning algorithm is defined as
A(D) = med(D). For an arbitrary edit request u ∈ Ur, our unlearning algorithm is defined as Ā(D, u, •) = med(D ◦ u)
for any • ∈ O. Let the publish function fpub : O → Φ be an identity function, i.e. fpub(θ) = θ.

For any initial database D0 ∈ Xn and an adaptive sequence (ui)i≥1 generated by any∞-adaptive 1-requesterQ, note that

fpub(Ā(Di−1, ui, •)) = fpub(A(Di)), for all i ≥ 1 and any • ∈ O. (30)

Therefore, Ā is a (0, 0)-adaptive unlearning algorithm for A under fpub.

Now suppose that n is odd and D0 consists of unique entries. W.L.O.G assume that the median record med(D0) is at
index indm and its owner will be deleting it at step i by sending a non-adaptive edit request ui = {〈indm,y〉} such that
y 6= med(D0). We design the following 1-adaptive 1-requester Q that sends edit requests in the first i− 1 steps to ensure
with high probability that the published outcome at step i remains the deleted record, i.e., med(Di) = med(D0):

Q(φ0, u1, u2, · · · , uj−1) = {〈indj , φ0〉} ∀ 1 ≤ j < i, (31)

where indj is randomly sampled from [n] \ {ind1, · · · , indj−1} without replacement. Note that by the end of interac-
tion, Q replaces at-least i − 2 unique records in D0 with φ0 = med(D0). If one of those original records was larger
than med(D0) and another was smaller than med(D0), then it is guaranteed that med(Di) = med(D0). Therefore,
P [med(Di) = med(D0)] is at-least

P
[
∃indl, indu ∈ {ind1, · · · , indi−1} s.t. D0[indl] < D0[indm] < D0[indu]

]
≥ 1− 2×

(
bnc/2
i− 2

)/(
n

i− 2

)
≥ 1−

(
1

2

)i−3

.

In other words, a copy of the record deleted at ith step will be blatantly revealed after processing the deletion request with
probability at least 1− (1/2)i−3, despite using a (0, 0)-adaptive-unlearning mechanism Ā for deletion.

Theorem 3.2. For every ε > 0, there exists a pair (A, Ā) of algorithms that satisfy (ε, 0)-unlearning under some publish
function fpub such that for all non-adaptive 1-requesters Q, their exists an attacker that can correctly infer the identity of
a record deleted at any arbitrary edit step i ≥ 1 by observing only the post-edit releases φ≥i.
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Proof. For a query h : X → {0, 1}, consider the task of learning the count over a database that is being edited online by
a non-adaptive 1-requester Q. Since Q is non-adaptive by assumption, it is equivalent to the entire edit sequence {ui}i≥1

being fixed before interaction. We design an algorithm pair (A, Ā) for this task with secret model space being O = N3

and published outcome space being Φ = R, with the publish function being fpub(〈a, b, c〉) = a + b/c + Lap
(

1
ε

)
(with

the convention that b/c = 0 if b = c = 0). At any step i ≥ 0, our internal model Θ̂i = 〈cnti,deli, i〉 encodes the current
count of h on database Di, the count of h on records previously deleted by u≤i, and the current step index i. Our learning
algorithm initializes the secret model as Θ̂0 = A(D0) = 〈

∑
x∈D0

h(x), 0, 0〉, and, for an edit request ui = {〈indi,yi〉},
our algorithm Ā updates the secret model Θ̂i−1 → Θ̂i following the rule

Θ̂i = Ā(Di−1, ui, Θ̂i−1) = 〈cnti,deli, i〉 where

{
cnti = cnti−1 + h(yi)− h(Di−1[indi]),

deli = deli−1 + h(Di−1[indi]).

Note that ∀i ≥ 1, ∆i
def
= deli/i ∈ [0, 1]. Therefore, from properties of Laplace mechanism (Dwork et al., 2014), it is

straightforward to see that for all i ≥ 1,

fpub(Ā(Di−1, ui, Θ̂i−1))
∣∣u≤i =

∑
x∈Di

h(x) + ∆i + Lap
(

1

ε

)
ε,0
≈
∑
x∈Di

h(x) + Lap
(

1

ε

)
= fpub(A(Di)).

Hence, Ā is an (ε, 0)-unlearning algorithm for A under fpub.

To show that an adversary can still infer the identity of record deleted by edit request ui = {〈indi, •〉}, consider a database
D′i−1 that differs from Di−1 only at index indi such that h(D′i−1[indi]) 6= h(Di−1[indi]). Let random variable sequences
φ≥i and φ′≥i denote the releases by Ā in the scenarios that the (i − 1)th database was Di−1 and D′i−1 respectively. The
divergence between these two random variable sequences reflect the capacity of any adversary to infer the record deleted
by ui. Since, we have identical databases after ui, i.e. Dj−1 ◦ uj = D′j−1 ◦ uj for all j ≥ i, note that both φj and φ′j are
independent Laplace distributions with a shift of exactly 1

j units. Therefore,

max
O⊂Φ∗

log
P [φ≥i ∈ O]

P
[
φ′≥i ∈ O

] =

∞∑
j=i

max
Oj⊂R

log
P [φj ∈ Oj ]

P
[
φ′j ∈ Oj

] =

∞∑
j=i

log eε/j =∞.

C.1. Unsoundness and Incompleteness of Offline Unlearning Definitions

In this subsection, we show that our criticisms on trustworthiness of unlearning notions under adaptive requests in Section 3
also apply to the other popular deletion privacy notions like Ginart et al. (2019), Guo et al. (2019) and Sekhari et al. (2021).

Definition C.1 (Data deletion operation (Ginart et al., 2019)). Algorithm Ā is a data deletion operation for a learning

algorithm A if Ā(D, S,A(D))
0,0
≈ A(D \ S) for all D ⊂ X and all subsets S ⊂ D that is selected independently of A(D).

Definition C.2 ((ε, δ)-certified removal (Guo et al., 2019)). A removal mechanism Ā performs (ε, δ)-certified removal for
learning algorithm A if for all databases D ⊂ X and deletion subsets S ⊂ D,

Ā(D, S,A(D))
ε,δ
≈ A(D \ S). (32)

Definition C.3 ((ε, δ)-unlearning (Sekhari et al., 2021)). For all D ⊂ X of size n and deletion subsets S ⊂ D such that
|S| ≤ m, a learning algorithm A and an unlearning algorithm Ā is (ε, δ)-unlearning if

Ā(T (D), S,A(D))
ε,δ
≈ Ā(T (D \ S),∅,A(D \ S)), (33)

where ∅ denotes the empty set and T (D) denotes the data statistics available to Ā about D.
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Unsoundness. Definition C.1 explicitly assumes that there is no influence of the learned model A(D) on the selection
of deletion subset S. However, such a dependence is common in the real world; for example, people sometimes delete
their information if they don’t like what a model A(D) reveals about them. Therefore, Definition C.1’s certification
in these settings is trivially void. Unlike Definition C.1 however, Definitions C.2 and C.3 make no assumptions about
dependence between the deletion request S and the learned model A(D). So, request S can depend on A(D) under these
two certifications. We recall the example we provide in Section 3 to show that Definitions C.2 and C.3, are also unsound
under adaptivity.

For the universe of records X = {−2,−1, 1, 2}, consider the following learning and unlearning algorithms:

A(D) =
∑
x∈D

x, and Ā(D, S,A(D)) =
∑

x∈D\S

x. (34)

Note that for any D ⊂ X and any S ⊂ D, the above algorithm pair (A, Ā) satisfies Definitions C.1, C.2 and C.3 for
ε = δ = 0 and T (D) = D. Suppose the adversary is aware that the following dependence holds between the learned
model A(D) and deletion request S:

S =

{
{x < 0 : ∀x ∈ X} if A(D) < 0,

{x ≥ 0 : ∀x ∈ X} otherwise.
(35)

Consider two neighbouring databases D−1 = {−2,−1, 2} and D1 = {−2, 1, 2}. Knowing the above dependence, an
adversary can determine whether D = D−1 or D = D1 by looking only at Ā(D, S,A(D)). This is because if D = D−1,
then the observation after unlearning is 2, and if D = D1, the observation after unlearning is −2. So, even though (A, Ā)
satisfies the guarantees of Ginart et al. (2019), Guo et al. (2019) and Sekhari et al. (2021), it blatantly reveals the identity
(−1 or 1) of a deleted record to an adversary observing only the post-deletion release.

Incompleteness. Definitions C.1, C.2 and C.3 are also incomplete. Consider an unlearning algorithm Ā that outputs a
fixed output x1 ∈ X if the deletion request S = ∅ and outputs another fixed output x2 ∈ X if the deletion request S 6= ∅.
It is easy to see that Ā is a valid deletion algorithm as its output does not depend on the input database D or the learned
model A(D). However, note that Ā does not satisfy the unlearning Definition C.3, for any learning algorithm A. And, for
a learning algorithm A(D) =

∑
x∈D x, one can verify that the pair (A, Ā) does not satisfy Definitions C.1 and C.2 either.

D. Proofs for Section 4
Theorem 4.1 (Definition 4.1 safeguards RTBF). If the algorithm pair (A, Ā) satisfies (q, ε)-deletion-privacy guarantee
under all p-adaptive r-requesters, then even with complete knowledge of a p-adaptive r-requester Q that interacts with
the curator before a target record D0[ind] in the initial database D0 is deleted at step i ≥ 1 by request ui, any attacker
MI : O∗ → {0, 1} observing only the post-deletion models Θ̂≥i = (Θ̂i, Θ̂i+1, · · · ) has an advantage

Adv(MI) def
= P

[
MI(Θ̂≥i) = 1

∣∣x]− P
[
MI(Θ̂≥i) = 1

∣∣x′] (36)

for disambiguating between two possible values x,x′ ∈ X of the deleted record D0[ind] bounded as follows.

Adv(MI) ≤ min

{√
2ε,

qeε(q−1)/q

q − 1
[2(q − 1)]

1
q − 1

}
(37)

Proof. For an arbitrary step i ≥ 1, suppose one of the replacement operations in the edit request ui ∈ Ur replaces a record
at index ‘ind’ from the database Di−1 with ‘y’. In the worst case, this record Di−1[ind] might have been there from the
start, i.e. D0[ind] = D0[ind], and influenced all the decisions of the adaptive requester Q in the edit steps 1, · · · , i − 1.
To prove soundness, we need to show that if (A, Ā) satisfies (q, ε)-deletion-privacy, then even in this worst-case scenario,
no adaptive adversary can design a membership inference test MI(Θ̂i, Θ̂i+1, · · · ) ∈ {0, 1} that can distinguish with high
probability the null hypothesis H0 = {D0[ind] = x} from the alternate hypothesis H1 = {D0[ind] = x′} for any
x,x′ ∈ X . That is, the advantage of any test MI, defined as

Adv(MI) def
= P

[
MI(Θ̂i, Θ̂i+1, · · · ) = 1|H0

]
− P

[
MI(Θ̂i, Θ̂i+1, · · · ) = 1|H1

]
, (38)
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must be small. Since after processing edit request ui, the databases Di,Di+1, · · · no longer contain the deleted record
Di−1[ind], the data-processing inequality implies that future models Θ̂i+1, Θ̂i+2, · · · cannot have more information about
Di−1[ind] that what is present in Θ̂i. Therefore, any test MI(Θ̂i, Θ̂i+1, · · · ) has a smaller advantage than the optimal test
MI∗(Θ̂i) ∈ {0, 1} that only uses Θ̂i.

Also, since (A, Ā) satisfy (q, ε)-deletion-privacy for any p-adaptive r-requesterQ, we know from Definition 4.1 that there
exists a mapping πQi such that for all D0 ∈ Xn, the model Θ̂i generated by the interaction between (A, Ā,Q) on D0

after ith edit satisfies the inequality Rq

(
Θ̂i

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ ε. As the database D0 ◦ 〈ind,y〉 is identical under

both hypothesis H0 and H1, we have Rq

(
Θ̂i|Hb

∥∥∥Θ̄
)
≤ ε for b ∈ {0, 1}, where Θ̄ = πQi (D0 ◦ 〈ind,y〉). From Rényi

divergence to (ε, δ)-indistinguishability conversion described in Theorem B.1, we get

P
[
MI∗(Θ̂i) = 1|H0

]
≤ eε

′(δ)P
[
MI∗(Θ̄) = 1

]
+ δ, and (39)

P
[
MI∗(Θ̂i) = 0|H1

]
≤ eε

′(δ)P
[
MI∗(Θ̄) = 0

]
+ δ, (40)

where ε′(δ) = ε+ log 1/δ
q−1 for any 0 < δ < 1. On adding the two inequalities, we get:

Adv(MI) ≤ Adv(MI∗) = P
[
MI∗(Θ̂i) = 1|H0

]
− P

[
MI∗(Θ̂i) = 1|H1

]
≤ min

δ
eε
′(δ) − 1 + 2δ

=
qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1

Alternatively, from monotonicity of Rényi divergence w.r.t. order q and the fact that Rényi divergence converges to KL
divergence as q → 1, we have from Rq

(
Θ̂i|Hb

∥∥∥Θ̄
)
≤ ε for b ∈ {0, 1} that

KL
(

Θ̂i|Hb

∥∥∥Θ̄
)
≤ Rq

(
Θ̂i|Hb

∥∥∥Θ̄
)
≤ ε

=⇒ TV
(

Θ̂i|Hb; Θ̄
)
≤
√
ε

2
, (From Pinkser inequality)

for b ∈ {0, 1}. So, from triangle inequality on total variation distance, we have

TV
(

Θ̂i|H0; Θ̂i|H1

)
≤ TV

(
Θ̂i|H0; Θ̄

)
+ TV

(
Θ̂i|H0; Θ̄

)
≤
√

2ε. (41)

So, advantage of any membership inference attack MI must have an advantage satisfying

Adv(MI) = P
[
MI(Θ̂i) = 1|H0

]
− P

[
MI(Θ̂i) = 1|H1

]
≤
√

2ε. (42)

Theorem 4.3 (From adaptive to non-adaptive deletion). If an algorithm pair (A, Ā) satisfies (q, εdd)-deletion-privacy
under all non-adaptive r-requesters and is also (q, εdp)-Rényi DP with respect to records not being deleted, then it also
satisfies (q, εdd + pεdp)-deletion-privacy under all p-adaptive r-requesters.

