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Abstract
This paper argues that current Natural Lan-
guage Processing (NLP) frameworks are fun-
damentally misaligned with sign language pro-
cessing (SLP) due to their reliance on linear,
single-channel linguistic models commonly
used in spoken language processing. We an-
alyze the fundamental differences between spo-
ken and signed languages across four criti-
cal dimensions: (1) multi-modal vs. multi-
channel representation, (2) low-resource vs.
high-resource data availability and annotation
efficiency, (3) disambiguation vs. channel con-
version, and (4) linearity vs. spatiality repre-
sentation. Existing research primarily focuses
on surface-level forms, neglecting deep seman-
tic structures that rely on coordinated multi-
channel features inherent to sign languages. We
identify three underexplored challenges that
highlight these gaps: the spatial modeling chal-
lenges of text-to-scene conversion, the dual rep-
resentation problem in spatial metaphors, and
the complexity of classifier predicate decompo-
sition. These challenges demonstrate that SLP
cannot be reduced to video-to-text or text-to-
video translation, and instead requires a funda-
mental rethinking of NLP’s core assumptions
to integrate the spatial-semantic structures of
sign languages.

1 Introduction

Sign language is an important means of communi-
cation for many deaf individuals and other users. It
is not merely a simple combination of signs but
a complete and complex natural language with
multi-channel encoding properties (Valli, 2000).
However, in the field of NLP, studies on sign lan-
guage modeling receive limited attention (Yin et al.,
2021). Recent research on Sign Language Trans-
lation (SLT) and Generation (SLG) has increased.
However, most studies focus on surface-level rep-
resentations, such as gesture extraction and cor-
responding annotation. The focus on the linguis-
tic organization and deep semantic structures of

Figure 1: The Impact of Non-verbal Cues in Human
Communication: Speech Content, Intensity and Tone,
and Body Language.

sign language—particularly its spatial semantics,
and multi-channel interactions—is still insufficient.
This limitation has led to the status of sign lan-
guage in NLP research being far from equal to
that of other spoken languages, and it also fails to
fully meet the growing communication needs and
technological expectations of the Deaf community.

Despite the availability of sign language re-
sources, effective methods for exploration and uti-
lization remain lacking. Yao et al. (2019) described
these resources as underutilized and difficult to ac-
cess. Currently, sign language processing (SLP)1

is still constrained by corpus collection and manual
annotation, limiting progress in knowledge organi-
zation, classification, and deeper linguistic analy-
sis.

Sign language, like spoken and written language,
is a product formed from human perception, expe-
rience, and cognitive processing of the objective
world. It allows linguistic features to be analyzed
independently of physical expression, contributing
to research on spatial cognition and its impact on
semantic structures, including the essence of lan-
guage, its structure, language acquisition by chil-
dren, and cognitive mechanisms in the human brain

1SLP refers to Sign Language Processing in this paper,
except where explicitly noted as Sign Language Production.
Context clarifies usage.

1



(Aronoff et al., 2020). As shown in Figure 1, cog-
nitive psychology research suggests that in natural
language communication, speech content accounts
for only 7% of the impact, while intensity and tone
contribute 38%, and body language 55%, respec-
tively (Mehrabian, 1973). Despite these findings,
computational linguistics has primarily focused on
speech content, with less attention to non-verbal
communication such as facial expressions and body
movements (Li, 2024). Li further emphasized that
non-verbal behaviors are primary channels for in-
formation transmission in human interaction.

A common scenario might be an old friend claim-
ing to be overwhelmed with work, yet his relaxed
expression implies otherwise. This discrepancy
between speech content and body language cues
reflects sign language’s multi-channel structure,
where manual (handshape, movement, location,
orientation) and non-manual (facial expressions,
torso movement) features convey layered mean-
ing simultaneously. In contrast, spoken language
usually spans multiple modalities—auditory plus
possible visual signals—whereas sign language re-
mains within a single visual modality but orches-
trates multiple channels at once. Consequently,
traditional NLP, optimized for linear text or speech,
struggles to handle sign language’s synchronized
spatial data.

