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ABSTRACT

Efficient public transportation management is essential for the development of
large urban centers, providing several benefits such as comprehensive coverage
of population mobility, improvement of the local economy with the offer of new
jobs and the decrease of transport costs, better control of traffic congestion, and
significant reduction of environmental impact limiting gas emissions and pollution.
Realizing these benefits requires carefully pursuing two essential pathways: (i)
deeply understanding the population and transit patterns and (ii) using intelligent
approaches to model multiple relations and characteristics efficiently. This work
addresses these challenges by providing a novel dataset that includes various
public transportation components alongside machine learning models trained to
understand and predict different real-world behaviors. Our dataset comprises daily
information from about 710,000 passengers in Salvador, one of Brazil’s largest
cities, and local public transportation data with approximately 2,000 vehicles
operating across nearly 400 lines, connecting almost 3,000 stops and stations.
As benchmarks, we have fine-tuned diverse Graph Neural Networks to perform
inference on vertices and edges, undertaking both regression and classification
tasks. These models leverage temporal and spatial features concerning passengers
and transportation data. We emphasize the greatest advantage of using our dataset
lies in different possibilities of modeling a real-world urban mobility dataset,
reproducing our results, overcoming selected models, and investigating several
other open-problem situations listed in this manuscript as future work, which
include the designing of new methods, optimization strategies, and environmental
approaches. Our dataset, codes, and models are available at https://github.
com/suntdataset/sunt.git.

1 INTRODUCTION

Efficient urban mobility requires a branch of strategies to manage traffic, delivering improvements,
such as increasing safety, reducing travel time, decreasing costs, and supporting environmental
issues. Each strategy has guided researchers to explore different proposals like vehicle-to-vehicle
communication, route optimization, adoption of the Internet of Things for connecting transit devices,
and effective scheduling of the public transportation system [Zhang et al., 2011, Rahmani et al.,
2023].

In this work, we focus our investigation on the public transportation system due to its importance to the
population. Moreover, any decision regarding this system directly impacts urban mobility, especially
in developing countries, where it is often the only means of transport available to low-income
populations. When poorly planned, it delivers low-quality services with delayed and overloaded
vehicles, concentrates traffic in specific regions while leaving others unattended, and aggravates
pollution with higher gas emission rates.

Intelligent Transportation Systems address these issues by incorporating data monitoring, heuristics
to extract new information, and Artificial Intelligence (AI) to support decision-making tasks. In
summary, such systems collect and analyze data from passengers and vehicles to uncover implicit
patterns that can identify bottlenecks, sudden changes, and areas for improvement.
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As discussed by Ceder [2016], achieving a successful public transportation system depends on three
key elements. Firstly, it requires gathering and understanding adequate data. Next, the data must
be utilized for intelligent planning and decision-making. Finally, the plans and decisions must be
effectively implemented to ensure smooth operations and control.

To exemplify the adoption of such keys in real-world scenarios, researchers have collected data from
passengers’ fares and vehicle locations to create a heuristic that estimates boarding and alighting
times and locations in London (England) [Gordon et al., 2013, Wang et al., 2011]. Similarly,
researchers collected passenger and vehicle data from Harbin (China), which was later modeled using
unsupervised machine learning methods to understand public transit riders’ travel patterns better
[An et al., 2017]. Researchers from Seoul (the Republic of Korea) also developed a methodology
for estimating non-tagged alighting stop information gradually, by considering the characteristics of
trip types and utilizing transportation card data [Lee et al., 2021]. In New York (USA), researchers
analyzed data from the transit system, where riders swipe a fare card only when entering a station
or boarding a bus. They used this information to estimate alighting stops based on the bus boarding
locations [Barry et al., 2009]. The similar problem was addressed in Southeast Queensland (Australia)
by using Deep Neural Network. This network was used to predict unknown alighting locations after
being trained in a dataset with a combination of transactional and public transit network attributes
[Assemi et al., 2020]. Although these aforementioned citations are more related to our work, further
research on the problem of inferring boarding-alighting locals in public transportation systems is
detailed in a review published by [Mohammed & Oke, 2023].

After an in-depth investigation on published manuscripts focused on public transportation, we noticed
a limitation on the availability of totally public dataset containing a comprehensive quantitative,
spatial, and temporal information about passengers, vehicles, lines, stops, and stations. In this paper,
we overcome this issue by making available a massive dataset with all the data from Salvador (Brazil)
collected for five months in 2024. Salvador is the capital of Bahia, a state located in the northeast
region of Brazil. Salvador is situated in an area of approximately 694 km2 with a population of
around 3 million and a Gross Domestic Product (GDP) per capita near USD 4,220.18.

Our dataset, referred to as Salvador Urban Network Transportation (SUNT), is organized into two
parts: (i) a raw set of data that the reader can process according to their needs, and (ii) a graph
connecting all these data, respecting their geospatial and temporal restrictions. In addition, we
also shared adjusted models as benchmarks, since classical time series analyses to Graph Neural
Networks, to perform classification and regression tasks on vertices and edges. Benchmarking
public transportation datasets forms the foundation for developing effective, efficient, and sustainable
transportation systems that meet the evolving needs of society.

In summary, the main contributions of this work are as follows:

• A set of four raw datasets collected over five months with information about vehicles,
passengers, and stops/stations;

• A preprocessed dataset as a complex network with several attributes derived from the bus
velocities, time and distance between stops, boarding-alighting information, and so on;

• A variety of models using time series and Graph Neural Networks, along with their parame-
ters, to ensure the reproducibility and improvements of our results;

• A list of future investigations that can inspire researchers to use our dataset and increase the
current features and information.

2 RELATED WORK

Graph Neural Networks (GNNs) have been widely considered in Intelligent Transportation Systems
(ITS) [Zhang et al., 2011] for addressing challenges such as more precisely representing complex
relationships between vehicles, stations, and passengers. This natural capability to model such
relationships and handle irregularly structured data has boosted their advancement in the field. Real-
world graph datasets of public transportation are vital in advancing research, innovation, and real-time
decision-making in route planning, scheduling, and resource allocation [Rahmani et al., 2023,
Iliopoulou & Kepaptsoglou, 2019]. Constructing datasets is a significant challenge in developing
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models for ITS due to the difficulty of collecting and integrating comprehensive data while also
respecting privacy when gathering information from traffic sensors, users, and GPS.

In addition, public transportation datasets play an important role in modeling spatiotemporal depen-
dencies, enabling adaptation to dynamical change in network structures, identifying significant agents
affecting trajectories, and accurately representing long-term dependencies. Currently, only a few
publicly available ITS datasets exist with some of these features as, for example, TaxiBJ [Zhang et al.,
2017, Bai et al., 2019], BikeNYC [Zhang et al., 2017, Bai et al., 2019], Shanghai Metro dataset [Xie
et al., 2023], Hangzhou Metro dataset [Liu et al., 2022, Ren et al., 2023, Xie et al., 2023], Beijing
Metro dataset [Zhang et al., 2020, Xie et al., 2023], Chongqing Metro [Xie et al., 2023], Stockholm
County [Klar & Rubensson, 2024], METR-LA [Jiang et al., 2023, Wu et al., 2019, Cini et al.,
2023, Du et al., 2021], PEMS-BAY [Wu et al., 2019, Chen et al., 2020, Shao et al., 2022, Oreshkin
et al., 2021, Cini et al., 2023, Du et al., 2021], and UVDS [Bui et al., 2021, Rahmani et al., 2023].
Therefore, most available datasets for graph-based transportation representation lack spatiotemporal
features and integration of multifaceted data necessary for effective adaptation in dynamic urban
environments [Hu et al., 2020, Poursafaei et al., 2022, Huang et al., 2024]. Moreover, recent studies
on GNN advancement have underscored deficiencies in current benchmark datasets [Shchur et al.,
2018], including limited graph availability, smaller scale in vertices and edges, and constrained
class diversity. As a result, creating large, high-quality, and comprehensive graph datasets remains a
significant challenge both for GNN research and for ITS applications [Li et al., 2024]. In addition
to providing a comprehensive dataset, this work offers a significant advantage by including a set of
pre-trained models as benchmarks. These benchmarks range from traditional time series models to
varied GNN architectures, as discussed in the following sections.