Proof. To prove this theorem, we need to show that for any p-adaptive r-requesterQ, there exists a construction for a map
πQi : Xn → O such that for all D0 ∈ Xn, the sequence of model (Θ̂i)i≥0 generated by the interaction between (Q,A, Ā)
on D0 satisfies the following inequality for all i ≥ 1:

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ εdd + pεdp, for all ui ∈ Ur and 〈ind,y〉 ∈ ui. (43)

Fix a database D0 ∈ Xn and an edit request ui ∈ Ur. Let D′0 ∈ Xn be a neighbouring database defined to be D′0 =
D0 ◦ 〈ind,y〉 for an arbitrary replacement operation 〈ind,y〉 ∈ ui. Given any p-adaptive r-requester Q, let (Θ̂i)i≥0 and
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(Ui)i≥1 be the sequence of released model and edit request random variables generated onQ’s interaction with (A, Ā) with
initial database as D0. Similarly, let (Θ̂′i)i≥0 and (U ′i)i≥1 be the corresponding sequences generated due to the interaction
among (Q,A, Ā) on D′0.

Since (A, Ā) is assumed to satisfy (q, εdd)-deletion-privacy guarantee under non-adaptive r-requesters, recall from Re-
mark 4.2 that there exists a mapping π : Xn → O such that for any fixed edit sequence u≤i

def
= (u1, u2, · · · , ui),

Rq

(
Θ̂i|U≤i=u≤i

∥∥∥π(D0 ◦ u≤i)
)
≤ εdd (44)

=⇒ Rq

(
Ā(D0 ◦ U<i, ui, Θ̂i)|U<i=u<i

∥∥∥π(D0 ◦ U ′<i ◦ ui)|U ′<i=u<i
)
≤ εdd. (45)

Note that since the replacement operation 〈ind,y〉 is part of the edit request ui, we have D0 ◦ U ′<i ◦ ui = D′0 ◦ U ′<i ◦ ui.
Moreover, since the sequence U ′<i of edit requests is generated by the interaction of (Q,A, Ā) on D′0 = D0 ◦ 〈ind, u〉 and
the ith edit request ui is fixed beforehand, we can define a valid construction of a map πQi : Xn → O as per Definition 4.1
as follows:

πQi (D0 ◦ 〈ind,y〉) = π(D′0 ◦ U ′<i ◦ ui). (46)

For brevity, let Θ̂u = Ā(D0 ◦ U<i, ui, Θ̂i−1), and Θ̂′u = πQi (D0 ◦ 〈ind,y〉). For this construction, we prove the requisite
bound in (43) as follows.

Rq

(
Θ̂u

∥∥∥Θ̂′u

)
≤ Rq

(
(Θ̂u, U<i)

∥∥∥(Θ̂′u, U
′
<i)
)

(Data processing inequality (Van Erven & Harremos, 2014, Theorem 1))

=
1

q − 1
log

∫
θ

∑
u<i

J(θ, u<i)
q

J ′(θ, u<i)q−1
dθ (J & J ′ are joint PDFs of (Θ̂u, U<i) & (Θ̂′u, U

′
<i))

=
1

q − 1
log
∑
u<i

P [U<i = u<i]
q

P
[
U ′<i = u<i

]q−1

{∫
θ

pΘ̂u|U<i=u<i(θ)
q

pΘ̂′u|U ′<i=u<i
(θ)q−1

dθ

}

≤ 1

q − 1
log
∑
u<i

P [U<i = u<i]
q

P
[
U ′<i = u<i

]q−1 exp((q − 1)εdd) (From (45))

= εdd + Rq (U<i‖U ′<i)

≤ εdd + Rq

((
Θ̂s1 , · · · , Θ̂sp

)∥∥∥(Θ̂′s1 , · · · , Θ̂′sp
))

(If Q sees outputs at steps s1, · · · , sp)

≤ εdd + pεdp. (Via Rényi composition)

Theorem 4.5 (Privacy of remaining records is necessary for adaptive deletion privacy). Let Test : O → {0, 1} be a
membership inference test for A to distinguish between neighbouring databases D,D′ ∈ Xn. Similarly, let Test : O →
{0, 1} be a membership inference test for Ā to distinguish between D̄, D̄′ ∈ Xn that are neighbouring after applying edit
ū ∈ U1. If Adv(Test) > δ and Adv(Test) > δ, then the pair (A, Ā) cannot satisfy (q, ε)-deletion-privacy under 1-adaptive
1-requester for any

ε < max

{
δ4

2
, log(q − 1) +

q

q − 1
log

(
1 + δ2

q21/q

)}
. (47)

Proof. By assumption, we know that there exists tests Test,Test : O → {0, 1} such that

Adv(Test) def
= P [Test(A(D)) = 1]− P [Test(A(D′)) = 1] > δ, (48)

and for all θ ∈ O,

Adv(Test) def
= P

[
Test(Ā(D̄, ū, θ)) = 1

]
− P

[
Test(Ā(D̄′, ū, θ)) = 1

]
> δ. (49)
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Define O′ = {θ ∈ O|Test(θ) = 1} and Ō′ = {θ ∈ O|Test(θ) = 1}. We have that the total variation distance between
A(D) and A(D′) is lower bounded as

TV (A(D); A(D′)) = sup
O⊂O

|P [A(D) ∈ O]− P [A(D′) ∈ O] | (50)

> P [A(D) ∈ O′]− P [A(D′) ∈ O′] (51)

= P [Test(A(D)) = 1]− P [Test(A(D′)) = 1] > δ. (52)

Similarly, we also have that for all θ ∈ O, the total variation distance between Ā(D̄, ū, θ) and Ā(D̄′, ū, θ) is lower bounded
as

TV
(
Ā(D̄, ū, θ); Ā(D̄′, ū, θ)

)
= sup
O⊂O

|P
[
Ā(D̄, ū, θ) ∈ O

]
− P

[
Ā(D̄′, ū, θ) ∈ O

]
| (53)

> P
[
Ā(D̄, ū, θ) ∈ Ō′

]
− P

[
Ā(D̄′, ū, θ) ∈ Ō′

]
(54)

= P
[
Test(Ā(D̄, ū, θ)) = 1

]
− P

[
Test(Ā(D̄′, ū, θ)) = 1

]
> δ. (55)

Assume W.L.O.G. that ū replaces at index n and the edited databases D̄ ◦ u, D̄′ ◦ u differs only at index 1. Also assume
that D,D′ differs at index n.

Recall from Definition 4.1 that satisfying (q, ε)-deletion-privacy under 1-adaptive 1-requesters requires existence of a map
πQn : Xn → O for each Q such that for all D0 ∈ Xn,

Rq

(
Ā(Dn−1, un, Θ̂n−1)

∥∥∥πQn (D0 ◦ un)
)
≤ ε, (56)

To prove the theorem statement, we show that for a starting databaseD0 ∈ {D,D′} and an edit request un = ū that deletes
the differing record in choices of D0 at edit step n, there exists a 1-adaptive 1-requesterQ that sends adaptive edit requests
u1, · · · , un−1 in the first n− 1 steps such that no map πQn exists that satisfies (56) for both choices of D0 when ε follows
inequality (47).

Consider the following construction of 1-adaptive 1-requester Q that only observes the first model Θ̂0 = A(D0) and
generates the edit requests (u1, · · · , un−1) as follows:

Q(Θ̂0;u1, u2, · · · , ui−1) =

{
〈i, D̄[i]〉 if Test(Θ̂0) = 1,

〈i, D̄′[i]〉 otherwise.
(57)

This requesterQ transforms any initial database D0 to Dn−1 = D̄ if the outcome Test(Θ̂0) = 1, otherwise to Dn−1 = D̄′.
Consider an adversary that does not observe the interaction transcript (Θ̂<n;u<n), but is interested in identifying whether
D0 was D or D′. The adversary gets to observe only the output Θ̂n = Ā(Dn−1, un, Θ̂n−1) generated after processing the
edit request un = ū. On this observation, the adversary runs the membership inference test MI(Θ̂n) = Test(Θ̂n). The
membership inference advantage of MI is

Adv(MI;D,D′) def
= P

[
MI(Θ̂n) = 1|D0 = D

]
− P

[
MI(Θ̂n) = 1|D0 = D′

]
=

∑
b∈{0,1}

P
[
Test(Θ̂n) = 1|Test(Θ̂0) = b

]
× P

[
Test(Θ̂0) = b|D0 = D

]
−

∑
b∈{0,1}

P
[
Test(Θ̂n) = 1|Test(Θ̂0) = b

]
× P

[
Test(Θ̂0) = b|D0 = D′

]
=
(
P
[
Test(Θ̂n) = 1|Dn−1 = D̄

]
− P

[
Test(Θ̂n) = 1|Dn−1 = D̄′

])
Adv(Test;D,D′)

= Adv(Test; D̄, D̄′, ū)× Adv(Test;D,D′) > δ2.
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So, from the contrapositive of our soundness Theorem 4.1, we have that (A, Ā) cannot be an (ε, q)-deletion-privacy algo-
rithm for ε and q satisfying

δ2 > min

{√
2ε,

qeε(q−1)/q

q − 1
[2(q − 1)]1/q − 1

}
(58)

⇐⇒ ε < max

{
δ4

2
, log(q − 1) +

q

q − 1
log

(
1 + δ2

q21/q

)}
. (59)

D.1. Our Reduction Theorem 4.3 versus Gupta et al. (2021)’s Reduction

Adaptive unlearning guarantee in (Gupta et al., 2021, Definition 2.3) is designed to ensure that no adaptive requester
Q can force the output distribution of the unlearning algorithm Ā(Di−1, ui, Θ̂i−1) to diverge substantially from that of
retraining algorithm A(Di) with high probability. Such an attack is possible in unlearning algorithms that rely on some
persistent states that are only randomized once during initialization. For example, Bourtoule et al. (2021)’s SISA unlearning
algorithm randomly partitions the initial database D0 during setup and uses the same partitioning for processing edit
requests, deleting records from respective shards on request. Gupta et al. (2021) show that an adaptive update requester Q
can interactively send deletion requests u1, · · · , ui to SISA so that after some time, the partitioning of remaining records
in Di = D0 ◦ u1 · · ·ui follows a pattern that is unlikely to occur on repartitioning of Di if we execute A(Di).

They provide a general reduction (Gupta et al., 2021, Theorem 3.1) from adaptive to non-adaptive unlearning guarantee
under differential privacy. Their reduction relies on DP with regards to a change in the description of learning/unlearning
algorithm’s internal randomness and not with regards to the standard replacement of records. DP with respect to internal
description of randomness means that an adversary observing an unlearned model remains uncertain about persistent states
like database partitioning in SISA during setup. So from a triangle inequality type argument, Gupta et al. (2021) show that
with DP with respect to learning/unlearning algorithms’ coins along with a non-adaptive unlearning guarantee implies an
adaptive unlearning guarantee.

Our work shows that satisfying adaptive unlearning definition of Gupta et al. (2021) still does not guarantee deletion
privacy as per the RTBF guidelines. In Theorem 3.1, we demonstrate that there exists an algorithm pair (A, Ā) satisfying
adaptive unlearning Definition 2.6 (a strictly stronger version of (Gupta et al., 2021, Definition 2.3)), but still causes blatant
non-privacy of deleted records in post-deletion release. The vulnerability we identify occurs because an adaptive requester
can learn the identity of any target record before it is deleted and re-encode it back in the curator’s database by sending
edit requests. Because of this, an adversary (who knows how the adaptive requester works but does not have access to
the requester’s interaction transcript) can extract the identity of the target record from the model released after processing
the deletion request. In our work, we argue that a reliable (and necessary) way to prevent this attack is to make sure
that no adaptive requester ever learns the identity of a target record from the pre-deletion model releases it has access
to. Consequently, our reduction in Theorem 4.3 from adaptive to non-adaptive requests relies on differential privacy with
respect to the standard replacement of records instead.

E. Calculus Refresher
Given a twice continuously differentiable function L : O → R, where O is a closed subset of Rd, its gradient ∇L : O →
Rd is the vector of partial derivatives

∇L(θ) =

(
∂L(θ)

∂θ1
, · · · , ∂L(θ)

∂θ2

)
. (60)

Its Hessian∇2L : O → Rd×d is the matrix of second partial derivatives

∇2L(θ) =

(
∂2L(θ)

∂θiθj

)
1≤i,j≤d

. (61)

Its Laplacian ∆L : O → R is the trace of its Hessian∇2L, i.e.,

∆L(θ) = Tr
(
∇2L(θ)

)
. (62)
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Given a differentiable vector field v = (v1, · · · ,vd) : O → Rd, its divergence div (v) : O → R is

div (v) (θ) =

d∑
i=1

∂vi(θ)

∂θi
. (63)

Some identities that we would rely on:

1. Divergence of gradient is the Laplacian, i.e.,

div (∇L) (θ) =

d∑
i=1

∂2L(θ)

∂θ2
i

= ∆L(θ). (64)

2. For any function f : O → R and a vector field v : O → Rd with sufficiently fast decay at the border of O,∫
O
〈v(θ),∇f(θ)dθ〉 = −

∫
O
f(θ)(div (v))(θ)dθ. (65)

3. For any two functions f, g : O → R, out of which at least for one the gradient decays sufficiently fast at the border of
O, the following also holds.∫

O
f(θ)∆g(θ)dθ = −

∫
O
〈∇f(θ),∇g(θ)〉dθ =

∫
O
g(θ)∆f(θ)dθ. (66)

4. Based on Young’s inequality, for two vector fields v1,v2 : O → Rd, and any a, b ∈ R such that ab = 1, the following
inequality holds.

〈v1,v2〉 (θ) ≤
1

2a
‖v1(θ)‖22 +

1

2b
‖v2(θ)‖22 . (67)

Wherever it is clear, we would drop (θ) for brevity. For example, we would represent div (v) (θ) as only div (v).

F. Loss Function Properties
In this section, we provide the formal definition of various properties that we assume in the paper. Let `(θ;x) : Rd×X → R
be a loss function on Rd for any record x ∈ X .
Definition F.1 (Lipschitzness). A function `(θ;x) is said to be L Lipschitz continuous if for all θ, θ′ ∈ Rd and any x ∈ X ,

|`(θ;x)− `(θ′;x)| ≤ L ‖θ − θ′‖2 . (68)

If `(θ;x) is differentiable, then it is L-Lipschitz if and only if∇`(θ;x) ≤ L for all θ ∈ Rd.
Definition F.2 (Boundedness). A function `(θ;x) is said to be B-bounded if for all x ∈ X , its output takes values in range
[−B,B].
Definition F.3 (Convexity). A continuous differential function `(θ;x) is said to be convex if for all θ, θ′ ∈ Rd and x ∈ X ,

`(θ′;x) ≥ `(θ;x) + 〈∇`(θ;x), θ′ − θ〉 , (69)

and is said to be λ-strongly convex if

`(θ′;x) ≥ `(θ;x) + 〈∇`(θ;x), θ′ − θ〉+
λ

2
‖θ′ − θ‖22 . (70)

Theorem F.1 ((Nesterov, 2003, Theorem 2.1.4)). A twice continuously differentiable function `(θ;x) is convex if and only
if for all θ ∈ Rd and x ∈ X , its hessian matrix ∇2`(θ;x) is positive semidefinite, i.e., ∇2`(θ;x) < 0 and is λ-strongly
convex if its hessian matrix satisfies∇2`(θ;x) < λId.
Definition F.4 (Smoothness). A continuously differentiable function `(θ;x) is said to be β-smooth if for all θ, θ′ ∈ Rd and
x ∈ X ,

‖∇`(θ;x)−∇`(θ′;x)‖2 ≤ β ‖θ − θ
′‖2 . (71)

Theorem F.2 ((Nesterov, 2003, Theorem 2.1.6)). A twice continuously differentiable convex function `(θ;x) is β-smooth
if and only if for all θ ∈ Rd and x ∈ X ,

∇2`(θ;x) 4 βId. (72)
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F.1. Effect of Gradient Clipping

First order optimization methods on a continuously differentiable loss function `(θ;x) over a database D ∈ Xn with
gradient clipping ClipL(v) = v/max

(
1,
‖v‖2
L

)
is equivalent to optimizing

LD(θ) =
1

|D|
∑
x∈D

¯̀(θ;x) + r(θ), (73)

where ¯̀(θ;x) is a surrogate loss function that satisfies ∇¯̀(θ;x) = ClipL(∇`(θ;x)). This surrogate loss function inherits
convexity, boundedness, and smoothness properties of `(θ;x), as shown below.

