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Abstract—Sentiment recognition has always been a potential 

but challenging task in field of artificial intelligence. Especially 

with the zoom of the Internet of Thing(IoT) in recent years, the 

demand for high-resolution sentiment recognition is greatly 

growing. However, the absence of massive sentiment recognition 

datasets significantly obstacles its development. Recently 

Contrastive Language-Image Pre-training (CLIP) manifests us 

a new vision of compensating the lack of sentiment recognition 

datasets with the massive general knowledge contained in CLIP. 

But existing sentiment recognition models based on CLIP often 

only provide unimodal prompt individually or asynchronous 

prompts to CLIP, which might disrupt the balance of the 

multimodal structure in CLIP, finally impeding higher 

precision at sentiment recognition. In this paper, I propose 

CLIP-SMP, a sentiment recognition model using CLIP with 

lightweight synchronous multimodal prompts. Via experiments 

on two sentiment-recognition benchmarks, I prove the 

effectiveness and efficiency of CLIP-SMP, needing only 2.5M 

trainable parameters but reaching state-of-art.  

Keywords—sentiment recognition, CLIP, prompt, computer 

vision 

I. INTRODUCTION 

Sentiment recognition, as a pivotal task in artificial 
intelligence (AI), aims to decode human sentimental states 
from multimodal data such as text and image. In recent years, 
it has gathered significant attention due to its broad 
applications in human-computer interaction, mental health 
monitoring and other IoT-driven smart environments. Despite 
its potential, achieving steady and high-resolution sentiment 
recognition remains a challenge. Traditional AI approaches 
often rely on massive datasets and handcrafted features [7, 11], 
however paradoxically the absence of datasets in field of 
sentiment recognition has bogged down the its progress. The 
rapid proliferation of the Internet of Things (IoT) further 
amplifies this challenge. With billions of interconnected 
devices generating heterogeneous data streams—ranging 
from smart home sensors to wearable health monitors—there 
is an urgent demand for adaptive and accurate sentiment 
analysis systems capable of processing high-dimensional, 
real-time data while preserving contextual semantic 
information.  

Recent advancements in large pre-training models, 
particularly Contrastive Language-Image Pre-training (CLIP), 
offer a promising pathway to mitigate these limitations [7]. 
CLIP's balanced architecture, which aligns visual and textual 
representations through contrastive learning on 400 million 
image-text pairs, embeds rich cross-modal knowledge that 
transcends domain-specific boundaries. This makes it a 
compelling candidate for sentiment recognition, where 
contextual alignment between modalities is effective. 
However, existing CLIP-based sentiment recognition 
frameworks often adopt unbalanced adaptation strategies. 

Some approaches naively fine-tune CLIP's entire architecture, 
disregarding its carefully pretrained architecture, 
compromising the robustness and generalization of CLIP [1, 
2]. While some deploy unimodal prompts (text-only or image-
only templates) or asynchronous prompts that fail to exploit 
and even disrupt CLIP's inherent cross-modal synergy [13, 14]. 

To address these limitations, this paper introduces CLIP-
SMP (CLIP with Synchronous Multimodal Prompts), a novel 
framework that preserves CLIP's multimodal harmony while 
enabling efficient adaptation for sentiment recognition. 
Machine-learned prompts with frozen domain structure can 
avoid manually disruption and keep the robustness, 
generalization and neural semantic information learned at 
training of large datasets [16, 17, 18]. At its core, CLIP-SMP 
employs lightweight, learnable prompt pairs Prompt-Wv and 
Prompt-Wt transferred from a common initial prompt Prompt-
initial that operate synchronously across visual and textual 
modalities. These prompts act as "steering vectors", 
collaboratively guiding CLIP's frozen backbone to refine its 
attention toward sentiment-related features shared by image 
and text both, without distorting its pretrained knowledge. The 
synchronization mechanism ensures that textual prompts and 
visual prompts evolve in tandem during training, maintaining 
cross-modal sentimental coherence and help the model to 
distribute more attention on information shared by tow 
modalities both, especially sentimental information. 
Remarkably, this approach requires only 2.5M trainable 
parameters—a mere 0.3% of CLIP's total parameters—while 
MaPLe, another multimodal prompting CLIP-based model 
needs 19.3M trainable parameters [14]. Moreover, in the 
experiments CLIP-SMP outperforms state-of-the-art 
prompting model Emotion-CLIP and CLIP, also reaching 
state-of-the-art [5, 7]. This makes it exceptionally resource-
efficient for deployment on IoT edge devices with limited 
computational budgets. 