3 SUNT DATASET CONSTRUCTION

The transportation used by the local population in Salvador comprises three systems: regular buses,
subway, and BRT (Bus Rapid Transit). The regular bus system is the most extensive transportation
in Salvador, serving most of the population. Currently, there are about 1,900 buses distributed on
approximately 400 lines with around 3,000 stops and stations, supporting roughly 470,000 passengers
daily. The subway system spans about 35 km across 2 lines with 20 stations. Approximately 210,000
passengers use this system daily. The BRT (Bus Rapid Transit) system was recently inaugurated,
further enhancing urban mobility and serving about 30,000 passengers daily. Currently, about 40
buses are operating on 3 lines and 20 stations.

Our dataset, referred to as Salvador Urban Network Transportation (SUNT), contains information
from all systems organized into raw and processed data. The processing steps considered in this work
explore concepts based on trip chaining, as detailed next.

3.1 TRIP CHAINING

In this study, we utilized an Automated Data Collection System (ADCS) to gather data from multiple
sources [Mohammed & Oke, 2023], resulting in two distinct raw datasets. The first dataset was
obtained from the Automatic Vehicle Location (AVL) system, which monitors all regular and BRT
buses, providing details about their geospatial positions over time. The second dataset, the Automatic
Fare Collection (AFC) system, contains information from the ticketing systems, recording the time
when users’ contactless cards are used for payments. In addition to the exact time of card usage, it
also includes details on the vehicles and their respective lines.

Additionally, we used static data based on the General Transit Feed Specification (GTFS) format,
which defines a standard format for public transportation schedules associated with geographic
information (http://gtfs.org/). Using this format, we provided geospatial details about
stations and stops along with their sequential order, lines, and directions. Finally, we also provide a
dataset containing Local Trip Information (LTI), which includes details about the expected and actual
departure and arrival times for all vehicles on every line and in each direction. Due to the dynamic
nature of data collected from the AVL system, missing data may occur, resulting in random loss of
information about vehicle activities. This issue can be easily addressed by combining redundant
vehicle information from GTFS and LTI.
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After organizing these four datasets (AVL, AFC, GTFS, and LTI), the first challenge is to find out
the boarding locations for all users. As illustrated in Figure 1(a), this information is computed by
integrating AVL and AFC, and retrieving the exact latitude and longitude positions when the users’
cards performed the payments. Using these positions, we can estimate the closest stop or station that
indicates the boarding local. Next, we merge multiple boarding locations to classify the users’ trips
as initial, intermediate, and final. Such a classification is relevant to map all possible connections that
compose a complete user’s trip. Finally, all boarding positions with their respective time instants are
used to organize trip chains describing the passengers’ behavior.

Figure 1: Steps used to create our origin-destination dataset. Red boxes represent boarding data with
no alighting correspondence.

In the next phase, Figure 1(b), we assess the validity of the boarding registration by checking two
specific conditions. Firstly, a user’s boarding is discarded if the time difference between the AFC-
recorded fare payment and the AVL-recorded bus arrival at the stop exceeds a certain threshold. This
threshold has two possible values: (i) 20 minutes for bus stations; and (ii) 5 minutes for regular stops.
This differentiation is necessary because buses typically remain longer at stations. Secondly, another
discarding possibility happens when there is no direct connection between AVL and AFC records,
which is considered in this figure as “out of trip”.

In the subsequent phase, Figure 1(c), we analyzed user types to determine the feasibility of estimating
their alighting points. In Salvador, there is no device to validate the passengers’ alighting; therefore,
the main challenge is to estimate it by analyzing the following boarding. Moreover, it is impossible
to track older people because they are not individually identified. According to local policies, the
fares for such passengers are recorded as general users without identification. Consequently, we are
unable to estimate their alighting points. Another particular case that prevents us from identifying
users’ alighting points occurs when there is only a single trip registration on a given day. In such
cases, we can only determine the boarding point, with no information available about the alighting
point. Therefore, we cannot consider such situations in our analyses.

For all remaining cases, we can infer the alighting points by combining a set of boarding points
per user. To better understand this inference, consider the three scenarios illustrated in Figure 2. In
Scenario I, we observe a passenger boarding at 8:00 AM (B1) at Stop (b) and then boarding again
at 6:00 PM (B2) at Stop (f). Therefore, it can be inferred that the passenger boarded at Stop (b),
disembarked at Stop (f) on the first trip (b→ f), and then made the return journey at the end of the
day (f→ b).

In the second scenario, we observe a user trip with a connection. In this situation, there are two
boarding points for each trip. Initially, the user boarded at Stops (b), at 8:00 AM (B1), and (d), 8:20
AM (B2), being the first alighting registered at Stop (d). At the end of the day, the user boarded at
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Stops (j), at 6:00 PM (B3), and (d), at 6:10 PM (B4), respectively. Therefore, we infer the first user’s
trip was b→ j starting at 8:00 AM, and their return was j→ b at 6:00 PM.

In our final scenario, we illustrate a situation when a user utilizes a connection between two different
stops by walking a short distance between them. In this case, they register a first boarding at Stop
(b), at 8:00 AM (B1), and the second one at Stop (x), 8:50 AM (B2). As one may notice, Stop (x)
is in a different line. Hence, we look for its closest stop, respecting the maximum walking distance
(∆), Stop (f) in this case, to represent the first alighting. Considering they register another boarding
at Stop (u), at 7:00 PM (B3), followed by boarding at Stop (f), at 7:30 PM (B4), we can map their
full daily trip using the same rule previously considered. Therefore, we infer the first user’s trip was
b→ f∆x→ u starting at 8:00 AM, and their return was u→ x∆f→ b at 7:00 PM.

b dca e f g

B1
08:00AM

B2
06:00PM
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Figure 2: Scenarios illustrating three different boarding-alighting situations: (I) a single line, (II)
lines with a connection, and (III) two lines connected by walking distance.

As shown in Figure 1(d), a walking distance is deemed acceptable if it is limited to 1.1 km. Concerning
the average velocity, Figure 1(e), and the trip time, Figure 1(f), all registers with values greater than
80 km/h and 2 hours are unconsidered. These values were estimated by local specialists based on the
passengers’ usage patterns and the transportation infrastructure in Salvador. We emphasize that the
reader can modify these values according to their needs once both raw and processed data are shared.

In Figure 1, all red boxes represent situations in which we cannot precisely use the passengers’
occurrences in our analyses. Nevertheless, even in minority cases, it is essential to consider their
general behavior to mitigate imprecision in further estimations, such as the load of passengers on
the buses. In this case, we use the data distribution for each line to allocate these occurrences
across different buses, as recommended by the literature. After this correction, we have the processed
Origin-Destination (OD) dataset. The following section details all variables derived from the boarding-
alighting information, resulting in our main contribution: the Salvador Urban Network Transportation
(SUNT) dataset.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 GRAPH MODELING

The organization of the OD dataset with passengers’ boarding and alighting allowed us to create
the SUNT dataset, embedding a set of quantitative, temporal, and geospatial variables as a complex
network. Formally, we have used information on latitude, longitude, and time to create a spatial-
temporal graph G = {G1, G2, ..., GT }. For all t = 1, ..., T , Gt = (V,E) stands for an attributed
and directed graph at time t, where V = {v1, v2, ..., vN} is the set of N vertices corresponding to
the bus stops and stations, and E is the set of edges corresponding to feasible routes. A directed edge
(vi, vj) ∈ E connects vertices vi, vj ∈ V if, and only if, there is a feasible route for the bus traffic
from the corresponding station vi to vj in the network. Gt is a fixed graph structure since sets V and
E do not change over time.

Figure 3(a) shows the map of Salvador with all vertices stored in our SUNT dataset, i.e., stops and
stations used by regular and BRT buses, as well as subways. The geospatial information allows us to
place them on the map, respecting their actual geographic position and the distances connecting them
by the physical streets.

Figure 3: (a) Salvador map with all stops and stations used by regular buses, BRT, and subway; (b) a
sample of stops and stations (nodes) represented by blue dots and their respective lines (edges).