Lemma F.3 (Gradient clipping retains convexity). If `(θ;x) is a twice continuously differentiable convex function for every
x ∈ Rd, then surrogate loss ¯̀(θ;x) resulting from gradient clipping is also convex for every x ∈ Rd.

Proof. Note that the clip operation ClipL(v) is a closed-form solution of the orthogonal projection onto a closed ball of
radius L and centered around origin, i.e.

ClipL(v) = arg min
‖v′‖2≤L

‖v − v′‖2 . (74)

By properties of orthogonal projections on closed convex sets, for every v,v′ ∈ Rd,

〈v′ − ClipL(v),v − ClipL(v)〉 ≤ 0 if and only if ‖v′‖2 ≤ L. (75)

Therefore, for any θ ∈ Rd, and x ∈ X , we have〈
∇¯̀(θ + hv̂;x)−∇¯̀(θ;x),∇`(θ;x)−∇¯̀(θ;x)

〉
≤ 0, (76)〈

∇¯̀(θ;x)−∇¯̀(θ + hv̂;x),∇`(θ + hv̂;x)−∇¯̀(θ + hv̂;x)
〉
≤ 0, (77)

for all unit vectors v̂ ∈ Rd and magnitude h > 0. For the directional derivative of vector field ∇¯̀(θ;x) along v̂, defined
as ∇v̂∇¯̀(θ;x) = limh→0+

∇¯̀(θ+hv̂;x)−∇¯̀(θ;x)
h , the above two inequalities imply〈
∇v̂∇¯̀(θ;x),∇`(θ;x)−∇¯̀(θ;x)

〉
= 0, (78)

for all v̂. Therefore, when ∇¯̀(θ;x) 6= ∇`(θ;x), we must have ∇2¯̀(θ;x) = 0. And, when ∇`(θ;x) = ∇¯̀(θ;x),
gradients aren’t clipped, which implies the rate of change of `(θ;x) along any direction v̂ is

∇v̂ · ∇¯̀(θ;x) = lim
h→0+

〈
∇¯̀(θ + hv̂;x)−∇`(θ;x)

h
, v̂

〉
=

{
v̂>∇2`(θ;x)v̂ if ∃h > 0 s.t. ∇¯̀(θ + hv̂;x) = ∇`(θ + hv̂;x)

0 otherwise
≥ 0.

Lemma F.4 (Gradient clipping retains boundedness). If `(θ;x) is a continuously differentiable and B-bounded function
for every x ∈ X , then a surrogate loss ¯̀(θ;x) resulting from gradient clipping is also B-bounded.

Proof. Since `(θ;x) is continuously differentiable, its B-boundedness implies path integral of ∇`(θ;x) along any curve
between θ, θ′ ∈ Rd is less than 2B. Since ClipL(·) operation clips the gradient magnitude, the path integral of ∇¯̀(θ;x)
is also less than 2B. That is, the maximum and minimum values that ¯̀(θ;x) takes differ no more than 2B. By adjusting
the constant of path integral, we can always ensure ¯̀(θ;x) takes values in range [−B,B] without affecting first order
optimization algorithms.

Lemma F.5 (Gradient clipping retains smoothness). If `(θ;x) is a continuously differentiable and β-smooth function for
every x ∈ Rd, then surrogate loss ¯̀(θ;x) resulting from gradient clipping is also β-smooth for every x ∈ Rd.
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Proof. Note that the gradient clipping operation is equivalent to an orthogonal projection operation into a ball of radius L,
i.e. ClipL(v) = arg minv′{‖v′ − v‖2 : v ∈ Rd, ‖v′‖2 ≤ L}. Since orthogonal projection onto a closed convex set is a
1-Lipschitz operation, for any θ, θ′ ∈ Rd,∥∥∇¯̀(θ;x)−∇¯̀(θ′;x)

∥∥
2
≤ ‖∇`(θ;x)−∇`(θ′;x)‖2 ≤ β ‖θ − θ

′‖2 . (79)

Additionally, the surrogate loss ¯̀(θ;x) is twice differentiable almost everywhere if `(θ;x) is smooth, which follows from
the following Rademacher’s Theorem.

Theorem F.6 (Rademacher’s Theorem (Nekvinda & Zajíček, 1988)). If f : Rn → Rn is Lipschitz continuous, then f is
differentiable almost everywhere in Rn.

All our results in Section 5 rely on the above four properties on losses and therefore apply with gradient clipping instead
of the Lipschitzness assumption.

G. Additional Preliminaries and Proofs for Section 5
G.1. Langevin Diffusion and Markov Semigroups

Langevin diffusion process on Rd with noise variance σ2 under the influence of a potential L : Rd → R is characterized
by the Stochastic Differential Equation (SDE)

dΘt = −∇L(Θt)dt+
√

2σ2dZt, (80)

where dZt = Zt+dt − Zt ∼
√

dtN (0, Id) is the d-dimensional Weiner process.

We present some preliminaries on the diffusion theory used in our analysis. Let pt(θ0, θt) denote the probability density
function describing the distribution of Θt, on starting from Θ0 = θ0 at time t = 0. For SDE (80), the associated Markov
semigroup P, is defined as a family of operators (Pt)t≥0, such that an operator Pt sends any real-valued measurable
function f : Rd → R to

Ptf(θ0) = E [f(Θt)|Θ0 = θ0] =

∫
f(θt)pt(θ0, θt)dθt. (81)

The infinitesimal generator G def
= lims→0

1
s [Pt+s − Ps] for this diffusion semigroup is

Gf = σ2∆f − 〈∇L,∇f〉 . (82)

This generator G, when applied on a function f(θt), gives the infinitesimal change in the value of a function f when θt
undergoes diffusion as per (80) for dt time. That is,

∂tPtf(θ0) =

∫
∂tpt(θ0, θt)f(θt)dθt =

∫
pt(θ0, θt)Gf(θt)dθt. (83)

The dual operator of G is the Fokker-Planck operator G∗, which is defined as the adjoint of generator G, in the sense that∫
fG∗gdθ =

∫
gGfdθ, (84)

for all real-valued measurable functions f, g : Rd → R. Note from (83) that, this operator provides an alternative way to
represent the rate of change of function f at time t:

∂tPtf(θ0) =

∫
f(θt)G∗pt(θ0, θt)dθt. (85)

To put it simply, Fokker-Planck operator gives the infinitesimal change in the distribution of Θt with respect to time. For
the Langevin diffusion SDE (80), the Fokker-Planck operator is the following:

∂tpt(θ) = G∗pt(θ) = div (pt(θ)∇L(θ)) + σ2∆pt(θ). (86)
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From this Fokker-Planck equation, one can verify that the stationary or invariant distribution π of Langevin diffusion,
which is the solution of ∂tpt = 0, follows the Gibbs distribution

π(θ) ∝ e−L(θ)/σ2

. (87)

Since π is the stationary distribution, note that for any measurable function f : Rd → R,

E
π

[Gf ] =

∫
fG∗πdθ = 0. (88)

G.2. Isoperimetric Inequalities and Their Properties

Convergence properties of various diffusion semigroups have been extensively analyzed in literature under certain isoperi-
metric assumptions on the stationary distribution π (Bakry et al., 2014). One such property of interest is the logarithmic
Sobolev (LS) inequality (Gross, 1975), which we define next.

The carré du champ operator Γ of a diffusion semigroup with invariant measure µ is defined using its infinitesimal generator
G as

Γ(f, g) =
1

2
[G(fg)− fGg − gGf ] , (89)

for every f, g ∈ L2(µ). Carré du champ operator represent fundamental properties of a Markov semigroup that affect its
convergence behaviour. One can verify that Langevin diffusion semigroup’s carré du champ operator (on differentiable
f, g) is

Γ(f, g) = σ2 〈∇f,∇g〉 . (90)

We use shorthand notation Γ(f) = Γ(f, f) = σ2 ‖∇f‖2.

Definition G.1 (Logarithmic Sobolev Inequality (see Bakry et al. (2014, p. 24))). A distribution with probability density
π is said to satisfy a logarithmic Sobolev inequality (LS(c)) (with respect to Γ in (90)) if for all functions f ∈ L2(µ) with
continuous derivatives∇f ,

Entπ(f2) ≤ 1

2c

∫
Γ(f2)

f2
πdθ =

2σ2

c

∫
‖∇f‖22 πdθ, (91)

where entropy Entπ is defined as

Entπ(f2) = E
π

[
f2 log f2

]
− E

π

[
f2
]

logE
π

[
f2
]
. (92)

Logarithmic Sobolev inequality is a very non-restrictive assumption and is satisfied by a large class of distributions. The
following well-known result show that Gaussians satisfy LS inequality.

Lemma G.1 (LS inequality of Gaussian distributions (see Bakry et al. (2014, p. 258))). Let ρ be a Gaussian distribution
on Rd with covariance σ2/λ (i.e., the Gibbs distribution (87) with L(·) being the L2 regularizer r(θ) = λ

2 ‖θ‖
2
2). Then ρ

satisfies LS(λ) tightly (with respect to Γ in (90)), i.e.

Entρ(f2) =
2σ2

λ

∫
‖∇f‖22 ρdθ. (93)

Additionally, if µ is a distribution on Rd that satisfy LS(c), then the convolution µ~ρ, defined as the distribution of Θ +Z

where Θ ∼ µ and Z ∼ π, satisfies LS inequality with constant
(

1
c + 1

λ

)−1
.

Bobkov (2007) show that like Gaussians, all strongly log concave distributions (or more generally, log-concave distribu-
tions with finite second order moments) satisfy LS inequality (e.g. Gibbs distribution π with any strongly convex L).
LS inequality is also satisfied under non-log-concavity too. For example, LS inequality is stable under Lipschitz maps,
although such maps can destroy log-concavity.

Lemma G.2 (LS inequality under Lipschitz maps (see Ledoux (2001))). If π is a distribution on Rd that satisfies LS(c),
then for any L-Lipschitz map T : Rd → Rd, the pushforward distribution T#π, representing the distribution of T (Θ) when
Θ ∼ π, satisfies LS(c/L2).
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LS inequality is also stable under bounded perturbations to the distribution, as shown in the following lemma by Holley &
Stroock (1986).

Lemma G.3 (LS inequality under bounded perturbations (see Holley & Stroock (1986))). If π is the probability density of a
distribution that satisfies LS(c), then any probability distribution with density π′ such that 1√

B
≤ π(θ)

π′(θ) ≤
√
B everywhere

in Rd for some constant B > 1 satisfies LS(c/B).

Logarithmic Sobolev inequality is of interest to us due to its equivalence to the following inequalities on Kullback-Leibler
and Rényi divergence.

Lemma G.4 (LS inequality in terms of KL divergence (Vempala & Wibisono, 2019)). The distribution π satisfies LS(c)
inequality (with respect to Γ in (90)) if and only if for all distributions µ on Rd such that µ

π
∈ L2(π) with continuous

derivatives∇µ
π

,

KL (µ‖π) ≤ σ2

2c
I (µ‖π) . (94)

Proof. Set f2 in (91) to µ
π

to obtain (94). Alternatively, set µ = f2π
E
π

[f2] in (94) to obtain (91).

Lemma G.5 (Wasserstein distance bound under LS inequality (Otto & Villani, 2000, Theorem 1)). If distribution π satisfies
LS(c) inequality (with respect to Γ in (90)) then for all distributions µ on Rd,

W2 (µ,π)
2 ≤ 2σ2

c
KL (µ‖π) . (95)

Lemma G.6 (LS inequality in terms of Rényi Divergence (Vempala & Wibisono, 2019)). The distribution π satisfies
LS(c) inequality (with respect to Γ in (90)) if and only if for all distributions µ on Rd such that µ

π
∈ L2(π) with continuous

derivatives∇µ
π

, and any q > 1,

Rq (µ‖π) + q(q − 1)∂qRq (µ‖π) ≤ q2σ2

2c

Iq (µ‖π)

Eq (µ‖π)
. (96)

Proof. For brevity, let the functions R(q) = Rq (µ‖π), E(q) = Eq (µ‖π), and I(q) = Iq (µ‖π). Let function

f2(θ) =
(

µ(θ)
π(θ)

)q
. Then,

E
π

[
f2
]

= E
π

[(µ
π

)q]
= E(q), (From (23))

and,

E
π

[
f2 log f2

]
= E

π

[(µ
π

)q
log
(µ
π

)q]
= q∂qE

π

[∫
q

(µ
π

)q
log
(µ
π

)
dq

]
= q∂qE

π

[(µ
π

)q]
= q∂qE(q).

(From Lebniz rule and (23))

Moreover,

E
π

[
‖∇f‖22

]
= E

π

[∥∥∥∥∇(µπ)
q
2

∥∥∥∥2

2

]
=
q2

4
I(q) (From (29))
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On substituting (91) with the above equalities, we get:

Entπ(f2) ≤ 2σ2

c
E
π

[
‖∇f‖22

]
⇐⇒ q∂qE(q)− E(q) logE(q) ≤ q2σ2

2c
I(q)

⇐⇒ q∂q logE(q)− logE(q) ≤ q2σ2

2c

I(q)

E(q)

⇐⇒ q∂q ((q − 1)R(q))− (q − 1)R(q) ≤ q2σ2

2c

I(q)

E(q)
(From (23))

⇐⇒ R(q) + q(q − 1)∂qR(q) ≤ q2σ2

2c

I(q)

E(q)

G.3. (Rényi) Differential Privacy Guarantees on Noisy-GD

In this section, we recap the differential privacy bounds in literature for Noisy-GD Algorithm 2.