Research on sign language enhances the under-
standing of non-verbal communication and con-
tributes to the development of AI systems capable
of interpreting such communication. This paper
systematically contrasts spoken and sign language
processing across four critical dimensions, iden-
tifies three unresolved theoretical challenges, and
proposes pathways to bridge these gaps. Our anal-
ysis aims to catalyze NLP research that respects
sign language’s linguistic integrity while advancing
inclusive technologies.

2 Background and Related Work

At present, merely capturing and collecting sign
language videos for recognition and understand-
ing cannot be considered true informatization. To
achieve informatization, computers must be capa-
ble of performing a range of operations, including
digitizing, analyzing, storing, transmitting, and pre-
senting sign language. Although sign language has
established writing systems, such as the SignWrit-
ing system in the United States (da Rocha Costa
et al., 2003), which enables computer encoding

Figure 2: Trend of Sign Language-Related Publications
(1983–2024)

for storage, transmission, and display, these sys-
tems have a limited audience, and information pro-
cessing based on them has not yet been widely
adopted. This disconnection between linguistic no-
tation and computational processing stems from
sign language’s multi-channel nature.

Sign language information processing research
dates back to 1983, and our statistical analysis
covers works published until December 31, 2024.
The ACL (Association for Computational Lin-
guistics) Anthology contains approximately 540
sign language-related papers, with publications dat-
ing back to 2003. In the EI (Engineering Index)
database, there are about 13,176 sign language-
related papers, while a search in Web of Science
yields 3,122 papers with "Sign Language Recog-
nition" as a keyword and 5,480 papers with "Sign
Language Linguistics" as a keyword. Figure 2 il-
lustrates the annual publication trends for these
papers.

In comparison to the hundreds or thousands
of papers published annually in these two
fields—Sign Language Recognition (SLR) in Com-
puter Vision (CV) and sign language linguistics in
Linguistics—the literature on sign language-related
NLP is relatively limited. As Yin et al. (2021) em-
phasized, it is now time to apply insights from
computational linguistics to the modeling of sign
language.

In the field of CV, there is an abundance of lit-
erature on SLR, which will not be reiterated here.
Generally speaking, such studies have made certain
progress in recognition accuracy, partially leverag-
ing language models to improve semantic under-
standing. However, most SLR models still lack an
in-depth analysis of sign language linguistics and
often treat it as a "sequence of videos + glosses"
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model, achieving only surface-level matching (Ab-
dullah et al., 2024). As a result, although some
preliminary SLR or SLT systems have been de-
ployed, a commercialized solution widely accepted
by the deaf community has yet to emerge. The
primary reasons include the relatively small size
of the databases, limited vocabulary, insufficient
language coverage, and suboptimal semantic ac-
curacy and fluency in real-world scenarios. More
importantly, the multi-channel nature inherent in
sign language has yet to be fully utilized, making it
challenging to capture crucial information such as
facial expressions and body movements beyond the
visual modality. This highlights that relying solely
on computer vision for "video-to-text" or "text-to-
video" conversion is insufficient to meet the diverse
needs of sign language in practical applications.

There is also a wealth of traditional research lit-
erature on sign language linguistics, most of which
focuses on the linguistic structure and semantic
layers of sign language itself. The use of compu-
tational tools for sign language research has be-
come the mainstream approach. Several corpus
projects such as the Public DGS Corpus (Hanke
et al., 2020), ECHO Corpus (Kopf et al., 2022), and
Auslan Corpus (Cassidy et al., 2018) often utilize
multi-level transcription tools like ELAN (2024),
iLEX (Hanke and Thomas, 2002), and SignStream
(Neidle et al., 2018)for fine-grained annotation of
sign language expressions. The NCSLGR (Na-
tional Center for Sign Language and Gesture Re-
sources Corpus) at Boston University (Neidle and
Vogler, 2012), for example, has conducted multi-
layer analyses of sign language videos, making it
an informative linguistic resource. However, these
annotated corpora are primarily aimed at pure lin-
guistic research, emphasizing annotation accuracy
and systematicity. On the one hand, they involve
high levels of manual participation, making them
costly and time-consuming. On the other hand,
these fine-grained annotations do not account for
the needs of information processing, making it diffi-
cult to scale to large data scenarios efficiently. As a
result, although these corpora have significant aca-
demic value, there remains a gap between them and
practical applications such as SLR, SLT, and SLG.
Consequently, research outcomes are challenging
to scale and apply in real-world contexts.