In our context, spatial data do not depend on time t, i.e., their information is time-invariant. Specif-
ically, in every vertex vi ∈ V , we store the following features: geographical position, number of
boarding and alighting per vehicle, and passenger load. The features specifically concerning edges
(vi, vj) ∈ E include the distance between stops and stations, the trip duration, the mean velocity, and
the Renovation Factor (RF). The RF is a well-known metric used in transportation research to assess
the total demand in a line, i.e., it is computed on a set of edges that belong to the line [ITDP, 2016].
Formally, this metric is the ratio of the total demand of a line to the load on its critical link. Higher
renovation factors occur when there are many short trips along the line. Corridors with very high
renovation factor rates are more profitable because they handle the same number of paying customers
with fewer vehicles [ITDP, 2016]. Besides the individual features, there is relevant information
shared by both vertices and edges, such as the number of passengers per vehicle, lines and directions,
vehicle characteristics, altitude, and trips.

The black bounding box in Figure 3(a) represents an essential region of the city, which gathers
different lines and connections. Figure 3(b) zooms in this region with a portion of the full graph,
illustrating some bus stops as vertices and lines connecting them as edges. The red explaining box
contains some features related to that bus stop (vertex) such as its latitude and longitude position, and
the amount of boarding and alighting passengers. In the green explaining box, we illustrate some
features related to a line (edge), such as the distance connecting two stops, the mean velocity and trip
duration among the buses in that section, and the total amount of traveling passengers.

All information shared by SUNT was collected from March 2024 to July 2024 and aggregated into
5-minute intervals. This interval allows the data to be represented as a temporal graph, in addition to
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the spatial information. However, we emphasize that this interval can be adjusted according to the
readers’ requirements. It is possible to work with a static graph using a single interval or to summarize
all days using, for example, a mean function. Additional details about all the data comprising SUNT
are available in Apendix B.

4 EXPERIMENTAL SETUP

Besides sharing SUNT, we have also trained models as benchmarks to demonstrate that valuable
insights can be derived from different learning tasks. In this manuscript, we focused on three particular
learning tasks: node classification, edge classification, and node regression.

In our experiments, we created a temporal graph by selecting data from a work day (March 1st, 2024)
whose observations on passenger loading were collected every 5 minutes. To train the classification
models, we have selected the following features: passenger loading, mean velocity and distance
between stops/stations, total boarding and alighting, and number of lines, vehicles, and trips. The
labels were defined by computing the average loading in every node (stop/station). Next, we have
selected a single graph from another day (March 8th, 2024 at 7 PM) to test the performances of our
models. In this case, every node was encoded as “high” if the loading was greater than its average;
otherwise, we considered it “low”. The majority class is 60% for high loading.

Similarly, in the edge classification, we have considered the same data interval but labeled edges
according to the following rule: if the mean velocity (bus speed) in a route is greater than its average,
the label is “high”; otherwise, it was considered low. The majority class is 51% for low velocity.
We highlight that these data intervals were designed to address local demands and showcase the
capabilities of our dataset. Alternative configurations can easily be adjusted using our provided codes.

We have designed our experiments for node and edge classification using 10-fold cross-validation.
We considered the same validation metrics in both tasks to assess the obtained models: Accuracy, F1-
score, Matthews Correlation Coefficient (MCC), Precision, and Recall. Aiming to keep the manuscript
concise, other relevant metrics, such as the ROC curve and AUC, are shown in Appendix D, along
with their mathematical details and interpretations.

Regarding the node regression, we have organized a set of experiments using minimal features,
thus making it possible to use traditional univariate time series analyses. Therefore, we predict the
passenger load in nodes and only use the distances between stops/stations to weigh edges. Due
to the temporal dependencies, we trained the models using a sliding window strategy by fitting
the model with 3-hour observations and validating the result with the subsequent one hour. As
previously mentioned, each observation summarizes 5-minute data. Further details on the process
of creating the time series are shown in Appendix A. The prediction results were assessed by using
traditional regression metrics (MSE, MAE, RMSE, MAPE, and R2), whose details are also discussed
in Appendix D.

For the node and edge classification, we have trained the following models: CHEB Defferrard
et al. [2016], GAT [Veličković et al., 2017] GCN [Kipf & Welling, 2016], SAGE [Hamilton et al.,
2017], S2GC [Zhu & Koniusz, 2021], EGC [Tailor et al., 2021], A-DGN [Gravina et al., 2023],
LEConv [Ranjan et al., 2020], SuperGAT [Kim & Oh, 2022], and PAN [Ma et al., 2020].

In relation to the node regression, besides such models, we also trained other focused on data sequence:
SARIMA [Box et al., 2015], LSTM [Sak et al., 2014], GRU [Cho et al., 2014b], GConvLSTM [Seo
et al., 2018], GConvGRU [Seo et al., 2018], TGCN [Zhao et al., 2019], DCRNN [Li et al., 2017],
AT3GCN [Bai et al., 2021], CHRONOS [Ansari et al., 2024], and SOFTS [Han et al., 2024]. In
Appendix C, we provide more details about all models considered in our experiments.

5 BENCHMARKING RESULTS

Table 1 summarizes all results obtained by the three learning tasks explored in this paper as bench-
marks. About the node classification, Table 1(a), CHEB presented the best performance for all
metrics. In Table 1(b), we noticed all models presented very similar behavior, with a tiny advantage
for GAT. Although the performances are around 60%, we considered satisfactory results due to the

7
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complexity of predicting numerical values to edges, and there is learning once the dataset is perfectly
balanced. For both tasks, the obtained results summarize the average of all 10 validation folds.

Table 1: Results for the learning tasks: node classification, edge classification, and node regression.

(a) Node Classification Results
Model Accuracy F1 MCC Precision Recall
CHEB 0.99±0.01 0.98±0.03 0.98±0.03 1.0±0.00 0.97±0.05
GAT 0.91±0.02 0.81±0.05 0.75±0.06 0.81±0.04 0.82±0.09
GCN 0.93±0.04 0.82±0.11 0.79±0.11 0.96±0.03 0.73±0.16
SAGE 0.93±0.03 0.84±0.07 0.81±0.07 0.93±0.05 0.78±0.12
S2GC 0.97±0.01 0.96±0.01 0.93±0.02 0.96±0.01 0.96±0.02
EGC 0.98±0.01 0.98±0.01 0.97±0.02 0.98±0.03 0.98±0.01

A-DGN 0.93±0.05 0.90±0.07 0.85±0.01 0.95±0.06 0.86±0.09
LEConv 0.98±0.01 0.98±0.02 0.96±0.02 0.98±0.03 0.98±0.02

SuperGAT 0.92±0.02 0.89±0.03 0.82±0.04 0.92±0.03 0.87±0.04
PAN 0.99±0.01 0.99±0.01 0.98±0.01 0.99±0.01 0.98±0.01

(b) Edge Classification Results
Model Accuracy F1 MCC Precision Recall
CHEB 0.51±0.01 0.60±0.21 0.02±0.04 0.45±0.16 0.87±0.31
GAT 0.53±0.03 0.31±0.32 0.08±0.06 0.52±0.31 0.38±0.42
GCN 0.52±0.02 0.47±0.27 0.07±0.05 0.50±0.19 0.62±0.44
SAGE 0.50±0.00 0.20±0.32 -0.0±0.02 0.25±0.35 0.30±0.48
S2GC 0.50±0.00 0.47±0.32 0.01±0.02 0.35±0.24 0.70±0.48
EGC 0.50±0.02 0.42±0.22 -0.0±0.04 0.46±0.17 0.46±0.28

A-DGN 0.50±0.00 0.34±0.35 0.02±0.03 0.44±0.36 0.49±0.52
LEConv 0.50±0.00 0.54±0.28 0.02±0.03 0.56±0.16 0.80±0.42

SuperGAT 0.51±0.01 0.28±0.33 0.02±0.04 0.27±0.29 0.40±0.50
PAN 0.56±0.02 0.60±0.03 0.13±0.04 0.55±0.02 0.66±0.07

(c) Node Regression Results
Model MSE MAE RMSE MAPE R2

SARIMA 54154±55442 168±125 194±143 1.39±0.39 -2.78±0.83
LSTM 32219±30608 115±85 145±105 0.70±0.22 -0.85±0.94
GRU 30463±29276 109±83 140±103 0.71±0.23 -0.69±65
GCN 2907±3346 32±25 44±30 0.33±0.05 0.73±0.16