Theorem G.7 (Rényi DP guarantee for Noisy-GD Algorithm 2). If `(θ;x) is L-Lipschitz, then Noisy-GD satisfies (q, ε)-
Rényi DP with ε = qL2

σ2n2 · ηK.

Proof. The L2 sensitivity of gradient ∇LD(θ)
def
= 1

n

∑
x∈D∇`(θ;x) + ∇r(θ) computed in step 2 of Algorithm 2 for

neighboring databases in Xn that differ in a single record is 2L
n since `(θ;x) is L-Lipschitz.

Conditioned on observing the intermediate model Θηk = θk at step k, the next model Θη(k+1) after the noisy gradient
update is a Gaussian mechanism with noise variance 2σ2/η. So, for neighboring databases D,D′ ∈ Xn, we have from the
Rényi DP bound of Gaussian mechanisms proposed by Mironov (2017, Proposition 7) that

Rq

(
Θη(k+1) |Θηk=θk

∥∥∥Θ′η(k+1) |Θ′ηk=θk

)
≤ ηqL2

n2σ2
, (97)

where (Θηk)0≤k≤K and (Θ′ηk)0≤k≤K are intermediate parameters in Algorithm 2 when run on databases D and D′ re-
spectively. Finally, from Rényi composition Mironov (2017, Proposition 1), we have

Rq

(
ΘηK

∥∥Θ′ηK
)
≤ Rq

(
(Θ0,Θη, · · · ,ΘηK)

∥∥(Θ′0,Θ
′
η, · · · ,Θ′ηK)

)
≤
K−1∑
k=0

Rq

(
Θη(k+1) |Θηk=θk

∥∥∥Θ′η(k+1) |Θ′ηk=θk

)
≤ qL2

n2σ2
· ηK.

Remark G.8. Different papers discussing Noisy-GD variants adopt different notational conventions for the total noise
added to the gradients. The noise variance in our Algorithm 2 is 2ησ2; but is η2σ2L2

n2 in the full-batch setting of DP-SGD
by Abadi et al. (2016). To translate the bound in Theorem G.7, one can simply rescale σ across different conventions to
have the same noise variance, i.e., 2ησ2 = η2σ̂2L2

n2 .

Our Theorem G.7 is somewhat identical to Abadi et al. (2016)’s (ε, δ)-DP bound. To verify this, note from Rényi divergence
to (ε, δ)-indistinguishability conversion in Theorem B.1 that (1 + 2

ε log 1
δ ,

ε
2 )-Rényi DP implies (ε, δ)-DP. So, setting the

bound in Theorem G.7 to be smaller than ε
2 and substituting q = 1 + 2

ε log 1
δ , we get

(
ε+ 2 log 1

δ

ε

)
L2

n2σ2
· ηK ≤ ε

2
⇐⇒

√
K(ε+ 2 log 1

δ )

ε
≤ σ̂.
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For ε ≤ 2 log 1
δ , we get the same noise bound as in Abadi et al. (2016, Theorem 1) for their (full-batch) DP-SGD algorithm.

Next, we recap the tighter Rényi DP guarantee of Chourasia et al. (2021) under stronger assumptions on the loss function.
Theorem G.9 (Rényi DP guarantee for Noisy-GD Algorithm 2 (Chourasia et al., 2021)). If `(θ;x) is convex, L-Lipschitz,
and β-smooth and r(θ) is the L2 regularizer with constant λ, then Noisy-GD with learning rate η < 1

β+λ satisfies (q, ε)-

Rényi DP with ε = 4qL2

λσ2n2

(
1− e−ληK/2

)
.

G.4. Proofs for Subsection 5.1

In this appendix, we provide a proof of our Theorem 5.1 which applies to convex losses `(θ;x) under L2 regularizer r(θ).
Let D0 ∈ Xn be any arbitrary database, and Q be any non-adaptive r-requester.

Our first goal in this section is to prove (q, εdd)-deletion-privacy guarantees on our proposed algorithm pair
(ANoisy-GD, ĀNoisy-GD) (in Definition 5.1) under Q. That is, if (Θ̂i)i≥0 is the sequence of models produced by the in-
teraction between (ANoisy-GD, ĀNoisy-GD,Q) on D0, we need to show that their exists a mapping πQi such that for all i ≥ 1
and any ui ∈ Ur,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ εdd for all 〈ind,y〉 ∈ ui. (98)

For an arbitrary replacement operation 〈ind,y〉 in ui, we define a map πQi (D0 ◦〈ind,y〉) = Θ̂′i, where the model sequence
(Θ̂′i)i≥0 is produced by the interaction of between the same algorithms (ANoisy-GD, ĀNoisy-GD,Q) but onD0◦〈ind,y〉. Since
non-adaptive requester Q is equivalent to fixing the edit sequence (ui)i≥1 a-priori, note that showing the deletion-privacy
guarantee reduces to proving the following Rényi DP bound

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥Ā(D′i−1, ui, Θ̂
′
i−1)

)
≤ εdd, (99)

for for all u≤i and for all neighbouring databases D0,D′0 s.t. D′0 = D0 ◦ 〈ind,y〉 with 〈ind,y〉 ∈ ui.

Note from our Definition 5.1 that the sequence of models (Θ̂0, · · · , Θ̂i) can be seen as being generated from a continuous
run of Noisy-GD, where:

1. for iterations 0 ≤ k < KA, the loss function is LD0 ,

2. for the iterations KA + (j − 1)KĀ ≤ k < KA + jKĀ on any 1 ≤ j ≤ i− 1, the loss function is LDj , and

3. for the iterations KA + (i− 1)KĀ ≤ k < KA + iKĀ, the loss function is LDi−1◦ui .

Let (Θηk)0≤k≤KA+iKĀ
be the sequence representing the intermediate parameters of this extended Noisy-GD run. Simi-

larly, let (Θ′ηk)k≥0 be the parameter sequence corresponding to the extended run on the neighbouring database D′0. Since
〈ind,y〉 ∈ ui, note from the construction that D′i−1 ◦ ui = Di−1 ◦ ui, meaning that the loss functions while processing
request ui is identical for the two processes, i.e. LDi−1◦ui = LD′i−1◦ui . For brevity, we refer to the database seen in itera-
tion k of the two respective extended runs as D(k) and D′(k) respectively. In short, these two discrete processes induced
by Noisy-GD follow the following update rule for any 0 ≤ k < KA + iKĀ:{

Θη(k+1) = Θηk − η∇LD(k)(Θηk) +
√

2ησ2Zk

Θ′η(k+1) = Θ′ηk − η∇LD′(k)(Θ
′
ηk) +

√
2ησ2Z′k,

where Zk,Z
′
k ∼ N (0, Id) , (100)

and Θ0 and Θ′0 are sampled from same the weight initialization distribution ρ. To prove the bound in (99), we follow the
approach proposed in Chourasia et al. (2021) of interpolating the two discrete stochastic process of Noisy-GD with two
piecewise-continuous tracing diffusions Θt and Θ′t in the duration ηk < t ≤ η(k + 1), defined as follows.{

Θt = Tk(Θηk)− (t−ηk)
2 ∇

(
LD(k)(Θηk)− LD′(k)(Θηk)

)
+
√

2σ2(Zt − Zηk),

Θ′t = Tk(Θ′ηk) + (t−ηk)
2 ∇

(
LD(k)(Θ

′
ηk)− LD′(k)(Θ

′
ηk)
)

+
√

2σ2(Z′t − Z′ηk),
(101)

where Zt,Z
′
t are two independent Weiner processes, and Tk is a map on Rd defined as

Tk = Id −
η

2
∇
(
LD(k) + LD′(k)

)
. (102)
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Note that equation (101) is identical to (100) when t = η(k + 1), and can be expressed by the following stochastic
differential equations (SDEs):{

dΘt = −gk(Θηk)dt+
√

2σ2dZt

dΘ′t = +gk(Θ′ηk)dt+
√

2σ2dZ′t,
where gk(Θ) =

1

2n
∇ [`(Θ;D(k)[ind])− `(Θ;D′(k)[ind])] , (103)

and initial condition limt→ηk+ Θt = Tk(Θηk), limt→ηk+ Θ′t = Tk(Θ′ηk). These two SDEs can be equivalently described
by the following pair of Fokker-Planck equations.

Lemma G.10 (Fokker-Planck equation for SDE (103)). Fokker-Planck equation for SDE in (103) at time ηk < t ≤
η(k + 1), is ∂tµt(θ) = div

(
µt(θ)E [gk(Θηk)|Θt = θ]

)
+ σ2∆µt(θ),

∂tµ
′
t(θ) = div

(
µ′t(θ)E

[
−gk(Θ′ηk)

∣∣∣Θ′t = θ
])

+ σ2∆µ′t(θ),
(104)

where µt and µ′t are the densities of Θt and Θ′t respectively.

Proof. Conditioned on observing parameter Θηk = θηk, the process (Θt)ηk<t≤η(k+1) is a Langevin diffusion along a
constant Vector field (i.e. on conditioning, we get a Langevin SDE (80) with∇L(θ) = gk(θηk) for all θ ∈ Rd). Therefore
as per (86), the conditional probability density µt|ηk(·|θηk) of Θt given Θηk follows the following Fokker-Planck equation:

∂tµt|ηk(·|θηk) = div
(
µt|ηk(·|θηk)gk(θηk)

)
+ σ2∆µt|ηk(·|θηk) (105)

Taking expectation over µηk which is the distribution of Θηk,

∂tµt(·) =

∫
µηk(θηk)

{
div
(
µt|ηk(·|θηk)gk(θηk)

)
+ σ2∆µt|ηk(·|θηk)

}
dθηk

= div

(∫
gk(θηk)µt,ηk(·, θηk)dθηk

)
+ σ2∆µt(·)

= div

(
µt(·)

{∫
gk(θηk)µηk|t(θηk|·)dθηk

})
+ σ2∆µt(·)

= div
(
µt(·)E [gk(Θηk)|Θt = ·]

)
+ σ2∆µt(·).

where µηk,|t is the conditional density of Θηk given Θt. Proof for second Fokker-Planck equation is similar.

We provide an overview of how we bound equation (99) in Figure 1. Basically, our analysis has two phases; in phase (I) we
provide a bound on Rq

(
Θ̂i−1

∥∥∥Θ̂′i−1

)
that holds for any choice of number of iterations KA and KĀ, and in phase (II) we

prove an exponential contraction in divergence Rq

(
Ā(Di−1, ui, Θ̂i−1

∥∥∥Ā(D′i−1, ui, Θ̂
′
i−1)

)
with number of iterations KĀ.

We first introduce a few lemmas that will be used in both phases. The first set of following lemmas show that the trans-
formation Θηk,Θ

′
ηk → Tk(Θηk), Tk(Θηk) preserves the Rényi divergence. To prove this property, we show that Tk is a

differentiable bijective map in Lemma G.12 and apply the following Lemma from Vempala & Wibisono (2019).

Lemma G.11 (Vempala & Wibisono (2019, Lemma 15)). If T : Rd → Rd is a differentiable bijective map, then for any
random variables Θ,Θ′ ∈ Rd, and for all q > 0,

Rq (T (Θ)‖T (Θ′)) = Rq (Θ‖Θ) . (106)

Lemma G.12. If `(θ;x) is a twice continuously differentiable, convex, and β-smooth loss function and regularizer is
r(θ) = λ

2 ‖θ‖
2
2, then the map Tk defined in (102) is:

1. a differentiable bijection for any η < 1
λ+β , and

2. (1− ηλ)-Lipschitz for any η ≤ 2
2λ+β .
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µηk

µ′ηk

Tk#µηk

Tk#µ′ηk

µ′η(k+1)

µ′∞

µη(k+1)

µ∞

(a)

(a)

(b)

(b)

Rk RkRk+1R∞ = qL2

λn2σ2

(I) Phase I: Processing requests u<i, i.e. 0 ≤ k <
KA + (i− 1)KĀ.

µηk Tk#µηk

µ′ηk Tk#µ′ηk

µ′η(k+1)

µη(k+1)

µ′∞

µ∞
R∞ = 0

(a)

(a)
(b)

(b)
Rk Rk Rk+1

(II) Phase II: Processing request ui, i.e. KA+(i−
1)KĀ ≤ k < KA + iKĀ.

Figure 1: Diagram illustrating the technical overview of Theorem G.15. Here µηk and µηk′ represent the kth itera-
tion parameter distribution of Θηk and Θ′ηk respectively. We interpolate the two discrete processes in two steps: (a)
an identical transformation Tk (as defined in (102), and (b) a diffusion process. If divergence before descent step is
Rk = Rq

(
µηk

∥∥∥µ′ηk), the stochastic mapping Tk in (a) doesn’t increase the divergence, while the diffusion (b) either
increases it upto an asymptotic constant in phase I or decreases it exponentially to 0 in phase II.

Proof. Differentiable bijection. To see that Tk is injective, assume Tk(θ) = Tk(θ′) for some θ, θ′ ∈ Rd. Then, by
(β + λ)-smoothness of L def

= (LD(k) + LD′(k))/2,

‖θ − θ′‖2 = ‖Tk(θ) + η∇L(θ)− Tk(θ′)− η∇L(θ′)‖2
= η ‖∇L(θ)−∇L(θ′)‖2
≤ η(λ+ β) ‖θ − θ′‖2 .

Since η < 1/(λ+ β), we must have ‖θ − θ′‖2 = 0. For showing Tk is surjective, consider the proximal mapping

proxL(θ) = arg min
θ′∈Rd

‖θ′ − θ‖22
2

− ηL(θ′). (107)

Note that proxL(·) is strongly convex for η < 1
λ+β . Therefore, from KKT conditions, we have θ = proxL(θ) −

η∇L(proxL(θ)) = Tk(proxL(θ)). Differentiability of Tk follows from the twice continuously differentiable assump-
tion on `(θ;x).

Lipschitzness. Let L def
= (LD(k) + LD′(k))/2. For any θ, θ′ ∈ Rd,

‖Tk(θ)− Tk(θ′)‖22 = ‖θ − η∇L(θ)− θ′ + η∇L(θ′)‖22
= ‖θ − θ′‖22 + η2 ‖∇L(θ)−∇L(θ′)‖22 − 2η 〈θ − θ′,∇L(θ)−∇L(θ′〉 .