The efficacy of CLIP-SMP is rigorously validated through 
experiments on two benchmark datasets: Emotic [19] 
and MELD [20]. Results demonstrate that CLIP-SMP not 
only reaches state-of-the-art but also exhibits great robustness 
in cross-dataset evaluations. These achievements highlight a 
broader paradigm: instead of overhauling foundation models 
for downstream tasks, strategically guiding their multimodal 
alignment through lightweight, coordinated interventions can 
yield disproportionate improvements in efficiency and 
accuracy. 

This work advances the field in three key dimensions: 

 (1) It identifies and rectifies the modality asynchrony 
prompting problem in CLIP-based sentiment recognition. 



 (2) It establishes a resource-efficient framework for 
adapting large vision-language models to data-scarce 
scenarios. 

 (3) It provides empirical evidence that balanced 
multimodal synchronization—not just scale—dictates the 
success of foundation models in affective computing.  

 For IoT ecosystems increasingly reliant on ambient 
emotional intelligence, CLIP-SMP offers a scalable blueprint 
to harness general-purpose big-scale pre-trained AI models 
without compromising their inherent strengths. 

II. RELATED WORD 

A. Contrastive Language-Image Pre-training 

Contrastive Language-Image Pre-training(CLIP) [7] is a 
groundbreaking multimodal model that learns visual 
representations through natural language supervision. Its core 
idea is to train a system to associate images with their 
corresponding textual descriptions by leveraging a contrastive 
learning objective. Instead of traditionally relying on 
manually annotated categorical labels, CLIP uses 400 million 
image-text pairs collected from the internet, enabling it to 
learn a broad spectrum of visual concepts directly from raw 
text. 

CLIP jointly trains two encoders, an image encoder 
(ResNet [12] or Vision Transformer [10]) and a text encoder 
(Transformer [21]), to maximize the cosine similarity of 
embeddings for matched image-text pairs within a batch while 
minimizing similarity for mismatched pairs. This contrastive 
objective, inspired by InfoNCE loss [22], allows the model to 
learn a shared embedding space where semantically related 
images and texts are aligned. CLIP has some main advantages 
as followed 

(1) Zero-shot Transfer: CLIP can generalize to unseen 
tasks without dataset-specific fine-tuning. For example, it 
matches ResNet-50’s accuracy on ImageNet (76.2%) without 
any extra training. 

(2) Multitask Capability: It excels in diverse tasks like 
OCR, action recognition, and geo-localization by dynamically 
synthesizing classifiers via text prompts. 

(3) Robustness: CLIP shows stronger performance 
under natural distribution shifts compared to traditional 
supervised models, as it avoids overfitting to narrow label sets. 

All advantages showed above indicate that CLIP is a 
bridge between vision and language, offering a flexible 
framework for task-agnostic visual understanding while 
highlighting the potential of scalable, language-driven 
supervision in AI. Let me foresee the great potential to transfer 
CLIP to sentiment recognition task. 

B. Directly using CLIP for zero-shot sentiment recognition 

Due to the rich image-text alignment captured in the 

CLIP, directly applying CLIP for zero-shot sentiment 

recognition yields strong performance. Xin et al. [13] argue 

that fine-tuning might compromise CLIP’s structural 

integrity and degrade its effectiveness, leading many 

researchers to adopt zero-shot approaches. Bustos et al. [1] 

found that zero-shot CLIP achieves near state-of-the-art 

(SOTA) performance in sentiment recognition and even 

surpasses few-shot CLIP and other SOTA models on large-

scale datasets. This success might stem from CLIP’s massive 

natural language supervision during pretraining, which 

endows it with exceptional robustness and generalization. 

Such an approach fully leverages CLIP’s inherent knowledge 

while preserving its pretrained architecture. 