CHEB 1223±1035 17±10 27±17 0.37±0.05 0.87±0.08
SAGE 1259±1027 18±10 31±17 0.32±0.05 0.85±0.08
GAT 11397±10423 72±49 88±59 0.51±0.05 0.20±0.16

GConvLSTM 30075±28953 109±82 139±102 0.82±0.18 -0.68±0.91
GConvGRU 29778±28723 108±82 138±102 0.71±0.17 -0.65±0.91

TGCN 31356±29931 112±84 143±103 0.70±0.20 -0.79±0.9
DCRNN 34109±31976 121±86 151±105 0.86±0.10 -1.09±0.84
AT3GCN 36175±33319 127±87 158±105 1.14±0.29 -1.44±0.60

S2GC 1575±1623 23±15 33±20 0.29±0.02 0.81±0.13
EGC 9354±7673 61±34 84±46 0.29±0.02 -0.01±0.43

A-DGN 1987±1731 23±13 38±22 0.34±0.05 0.81±0.05
LEConv 894±703 15±8 26±14 0.28±0.02 0.89±0.06

SuperGAT 15213±14515 83±58 101±70 0.56±0.08 0.04±0.31
PAN 3967±5745 36±33 48±40 0.40±0.03 0.72±0.15

CHRONOS 2520 ± 2551 27±18 43±28 0.53±0.21 0.77±0.04

Table 1(c) shows the node regression results. After training all models using a sliding window on
observations collected by 7 days, randomly chosen, we have assessed the predicted values over the
next 1-day ground truth as shown in Figure 4(a). In this table, the lower the values, the better the
results, but the R2 coefficient. Hence, the best general results were obtained with LEConv. These
results contain the mean and standard deviation values for 5 selected nodes. In Figure 4(b), we
illustrate the predicted values for the top-five regression models estimated for a single node. As
noticed in the tabulated results, we highlight the performance achieved by LEConv, which follows
the general ground truth behavior.

We emphasize the results presented in this section were performed to illustrate the possibility of
obtaining important insights from our data. In Appendice A, we explore additional results, investigate
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(a)

(b)

Figure 4: (a) Time series for a single stop with observations sampled in seven days for training and
one day for test; (b) Comparison between the expected values (ground truth) and results predicted by
different models.

other learning tasks (e.g., the adoption of concept drift methods to detect changes in data streams [Koh
et al., 2024]), visualize outcomes, and discuss experiments integrating SUNT with other urban
datasets.

6 CONCLUSION

This paper introduced SUNT, a novel dataset collected from public transportation in Salvador,
Brazil. This dataset is notably relevant to the scientific community for supporting investigations
in several domains, such as planning public transportation, designing computational approaches,
and managing environmental impact. As previously mentioned, other researchers have published
related datasets, ratifying the importance of this subject. However, our dataset stands out due to its
massive information and complete availability. Unlike manuscripts that only share outcomes, we
have fully shared collections of raw and graph-based details of vehicles, passengers, stations, time,
and geographic properties.

We also analyzed SUNT using diverse time series and machine learning models to demonstrate the
feasibility of the learning process, showing that it is possible to derive valuable insights from our
data. To ensure the entire reproducibility of our results, along with all datasets, we have shared our
pre-trained models with hyper-parameters, architecture details, sources, notebooks, and experiments.

Potential Positive and Negative Impacts: Analyses from SUNT pave new ways to provide positive
social impacts, such as better planning the allocation of buses to lines, reasonably defining regular
and express trips, thus reducing traffic jams and carbon emissions, and offering better trip experiences.
About negative impacts, SUNT is not automatically updated, neither allowing the inclusion of new
data nor detecting general changes. However, we have locally designed a protocol to maintain and
evolve the datasets and benchmarks over time to attract new users and citations. Details about how
we plan to keep and update SUNT are listed in Appendix E.
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Limitations: Although we have sought the best-known models in the literature, their architectures
and parametrization can be individually analyzed to improve the results. Secondly, we explored
a limited variation of attributes available in our dataset. Learning from other attributes or broad
combinations of them is also possible. Thirdly, we have analyzed three learning tasks based on
node and edge classification and regression. Researchers can also use different attributes and their
transformations as targets. Fourthly, other graph structures may provide important information,
mainly varying the edges’ weights. Finally, we have predefined some parameters related to the
application, such as 5-minute intervals and 1.1km walking distance, due to the particularities of our
local scenario. Such definitions may not attend other research. However, by operating our shared
scripts used to create SUNT, readers can use the raw datasets to redefine them according to their
needs.

Future work: By sharing SUNT and the pre-trained models, we expect to provide a robust dataset
along with baselines for the community, supporting the advancement of several investigation possibil-
ities like time-based models, graph algorithms, spatial approaches, deep neural networks, routing
simulations, and search heuristics. To illustrate such possibilities, we have listed future work that is
worth investigating from our perspective: (i) GNN approaches designed to pass messages using both
temporal and spatial information; (ii) Multi-objective optimization approaches to find the shortest
path based on edges weighted by distance and time considering traffic jam; (iii) Multimodal GNN
combines different features (e.g., temporal, spatial, numerical, and categorical data) with varying
encoding approaches as message passing; (iv) Queue theory to address the problem of attending
passengers from a stop A to B; (v) Concept Drift methods designed to identify when passengers’ pat-
tern changes in real-world automatically; and (vi) GNN to guide search processes in meta-heuristics,
e.g., in a multi-agent evolutionary algorithm, each agent handles a part of the search and, in each
generation, GNN could help to select the most suitable agent at each step of the evolutionary process.
In Appendices A and A.5, we present preliminary experiments that demonstrate the investigation
discussed in (v) and the integration with other urban datasets for various applications, respectively.
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João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

Jason B Gordon, Harilaos N Koutsopoulos, Nigel HM Wilson, and John P Attanucci. Automated
inference of linked transit journeys in london using fare-transaction and vehicle location data.
Transportation research record, 2343(1):17–24, 2013.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric DGN: a stable architecture
for deep graph networks. In The Eleventh International Conference on Learning Representations,
2023. URL https://arxiv.org/abs/2210.09789.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems (NeurIPS), 30, 2017.

William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series
forecasting with series-core fusion. Advances in Neural Information Processing Systems (NeurIPS),
2024.

Mark Hickman. Bus automatic vehicle location (AVL) systems. In Assessing the Benefits and Costs
of ITS: Making the Business Case for ITS Investments, pp. 59–88. Springer, 2004.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems (NeurIPS), 33:22118–22133, 2020.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph
benchmark for machine learning on temporal graphs. Advances in Neural Information Processing
Systems (NeurIPS), 36, 2024.

Christina Iliopoulou and Konstantinos Kepaptsoglou. Combining ITS and optimization in public
transportation planning: state of the art and future research paths. European Transport Research
Review, 11, 2019.

ITDP. The online brt planning guide, 2016. URL https://brtguide.itdp.org/branch/
master/guide/service-planning/basic-service-planning-concepts#
renovation-factor. Last Access: June 2024.

Renhe Jiang, Zhaonan Wang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa Kobayashi, Xuan
Song, Shintaro Fukushima, and Toyotaro Suzumura. Spatio-temporal meta-graph learning for
traffic forecasting. In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
8078–8086, 2023.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. arXiv preprint arXiv:2204.04879, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Robert Klar and Isak Rubensson. Spatio-temporal investigation of public transport demand using
smart card data. Applied Spatial Analysis and Policy, 17(1):241–268, 2024.

Yun Sing Koh, Albert Bifet, Karin R Bryan, Guilherme Cassales, Olivier Graffeuille, Nick Jin Sean
Lim, Phil Mourot, Ding Ning, Bernhard Pfahringer, Varvara Vetrova, et al. Time-evolving data
science and artificial intelligence for advanced open environmental science (taiao) programme.
International Joint Conferences on Artificial Intelligence (IJCAI), 2024.

12

https://arxiv.org/abs/2210.09789
https://brtguide.itdp.org/branch/master/guide/service-planning/basic-service-planning-concepts#renovation-factor
https://brtguide.itdp.org/branch/master/guide/service-planning/basic-service-planning-concepts#renovation-factor
https://brtguide.itdp.org/branch/master/guide/service-planning/basic-service-planning-concepts#renovation-factor


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Soongbong Lee, Jongwoo Lee, Bumjoon Bae, Daisik Nam, and Seunghoon Cheon. Estimating
destination of bus trips considering trip type characteristics. Applied Sciences, 11(21):10415, 2021.