From an NLP perspective, studying sign lan-
guage requires addressing both its dual role as a
visual and linguistic system and the challenges of
deep semantic analysis. This requires transcend-

ing pure computer vision approaches to engage
with linguistic structures across phonological, mor-
phological, syntactic, and semantic layers. Par-
ticularly crucial is semantic understanding, which
enables accurate interpretation of signers’ commu-
nicative intent. Our research re-examines sign lan-
guage’s linguistic features from this NLP oriented
perspective, shifting focus from traditional video-
level gloss extraction to multi-dimensional seman-
tic understanding and generation.

3 A Comparison of Sign Language and
Spoken Language from the Perspective
of NLP

The differences in NLP between spoken and sign
languages are not just due to the lack of writing
system-related foundations for sign language, nor
can they be simplified to a one-to-one translation.
The core issue is that NLP theories are based on
single-channel processing, while sign language is
multi-channel, making the application of spoken
language NLP theories to sign language complex.
The modality of spoken language is typically car-
ried by speech, which is a set of values that change
over time (Huenerfauth, 2005).

The writing system of spoken language functions
similarly, requiring only the recording of written
symbols that correspond to speech. Both written
symbols and speech data are time-series streams
confined to a single channel. This temporal struc-
ture forms the foundation of spoken language NLP
systems. In contrast, sign language is character-
ized by its spatiality, giving it multi-channel na-
ture. This complexity makes encoding sign lan-
guage into a linear single-channel format inher-
ently difficult, resulting in the loss of crucial lin-
guistic details during processing. Sign language
linguists (Sandler, 2012; Brentari, 2019) have iden-
tified that manual features, including handshape,
location, orientation, and movement, as well as non-
manual features, such as facial expressions and
torso movements, all convey essential linguistic
meaning. These channels are interdependent and
inseparable. This distinct linguistic mode, unlike
the linear nature of spoken language, complicates
sign language processing, leading to significant dif-
ferences in computational processing for spoken
and sign languages.
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3.1 Spoken Language Multi-modal vs. Sign
Language Multi-channel

With the advancement of large models such as
ChatGPT and Sora in the market, there has been
a shift from single-modal to multi-modal capabili-
ties, with multi-modal research gradually becoming
mainstream. Multi-modal research involves inte-
grating and analyzing information from multiple
sensory modalities(e.g., text, speech, and vision)
to understand and generate cross-modal content,
thereby better simulating human cognition—how
humans understand the world through multiple
senses (Fei et al., 2024). However, even in a multi-
modal environment, traditional NLP for spoken
language typically focuses only on single-channel
speech or single-channel text processing, without
the need to account for such a wide range of addi-
tional channel information.

In contrast, sign language is not only visual but
also inherently multi-channel, meaning that it con-
veys information through multiple coordinated ex-
pressive channels within the same modality. Multi-
channel processing in sign language uses various
channels within one modality to convey informa-
tion. For example, eyebrow changes, head move-
ments, body postures, and lip movements can all
contribute to the communication of complex lin-
guistic details. These multi-channel interactions op-
erate simultaneously, fundamentally differing from
the multi-modal processing of spoken language.

Thus, multi-channel processing emphasizes co-
ordinating different channels within one modality,
whereas multi-modal processing combines informa-
tion across various modalities for deeper insights
and more accurate understanding. The complex-
ity of sign language, with its multi-channel nature,
requires researchers to account for these channels
in processing, adding to the technological devel-
opment challenges. Deep research into sign lan-
guage’s multi-channel nature could contribute to
improving and enhancing NLP systems.