We define a function g(θ) = L(θ) − λ
2 ‖θ‖

2
2, which is convex and β-smooth. By co-coercivity property of convex and

β-smooth functions, we have

〈θ − θ′,∇g(θ)−∇g(θ′)〉 ≥ 1

β
‖∇g(θ)−∇g(θ′)‖22

=⇒ 〈θ − θ′,∇L(θ)−∇L(θ′)〉 − λ ‖θ − θ′‖22 ≥
1

β

(
‖∇L(θ)−∇L(θ′)‖22 + λ2 ‖θ − θ′‖22

− 2λ 〈θ − θ′,∇L(θ)−∇L(θ′)〉
)

=⇒ 〈θ − θ′,∇L(θ)−∇L(θ′)〉 ≥ 1

2λ+ β
‖∇L(θ)−∇L(θ′)‖22 +

λ(λ+ β)

2λ+ β
‖θ − θ′‖22 .
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Substituting this in the above inequality, and noting that η ≤ 2
2λ+β , we get

‖Tk(θ)− Tk(θ′)‖22 ≤
(

1− 2ηλ(λ+ β)

2λ+ β

)
‖θ − θ′‖22 +

(
η2 − 2η

β + 2λ

)
‖∇L(θ)−∇L(θ′)‖22

≤
(

1− 2ηλ(λ+ β)

2λ+ β

)
‖θ − θ′‖22 +

(
η2λ2 − 2ηλ2

β + 2λ

)
‖θ − θ′‖22

= (1− ηλ)2 ‖θ − θ′‖22 .

The second set of lemmas presented below describe how Rq (Θt‖Θt) evolves with time in both phases I and II. Central to
our analysis is the following lemma which bounds the rate of change of Rényi divergence for any pair of diffusion process
characterized by their Fokker-Planck equations.

Lemma G.13 (Rate of change of Rényi divergence (Chourasia et al., 2021)). Let Vt, V ′t : Rd → Rd be two time dependent
vector field such that maxθ∈Rd ‖Vt(θ)− V ′t (θ)‖2 ≤ L for all θ ∈ Rd and t ≥ 0. For a diffusion process (Θt)t≥0 and
(Θ′t)t≥0 defined by the Fokker-Planck equations{

∂tµt(θ) = div (µt(θ)Vt(θ)) + σ2∆µt(θ) and
∂tµ
′
t(θ) = div (µ′t(θ)V

′
t (θ)) + σ2∆µ′t(θ),

(108)

respectively, where µt and µt are the densities of Θt and Θ′t, the rate of change of Rényi divergence between the two at
any t ≥ 0 is upper bounded as

∂tRq (µt‖µ′t) ≤
qL2

2σ2
− qσ2

2

Iq (µt‖µ′t)
Eq (µt‖µ′t)

. (109)

We will apply the above lemma to the Fokker-Planck equation (104) of our pair of tracing diffusion SDE (101) and solve
the resulting differential inequality to prove the bound in (99). To assist our proof, we rely on the following lemma showing
that our two tracing diffusion satisfy the LS inequality described in Definition G.1, which enables the use the inequality (96)
in Lemma G.6.

Lemma G.14. If loss `(θ;x) is convex and β-smooth, regularizer is r(θ) = λ
2 ‖θ‖

2
2, and learning rate η ≤ 2

2λ+β , then the

tracing diffusion (Θt)0≤t≤η(KA+iKĀ) and (Θ′t)0≤t≤η(KA+iKĀ) defined in (101) with Θ0,Θ
′
0 ∼ ρ = N

(
0, σ2

λ(1−ηλ/2) Id
)

satisfy LS inequality with constant λ(1− ηλ/2).

Proof. For any iteration 0 ≤ k < KA + iKĀ in the extended run of Noisy-GD, and any 0 ≤ s ≤ η, let’s define two
functions Ls,L′s : Rd → R as follows:

Ls =
1 + s/η

2
LD(k) +

1− s/η
2
LD′(k), and L′s =

1− s/η
2
LD(k) +

1 + s/η

2
LD′(k). (110)

Since r(·) is the L2(λ) regularizer and `(θ;x) is convex and β-smoothness, both Ls and L′s are λ-strongly convex and
(λ+ β)-smooth for all 0 ≤ s ≤ η and any k. We define maps Ts, T ′s : Rd → Rd as

Ts(θ) = θ − η∇Ls(θ), and T ′s(θ) = θ −∇L′s(θ). (111)

From a similar argument as in Lemma G.12, both Ts and T ′s are (1− ηλ)-Lipschitz for learning rate η ≤ 2
2λ+β .

Note that the densities of Θt and Θ′t of the tracing diffusion for t = ηk + s can be respectively expressed as

µt = Ts#(µηk) ~N
(
0, 2sσ2Id

)
, and µ′t = T ′s#(µ′ηk) ~N

(
0, 2sσ2Id

)
, (112)

where µηk and µ′ηk represent the distributions of Θηk and Θ′ηk. We prove the lemma via induction.

Base step: Since Θ0,Θ
′
0 are both Gaussian distributed with variance σ2

λ(1−ηλ/2) , from Lemma G.1 they satisfy LS inequal-
ity with constant λ(1− ηλ/2).

31



Forget Unlearning: Towards True Data-Deletion in Machine Learning

Induction step: Suppose µηk and µ′ηk satisfy LS inequality with constant λ(1 − ηλ/2). Since equation (112) shows that
µt,µ

′
t are both Gaussian convolution on a pushforward distribution of µηk,µ′ηk respectively over a Lipschitz function,

from Lemma G.1 and Lemma G.2, both µt,µ
′
t satisfy LS inequality with constant(

(1− ηλ)2

λ(1− ηλ/2)
+ 2s

)−1

≥ λ(1− ηλ/2)× [(1− ηλ)2 + λη(2− ηλ)]−1︸ ︷︷ ︸
=1

, (113)

for all ηk ≤ t ≤ η(k + 1).

We are now ready to prove the deletion-privacy bound in (99).

Theorem G.15 (Deletion-Privacy guarantee on (ANoisy-GD, ĀNoisy-GD) under convexity). Let the weight initialization dis-

tribution be ρ = N
(

0, σ2

λ(1−ηλ/2)

)
, the loss function `(θ;x) be convex, β-smooth, and L-Lipschitz, the regularizer be

r(θ) = λ
2 ‖θ‖

2
2, and learning rate be η < 1

λ+β . Then Algorithm pair (A, Ā) satisfies a (q, εdd)-deletion-privacy guarantee
under all non-adaptive r-requesters for any noise variance σ2 > 0 and KA ≥ 0 if

KĀ ≥
2

ηλ
log

(
4qL2

λεddσ2n2

)
. (114)

Proof. Following the preceding discussion, to prove this theorem, it suffices to show that the inequality (99) holds under
the stated conditions. Consider the Fokker-Planck equation described in Lemma G.10 for the pair of tracing diffusions
SDEs in (103): at any time t in duration ηk < t ≤ η(k + 1) for any iteration 0 ≤ k < KA + iKĀ,∂tµt(θ) = div

(
µt(θ)E [gk(Θηk)|Θt = θ]

)
+ σ2∆µt(θ),

∂tµ
′
t(θ) = div

(
µ′t(θ)E

[
−gk(Θ′ηk)

∣∣∣Θ′t = θ
])

+ σ2∆µ′t(θ),
(115)

where µt and µ′t are the distribution of Θt and Θ′t. Since `(θ;x) is L-Lipschitz and for any
KA + (i− 1)KĀ ≤ k < KA + iKĀ we have D(k)[ind] = D′(k)[ind], note from the definition of gk(θ) in (103) that

∥∥∥E [gk(Θηk)|Θt = θ]− E
[
−gk(Θ′ηk)

∣∣Θ′t = θ
]∥∥∥

2
≤

{
2L
n if k < KA + (i− 1)KĀ

0 otherwise
. (116)

Therefore, applying Lemma G.13 to the above pair of Fokker-Planck equations gives that for any t in duration ηk < t ≤
η(k + 1),

∂tRq (µt‖µ′t) ≤
2qL2

σ2n2
1 {t ≤ η(KA + (i− 1)KĀ)} − qσ2

2

Iq (µt‖µ′t)
Eq (µt‖µ′t)

. (117)

Equation (117) suggests a phase change in the dynamics at iteration k = KA + (i − 1)KĀ. In phase I, the divergence
bound increases with time due to the effect of the differing record in database pairs (Dj ,D′j)0≤j≤i−1. In phase II however,
the update request ui makes Di−1 ◦ ui = D′i−1 ◦ ui, and so doing gradient descent rapidly shrinks the divergence bound.
This phase change is illustrated in the Figure 1.

For brevity, we denote R(q, t) = Rq (µt‖µ′t). Since η < 1
λ+β <

2
2λ+β , from Lemma G.14, the distribution µ′t satisfies LS

inequality with constant λ(1− λη/2). So, we can apply Lemma G.6 to simplify the above partial differential inequality as
follows.

∂tR(q, t) + λ(1− λη/2)

(
R(q, t)

q
+ (q − 1)∂qR(q, t)

)
≤ 2qL2

σ2n2
1 {t ≤ η(KA + (i− 1)KĀ)} . (118)

For brevity, let constant c1 = λ(1− λη/2) and constant c2 = 2L2

σ2n2 . We define u(q, t) = R(q,t)
q . Then,

∂tR(q, t) + c1

(
R(q, t)

q
+ (q − 1)∂qR(q, t)

)
≤ c2q × 1 {t ≤ η(KA + (i− 1)KĀ)}

=⇒ ∂tu(q, t) + c1u(q, t) + c1(q − 1)∂qu(q, t) ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} .
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For some constant q̄ > 1, let q(s) = (q̄−1) exp [c1 {s− η(KA + iKĀ)}]+1 and t(s) = s. Note that dq(s)
ds = c1(q(s)−1)

and dt(s)
ds = 1. Therefore, for any ηk < s ≤ η(k + 1), the differential inequality followed along the path u(s) =

u(q(s), t(s)) is

du(s)

ds
+ c1u(s) ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} (119)

=⇒ d

ds
{ec1su(s)} ≤ c2 × 1 {t ≤ η(KA + (i− 1)KĀ)} . (120)

Since the map Tk(·) in (102) is a differentiable bijection for η < 1
λ+β as per Lemma G.12, note that Lemma G.11 implies

that lims→ηk+ u(s) = u(ηk). Therefore, we can directly integrate in the duration 0 ≤ t ≤ η(KA + iKĀ) to get

[ec1su(s)]
η(KA+iKĀ)
0 ≤

∫ η(KA+(i−1)KĀ)

0

c2e
c1sds

=⇒ ec1η(KA+iKĀ)u(η(Kp + iKu))− u(0) ≤ c2
c1

[ec1η(KA+(i−1)KĀ) − 1]

=⇒ u(η(KA + iKĀ)) ≤ c2
c1
e−c1ηKĀ . (Since u(0) = R(q(0), 0)/q(0) = 0.)

Noting that q(0) ≥ 1, on reverting the substitution, we get

Rq̄

(
µη(KA+iKĀ)

∥∥∥µ′η(KA+iKĀ)

)
≤ 2q̄L2

λσ2n2(1− ηλ/2)
exp (−ηλKĀ(1− ηλ/2))

≤ 4q̄L2

λσ2n2
exp

(
−ηλKu

2

)
(Since η < 1

λ+β )

Recall from our construction that µη(KA+iKĀ) and µ′η(KA+iKĀ) are the distributions of outputs Ā(Di−1, ui, Θ̂i−1) and

Ā(D′i−1, ui, Θ̂
′
i−1) respectively. Therefore, choosing KĀ as specified in the theorem statement concludes the proof.

Our next goal in this section is to provide utility guarantees for the algorithm pair (ANoisy-GD, ĀNoisy-GD) in form of excess
empirical risk bounds. For that, we introduce some additional auxiliary results first. The following Lemma G.16 shows
that excess empirical risks does not increase too much on replacing r records in a database, and Lemma G.17 provides a
convergence guarantee on the excess empirical risk of Noisy-GD algorithm under convexity.
Lemma G.16. Suppose the loss function `(θ;x) is convex, L-Lipschitz, and β-smooth, and the regularizer is r(θ) =
λ
2 ‖θ‖

2
2. Then, the excess empirical risk of any randomly distributed parameter Θ for any database D ∈ Xn after applying

any edit request u ∈ Ur that modifies no more than r records is bounded as

err(Θ;D ◦ u) ≤
(

1 +
β

λ

)[
2 err(Θ;D) +

16r2L2

λn2

]
. (121)

Proof. Let θ∗D and θ∗D◦u be the minimizers of objectives LD(·) and LD◦u(·) as defined in (14). From λ-strong convexity
of the LD,

LD(θ∗D◦u)− LD(θ∗D) ≥ λ

2
‖θ∗D◦u − θ∗D‖

2
2 . (122)

From optimality of θ∗D◦u and L-Lipschitzness of `(θ;x), we have

LD(θ∗D◦u) = LD◦u(θ∗D◦u) +
1

n

(∑
x∈D

`(θ∗D◦u;x)−
∑

x∈D◦u
`(θ∗D◦u;x)

)

≤ LD◦u(θ∗D) +
1

n

(∑
x∈D

`(θ∗D◦u;x)−
∑

x∈D◦u
`(θ∗D◦u;x)

)

= LD(θ∗D) +
1

n

∑
x∈D

(`(θ∗D◦u;x)− `(θ∗D;x)) +
1

n

∑
x∈D◦u

(`(θ∗D;x)− `(θ∗D◦u;x))

≤ LD(θ∗D) +
2rL

n
‖θ∗D◦u − θ∗D‖2 .
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Combining the two inequalities give

‖θ∗D◦u − θ∗D‖2 ≤
4rL

λn
. (123)

Therefore, from (λ+ β)-smoothness of LD◦u and λ-strong convexity of LD, we have

err(Θ;D ◦ u) = E [LD◦u(Θ)− LD◦u(θ∗D◦u)]

≤ λ+ β

2
E
[
‖Θ− θ∗D◦u‖

2
2

]
≤ (λ+ β)

[
E
[
‖Θ− θ∗D‖

2
2

]
+ ‖θ∗D − θ∗D◦u‖

2
2

]
≤
(

1 +
β

λ

)[
2E [LD(Θ)− LD(θ∗D)] +

16r2L2

λn2

]
.