Hourun Li, Yusheng Zhao, Zhengyang Mao, Yifang Qin, Zhiping Xiao, Jiaqi Feng, Yiyang Gu, Wei
Ju, Xiao Luo, and Ming Zhang. A survey on graph neural networks in intelligent transportation
systems. arXiv preprint arXiv:2401.00713, 2024.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Lingbo Liu, Jingwen Chen, Hefeng Wu, Jiajie Zhen, Guanbin Li, and Liang Lin. Physical-virtual
collaboration modeling for intra- and inter-station metro ridership prediction. Transactions on
Intelligent Transportation System, 23(4):3377–3391, apr 2022. ISSN 1524-9050. doi: 10.1109/
TITS.2020.3036057. URL https://doi.org/10.1109/TITS.2020.3036057.

Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based convolution
and pooling for graph neural networks. Advances in Neural Information Processing Systems
(NeurIPS), 33:16421–16433, 2020.

John C Mason and David C Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, 2002.

B.W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–451, 1975. ISSN 0005-2795.
doi: 10.1016/0005-2795(75)90109-9.

Mohammed Mohammed and Jimi Oke. Origin-destination inference in public transportation systems:
A comprehensive review. International Journal of Transportation Science and Technology, 12(1):
315–328, 2023.

Boris N Oreshkin, Arezou Amini, Lucy Coyle, and Mark Coates. Fc-gaga: Fully connected gated
graph architecture for spatio-temporal traffic forecasting. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 9233–9241, 2021.

Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. Advances in Neural Information Processing Systems
(NeurIPS), 35:32928–32941, 2022.

Stephan Rabanser, Tim Januschowski, Valentin Flunkert, David Salinas, and Jan Gasthaus. The
effectiveness of discretization in forecasting: An empirical study on neural time series models.
arXiv preprint arXiv:2005.10111, 2020.

Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. Graph neural networks
for intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation
Systems, 24(8), 2023.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 5470–5477, 2020.

Lei Ren, Jie Chen, Tong Liu, and Hang Yu. Od-enhanced dynamic spatial-temporal graph convo-
lutional network for metro passenger flow prediction. In International Conference on Neural
Information Processing, pp. 72–85. Springer, 2023.

Stephen Riter and Jan McCoy. Automatic vehicle location—an overview. IEEE Transactions on
vehicular technology, 26(1):7–11, 1977.
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A SUPPLEMENTARY RESULTS

The proposed dataset opens several avenues for future research. Its size, robustness, and structured
design make it a valuable resource for advancing the state of the art in multiple areas, as demonstrated
by the diverse learning tasks discussed in this appendix.

A.1 TIME SERIES ANALYSES

To illustrate analyses over time, we selected some stops/stations in which the transit of passengers is
intense, with different possibilities for connections between lines and buses. Figure 5 shows a time
series (in blue) whose observations represent the loading of passengers at a given station, collected
every 5 minutes from March 1st, 2024 to March 9th, 2024. As one may notice, the time series
is characterized by a significant frequency fluctuation as noise that may affect its modeling and
prediction. To overcome this issue, we used simple moving average (SMA) approach, with a window
size of 12 observations, to smooth the time series, as illustrated by the red line.

Figure 5: In blue, the time series containing loading information in a bus station, collected every 5
minutes between March 1st, 2024, and March 9th, 2024. In red, we show the time series transformed
by SMA using a window size of 12 observations.

Figure 6: Five time series with intense transit of passengers to illustrate the node regression task.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, to illustrate the relationship between different stations and the importance of considering
the graph structure, from all 2,871 possible nodes, we have selected the top 5 stations with the highest
transit of passengers. As shown in Figure 6, all respective time series were smoothed before being
modeled by the following models.

These time series were extensively analyzed in Section 5 (Benchmarking Results), where several
models were applied to predict passenger loads across the five stations. The models used include a
classical approach (SARIMA), DNN-based models (LSTM and GRU), transformer-based models
(CHRONOS), and GNN-based models (remaining results). Details about these approach and models
are dicussed in Appendix C.

Instead of showing the prediction results produced by CHRONOS alongside other models in Figure 4,
we chose to individually showcase its performance in Figure 7. Analyzing this result reveals an
impressive performance, particularly given that no specific training was conducted to model the time
series observations from these selected stations. In summary, CHRONOS leverages advancements in
language model architectures to achieve zero-shot performance in time series forecasting.

Figure 7: Observations predicted by CHRONOS.

Still focused on learning from the temporal relationship between multiple transportation modes (BRT,
Subway, and Bus), we have selected a given station where all three vehicles intersect to serve the
local population. Figure 8 illustrates the resulting time series of passenger loads over six consecutive
days.

Figure 8: Time series representing multiple transportation modes.

In the subsequent experimental evaluation, we employed a recently published approach called
SOFTS [Han et al., 2024]. This method introduces a novel module that uses a centralized strategy to
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enhance efficiency while reducing dependence on the quality of individual time series. Specifically, it
aggregates all time series into a global core representation, which is then distributed and fused with
individual series representations to facilitate effective channel interactions.

In our experiments, we configured SOFTS with a prediction horizon of 12 and trained for 100 epochs.
The learning rate was set to 0.0003. The model architectures consisted of an initial model with 256
units, a core representation with 64 units, and a final model with 256 units.

The main goal is to leverage the behaviors of each time series, assuming potential interactions between
passengers switching between different transportation modes. Figure 9 illustrates how the predictions
initially diverge from the expected number of passengers using conventional buses. However, the
final predicted values gradually converge toward the expected ones. This result emphasizes the
importance of incorporating multiple transportation modes to better understand population behavior
and highlights the potential for further investigation of this approach in long-term predictions.

Figure 9: .

A.2 CONCEPT DRIFT

Passenger’s pattern behavior changes can be predicted via Concept Drift (CD) [Gama et al., 2014,
Bifet & Gavalda, 2007, Koh et al., 2024]. This technique models unforeseen changes in prediction
variables or relationships among input features over time to ensure machine learning models’ accuracy
and robustness in prediction. These changes can arise from various factors such as human behavior,
environment, or adaptations in the system being modeled. Concept Drift is particularly suitable for
dynamic environments, such as transportation systems. For instance, social or extraordinary events
can impact urban traffic and consequently influence passenger behavior during specific periods of the
day.

In Figure 10, we illustrate using black-dashed lines the usage of a CD method to detect when the
system changes its behavior (blue line) in relation to the prediction performances (red and yellow
lines). The CD method considered in this experiment was the Page-Hinkley test [Page, 1954].

Another concept detection example is illustrated in Figure 11. In this case, rather than using CD to
monitor the learning performance of classification algorithm, we have directly assessed the passenger
load (referred to as “Amplitude”) between March, 2024 and June, 2024. To illustrate the benefits of
using such detectors, we selected a bus stop located near the Federal University of Bahia, the largest
university in Salvador. In the figure below, the red vertical dashed lines indicate the moments when
concept drifts were detected. The first drift corresponds to the start of the academic semester, marked
by an increase in student use of public transportation. The second drift captures the onset of a strike,
which disrupted classes and led to a decrease in passenger numbers.

The drifts detected in this experiment were automatically identified using the Fourier Transform (FT),
as described in Algorithm 1. The first three lines perform a spectral analysis, extracting components
and frequencies from the signal. In Lines 6–9, a window-based strategy is applied to compute
amplitudes, enabling the identification of changes. An important step in this algorithm is Line
12, where differences between pairs of amplitudes are calculated. Finally, in the remaining lines,
observations are filtered based on whether the changes exceed a specified threshold.
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Figure 10: Example of using Concept Drift to detect when learning models is out of date.

Figure 11: Example of using Concept Drift to detect when the passengers’ behavior changes.

A.3 OUTLIER DETECTION

Another important task in managing public transportation is the identification of outliers. There is a
conceptual distinction between CD and outlier detection [Gama et al., 2014]. CD refers to an actual
change in behavior, where a monitored system transitions from one state to another. In previous
example, when the strike began, student behavior changed, leading to a decrease in the number of
passengers using public transportation, signaling a shift in the system. In contrast, outliers do not
signify a change in system behavior; they simply represent abnormal events that temporarily disturb
the system.