3.2 Spoken Language High-Resource vs. Sign
Language Low-Resource

The progress of large models today is largely driven
by the availability of vast digital data sources and
the development of large-scale automatic annota-
tion tools. These resources play a crucial role in
transforming unstructured data into more struc-
tured forms, which in turn supports the creation
of rich training corpora for machine learning. This

has contributed to significant advancements in
pre-trained models and Large Language Models
(LLMs). In contrast, although a substantial number
of sign language videos are available online, many
remain unstructured and lack detailed annotations,
making them difficult to leverage effectively for
ML due to the high cost of manual annotation. The
Real-Time Factor (RTF) for annotating spoken lan-
guage is 1, meaning one hour of annotation equals
one hour of work. However, the RTF for sign lan-
guage can reach as high as 100, meaning that one
hour of sign language corpora requires 100 hours
for annotation (Dreuw et al., 2008). This stark dif-
ference stems from the single-channel nature of
spoken language compared to the multi-channel
nature of sign language, significantly increasing
the complexity and cost of developing automatic
annotation technologies.

The multi-channel nature of sign language de-
mand the integration of knowledge from multiple
disciplines, including CV, ML, NLP, and sign lan-
guage linguistics. This poses significant challenges
for researchers, requiring a high level of interdisci-
plinary expertise, especially a deep understanding
of sign language linguistics (Bragg et al., 2019).
These challenges present major obstacles to the de-
velopment of automatic annotation technologies,
leaving sign language in a "low-resource" state in
the current landscape.

Recent advancements have led to sign language
LLM, but limitations exist due to insufficiently
large and detailed annotated data. These models
depend on videos or surface data like keypoints,
which hinders a full understanding of sign lan-
guage’s linguistic features. Consequently, they lack
the ability to fully understand and reason at syntac-
tic, semantic, or pragmatic levels, resulting in sign
language LLM not yet matching spoken language
LLM in language understanding and generation
capabilities.

3.3 Disambiguation in Spoken Language vs.
Channel Conversion in Sign Language

The fundamental task of spoken NLP is disam-
biguation across morphology, syntax, and seman-
tics. In sign language NLP, it’s also a task but not
the core. High uncertainty in one channel, such as
manual features, can be reduced by others, like fa-
cial expressions and body movement. Deaf individ-
uals need less phonetic information to recognize a
single gesture, faster than spoken words. This infor-
mation is constrained by the phonological structure
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of sign language and the early and simultaneous
availability. Both are aiding rapid recognition.

Gestures, as visual signals, inherently provide
early synchronous phonological information. Typi-
cally, after about 150 ms of a gesture, its location
and palm orientation can be recognized, and after
about 20 ms, the handshape can be identified (Em-
morey and Corina, 1990). This early availability
narrows down possible gesture candidates, aiding
faster recognition. Additionally, sign language’s
phonological and morphological structures differ
from spoken words. The garden path phenomenon,
common in spoken language ambiguity, is rarely
observed in sign language, possibly due to simul-
taneous visual cues (Huang and Ferreira, 2021).
In spoken language, phonetic overlap is common
(e.g., over 30 words share the sounds [kan], [mæn],
and [skr]), whereas in sign language, multiple ges-
tures rarely share the same initial handshape and
target location. This phonological structure also
limits the size of the initial list of sign candidates
(Emmorey, 2001). Such visual cues help Deaf indi-
viduals predict a gesture’s morphological structure
(Fine et al., 2005; Emmorey et al., 2009).

Disambiguation generally aims to reduce uncer-
tainty in language understanding and is often linked
to information entropy. However, entropy (unpre-
dictability) and redundancy (contextual cues re-
solving ambiguity) are distinct. Chinese, as one
of the spoken languages, is widely recognized as
one of the most concise languages, with a greater
information entropy (Montemurro and Zanette,
2001). Therefore, disambiguation in Chinese is
more costly and less efficient than in other spoken
languages, as it relies more heavily on pragmatic
knowledge, such as context and world knowledge.
There is no relevant literature on the information
entropy of sign language, but according to our
self-constructed sign language corpus, the maxi-
mum length of a single gesture is equivalent to 11
Chinese words, or roughly 18 Chinese characters
(see Figure 3). From this, we infer that sign lan-
guage’s information entropy is higher than spoken
languages, with variations across different channels.
Non-manual channels like facial expressions and
body movements act as pragmatic knowledge, pro-
viding more context-based information than spo-
ken language. This suggests sign language may
have greater redundancy, reducing entropy and un-
certainty. Calculating its entropy requires a large
corpus and further experiments.