However, zero-shot CLIP underperforms compared to 

few-shot or fine-tuned variants when tackling specialized, 

complex, or abstract tasks or small-scale datasets [1, 2, 7]. 

This limitation arises because while CLIP’s pretrained 

knowledge is broad and generalizable, but lacks domain-

specific expertise tailored to niche applications. 

C. Enhanced pretraining based on CLIP 

To improve performance in sentiment recognition—a task 

requiring abstraction and specialization — researchers 

worldwide have proposed sentiment recognition models built 
upon further pretraining of CLIP. Main research directions 
include: 

(1) Integrating CLIP with other pretrained models 

Devillers et al. [8] note that CLIP, which focuses on 
extracting cross-modal (image-text) shared information, may 
lose unique unimodal features critical for single-modality 
tasks, leading to suboptimal performance compared to 
specialized unimodal models. Bielawski et al. [9] further 
observe that combining vision-only and text-only large 
models can outperform CLIP in certain domains, as their 
combined knowledge may better cover both shared and 
modality-specific information. To address this, researchers 
propose integrating CLIP with unimodal models. 

For example, Zichao Nie et al. [3] fuse features from ViT 
[10] for images, RoBERTa [11] for text, and CLIP for cross-
modal alignment to predict sentiments. Lu et al. [4] first 
extract image and text features separately using ResNet and 
RoBERTa, then refine and fuse them via CLIP. 

(2) Efficient contrastive learning strategies 

While CLIP’s core strength lies in contrastive learning 

between images and text using natural language supervision, 
Bielawski et al. [9] and Devillers et al. [8] argue that language 
supervision does not always outperform traditional supervised 
methods. However, Bielawski et al. [9] find that for human-
centric tasks such as sentiment recognition, CLIP surpasses 
unimodal models like ViT or RoBERTa, as human-centric 
semantics are better captured in cross-modal shared 
information. This shows us the bright foreground of further 
pretraining CLIP-based models specialized for sentiment 
recognition task. 

To help CLIP capture more human-centric especially 

sentiment semantics, researchers optimize CLIP ’ s 

contrastive learning to focus on affective cues. Zhang et al. [5] 
leverage a pretrained language model to predict sentiments 
from dialogue text first, then adjust contrastive weights 
between video-text pairs based on predicted sentiment labels, 
guiding the model to prioritize sentiment-related semantics 
during training. 

(3) Guiding contrastive learning with prompts 

Radford et al. [7] demonstrate that text prompts such as "A 
photo of a {label}" significantly improve classification by 
reducing semantic ambiguity. Extending this idea, researchers 
propose using image prompts alongside text prompts to steer 
contrastive learning toward sentiment-specific features. 



 

Fig. 1. The structure of CLIP-SMP 

Deng et al. [6] reuse CLIP’s text encoder to encode 

multiple prompt variations and sentiment synonyms, selecting 
the most image-aligned prompts to maximize the shared 
sentiment semantics from contrastive learning. Zhang et al. [5] 
incorporate positional features as image prompts to strengthen 
subject-text alignment. Xin et al. [13] and Khattak [14] 

emphasize that multimodal prompting preserves CLIP’ s 

symmetric contrastive structure better than unimodal 
prompting, making it a promising avenue for future work, 
which is the very direction I am researching. 

These approaches aim to refine CLIP ’ s pretrained 

knowledge for sentiment recognition while maintaining its 
generalization power, balancing broad pretraining with task-
specific adaptation. 

D. Contrastive learning from modalities beyond images and 

text 

CLIP’s unprecedented capabilities stem from its 
contrastive learning between images and text. To further 
enhance its  robustness and generalization, researchers have 
explored integrating additional modalities, such as audio, into 
the contrastive learning framework. 

For instance, Guzhov et al. [15] pretrained an audio 
feature extractor and performed contrastive learning between 
audio, image, and text modalities. While this approach 
improved the quality of audio feature extraction, it had limited 
impact on enhancing image or text feature extractors. 
Nonetheless, their work highlights the feasibility of 
incorporating audio modality for emotion recognition tasks, 
broadening CLIP’s applicability to multimodal scenarios. 