To illustrate outliers in our scenario, consider Figure 12, which depicts the accumulated time buses
took to travel between Stops A and B. It is evident that the expected time follows a consistent pattern.
However, on April 4, 2024, heavy rain caused a tree to fall, blocking a major avenue connecting these
stops. Using the Isolation Forest algorithm, we successfully identified this outlier (represented by the
red dots). This example underscores the importance of outlier detection for automatically identifying
abnormal events, thereby supporting policymakers in making more informed decisions.
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Algorithm 1: Detecting drifts using Fourier Transform
Input: signal (time series), frequency (Hz), sampling_rate (Hz), threshold (%)
Output: indices_cd

1

2 f ← FT(signal)
3 frequencies← FT_freq(|signal|, d = 1/sampling_rate)
4 spectrum_magnitude← |f|
5

6 period← 1/frequency
7 ws← period× sampling_rate
8 amplitudes← [max(signal[i : i+ ws])−min(signal[i : i+ ws])
9 for i in range(0, |signal| − ws+ 1,ws)]

10

11

12 differences← |diff(amplitudes)|
13

14 max_amplitude← max(amplitudes[: −1],amplitudes[1 :])
15 absolute_threshold← (threshold/100)× max_amplitude
16

17 indices_cd← where(differences > absolute_threshold)[0]
18

19 return indices_cd

Figure 12: Using Isolation Forest to detect outliers in public transportation.

A.4 PUBLIC TRANSPORTATION PLANNING

All experiments presented thus far have focused on evaluating learning methods. In this section,
we shift our focus to applications commonly used in public transportation management that do not
necessarily require training a model.

In our first evaluation, we analyzed the Origin-Destination (OD) matrix to determine the maximum
passenger load during different time intervals. According to [Ceder, 2016], one of the fundamental
objectives of transit service provision is to ensure sufficient capacity to accommodate the maximum
number of passengers on board along the entire route within a given time period. Let us denote this
time period (typically one hour) as j. Based on the peak-load factor concept, the required number of
vehicles for period j is given by:
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Mj =
P̄mj

γjc
(1)

In this equation, P̄mj is the average maximum number of passengers (max load) observed on-board
in period j, c enotes the vehicle’s capacity (the total number of seats plus the maximum allowable
standees), and γj is the load factor for period j, where 0 ≤ γj ≤ 1.0.

To illustrate the importance of calculating the max loadMj , we have selected a specific line and
analyzed the max-load stops in Figure 13 during four different time intervals: (i) rush time at 7 a.m.,
and 4 p.m., (A) and (B), respectively; and (ii) off-peak time at 10 a.m., and 3 p.m., (C) and (D),
respectively. By analyzing this maps, one might be able to understand how the maximum load stops
are varying within different time intervals. This information facilitates more effective bus planning
and distribution, enhancing service delivery to better meet the population’s needs.

Figure 13: Max load calculated for a specific line during different relevant time intervals.

In our second example presented in Figure 14, we illustrate how the information about max load can
be used in practice to plan timetables, specifying which buses must be set as Express and Normal.
Typically, when passenger data at stops/stations and along routes is unavailable, it becomes difficult
to optimize bus services effectively. For example, during a rush hour interval (e.g., 8 AM–9 AM),
9 buses might be scheduled to serve passengers traveling from stop A to stop B, passing through
intermediate stops. Without an estimate of maximum passenger load, all buses would need to return
from stop B to stop A via the same route, stopping at all intermediate stations. Such a strategy has
some problems: it wastes time and fuel, besides delaying the arriving time at A. Considering A is a
neighborhood and B downtown, the amount of passengers from B to A is considerably lower during
this rush time. Knowing the optimal number of buses required for the return trip and their appropriate
schedules can significantly mitigate these issues.

In Figure 14, we illustrate three strategies for determining the bus type: (i) randomly selecting buses;
(ii) dividing the hour into intervals based on the expected number of normal buses and designating
the next bus within each interval as normal; and (iii) assigning normal buses based on the nearest
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Figure 14: Planning timetables after calculating max load.

neighbor approach, aiming to minimize the interval between them. The error is calculated as the
absolute difference between the actual intervals between buses and the expected intervals. With this
information, policymakers can effectively reduce passengers’ waiting times at stops and stations
while optimizing the management of bus transit within the city.

A.5 INTEGRATION WITH OTHER URBAN DATASETS

To demonstrate the feasibility of integrating the proposed dataset with others in the urban sce-
nario, we consider an existing dataset for public schools in Salvador made available by the Munici-
pal Department of Education at https://dados.salvador.ba.gov.br/search?tags=
educacao (in Portuguese). This dataset stores the public school’s name, latitude, longitude, neigh-
borhood, complete address, and administration data.

Integrating the school’s and SUNT datasets involves computing each school’s closest bus stop
or station. Furthermore, passengers in the SUNT dataset can be categorized as students by their
transportation card data. This integration leads to a wide range of new applications related to the
proposed dataset. For example, one may be interested in investigating the student passenger loading
at bus stops or stations near the schools on a given day and time, as shown in Figure 15. This example
shows that the applicability of the proposed dataset transcends the traffic domain.

A.6 EXPLORING FUTURE WORK

Multi-objective optimization problems aim at simultaneously optimizing two or more conflicting
objective functions. It means that improving one objective implies worsening another. Several
characteristics add to the difficulty of multi-objective problems. Firstly, these problems entail finding
a set of optimal solutions, i.e., those that yield the best compromise among objectives. Secondly,
the distribution of the efficient points in the objective space may make the intensification and
diversification balance difficult. Thirdly, the difficulty increases with the number of objectives.

Several graph-based multi-objective optimization problems have been investigated over the last
decades, including spanning trees, shortest path, and maximum flow. The edges are assigned to two
weights: the distance and the travel time between adjacent vertices, which may be anticorrelated
values. The distance is geospatial information from the dataset, and the travel time is temporal
information computed from the traffic jam. The multi-objective shortest path problem consists of
finding the set of optimal paths from S to T (starting and target points) by simultaneously optimizing
both the total distance and travel time.
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Figure 15: Integrating SUNT with data from public schools. The total number of passenger per
stop/station is shown in red. Students are represented by blue dots.

Machine learning techniques have been successfully employed to enhance the search process of
metaheuristic algorithms. Common examples in the literature include multi-agent approaches,
which involve a set of intelligent and autonomous entities (agents) collaborating to solve a problem
harmoniously. Each agent employs one or more appropriate methods to solve the problem, learns
from its experiences, and cooperates by exchanging information with other agents. An example is
particle swarm optimization algorithms, where each particle is modeled as an agent; another example
is evolutionary algorithms based on multiple search operators, where each operator is an intelligent
agent. These examples may maintain a GNN model to select in each algorithm iteration an agent to
execute.

B DATASET GENERAL INFORMATION

Efficient urban mobility requires a branch of strategies to manage traffic, delivering improvements,
such as increasing safety, reducing travel time, decreasing costs, and supporting environmental issues.

In this work, we focus our investigation on efficient urban mobility by modeling data from public
transportation systems due to its importance to the population. Any decision regarding this system
directly impacts urban mobility, especially in developing countries, where it is often the only means of
transport available to low-income populations. When poorly planned, it delivers low-quality services
with delayed and overloaded vehicles, concentrates traffic in specific regions while leaving others
unattended, and aggravates pollution with higher gas emission rates.

After an in-depth investigation of published manuscripts focused on public transportation, we noticed
a limitation in the availability of a totally public dataset containing comprehensive quantitative,
spatial, and temporal information about passengers, vehicles, lines, stops, and stations.

Moreover, despite the increasing advancements in GNN methodologies, particularly for intelligent
transportation systems (ITS), there remains a significant lack of datasets with detailed information
about public transportation with their respective passengers. As highlighted in Table 2, many existing
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graph datasets are completely represented, often missing essential spatiotemporal features, integration
of multifaceted data, and sufficient scale to address the complexities of real-world challenges.