Compared to spoken language NLP, the core

Figure 3: This is a sign in Chinese Sign Language. One
hand forms the "command" sign (pointing to oneself),
while the other hand makes the "guiding" sign (gesturing
outward). This sign is typically used when the referents
have already been established in the conversation. The
phrase it conveys is "在A的控制下,他成为某国的B傀
儡" (Under the control of A, he served as the puppet
emperor of a certain country).

task in sign language NLP is the conversion be-
tween single-channel and multi-channel features.
Current theories in spoken language NLP mainly
focus on computing the average codeword length
for a single channel, with little attention given to
multi-channel systems. Shannon’s first theorem
(1948) states that the average length of a code-
word can only be greater than or equal to the en-
tropy of the information source. Spoken NLP opti-
mizes codewords under one-channel capacity con-
straints; sign language, by contrast, must handle
high-entropy, multi-channel inputs. This complex-
ity hinders progress in sign language processing,
making it less efficient than spoken language.

It is urgent to address the input-output challenges
in sign language and advance the theory of multi-
channel coding. The focus of NLP research should
gradually shift toward multi-channel coding, align-
ing the theories of spoken language NLP and multi-
channel coding.

3.4 The Linearity of Spoken Language vs. the
Spatiality of Sign Language

A fundamental limitation of traditional NLP lies in
the inherent linearity of spoken language, which
cannot simulate the spatial layout of entities and ob-
jects in the three-dimensional (3D) scenes of sign
language. Huenerfauth (2004) argues that translat-
ing spoken language into sign language requires
simulating a signer’s mental 3D space, mapping
entities referenced in the spoken language to this
mental space, and subsequently mapping them to
the physical space through gestures, thereby con-
veying the meaning of the source text. For instance,
translating “The car is next to the house” in sign lan-
guage requires selecting a classifier handshape for
the car (e.g., four wheels), placing it relative to the
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house within the signer’s two-handed space, and
integrating non-manual cues (e.g., furrowed brows,
torso shifts) to depict motion or context. This high-
lights that moving from single-channel (spoken)
to multi-channel (signed) language involves spa-
tial representation and often demands contextual
knowledge(common sense, world knowledge).

Currently, text-to-scene processing in spoken
language NLP primarily focuses on the spatial de-
ployment of entities and has yet to fully address
multi-channel transformation processes. In con-
trast, sign language NLP incorporates more refined
spatial concepts, necessitating the supplementation
of information absent in spoken language to accom-
plish the fundamental task of spatial conceptual
transformation.

The signing space in front of a signer’s body
represents different meanings. Sutton-Spence and
Woll (1999) proposed dividing the signing space
into topographical space and syntactic space. Topo-
graphical space refers to mapping the positions of
objects in actual space to corresponding positions
in the signing space. It is typically used to describe
the positions and motion directions of persons or
objects. For example, when describing a driving
scene, the sign for “car” can be made while moving
through the space in front of the signer to depict
the motion. To express “winding roads,” the sign
can change direction back and forth; to indicate
“bumpy roads,” the sign can move up and down.
In this way, sign language naturally completes the
description of real-world spatial relationships. A
study comparing the cognitive processing differ-
ences between these two types of spaces found
that Deaf individuals responded faster to judgment
tasks after viewing sentences involving topograph-
ical space than to those involving syntactic space
(Hickok et al., 1996). This finding suggests that
Deaf individuals process these two types of spaces
differently. Consequently, spatial computing is an
essential topic in sign language NLP that cannot be
overlooked.

In the morphological stage, spatial modeling
uses non-actual space, especially in pronouns,
verbs, and comparative gestures, adjusting hand
direction based on subject-object positions.

In pronoun usage, signers refer to entities using
a position close to the torso, where distance indi-
cates relationships. This allows space to function as
pronouns, differing from spoken language’s single-
channel limitation. Sign language uses multiple
channels, enabling infinite subdivisions of refer-

ents. Consequently, pronouns can refer to specific
entities, making spatial references vivid but poten-
tially confusing with multiple referents.