Lemma G.17 (Accuracy of Noisy-GD). For convex, L-Lipschitz, and, β-smooth loss function `(θ;x) and regularizer
r(θ) = λ

2 ‖θ‖
2
2, if learning rate η < 1

λ+β , the excess empirical risk of ΘηK = Noisy-GD(D,Θ0,K) for any D ∈ Xn is
bounded as

err(ΘηK ;D) ≤ err(Θ0;D)e−ληK/2 +

(
1 +

β

λ

)
dσ2. (124)

Proof. Let Θηk denote the kth iteration parameter of Noisy-GD run. Recall that k + 1th noisy gradient update step is

Θη(k+1) = Θηk − η∇LD(Θηk) +
√

2ησ2Zk. (125)

From (β + λ)-smoothness of LD, we have

LD(Θη(k+1)) ≤ LD(Θηk) +
〈
∇LD(Θηk),Θη(k+1) −Θηk

〉
+
β + λ

2

∥∥Θη(k+1) −Θηk

∥∥2

2

= LD(Θηk)− η ‖∇LD(Θηk)‖22 +
√

2ησ2 〈∇LD(Θηk),Zk〉

+
η2(β + λ)

2
‖∇LD(Θηk)‖22 + ησ2(β + λ) ‖Zk‖22

− η
√

2ησ2(β + λ) 〈∇LD(Θηk),Zk〉

On taking expectation over the joint distribution of Θηk,Θη(k+1),Zk, the above simplifies to

E
[
LD(Θη(k+1))

]
≤ E [LD(Θηk)]− η

(
1− η(λ+ β)

2

)
E
[
‖∇LD(Θηk)‖22

]
+ ηdσ2(β + λ). (126)

Let θ∗D = arg min
θ∈Rd

LD(θ). From λ-strong convexity of LD, for any θ ∈ Rd, we have

‖∇LD(θ)‖22 ≥ 2λ(LD(θ)− LD(θ∗D)). (127)

Let γ = λη(2− η(λ+ β)). Plugging this in the above inequality, and subtracting LD(θ∗D) on both sides, for η < 1
λ+β , we

get

E
[
LD(Θη(k+1))− LD(θ∗D)

]
≤ (1− γ)E [LD(Θηk)− LD(θ∗D)] + ηdσ2(β + λ)

≤ (1− γ)k+1E [LD(Θ0)− LD(θ∗)] + ηdσ2(β + λ)(1 + · · ·+ (1− γ)k+1)

≤ e−γ(k+1)/2E [LD(Θ0)− LD(θ∗D)] +
ηdσ2(β + λ)

γ
.

For η < 1
λ+β , note that γ ≥ λη, and so

err(ΘηK ;D) ≤ err(Θ0;D)e−ληK/2 +

(
1 +

β

λ

)
dσ2. (128)
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Finally, we are ready to prove our main Theorem 5.1 showing that the algorithm pair (ANoisy-GD, ĀNoisy-GD) solves the data-
deletion problem as described in Section 4. We basically combine the Rényi DP guarantee in Theorem G.9, non-adaptive
deletion-privacy guarantee in Theorem G.15, and prove excess empirical risk bound using Lemma G.17 and Lemma G.16.

Theorem 5.1 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L > 0, constant q > 1, and
constants εdp ≥ εdd > 0. Define constant κ = λ+β

λ . Let the loss function `(θ;x) be twice differentiable, convex, L-
Lipschitz, and β-smooth, and let the regularizer be r(θ) = λ

2 ‖θ‖
2
2. If the learning rate is η = 1

2(λ+β) , the gradient noise

variance is σ2 = 4qL2

λεdpn2 , and the weight initialization distribution is ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)
, then

(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for any KA,KĀ ≥ 0,

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-deletion-privacy all non-adaptive r-requesters

if KĀ ≥ 4κ log
εdp

εdd
, (129)

(3.) and all models in sequence (Θ̂i)i≥0 produced by the interactions between (ANoisy-GD, ĀNoisy-GD) and Q on any

D0 ∈ Xn, where Q is any r-requester, have an excess empirical risk err(Θ̂i;Di) = O
(

qd
εdpn2

)
if KA ≥ 4κ log

(
εdpn

2

4qd

)
, and KĀ ≥ 4κ log max

{
5κ,

8εdpr
2

qd

}
. (130)

Proof. (1.) Privacy. By Theorem G.9, the Noisy-GD with K iterations will be (q, εdp)-Rényi DP for the stated choice
of loss function, regularizer, and learning rate as long as σ2 ≥ 4qL2

λεdpn2

(
1− e−ληK/2

)
. Therefore, if we set σ2 = 4qL2

λεdpn2 ,
Noisy-GD is (q, εdp)-Rényi DP for any K. For the same σ2, both ANoisy-GD and ĀNoisy-GD are also (q, εdp)-Rényi DP for
any KA and KĀ as they run Noisy-GD on respective databases for generating the output.

(2.) Deletion. By Theorem G.15, for the stated choice of loss function, regularizer, learning rate, and weight initialization
distribution, the algorithm pair (ANoisy-GD, ĀNoisy-GD) satisfies (q, εdd)-deletion-privacy under all non-adaptive r-requesters

Q if KĀ ≥ 2
ηλ log

(
4qL2

λεddσ2n2

)
. By plugging in σ2 = 4qL2

λεdpn2 and η = 1
2(λ+β) , this constraint simplifies to KĀ ≥

4κ log
εdp

εdd
.

(3.) Accuracy. We prove the induction hypothesis that under the conditions stated in the theorem, err(Θ̂i;Di) ≤ 10κqdL2

λεdpn2

for all i ≥ 0.

Base case: The minimizer θ∗D0
of LD0

satisfies

∇LD0
(θ∗D0

) =
1

n

∑
x∈D0

∇`(θ∗D0
;x)− λθ∗D0

= 0 =⇒
∥∥θ∗D0

∥∥
2
≤ L

λ
. (131)

As a result, the excess empirical risk of initialization weights Θ0 ∼ ρ = N
(

0, σ2

λ(1−ηλ/2)Id

)
on LD0 is bounded as

err(Θ0;D0) = E
[
LD0

(Θ0)− LD0
(θ∗D0

)
]

≤ (λ+ β)

2
E
[∥∥Θ0 − θ∗D0

∥∥2

2

]
(From (λ+ β)-smoothness of LD0

)

=
(λ+ β)

2

[∥∥θ∗D0

∥∥2

2
+ E

[
‖Θ0‖22

]
− 2E

[〈
θ∗D0

,Θ0

〉]]
≤
(

1 +
β

λ

)[
L2

2λ
+

σ2d

2− λη

]
(From (131) and E

[
‖Z‖22

]
= d if Z ∼ N (0, Id).)

≤ κ
[
L2

2λ
+ dσ2

]
.
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Since Θ̂0 = ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA), by Lemma G.17, running KA ≥ 2κ log
(
εdpn

2

4qd

)
iterations gives

err(Θ̂0;D0) ≤ err(Θ0;D0)e−ληKA/2 + κdσ2

≤ κ
[
L2

2λ
+ dσ2

]
e−ληKA/2 + κdσ2

≤ κL2

2λ
e−ληKA/2 +

8κqdL2

λεdpn2
(On substituting σ2 = 4qL2

λεdpn2 )

≤ 10κqdL2

λεdpn2
(Since KA ≥ 4κ log

(
εdpn

2

4qd

)
)

Induction step: Assume that err(Θ̂i−1;Di−1) ≤ 10κqdL2

λεdpn2 . Since Θ̂i = ĀNoisy-GD(Di−1, ui, Θ̂i−1) =

Noisy-GD(Di, Θ̂i−1,KĀ), by Lemma G.17 and Lemma G.16, running KĀ ≥ 2κ log max
{

5κ, 8r2

qd

}
iterations gives

err(Θ̂i;Di) ≤ κ
[
2err(Θ̂i−1;Di−1) +

16r2L2

λn2

]
e−ληKĀ/2 + κdσ2

≤ κ
[

20κqdL2

λεdpn2
+

16r2L2

λn2

]
e−ληKĀ/2 +

4κqdL2

λεdpn2
(Substituting σ2)

≤ 16κr2L2

λn2
e−ληKĀ/2 +

8κqdL2

λεdpn2
(Since KĀ ≥ 4κ log(5κ))

≤ 10κqdL2

λεdpn2
(Since KĀ ≥ 4κ log

8εdpr
2

qd )

G.5. Proofs for Subsection 5.2

In this Appendix, we provide a proof of our deletion-privacy and utility guarantee in Theorem 5.2 which applies to non-
convex but bounded losses `(θ;x) under L2 regularizer r(θ). Suppose D0 ∈ Xn is an arbitrary database, Q is any
non-adaptive r-requester, and (Θ̂i)i≥0 is the model sequence generated by the interaction of (ANoisy-GD, ĀNoisy-GD,Q). Our
first goal will be to prove (q, εdd)-deletion-privacy guarantee on (ANoisy-GD, ĀNoisy-GD) and we will later use it for arguing
utility as well. Recall from Definition 4.1 that to prove (q, εdd)-deletion-privacy, we need to construct a map πQi : Xn → O
such that for all i ≥ 1 and any ui ∈ Ur,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥πQi (D0 ◦ 〈ind,y〉)
)
≤ εdd for all 〈ind,y〉 ∈ ui. (132)

Our construction of πQi for this proof is completely different from the one described in Appendix G.4. As discussed in
Remark 4.2, since Q is non-adaptive, it suffices to show that there exists a map π : Xn → O such that for all i ≥ 1,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥π(Di)
)
≤ εdd, (133)

for all D0 ∈ Xn and all edit sequences (ui)i≥1 from Ur.

Our mapping of choice for the purpose is the Gibbs distribution with the following density:

π(D)(θ) ∝ e−LD(θ)/σ2

. (134)

The high-level intuition for this construction is that Noisy-GD can be interpreted as Unadjusted Langevin Algorithm
(ULA) (Roberts & Tweedie, 1996), which is a discretization of the Langevin diffusion (described in eqn. (80)) that even-
tually converges to this Gibbs distribution (see Appendix G.1 for a quick refresher). However, showing a convergence for
ULA (in indistinguishability notions like Rényi divergence) to this Gibbs distribution, especially in form of non-asymptotic
bounds on the mixing time and discretization error has been a long-standing open problem. Recent breakthrough results
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by Vempala & Wibisono (2019) followed by Chewi et al. (2021) resolved this problem with an elegant argument, relying
solely on isoperimetric assumptions over (134) that hold for non-convex losses. Our deletion-privacy argument leverages
this rapid convergence result to basically show that once Noisy-GD reaches near-indistinguishability to its Gibbs mix-
ing distribution, maintaining indistinguishability to subsequent Gibbs distribution corresponding to database edits require
much fewer Noisy-GD iterations than fresh retraining (i.e. data deletion is faster than retraining).

We start by presenting Chewi et al. (2021)’s convergence argument adapted to our Noisy-GD formulation, with a slightly
tighter analysis that results in a log(q) improvement in the discretization error over the original. Consider the discrete
stochastic process (Θηk)0≤k≤K induced by parameter update step in Noisy-GD algorithm when run for K iterations on a
database D with an arbitrary start distribution Θ0 ∼ µ0. We interpolate each discrete update from Θηk to Θη(k+1) via a
diffusion process Θt defined over time ηk ≤ t ≤ η(k + 1) as

Θt = Θηk − (t− ηk)∇LD(Θηk) +
√

2σ2(Zt − Zηk), (135)

where Zt is a Weiner process. Note that if Θηk models the parameter distribution after the kth update, then Θη(k+1) models
the parameter distribution after the k + 1th update. On repeating this construction for all k = 0, · · · ,K, we get a tracing
diffusion {Θt}t≥0 for Noisy-GD (which is different from (101)). We denote the distribution of random variable Θt with
µt. The tracing diffusion during the duration ηk ≤ t ≤ η(k+ 1) is characterized by the following Fokker-Planck equation.

Lemma G.18 (Proposition 14 (Chewi et al., 2021)). For tracing diffusion Θt defined in (135), the equivalent Fokker-Planck
equation in the interval ηk ≤ t ≤ η(k + 1) is

∂tµt(θ) = div

({
E [∇LD(Θηk)−∇LD(Θt)|Θt = θ] + σ2∇ log

µt(θ)

π(D)(θ)

}
µt(θ)

)
, (136)

where π(D) is the Gibbs distribution defined in (134).

Proof. Conditioned on observing parameter Θηk = θηk, the process (Θt)ηk≤t≤η(k+1) is a Langevin diffusion along a
constant Vector field ∇LD(θηk). Therefore, the conditional probability density µt|ηk(·|θηk) of Θt given θηk follows the
following Fokker-Planck equation.

∂tµt|ηk(·|θηk) = σ2∆µt|ηk(·|θηk) + div
(
µt|ηk(·|θηk)∇LD(θηk)

)
(137)

Taking expectation over Θηk, we have

∂tµt(·) =

∫
µηk(θηk)

{
σ2∆µt|ηk(·|θηk) + div

(
µt|ηk(·|θηk)∇LD(θηk)

)}
dθηk

= σ2∆µt(·) + div (µt(·)∇LD(·)) + div

(
µt(·)

∫
[∇LD(θηk)−∇LD(·)]µηk|t(θηk|·)dθηk

)
= σ2div

(
µt(·)∇ log

µt(·)
π(D)(·)

)
+ div

(
E [∇LD(Θηk)−∇LD(·)|Θt = ·]µt(·)

)
,

where µηk|t is the conditional density of Θηk given Θt. For the last equality, we have used the fact that ∇LD =
−σ2∇ logπ(D) from (134).

The following lemma provides a partial differential inequality that bounds the rate of change in Rényi divergence
Rq (µt‖π(D)) using Fokker-Planck equation (136) of Noisy GD’s tracing diffusion.

Lemma G.19 ((Chewi et al., 2021, Proposition 15)). Let ρt := µt/π(D) where π(D) is the Gibbs distribution defined
in (134) and ψt := ρq−1

t /Eq (ρt‖π(D)). The rate of change in Rq (µt‖π(D)) along racing diffusion in time ηk ≤ t ≤
η(k + 1) is bounded as

∂tRq (µt‖π(D)) ≤ −3qσ2

4

Iq (µt‖π(D))

Eq (µt‖π(D))
+

q

σ2
E
[
ψt(Θt) ‖∇LD(Θηk)−∇LD(Θt)‖22

]
. (138)
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Proof. For brevity, let ∆t(·) = E [∇LD(Θηk)−∇LD(Θt)|Θt = ·] in context of this proof. From Lebinz integral rule, we
have

∂tRq (µt‖π(D)) =
q

(q − 1)Eq (µt‖π(D))

∫ (
µt

π(D)

)q−1

∂tµtdθ

=
q

(q − 1)Eq (µt‖π(D))

∫
ρq−1
t div

({
∆t + σ2∇ log ρt

}
µt
)

dθ (From (136))

= − q

(q − 1)Eq (µt‖π(D))

∫ 〈
∇
(
ρq−1
t

)
,∆t + σ2∇ log ρt

〉
µtdθ

= − q

Eq (µt‖π(D))

∫
ρq−2
t

〈
∇ρt,∆t + σ2∇ρt

ρt

〉
µtdθ

= − q

Eq (µt‖π(D))

σ
2Iq (µt‖π(D)) +

2

q
E
µt

[
ρ
q/2−1
t

〈
∇
(
ρ
q/2
t

)
,∆t

〉]
︸ ︷︷ ︸

def
=F1

 (From (29))

Note that the expectation in ∆t(·) is over the conditional distribution µηk|t while the expectation in F1 is over µt. Therefore,
we can combine the two to get an expectation over the unconditional joint distribution over Θt and Θηk as follows.