III. METHOD 

My core idea is offering CLIP lightweight prompts to 
guide CLIP’s contrastive learning focus on sentiment 
semantics shared by image and text both. Meanwhile, to keep 
the intact and balanced structure contained affiliation between 
image and text, I keep CLIP itself frozen and train the prompts 
individually.  The whole structure of CLIP-SMP is shown in 
Fig.1. 

A. Image encoder 

The image encoder used in CLIP-SMP is Vision 
Transformer initialized with parameters of CLIP. Vision 
Transformer at first divides image X into fixed-size, non-
overlapping patches(16*16). Each patch is flattened into a 
vector through convolution. Then these patch vectors are 
linearly projected into lower-dimensional embeddings. A 
learnable "[class]" token is prepended to the sequence to 
aggregate global information for classification. Also, 
positional embeddings are added to the patch embeddings to 
retain spatial relationships, as Transformers lack inherent 
spatial awareness. Now we get a sequence of embeddings Zv 
= [zclass, z1, z2, …] which is subsequently passed through 
Transformer encoder to get ultimate image feature Fv. 

B. Text encoder 

 The text encoder used in CLIP-SMP is a Transformer. 
Word sequence T is embedded at first into a token sequence 
Zt. The width of Zt is not equal the width of features, so the Zt 
is projected to the width of features next. Finally pass the 
projected Zt  through Transformer to get ultimate text feature 
Ft. 

C. Prompting 

 Image encoder and text encoder described above are 
original encoders used in CLIP’s original paper. CLIP-SMP’s 
progress of encoding is a little different because of additional 
prompts.  

 Initially, a parameter Prompt-initial(1x512) is generated 
randomly. Matrixes Weight-Wv(512x768) and Weight-
Wt(512x512) are generated at same time. Then multiply 
Weight-Wv and Weight-Wt individually with Prompt-initial to 
produce Prompt-Wv(1x768) and Prompt-Wt(1x512). 

Prompt-Wv = Prompt-initial @ Weight-Wv          (1) 

Prompt-Wt = Prompt-initial @ Weight-Wt          (2) 

 To implement the produced prompts, Prompt-Wv and Zv 
and concatenated into [zclass, z1, z2, …, Prompt-Wv]. Prompt-
Wt and Zt are concatenated into [zclass, z1, z2, …, EOS,  Prompt-
Wt]. Concatenated Zv and Zt are really used in the stream. 

D. Contrastive Learning 

 After extracting features Fv and Ft, to contrastive learn the 
affiliation between text and image, I use the loss function from 
CLIP’s original paper, a simple but effective cosine similarity 
loss. 

𝐿𝑣 =  
1

𝑁
∑ [−𝑙𝑜𝑔

exp(〈𝐹𝑣𝑖,𝐹𝑡𝑖〉)

∑ exp(〈𝐹𝑣𝑖,𝐹𝑡𝑗〉)𝑁
𝑗=1

]𝑁
𝑖=1                 (3) 

𝐿𝑡 =  
1

𝑁
∑ [−𝑙𝑜𝑔

exp(〈𝐹𝑣𝑖,𝐹𝑡𝑖〉)

∑ exp(〈𝐹𝑣𝑗,𝐹𝑡𝑖〉)𝑁
𝑗=1

]𝑁
𝑖=1                 (4) 

𝑙𝑜𝑠𝑠 =
𝐿𝑣+ 𝐿𝑡

2
                                   (5) 

 In loss function, 〈𝐹𝑣𝑖 , 𝐹𝑡𝑖〉  means cosine similarity 
between Fvi and Fti. The loss function optimizes contrastive 
alignment by pulling each image's embedding toward its 
paired text while pushing it away from embeddings of all other 
samples within the batch. 

IV. EXPERIMENT 

I train CLIP-SMP on two sentiment recognition 
benchmark, Emotic and MELD. I compare performances of 
different training strategies: only training on Emotic, only 



training on MELD and training on two datasets both. I find 
some unexpected results.  

A. Datasets 

(1) Emotic 

 Emotic [19] is an image dataset for sentiment recognition 
in context, comprising 23,571 images of 34,320 annotated 
individuals in real world. Each sample is annotated with 26 
discrete categories. 