In syntax, sentences use real space through spa-
tial verbs and classifier predicates, integrating lin-
guistic and spatial features. Classifier predicates do
not rely on spoken language’s spatial prepositions,
instead constructing multi-channel representations
through spatial scene depictions. This transforma-
tion exemplifies sign language’s flexibility in 3D
spatial descriptions.

4 Theoretical Issues to Be Resolved

While theoretical models such as phonological clas-
sification and verb categorization have contributed
to sign language NLP, core challenges remain.
These include spatial modeling, the representation
of spatial metaphors, and understanding the cogni-
tive mechanisms of classifier predicates. A compre-
hensive theoretical framework has yet to be fully
established. Although some sign language NLP
research has introduced new technologies—such
as digital humans, data gloves, and wearable de-
vices—to develop 3D signer models and sign lan-
guage corpora, much of the work still relies on
adapting traditional NLP methods, which may not
fully address sign language’s unique spatial and
multi-channel nature. Several theoretical issues,
therefore remain to be resolved.

4.1 Text-to-Scene Conversion

Similar to text-to-scene conversion in spoken lan-
guage, SLG emphasizes the modeling of spatial
relationships between objects. It is restricted to
spatial layouts and does not require the sequenc-
ing of images or the modeling and placement of
related conceptual entities. Text-to-scene conver-
sion is a novel research topic in NLP with limited
studies available. When applied to sign language
NLP, it encounters challenges related to linguis-
tic ambiguity and the unclear expression of spatial
concepts, which affects the smooth deployment of
scene elements. Some implemented examples of
text-to-scene conversion systems include the Word-
sEye system developed by ATT Labs (Ulinski et al.,
2018) and the Text2scene system developed by the
University of Virginia and IBM (Tan et al., 2019).
However, these systems can only perform auto-
matic conversion of text to static scenes. For sign
language NLP, two types of systems may be re-
quired: one that converts natural language text to
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simple animation generation, and another that cre-
ates interactive animated language. The former,
which is still in its early stages and lacks a fully
developed system, contrasts with the latter, which
focuses on enabling users to control animated char-
acters’ actions and interactions through language.
Representative systems include AnimNL (Badler
et al., 2002) and Avatarclip (Hong et al., 2022),
with AnimNL being applied to the ASL machine
translation system. Additionally, text-to-scene con-
version related to sign language also involves the
issue of animation scripting, since this type of con-
version requires interaction that allows the signer
to control the layout and actions within the scene.
The core task is to process the input language and
map it to a specific point in the scene, where the
signer can make purposeful modifications and set-
tings through interaction.

This text-to-scene conversion highlights the im-
portance of spatial concepts in human cognition
and natural languages, including sign language.
These concepts are essential for understanding re-
lationships. The challenge in spoken language
NLP is that spatial computing requires expertise
in cognitive science and computer vision, making
automatic spatial knowledge base creation diffi-
cult. Exploring text-to-scene conversion using sign
language could advance spatial relationship under-
standing and virtual scene generation. On one hand,
from the perspective of multi-channel representa-
tion in sign language, it considers content such
as space, positions within space, and movement
within space. On the other hand, it draws from
sign language NLP to analyze spatial language se-
mantics in spoken language. These two directions
contribute to spatial information extraction, such
as the spatial orientation and position of objects,
combined with knowledge bases to eliminate the
ambiguity in natural language, thus enabling the
construction of 3D scenes.

4.2 Spatial Metaphor Computing
Spatial computing is closely related to spatial
metaphors and involves the conversion between
single-channel and multi-channel representations,
while spatial metaphor refers to a type of concep-
tual metaphor where spatial relationships are used
to understand and describe non-spatial concepts
(Boroditsky and Lera, 2000). Sign language relies
heavily on spatial metaphors, using space as both
its conceptual framework and medium of expres-
sion. For instance, a Chinese deaf person can ex-