The missing information (“-”) in this table reflects the fact that several datasets commonly used
in research articles are partially described in the publications and are not freely shared in public
repositories with the same level of detail as ours. For example, we have noticed that information about
the number of nodes, edges, or specific temporal intervals is often unavailable. As a result, researchers
face challenges in reproducing experiments or fully understanding the scope and limitations of the
datasets referenced in these studies. On the other hand, we offer the Salvador Urban Network
Transportation (SUNT) dataset, which stands out as an exception, offering 2,871 nodes, 4,526 edges,
and a temporal granularity of less than one minute, with an in-depth dataset construction, which are
pivotal for addressing key deficiencies identified in recent studies on learning benchmarks. SUNT
offers a robust foundation for developing models that can learn complex spatiotemporal patterns
and adapt to rapidly changing conditions in ITS scenarios. Additionally, being recently collected, it
reflects an updated urban configuration, in contrast to the most recent previously available dataset,
which dates back to 2019.

Dataset #Nodes #Edges Period Shortest time interval
METR-LA 207 2,369 March 1, 2012 to June 30, 2012 5 minutes
PeMS-BAY 325 1,515 January 1, 2017 to May 31, 2017 5 minutes

TaxiBJ – –

July 1, 2013 to October 30, 2013

30 minutesMarch 1, 2014 to June 30, 2014
March 1, 2015 to June 30, 2015
November 1, 2015 to April 10, 2016

BikeNYC 50 – April 1, 2014 to September 30, 2014 1 hour
Shanghai Metro 288 958 July 1, 2016 to September 30, 2016 15 minutes
Hangzhou Metro 80 248 January 1, 2019 to January 31, 2019 15 minutes
Beijing Metro 276 – February 29, 2016 to April 3, 2016 –
Chongqing Metro 170 – March 1, 2019 to March 31, 2019 15 minutes
Stockholm County – – – –
UVDS 104 – Three months 5 minutes
SUNT 2,871 4,526 March 1, 2024 to October 30, 2024 < 1 minute

Table 2: Characteristics of SUNT Compared to Common Graph Datasets

In this paper, we make SUNT available, a massive dataset organized into two parts: (i) a raw set
of data that the reader can process according to their needs, and (ii) a graph connecting all these
data, respecting their geospatial and temporal restrictions. In addition, we also shared adjusted
models as benchmarks since the classical time series analyses to Graph Neural Networks to perform
classification and regression tasks on vertices and edges. Benchmarking public transportation datasets
forms the foundation for developing effective, efficient, and sustainable transportation systems that
meet the evolving needs of society.

All steps performed to create SUNT, illustrated in Figure 1, were presented in Section 3 (SUNT
Dataset Construction) of our manuscript. In the following sections, we provide more details about all
raw and graph-based datasets.

B.1 AUTOMATIC VEHICLE LOCATION (AVL)

AVL (Automatic Vehicle Location) technology records real-time vehicles’ geographical location.
The Global Positioning System (GPS) is commonly used to this end [Riter & McCoy, 1977]. The
collected data are parameters to estimate several other information, such as passengers boarding and
alighting, public transportation network planning, monitoring and controlling traffic operations, and
air quality improvements, among other benefits [Hickman, 2004].

In the SUNT dataset, AVL records can be divided into two datasets: AVL-lines and AVL-vehicles.
AVL-lines comprise static information regarding bus lines, whose features are shown in Table 3.
Column route_short_name identifies the bus line. Column pt_sequence presents the stop
sequences of the bus line. Column direction_id gives the direction of the line, where 1 stands
for one-way and 0 for return trip. Columns longitude and latitude give the geographical
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coordinate of the bus stop identified in column stop_id. Column route_long_name names the
bus stop. Column service_code identifies the trip along the line.

Table 3: AVL-lines features: information regarding bus lines.

route_short_name pt_sequence direction_id longitude latitude stop_id route_long_name service_code
0116 1 1 -38.51123 -12.983389 43768720 Avenida Vale Do Tororo 53786
0116 2 1 -38.511097 -12.986428 45832898 Avenida Vale do Tororo, 291 53786
0116 3 1 -38.511448 -12.990091 44782328 Praça Dr. João Mangabeira 53786
0116 4 1 -38.504387 -12.990533 44784448 Av. Vaco da Gama, S/N - 5378
0116 5 1 -38.501972 -12.992005 44784449 Av. Vasco da Gama, 271 - 53786
0116 6 1 -38.499004 -12.993324 45833116 Av. Vasco da Gama, S/N - 53786

Table 4 presents AVL-vehicles features, which comprise information concerning vehicles’ routes
and bus schedules. Column gps_datetime gives the date and time of the bus arriving at the stop
identified in column stop_id. If column gps_datetime records two values, then the lowest
is the bus arrival time at the stop, and the greatest is the bus departure time. The stop sequence of
the bus line must be consistent with respect to the data in gps_datetime, i.e., for each step, the
arrival time is less than the departure time, and this latter is less than the arrival time for the next stop.
The remaining columns of Table 4 are similar to those described in Table 3.

Table 4: AVL-vehicle features: information concerning vehicles’ routes and bus schedules.

vehicle route_short_name direction_id gps_datetime longitude latitude stop_id service code
20001 0310 0 2024-03-01 05:53:20 -38.512428 -12.978642 45834426 45546
20001 0310 0 2024-03-01 05:53:53 -38.509964 -12.975935 45834425 45546
20001 0310 0 2024-03-01 05:53:57 -38.509964 -12.975935 45834425 45546
20001 0310 0 2024-03-01 05:54:02 -38.508957 -12.975689 44782954 45546
20001 0310 0 2024-03-01 05:54:47 -38.508957 -12.975689 44782954 45546
20001 0310 0 2024-03-01 05:55:58 -38.507446 -12.97867 44428471 45546

For each day, the SUNT dataset comprises 61 files of AVL-lines and AVL-vehicle from three bus
companies. The size comprises, on daily average, 2.5 million entries in AVL-vehicle and 200
thousand entries in AVL-lines. Each company dataset contains their respective data concerning bus
lines and vehicles.

B.2 AUTOMATIC FARE COLLECTION (AFC)

Automated Fare Collection (AFC) is a fare payment system through smart cards or smartphones [Am-
pelas, 2001]. This process can occur either at the boarding or alighting, depending on the type of
AFC system the vehicle operator implements. In addition, AFC also collects personal information
and, in some scenarios, boarding and/or alighting locations [Mohammed & Oke, 2023].

Salvador’s public transportation system collects data from buses, BRT, and subway passengers via
AFC system. Concerning the buses, the collection occurs at two moments: when the passenger
validates the ticket at the vehicle’s turnstile or a mobile turnstile. AFC collects subway data from a
turnstile installed at the station entrance. AFC system in BRT combines the collection methods used
in the buses and subway.

Despite AFC operation in all transport systems, some limitations exist in collecting crucial data
for planning and monitoring public transport. In the case of buses, AFC does not record location
information and boarding and alighting times at bus stops; it only records the vehicle, line, and time
of card registration at the turnstile.

A subsample of AFC, shown in Table 5, illustrates the used attributes: cod_card is the number of
passenger’s card, randomly generated to avoid recovering any user identification, afc_datetime
represents the time when the passenger registers the payment, integration indicates the
possibility of a connection between vehicles, route_short_name is the route identification,
direction_id shows the bus direction (I – one way or V – return) considering its initial and
final stops, value is the trip cost, and vehicle is the code used to identify the vehicle. The AFC
dataset contains the following total of passenger trips: March – 36, 851, 307, April – 38, 238, 530,
May – 39, 424, 894, June – 33, 680, 595, and July – 33, 549, 584.
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Table 5: AFC subsample.

cod_card afc_datetime integration route_short_name direction_id value vehicle
02310034266847 2024-03-01 06:22:03 False 1386 I 0.0 20390
02310034266847 2024-03-01 06:22:10 False 1386 I 0.0 20390
02310033002113 2024-03-01 06:22:57 False 1386 I 0.0 20390
02310032345960 2024-03-01 08:12:25 False 1386 I 0.0 20390
02320033736512 2024-03-01 06:04:08 False 1386 I 0.0 20390
03620033306428 2024-03-01 06:10:17 False 1386 I 5.2 20390

B.3 GENERAL TRANSIT FEED SPECIFICATION (GTFS)

General Transit Feed Specification (GTFS) is an open standard for distributing relevant information
about transit systems to users.