(2) MELD 

 MELD [20] is an extension to the EmotionLines [23], 
which is a sentiment corpus of conversations initially 
proposed in the field of NLP. MELD offers the same dialogue 
examples in EmotionLines and includes audio and visual 
modalities along with the text. It contains around 1,400 
dialogues and 13,000 utterances from the Friends tv show, 
where each sample is annotated with 7 discrete categories. 

B. Linear Probe 

 I use linear probe to evaluate the performance of CLIP-
SMP and compared it with other models. In linear probing,  

TABLE I.  LINEAR PROBE RESULTS 

Model  
Dataset for test 

Emotic MELD 

CLIP 32.240 43.908 

CLIP-SMP trained on Emotic 33.414 43.563 

CLIP-SMP trained on MELD 34.109 45.977 

CLIP-SMP trained on the both 33.919 44.100 

EmotionCLIP 32.91 48.28 

a. Evaluation metric is accuracy 

 

CLIP-SMP is frozen, and a simple linear layer is added on top 
of the model’s frozen features. Only this layer is trained on 
labeled data for downstream task (sentiment recognition). 

 By freezing the model, it isolates the evaluation to the 
quality of pretrained features, not the model’s ability to adapt 
to new data. Many models use linear probe as methods to 
evaluate their models. So, such method is not only cheap and 
fast, but also easy to compare with other models. 

C. Result 

All CLIP-SMPs are trained for 5 epoch with weight decay 

0.2. Linear probing results are shown in TABLE I. 
Compared with CLIP, CLIP-SMPs whatever the dataset 

used for training is outperform the performance of CLIP, 
which proves the effectiveness of the lightweight prompting. 
Compared with EmotionCLIP, a state-of-the-art sentiment 
recognition model, CLIP-SMP outperforms on Emotic, but 
fails on MELD. This might be caused by the lack of datasets, 
restricted by limiting time. What’s interesting is, that the 
highest accuracy on Emotic is obtained by CLIP-SMP only 
trained on MELD. This definitely proves the robustness of 
CLIP-SMP and the correctness freezing rather than fine-
tuning CLIP. Also, through this phenomenon, we can be 
convinced that sentimental semantics are truly extracted into 
prompts and CLIP’s attention is truly focused on sentiment via 
synchronous multimodal prompts. 

V. CONCLUSION 

In this paper, we introduced CLIP-SMP, a novel 
framework that leverages CLIP's pretrained multimodal 
capabilities through lightweight synchronous multimodal 
prompts for sentiment recognition. By designing learnable 
prompt pairs that operate in synchronously across visual and 
textual modalities, CLIP-SMP effectively guides CLIP's 
frozen backbone to focus on sentimental semantics while 
preserving its intrinsic cross-modal alignment. This approach 
addresses the critical limitations of existing methods, such as 
modality asynchrony and structural disruption, by ensuring 
balanced and coordinated adaptation. 

Experimental results on the Emotic and MELD 
benchmarks demonstrate that CLIP-SMP achieves state-of-
the-art performance with remarkable efficiency, requiring 
only 2.5M trainable parameters (0.3% of CLIP's total 
parameters). This efficiency makes it particularly suitable for 
deployment in resource-constrained IoT environments, where 
computational budgets are limited but demand for real-time, 
high-resolution sentiment analysis is growing. Furthermore, 
cross-dataset evaluations highlight the framework's 
robustness and generalization ability, underscoring the 
importance of maintaining CLIP's pretrained knowledge 
during adaptation. 

This work advances the field of affective computing by 
establishing a paradigm where strategic, lightweight 
interventions rather than exhaustive retraining can unlock the 
full potential of foundation models like CLIP. Future research 
could explore extending CLIP-SMP to incorporate additional 
modalities, refining prompt synchronization mechanisms, or 
adapting the framework to other human-centric tasks such as 
intention recognition or mental health monitoring. By 
bridging the gap between general-purpose pretraining and 
domain-specific needs, CLIP-SMP paves the way for scalable, 
efficient, and context-aware emotional intelligence in next-
generation AI systems. 
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