press success or failure with upward or downward
gestures, exemplifying the conversion from single-
channel to multi-channel representation. Similarly,
spoken languages have vertical spatial metaphors,
such as using "up" for the past and "down" for the
future in East Asian languages. Thus, there’s a
correspondence between spatial metaphors in sign
and spoken language (Gu et al., 2017). Under-
standing metaphors in spoken language focuses
on developing models and algorithms for recog-
nition and interpretation. However, it’s unclear if
these approaches apply to sign language metaphors,
which possess both iconicity and metaphorical dual
mapping, unlike spoken language’s single mapping.
Different cognitive agents, like deaf and hearing
people, may interpret the same metaphor differ-
ently. Hence, statistical models alone are insuffi-
cient for metaphor comprehension; incorporating
subjective knowledge and cognitive perspectives is
necessary. Cognitive neuroscience methods, like
ERP and fMRI, could explore how the brain pro-
cesses sign language metaphors, leading to more
scientific models for recognition and understanding
of spatial metaphors.

Theoretical methods and models of sign lan-
guage understanding need outer layer study, while
brain mechanisms for comprehension require inner
layer exploration. Only then can we seek an NLP
foundation from human cognition and intelligence.

4.3 Classifier Predicate Computing
Since the 1960s, linguists have generally agreed
that the linguistic phenomena of sign language can
largely be explained through spoken language lin-
guistics. However, classifier predicates in sign lan-
guage represent a unique linguistic phenomenon
(Cogill-Koez and Dorothea, 2000). This means that
if the currently popular Gloss annotation is used
as a single-channel encoding for sign language, all
other grammatical phenomena can be addressed
using NLP, except for classifier predicates. Deaf
signers encounter a classifier predicate almost every
minute during communication, with certain types
appearing as many as 17 times (Morford and Mac-
Farlane, 2003). Since classifier predicates are the
most complex phenomenon in sign language NLP
(often related to spatial semantics), they challenge
traditional definitions of language expression. The
key issue is how to represent the handshapes and
motion types of classifier predicates and how to
map them to semantic representations. To compute
classifier predicates, map objects to mental and
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physical spaces. During encoding, spatial informa-
tion must be quantified as morphemes. Multiple
morphemes often express a classifier predicate’s
full meaning. The spatial information conveyed
is more complex than imagined, especially when
describing relationships between objects, where
it becomes intricate. Liddell (2003) conducted a
statistical analysis of the simple classifier predi-
cate "one person walking toward another person"
and found that 28 morphemes were needed to fully
express the spatial information. This spatial infor-
mation includes: the two people facing each other,
a specific distance between them, movement along
a straight path, being on the same horizontal plane,
and standing in a vertical alignment, among others.
Based on this, Liddell evaluated classifier predi-
cates as a non-spatial, multi-morpheme structural
model, because in order to fully express the vari-
ous spatial information, the number of morphemes
required for a classifier predicate can be vast, po-
tentially even infinite.

Since the expression of classifier predicates is
dynamic, it is also necessary to encode the interac-
tions between entities and the constraints of the 3D
scene deployment into a series of rules(Bangham
et al., 2000). To effectively convey a scene like
"one person walking toward another," it’s essen-
tial to establish the entities’ positions and choose
the starting and ending points for the moving en-
tity. The signer must decide if the path is linear
or curved and whether it’s bumpy or smooth. Ad-
ditionally, while expressing classifier predicates,
the road and ground plane are communicated. To
avoid errors like depicting someone moving below
the ground, basic common and world knowledge
is required, such as the understanding that people
typically stand on the ground plane. Clearly, the
use of classifier heavily depends on semantic under-
standing, spatial knowledge, and logical reasoning.

The two difficulties mentioned above contribute
to the complexity of classifier predicate computing,
to the point where sign language scholars have de-
scribed it as supra-linguistic spatial sign language
and as constituting spatial parametric expressions
(Wehrmeyer, 2022). Currently, aside from the
ZARDOZ system (Veale et al., 1998), no other
sign language machine translation systems have
managed to solve classifier predicate computing.
Classifier predicates are uniquely complex in lin-
guistic computation and could be a key feature
in sign language NLP. They involve converting
and mapping from one channel to multiple chan-

nels, with a significant use of spatial metaphors and
scene-processing. Research should focus on brain
processing of these predicates and develop small
systems to simulate intelligent behavior. With suf-
ficient understanding and clarification of cognitive
mechanisms, a comprehensive solution for classi-
fier predicate computing can be developed in the
future.