−F1 = E
Θt∼µt

[
ρ
q/2−1
t (Θt)

〈
∇
(
ρ
q/2
t

)
(Θt), E

Θηk∼µηk|t
[∇LD(Θt)−∇LD(Θηk)]

〉]
= E

µηk,t

[
ρ
q/2−1
t (Θt)

〈
∇
(
ρ
q/2
t

)
(Θt),∇LD(Θt)−∇LD(Θηk)

〉]
≤ σ2

2q
E
[
ρ−1
t (Θt)

∥∥∥∇(ρq/2t

)
(Θt)

∥∥∥2

2

]
+

q

2σ2
E
[
ρq−1
t (Θt) ‖∇LD(Θt)−∇LBk(Θηk)‖22

]
=
qσ2

8
Iq (ρt‖µ) +

q

2σ2
E
[
ρq−1
t (Θt) ‖∇LD(Θt)−∇LBk(Θηk)‖22

]
(From (29))

Substituting it in the preceding inequality proves the proposition.

We need to solve the PDI (138) to get a convergence bound for Noisy-GD. To help in that, we first introduce the change of
measure inequalities shown in Chewi et al. (2021).

Lemma G.20 (Change of measure inequality (Chewi et al., 2021)). If `(θ;x) is β-smooth, and regularizer is r(θ) =
λ
2 ‖θ‖

2
2, then for any probability density µ on Rd,

E
µ

[
‖∇LD‖22

]
≤ 4σ4 E

π(D)

[∥∥∥∥∇√ µ

π(D)

∥∥∥∥2

2

]
+ 2dσ2(β + λ), (139)

where π(D) is the Gibbs distribution defined in (134).

Proof. Consider the Langevin diffusion (80) described in Appendix G.1 over the potential LD. The Gibbs distribution
π(D) is its stationary distribution, and the diffusion’s infinitesimal generator G applied on the LD gives

GLD = σ2∆LD − ‖∇LD‖22 . (140)
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Therefore,

E
µ

[
‖∇LD‖22

]
= σ2E

µ
[∆LD]− E

µ
[GLD] (From (140))

≤ dσ2(β + λ)−
∫
GLD

(
µ

π(D)
− 1

)
π(D)dθ (From β-smoothness and (88))

= dβσ2(β + λ) +

∫ [
‖∇LD‖22 − σ

2∆LD
]( µ

π(D)
− 1

)
π(D)dθ

= dβσ2(β + λ) +

∫
‖∇LD‖22 (µ− π(D))dθ

+ σ2

∫ 〈
∇LD,∇

[(
µ

π(D)
− 1

)
π(D)

]〉
dθ (From (66))

= dβσ2(β + λ) +

∫
‖∇LD‖22 (µ− π(D))dθ + σ2

∫ 〈
∇LD,−

∇LD
σ2

〉
(µ− π(D))dθ

+ σ2

∫ 〈
∇LD,∇

µ

π(D)

〉
π(D)dθ (Since ∇π(D) = −∇LDσ2 π(D))

= dβσ2(β + λ) + 0 + 2σ2

∫ 〈√
µ

π(D)
∇LD,∇

√
µ

π(D)

〉
π(D)dθ

≤ dβσ2(β + λ) +
1

2
E
µ

[
‖∇LD‖22

]
+ 2σ4 E

π(D)

[∥∥∥∥∇√ µ

π(D)

∥∥∥∥2

2

]
(From (67) with a = 2σ2)

Another change in measure inequality needed for the proof is the Donsker-Varadhan variational principle.

Lemma G.21 (Donsker-Varadhan Variational principle (Donsker & Varadhan, 1983)). If ν and ν′ are two distributions on
Rd such that ν� ν′, then for all functions f : Rd → R,

E
Θ∼ν

[f(Θ)] ≤ KL (ν‖ν′) + log E
Θ′∼ν′

[exp(f(Θ′))] . (141)

We are now ready to prove the rate of convergence guarantee for Noisy-GD following Chewi et al. (2021)’s method,
but with a more refined analysis that leads to a improvement of log q factor in the discretization error (compared to the
original (Chewi et al., 2021, Theorem 4)).

Theorem G.22 (Convergence of Noisy-GD in Rényi divergence). Let constants β, λ, σ2 > 0 and q,B > 1. Suppose
the loss function `(θ;x) is (σ2 log(B)/4)-bounded and β-smooth, and regularizer is r(θ) = λ

2 ‖θ‖
2
2. If step size is

η ≤ λ
64Bq2(β+λ)2 , then for any databaseD ∈ Xn and any weight initialization distribution µ0 for Θ0, the Rényi divergence

of distribution µηK of output model ΘηK = Noisy-GD(D,Θ0,K) with respect to the Gibbs distribution π(D) defined in
(134) shrinks as follows:

Rq (µηK‖π(D)) ≤ q exp

(
−ληK

2B

)
Rq (µ0‖π(D)) +

32dηqB(β + λ)2

λ
. (142)

Proof. From (β + λ)-smoothness of loss LD we have that for any ηk ≤ t ≤ η(k + 1),

‖∇LD(Θηk)−∇LD(Θt)‖22 ≤ (β + λ)2 ‖Θηk −Θt‖22

= (β + λ)2
∥∥∥(t− ηk)∇LD(Θηk)−

√
2(t− ηk)σ2Zk

∥∥∥2

2
(From (135))

≤ 2η2(β + λ)2 ‖∇LD(Θηk)‖22 + 4ησ2(β + λ)2 ‖Zk‖22
≤ 4η2(β + λ)2 ‖∇LD(Θηk)−∇LD(Θt)‖22

+ 4η2(β + λ)2 ‖∇LD(Θt)‖22 + 4ησ2(β + λ)2 ‖Zk‖22
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Let ρt := µt
π(D) and ψt := ρq−1

t /Eq (ρt‖π(D)). If η ≤ 1
2
√

2(β+λ)
, we rearrange to get the following and use it to get the

following bound on the discretization error in (138):

E
[
ψt(Θt) ‖∇LBk(Θηk)−∇LD(Θt)‖22

]
≤ 8η2(β + λ)2 E

[
ψt(Θt) ‖∇LD(Θt)‖22

]
︸ ︷︷ ︸

def
=F1

+ 32ησ2(β + λ)2 E
[
ψt(Θt) ‖Zk‖22 /4

]
︸ ︷︷ ︸

def
=F2

.

Hence, for solving the PDI (138), we have to bound the three expectations F1 and F2.

1. Bounding F1. Note that E
Θt∼µt

[ψt(Θt)] =
∫
ψt(θ)µt(θ)dθ = 1

Eq(ρt‖π(D))

∫ µ
q
t

π(D)q−1 dθ = 1. So, ψtµt(θ) :=

ψt(θ)µt(θ) is a probability density function on Rd. On applying the measure change Lemma G.20 on it, we get

F1 = E
ψtµt

[
‖∇LD‖22

]
≤ 4σ4 E

π(D)

∥∥∥∥∥∇
√
ψtµt
π(D)

∥∥∥∥∥
2

2

+ 2dσ2(β + λ) (From (139))

= 4σ4 E
π(D)


∥∥∥∇√ρqt

∥∥∥2

2

Eq (µt‖π(D))

+ 2dσ2(β + λ)

= σ4q2 Iq (µt‖π(D))

Eq (µt‖π(D))
+ 2dσ2(β + λ). (From (29))

2. Bounding F2. Since ψtµt is a valid density on Rd, the joint density ψtµt,z(θ, z) := ψt(θ)µt,z(θ, z) where µt,z is the
joint density of Θt and Zk is also a valid density. Note that the F2 is an expectation on ‖Zk‖22 taken over the joint
density ψtµt,z . We can perform a measure change operation using Donsker-Varadhan principle to get

F2 = E
ψtµt,z

[
‖Zk‖22 /4

]
≤ KL (ψtµt,z‖µt,z) + log E

µz

[
exp(‖Zk‖22 /4)

]
,

where we simplified the second term using the fact that the marginal µz of µt,z is a standard normal Gaussian. The
random variable ‖Zk‖22 is distributed according to the Chi-squared distribution χ2

d with d degrees of freedom. Since
the moment generating function of Chi-squared distribution is Mχ2

d
(t) = E

X∼χ2
d

[exp(tX)] = (1− 2t)−d/2 for t < 1
2 ,

we can simplify the second term in F2 as

log E
µz

[
exp(‖Zk‖22 /4)

]
= log Mχ2

d

(
1

4

)
=
d log 2

2
. (143)

The KL divergence term can be simplified as follows.

KL (ψtµt,z‖µt,z) =

∫ ∫
ψtµt,z(θt, z) logψt(θt)dθtdz

=

∫
ψtµt log

ρq−1
t

Eq (µt‖π(D))
dθt (On marginalization of z)

=
q − 1

q

∫
µtψt log

{
ρqt

Eq (µt‖π(D))
− log Eq (µt‖π(D))

1/(q−1)

}
dθt

=
q − 1

q
{KL (µtψt‖π(D))− Rq (µt‖π(D))}

≤ KL (µtψt‖π(D)) (Since Rq (µt‖π(D)) > 0)
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Note that under the assumptions of the Theorem, π(D) satisfies log-Sobolev inequality (91) with constant λ/B (i.e.
satisfies LS(λ/B)). To see this, recall from Lemma G.1 that the Gaussian distribution ρ(θ) = N

(
0, σ

2

λ Id
)

satisfies

LS(λ) inequality. Since loss `(θ;x) is (σ2 log(B)/4)-bounded, the density ratio π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]
. The claim

therefore follows from Lemma G.3. Using this inequality, from Lemma G.4 we have

KL (µtψt‖π(D)) ≤ σ2B

2λ

∫
µtψt

∥∥∥∥∇ log

(
µtψt
π(D)

)∥∥∥∥2

2

dθt

=
σ2B

2λ

∫
ρqt

Eq (µt‖π(D))
‖∇ log(ρqt )‖

2
2 π(D)dθt

=
2σ2B

λ

1

Eq (µt‖π(D))

∫ ∥∥∥∇(ρ
q/2
t )

∥∥∥2

2
π(D)dθt

=
q2σ2B

2λ

Iq (µt‖π(D))

Eq (µt‖π(D))

On combining all the two bounds on F1 and F2 and rearranging, we have

E
[
ψt(Θt) ‖∇LD(Θηk)−∇LD(Θt)‖22

]
≤ 8ηq2σ4(β + λ)2 Iq (µt‖π(D))

Eq (µt‖π(D))

(
η +

2B

λ

)
+ 16ηdσ2(β + λ)2 (η(β + λ) + log 2)

Let step size be η ≤ min
{

2B
λ ,

λ
64Bq2(β+λ)2

}
. Then, the first term above is bounded as

8ηq2σ4(β + λ)2 Iq (µt‖π(D))

Eq (µt‖π(D))

(
η +

2B

λ

)
≤ σ4

2

Iq (µt‖π(D))

Eq (µt‖π(D))
. (144)

Let η ≤ 1
4(β+λ) . Then, in the third term, (η(β + λ) + log 2) ≤ 1. Plugging the bound on discretization error back in the

PDI (138), we get

∂tRq (µt‖π(D)) ≤ −qσ
2

4

Iq (µt‖π(D))

Eq (µt‖π(D))
+ 16ηdq(β + λ)2. (145)

Since π(D) satisfies LS(λ/B) inequality, from Lemma G.6 this PDI reduces to

∂tRq (µt‖π(D)) +
λ

2B

(
Rq (µt‖π(D))

q
+ (q − 1)∂qRq (µt‖π(D))

)
≤ 16dηq(β + λ)2. (146)

Let c1 = λ
2B and c2 = 16dη(β + λ)2. Additionally, let u(q, t) =

Rq(µt‖π(D))
q . Then,

∂tRq (µt‖π(D)) + c1

(
Rq (µt‖π(D))

q
+ (q − 1)∂qRq (µt‖π(D))

)
≤ c2q

=⇒ ∂tRq (µt‖π(D))

q
+ c1

Rq (µt‖π(D))

q
+ c1(q − 1)

(
∂qRq (µt‖π(D))

q
− Rq (µt‖π(D))

q2

)
≤ c2

=⇒ ∂tu(q, t) + c1u(q, t) + c1(q − 1)∂qu(q, t) ≤ c2.

For some constant q̄ ≥ 1, let q(s) = (q̄ − 1) exp(c1(s− ηK)) + 1, and t(s) = s. Note that dq(s)
ds = c1(q(s) − 1) and

dt(s)
ds = 1. Therefore, for any 0 ≤ t ≤ ηK, the PDI above implies the following differential inequality is followed along

the path u(s) = u(q(s), t(s)).

du(s)

ds
+ c1u(s) ≤ c2 =⇒ d

ds
{ec1su(s)} ≤ c2ec1s

=⇒ [ec1su(s)]ηK0 ≤
∫ ηK

0

c2e
c1sds

=⇒ ec1ηKu(ηK)− u(0) ≤ c2(ec1ηK − 1)

c1

=⇒ u(ηK) ≤ e−c1ηKu(0) +
c2
c1

(1− e−c1ηK).
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On reversing the parameterization of q and t, we get

Rq(ηK) (µηK‖π(D)) ≤ q(ηK)

q(0)
e−c1ηKRq(0) (µ0‖π(D)) +

c2
c1
q(ηK)

≤ q(ηK)

q(0)
exp

(
−ληK

2B

)
Rq(0) (µ0‖π(D)) +

32dηB(β + λ)2

λ
q(ηK).

Since q(0) > 1 and q̄ = q(ηK) > q(0), from monotonicity of Rényi divergence in q, we get

Rq̄ (µηK‖π(D)) ≤ q̄ exp

(
−ληK

2B

)
Rq̄ (µ0‖π(D)) +

32dηq̄B(β + λ)2

λ
. (147)

Finally, noting that for constants B, q > 1 and β, λ > 0,

η ≤ min{ 1

2
√

2(β + λ)
,

1

4(β + λ)
,

2B

λ
,

λ

64Bq2(β + λ)2
} =

λ

64Bq2(β + λ)2
, (148)

completes the proof.

We will use Theorem G.22 for proving the deletion-privacy and utility guarantee on the pair (ANoisy-GD, ĀNoisy-GD). We
need the following result that shows that Gibbs distributions enjoy strong indistinguishability on bounded perturbations
to its potential function (which is basically why the exponential mechanism satisfies (ε, 0)-DP (Wang et al., 2015; Dwork
et al., 2014)).

Lemma G.23 (Indistinguishability under bounded perturbations). For two potential functions L,L′ : Rd → R and some
constant σ2, let ν ∝ e−L/σ2

and ν′ ∝ e−L′/σ2

be the respective Gibbs distributions. If |L(θ)−L′(θ)| ≤ c for all θ ∈ Rd,
then Rq (ν‖ν′) ≤ 2c

σ2 for all q > 1.