In summary, addressing these theoretical
challenges—text-to-scene conversion, spatial
metaphor computing, and classifier predicate com-
puting—requires moving beyond single-channel,
text-based NLP approaches toward methods that
fully capture sign language’s multi-channel and
spatial nature. We propose three foundational
directions to facilitate this shift: (1) scalable tools
for automatic multi-channel tagging, reducing
reliance on manual annotation by systematically
capturing handshape, movement, facial cues, and
other channels; (2) neural models integrating
spatial reasoning, enabling learning architectures
to incorporate 3D layout, trajectory, and scene
constraints inherent in sign language; and (3)
community-driven data collection, ensuring that
large-scale, culturally diverse corpora accurately
reflect real-world signing practices.

5 Conclusion

Sign language NLP remains challenging due
to multi-channel features and low-resource con-
straints exacerbated by regional variations. The
single-channel paradigm of spoken language NLP
fundamentally conflicts with sign language’s
spatial-temporal dynamics, requiring precise syn-
chronization that current models lack. While multi-
channel architectures show promise, they struggle
to capture structural complexity without linguis-
tically grounded annotation. To overcome these
hurdles, it is essential to focus on a deeper un-
derstanding of the foundational structure of sign
language itself. Advancing NLP for sign languages
will depend on grounding these approaches in the
intrinsic features of sign language, ensuring that fu-
ture developments are both linguistically accurate
and contextually sensitive.

6 Limitations

6.1 Lack of Large-Scale Empirical Validation
This paper primarily presents a theoretical and com-
parative analysis of sign and spoken language pro-
cessing. While we highlight key computational
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challenges and propose potential directions, our
work does not include large-scale empirical exper-
iments to validate these claims. Future research
should conduct systematic evaluations using real-
world sign language corpora. This will help assess
the effectiveness and feasibility of the proposed
approaches in addressing the identified challenges.

6.2 Data Scarcity and Annotation Bottlenecks

A fundamental challenge in SLP is the low-
resource nature of sign language data. While we
discuss the need for scalable multi-channel annota-
tion tools, this remains an unsolved issue. Current
datasets are often limited in size, linguistic diver-
sity, and coverage of sign languages worldwide.
Moreover, manual annotation remains costly, and
the lack of standardized multi-channel representa-
tions further complicates dataset expansion.

6.3 Computational Challenges in
Multi-Channel Processing

Sign language’s multi-channel feature—combining
handshape, movement, facial expressions, and
body posture—poses significant computational
challenges. Existing multimodal models often fo-
cus on fusing speech, text, and vision but lack fine-
grained mechanisms for capturing interdependent
linguistic features in sign language. While we sug-
gest spatial reasoning and 3D-aware architectures,
their practical effectiveness remains untested on
large sign language corpora.

6.4 Theoretical Assumptions and Model
Adaptability

Our discussion is based on linguistic and cognitive
insights into sign language structure, which may
not fully align with the computational constraints
of NLP systems. While we advocate for moving
beyond single-channel NLP paradigms, transition-
ing toward multi-channel, spatial-semiotic mod-
els requires substantial architectural modifications,
which could present scalability and efficiency con-
cerns.

6.5 Generalizability Across Different Sign
Languages

This paper mainly considers general linguistic prop-
erties of sign languages but does not explicitly
address cross-linguistic variations. Different sign
languages (e.g., ASL, BSL, CSL) exhibit unique
syntactic structures, lexical variations, and cultural
adaptations, which may impact the applicability of

proposed computational frameworks. A one-size-
fits-all model for sign language processing remains
a challenge.

6.6 Ethical Considerations and Community
Involvement

While we emphasize the need for community-
driven data collection, ethical concerns such as
informed consent, representation of diverse Deaf
communities, and accessibility in AI-driven sign
language applications require further discussion.
Engaging Deaf researchers and sign language users
in the development of computational models is es-
sential to ensure inclusivity and fairness in SLP
technologies.
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