Proof. The Gibbs distributions ν,ν′ have a density

ν(θ) =
1

Λ
e−L(θ)/σ2

, and ν′(θ) =
1

Λ′
e−L

′(θ)/σ2

,

where Λ,Λ′ are the respective normalization constants. If for all θ ∈ Rd, the potential difference |L(θ)−L′(θ)| ≤ c, then

Rq (ν‖ν′) =
1

q − 1
log

∫
νq

ν′q−1
dθ

=
1

q − 1
log

∫ (
Λ′

Λ

)q−1

exp

(
q − 1

σ2
(L′(θ)− L(θ))

)
× ν(θ)dθ

≤ 1

q − 1

{
(q − 1) log

Λ′

Λ
+ log exp

(
c(q − 1)

σ2

∫
νdθ

)}

=
1

q − 1

(q − 1) log

∫
exp

(
−L(θ)

σ2 + L(θ)−L′(θ)
σ2

)
dθ∫

exp
(
−L(θ)

σ2

)
dθ

+
c(q − 1)

σ2


≤ 2c

σ2
.

In Theorem 5.2, we show that (ANoisy-GD, ĀNoisy-GD) solves the data-deletion problem described in Section 4 even for
non-convex losses. Our proof uses the convergence Theorem G.22 and indistinguishability for bounded perturbation
Lemma G.23 to show that the unlearning algorithm ĀNoisy-GD can consistently produce models indistinguishable to the
corresponding Gibbs distribution (134) in the online setting at a fraction of computation cost of ANoisy-GD. As discussed
in Remark 4.2, such an indistinguishability is sufficient for ensuring deletion-privacy for non-adaptive requests. As for
adaptive requests, the well-known Rényi DP guarantee of Abadi et al. (2016) combined with our reduction Theorem 4.3
offers a deletion-privacy guarantee for (ANoisy-GD, ĀNoisy-GD) under adaptivity.

42



Forget Unlearning: Towards True Data-Deletion in Machine Learning

Our proof of accuracy for the unlearned models leverages the fact that Gibbs distribution (134) is an almost excess risk min-
imizer as shown in the following Theorem G.24. Since our deletion-privacy guarantee is based on near-indistinguishability
to (134), this property also ensures near-optimal excess risk of unlearned models.
Theorem G.24 (Near optimality of Gibbs sampling). If the loss function `(θ;x) is σ2 log(B)/4-bounded and β-smooth,
the regularizer is r(θ) = λ

2 ‖θ‖
2
2, then the excess empirical risk for a model Θ̄ sampled from the Gibbs distribution

π(D) ∝ e−LD/σ2

is

err(Θ̄;D) = E
[
LD(Θ̄)− LD(θ∗D)

]
≤ dσ2

2

(
log

β + λ

λ
+
√
B

)
. (149)

Proof. We simplify expected loss as

E
[
LD(Θ̄)

]
=

∫
LDπ(D)dθ = σ2(H(π(D))− log(ΛD)), (150)

where

H(π(D)) = −
∫

π(D) logπ(D)dθ = −
∫
e−LD/σ

2

ΛD
log

e−LD/σ
2

ΛD
dθ (151)

is the differential entropy of π(D), and ΛD =
∫
e−LD/σ

2

dθ is the normalization constant. Since the potential function LD
is (λ+ β)-smooth, we have

−σ2 log(ΛD) = −σ2 log

∫
e−LD/σ

2

dθ

= LD(θ∗D)− σ2 log

∫
e(LD(θ∗D)−LD(θ))/σ2

dθ

≤ LD(θ∗D)− σ2 log

∫
e−(β+λ)‖θ−θ∗D‖

2
2
/2σ2

dθ

= LD(θ∗D)− dσ2

2
log

(
2πσ2

λ+ β

)
.

Since `(θ;x) is σ2 log(B)/4-bounded, note that for the Gaussian distribution ρ ∼ N
(

0, σ
2

λ Id
)

, the density ratio lies in
π(D)(θ)
ρ(θ) ∈

[
1√
B
,
√
B
]

for all θ ∈ Rd. We decompose entropy H(π(D)) into cross-entropy and KL divergence to get

H(π(D)) = −
∫

π(D) log ρdθ −KL (π(D)‖ρ)

≤ −
∫

π(D) log

[(
λ

2πσ2

)d/2
e−

λ‖θ‖22
2σ2

]
dθ (Since KL (π(D)‖ρ) ≥ 0)

=
d

2
log

2πσ2

λ
+

λ

2σ2

∫
‖θ‖22 π(D)(θ)dθ

≤ d

2
log

2πσ2

λ
+
λ
√
B

2σ2

∫
‖θ‖22 ρ(θ)dθ (Since π(D)(θ)

ρ(θ) ∈
[

1√
B
,
√
B
]
)

=
d

2
log

2πσ2

λ
+
d
√
B

2
.

On combining the bounds, we get

err(Θ̄;D) = E
[
LD(Θ̄)− LD(θ∗D)

]
≤ dσ2

2

(
log

β + λ

λ
+
√
B

)
. (152)

Theorem 5.2 (Accuracy, privacy, deletion, and computation tradeoffs). Let constants λ, β, L, σ2, η > 0, constants q,B >

1, and constants d > εdp ≥ εdd > 0. Let the loss function `(θ;x) be σ2 log(B)
4 -bounded, L-Lipschitz and β-smooth, the

regularizer be r(θ) = λ
2 ‖θ‖

2
2, and the weight initialization distribution be ρ = N

(
0, σ

2

λ Id
)

. Then,
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(1.) both ANoisy-GD and ĀNoisy-GD are (q, εdp)-Rényi DP for any η ≥ 0 and any KA,KĀ ≥ 0 if

σ2 ≥ qL2

εdpn2
· ηmax{KA,KĀ}, (153)

(2.) pair (ANoisy-GD, ĀNoisy-GD) satisfy (q, εdd)-deletion-privacy under all non-adaptive r-requesters for any σ2 > 0, if
learning rate is η ≤ λεdd

64dqB(β+λ)2 and number of iterations satisfy

KA ≥
2B

λη
log

(
q log(B)

εdd

)
, KĀ ≥ KA −

2B

λη
log

(
log(B)

2
(
εdd + r

n log(B)
)) , (154)

(3.) and all models in the sequence (Θ̂i)i≥0 produced by interactions between (ANoisy-GD, ĀNoisy-GD) and Q on any D0 ∈

Xn, whereQ is an r-requester, have an excess empirical risk err(Θ̂i;Di) = Õ

(
dq

εdpn2 + 1
n

√
qεdd

εdp

)
when inequalities

in (154) and (153) are equalities.

Proof. (1.) Privacy. By Theorem G.7, Noisy-GD withK iterations on an L-Lipschitz loss function satisfies (q, εdp)-Rényi
DP for any initial weight distribution ρ and learning rate η ≥ 0 if σ2 = qL2

εdpn2 · ηK. Since, both ANoisy-GD and ĀNoisy-GD

run Noisy-GD for KA and KĀ iterations respectively, setting the noise variance given in the Theorem statement ensures
(q, εdp)-Rényi DP for both.

(2.) Deletion. For showing deletion-privacy under non-adaptive requests, recall that it is sufficient to show that there exists
a map π : Xn → O such that for all i ≥ 1,

Rq

(
Ā(Di−1, ui, Θ̂i−1)

∥∥∥π(Di)
)
≤ εdd, (155)

for all edit sequences (ui)i≥1 from Ur, where (Θ̂i)i≥0 is the sequence of models generated by the interaction of
(ANoisy-GD, ĀNoisy-GD,Q) on any database D0 ∈ Xn. For all i ≥ 0, let µ̂i denote the distribution of Θ̂i. We prove (155) via
induction.

Base step: Note that the initial weight distribution ρ = N
(

0, σ
2

λ Id
)

has a density proportional to e−r(θ)/σ2

and the

distribution π(D0) has a density proportional to e−LD0
(θ)/σ2

. Since both of these are Gibbs distributions with their potential
difference |LD0

(θ) − r(θ)| ≤ σ2 log(B)/4 for all θ ∈ Rd due to boundedness assumption on `(θ;x), we have from
Lemma G.23 that

Rq (ρ‖π(D0)) ≤ 2

σ2
× σ2 log(B)

4
=

log(B)

2
. (156)

Under the stated assumptions on loss `(θ;x) and learning rate η, note that the convergence Theorem G.22 holds. Since
Θ̂0 = ANoisy-GD(D0) = Noisy-GD(D0,Θ0,KA), where Θ0 ∼ ρ, we have

Rq (µ̂0‖π(D0)) ≤ q exp

(
−ληKA

2B

)
Rq (ρ‖π(D0)) +

32dηqB(β + λ)2

λ

≤ q exp

(
−ληKA

2B

)(
log(B)

2

)
+
εdd

2
(Since η ≤ λεdd

64dqB(β+λ)2 )

≤ εdd (Since KA ≥ 2B
λη log

(
q log(B)
εdd

)
)

Induction step: Suppose Rq (µ̂i−1‖π(Di−1)) ≤ εdd. Again, from boundedness of `(θ;x), we have
|LDi−1

(θ)− LDi(θ)| ≤
rσ2 logB

2n for all θ ∈ Rd. Therefore, from Lemma G.23 we have for all q > 1 that

Rq (π(Di−1)‖π(Di)) ≤
r log(B)

n
. (157)

So from the weak triangle inequality Theorem B.4 of Rényi divergence,

Rq (µ̂i−1‖π(Di)) ≤ Rq (µ̂i−1‖π(Di−1)) + R∞ (π(Di−1)‖π(Di)) ≤ εdd +
r log(B)

n
. (158)
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Note that KĀ ≥ KA − 2B
λη log

(
log(B)

2(εdd+ r
n log(B))

)
≥ 2B

λη log

(
2q(εdd+ r

n log(B))
εdd

)
. Since Θ̂i =

ĀNoisy-GD(Di−1, ui, Θ̂i−1) = Noisy-GD(Di, Θ̂i−1,KĀ), convergence Theorem G.22 gives

Rq (µ̂i‖π(Di)) ≤ q exp

(
−ληKĀ

2B

)
Rq (µ̂i−1‖π(Di)) +

32dηqB(β + λ)2

λ

≤ q exp

(
−ληKĀ

2B

)(
εdd +

r log(B)

n

)
+
εdd

2
(From (158) and constraint η ≤ λεdd

64dqB(β+λ)2 )

≤ εdd. (Since KĀ ≥ 2B
λη log

(
2q(εdd+ r

n log(B))
εdd

)
)

Hence, by induction, Rq (µ̂i‖π(Di)) ≤ εdd holds for all i ≥ 0.

(3.) Accuracy. Let θ∗Di = arg min
θ∈Rd

LDi(θ), and Θ̄i ∼ π(Di). We decompose the excess empirical risk of Noisy-GD as

follows:
err(Θ̂i;Di) = E

[
LDi(Θ̂i)− LDi(Θ̄i)

]
+ E

[
LDi(Θ̄i)− LDi(θ∗Di)

]
. (159)

The second term is the suboptimality of Gibbs distribution and by Theorem G.24, it is bounded as

E
[
LDi(Θ̄i)− LDi(θ∗Di)

]
≤ dσ2

2

(
log

β + λ

λ
+
√
B

)
. (160)

From (λ+ β)-smoothness of LDi , for any coupling Π of Θ̂i and Θ̄i, the first term satisfies

E
[
LDi(Θ̂i)− LDi(Θ̄i)

]
≤ E

Π

[〈
∇LDi(Θ̄i), Θ̂i − Θ̄i

〉
+
λ+ β

2

∥∥∥Θ̂i −Θi

∥∥∥2

2

]
= E

Π

[〈∑
x∈Di

∇`(Θ̄i;x) + λΘ̄i, Θ̂i − Θ̄i

〉
+
λ+ β

2

∥∥∥Θ̂i −Θi

∥∥∥2

2

]
.

(From L-Lipschitzness of `(θ;x) and Jensen’s inequality)

≤ L

√
E
Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
+ λE

Π

[〈
Θ̄i, Θ̄i − Θ̂i

〉]
+
λ+ β

2
E
Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
(From Young’s inequality (67))

≤ L

√
E
Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
+
λ

2
E

Θ̄i∼π(Di)

[∥∥Θ̄i

∥∥2

2

]
+

2λ+ β

2
E
Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
.

Recall that the distribution π(D) satisfies LS(λ/B) inequality. On choosing the coupling Π to be the infimum, we get the
following bound on Wasserstein’s distance from Lemma G.5.

inf
Π

√
E

Θ̂i,Θ̄i∼Π

[∥∥∥Θ̂i − Θ̄i

∥∥∥2

2

]
= W2

(
Θ̂i, Θ̄i

)
≤
√

2Bσ2

λ
KL (µi‖π(Di)) ≤

√
2εddBσ2

λ
. (161)

The last inequality above follows from monotonicity of Rényi divergence in q and the fact that
limq→1 Rq (ν‖ν′) = KL (ν‖ν′).

Since π(Di) is the Gibbs distribution with density proportional to e−LDi/σ
2

, we have that

E
Θ̄i∼π(Di)

[∥∥Θ̄i

∥∥2

2

]
=

1

ΛDi

∫
‖θ‖22 e

−LDi (θ)/σ
2

dθ where ΛDi =

∫
e−LDi (θ)/σ

2

dθ. (162)

From σ2 logB
4 -boundedness of `(θ;x), note that we have for every θ ∈ Rd that

|LDi(θ)− r(θ)| ≤ σ2 logB

4
. (163)
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Therefore,

ΛDi =

∫
e−LDi (θ)/σ

2

dθ ≥ 1
4
√
B

∫
e−r(θ)/σ2

dθ, (164)

and hence,

E
Θ̄i∼π(Di)

[∥∥Θ̄i

∥∥2

2

]
≤

4
√
B∫

e−r(θ)/σ2dθ
×
∫
‖θ‖22 e

−LDi (θ)/σ
2

dθ

≤
√
B ×

∫
‖θ‖22 e−r(θ)/σ2∫
e−r(θ)/σ2

=
√
B E

Z∼N
(

0,σ
2

λ Id
)
[
‖Z‖22

]
=

√
Bσ2d

λ
.

Therefore, on combining all the bounds we get

err(Θ̂;D) ≤ Lσ
√

2εddB

λ
+
εddBσ

2(2λ+ β)

λ
+
dσ2

2

(
log

β + λ

λ
+ 2
√
B

)
= O

(
σ
√
εdd + dσ2

)
. (165)

Note that if the constraints on KA and KĀ in (154) and on σ2 in (153) are equalities instead, we have

σ2 =
2qBL2

λεdpn2
log

(
q log(B)

εdd

)
= Õ

(
q

εdpn2

)
, (166)

where Õ(·) hides logarithmic factors. Therefore, the excess empirical risk has an order

err(Θ̂;D) = Õ

(
1

n

√
qεdd

εdp
+

dq

εdpn2

)
. (167)
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