In the SUNT dataset, the GTFS provides 5 files (GTFS Agency, GTFS Routes, GTFS Trips, GTFS
Stops Times, and GTFS Stops) that describe the entire network and services of public transportation
related to bus companies.

GTFS Agency, present in Table 6, contains information about the bus companies, which are associated
with GTFS Routes (Table 7) by the attribute agency_id. GTFS Routes contains information about
bus lines and is associated with GTFS Trips (Table 8) by the attribute route_id. GTFS Trips shows
all the trips and the paths followed by the bus and is directly associated with GTFS Stops Times
(Table 9), which maps the chronological order of bus stops where each trip paused. Finally, GTFS
Stops (Table 10) contains information about each bus stop and is associated with the GTFS Stops
Times by the attribute stop_id.

Table 6: GTFS Agency: information about the bus companies.

agency_id agency_name agency_url agency_timezone agency_lang agency_phone
1 company_I www. America/Sao_Paulo pt
2 company_II www. America/Sao_Paulo pt

Table 7: GTFS Routes: information about bus lines.

route_id agency_id route_short_name route_long_name route_type
4089 1 1230 Sussuarana x Barra R1. 3
4450 1 1321 São Marcos x Barroquinha 3
4518 1 1103 Alto do Cruzeiro/Pernambués x Shop.Bela Vista/Term Ac.Norte 3
4523 1 1405 Estação Pirajá x Cajazeiras 8 3
4524 1 1137 Pernambués x Barra 3

Table 8: GTFS Trips: information about the trips and the paths followed by the bus.

route_id service_id trip_id direction_id block_id shape_id

4089 26082_D_1046761 1046761_D_1_0 0 4089_001M 26082_I
4089 26082_D_1046761 1046761_D_1_1 1 4089_001M 26082_V
4089 26082_D_1046761 1046761_D_2_0 0 4089_002M 26082_I
4089 26082_D_1046761 1046761_D_2_1 1 4089_002M 26082_V
4089 26082_D_1046761 1046761_D_3_0 0 4089_002T 26082_I

The GTFS used is static and undergoes changes only when necessary, such as alterations to trips,
routes, directions, or bus stops. Accordingly, the routes file has 412 registers, trips file has 51,615
registers, stops file has 2,975 registers, and stop times file has 1,679,961 registers.
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Table 9: GTFS Stops Times: the chronological order of bus stops where each trip paused.

trip_id arrival_time departure_time stop_id stop_sequence pickup_type drop_off_type
1046761_D_1_0 08:30:00 08:30:00 43968810 1 0 0
1046761_D_1_0 08:31:41 08:31:41 47566106 2 0 0
1046761_D_1_0 08:33:49 08:33:49 44782337 3 0 0
1046761_D_1_0 08:34:55 08:34:55 44784470 4 0 0
1046761_D_1_0 08:35:44 08:35:44 44784471 5 0 0

Table 10: GTFS Stops: information about each bus stop.

stop_id stop_name latitude longitude location_type parent_station
43968810_S R. São Cristóvão 2 -12.931565284729 -38.444393157959 1
43968810 R. São Cristóvão 2 -12.931565284729 -38.444393157959 0 43968810_S
47566106_S Av. Ulysses Guimarães 4067 -12.93385887146 -38.4467735290527 1
47566106 Av. Ulysses Guimarães 4067 -12.93385887146 -38.4467735290527 0 47566106_S
44782337 Av. Ulysses Guimarães 4314-4322 -12.9351501464844 -38.4405784606934 0

B.4 LOCAL TRIP INFORMATION (LTI)

The bus company provides the Local Trip Information (LTI) dataset and maps the start of each trip
made by a vehicle on a specific route. Table 11 presents the attributes of the trip mapping dataset,
with the attributes start_trip and end_trip being the most important as they describe the start
and end of each trip, and the attribute activity classifies the type of trip as either normal, leaving
the garage, or returning to the garage. The LTI dataset complements the AVL dataset as it maps trip
records, since the AVL does not contain this information. In relation to the total of instances per
month, LTI comprises the following amounts: March – 771, 492, April – 773, 267, May – 771, 492,
June – 717, 285, and July – 681, 320.

March and April, LTI contains a total of and instances, respectively.

Table 11: LTI: the start of each trip made by a vehicle on a specific route.

route_short_name service_code direction_id vehicle start_trip end_trip activity
T014 74335 I 20401 01/03/2024 17:03:49 01/03/2024 17:10:45 Leaving the garage
T014 74335 I 20516 01/03/2024 05:37:16 01/03/2024 05:40:36 Leaving the garage
T014 74335 I 20516 01/03/2024 17:11:40 01/03/2024 17:20:58 Normal
T014 74335 I 20086 01/03/2024 05:39:27 01/03/2024 05:46:38 Leaving the garage
T014 74335 I 20401 01/03/2024 12:37:47 01/03/2024 12:42:04 Returning to the garage

B.5 BOARDING DATA

The boarding data, illustrated in Table 13, contains a set of raw details created after integrating the
AFC, LTI, AVL, and GTFS data, as shown in Figure 1. As one may notice, most attributes presented
in this table are inherited from this integration. A very important attributed available in this dataset
is the bus type. Although we are only using regular buses in our experiments, we emphasize that
readers can work on different types of public transportation such as BRT and subway.

To avoid extending the paper length and affecting the readability of our manuscript, we have only
included this table to illustrate the dataset and provide an idea of the various investigative possibilities.
However, the data dictionary, containing detailed information about each feature, is available in the
GitHub repository, where we share all data and sources.

B.6 ALIGHTING DATA

The alighting data, illustrated in Table 13, is one of the most important dataset produced by our
research. As previously mentioned, in the local scenario, users do not need to register when they leave
the vehicles. After a series of inferences, we estimate users’ alighting containing a set of relevant
features to understand their behavior better. As mentioned in previous dataset, to avoid extending
the paper length and affecting the readability of our manuscript, we have only included this table to
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Table 12: Description of Columns in the Dataset Boarding

Column Sample Value Dtype
tripuserid 02300033357538_20240301184830 object
type_bus bus object
user_type driver object
set company_i object
registers 2 int64
trip_id 20097_0310_7 object
start_trip 2024-03-01 17:56:43 datetime64[ns]
end_trip 2024-03-01 20:08:27 datetime64[ns]
tolerance NaT datetime64[ns]
integration False bool
cod_card 2300033357538 object
stop_time 2024-03-01 19:36:35 datetime64[ns]
register_time 2024-03-01 18:48:30 datetime64[ns]
service_code 45546 object
route_short_name 0310 object
vehicle_afc 20097 object
vehicle 20097 object
stop_id 44782849 object
order 1 float64
direction_id I object
trip_em 7.0 float64
dif_boarding 48.083 float64
trip Inside object
classification irregular object
motive excessive time object
trip firt_trip object
set_nb company_i object
stop_time_nb 2024-03-01 20:04:39 datetime64[ns]
route_short_name_nb 1067 object
vehicle_nb 20446 object
stop_id_nb 44164980 object
diff_nb 0.53 float64
motive_pe regular object
target_boarding irregular object

illustrate the dataset and provide an idea of the various investigative possibilities. However, the data
dictionary, containing detailed information about each feature, is available in the GitHub repository,
where we share all data and sources.

B.7 ORIGIN-DESTINATION (OD) DATASET

The last dataset presented in Figure 1 is the Origin-Destination (OD) Dataset. In summary, we
combining the previous dataset, we estimated important information as users’ full trips. Consequently,
we can estimate the bus loading in nodes (stops/stations) and edges (streets/avenues). The features
available in our OD dataset is shown in Table 14. Similarly to previous data, the data dictionary is
presented in the GitHub repository.

B.8 GRAPH-BASED DATASET

Our final contribution to data sharing is the organization of SUNT as a temporal graph. We have
integrated data collected over five months (from March to July 2024) into temporal graphs, with
observations varying every 5 minutes. Although we have used this configuration, we stress that any
temporal interval can be easily modified using our preprocessing codes.
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Table 13: Dataset summary Alighting

Column Sample Value Dtype
tripuserid 02300033520791_20240301104958 object
stop_time_ali 2024-03-01 10:55:27 datetime64[ns]
stop_id_ali 44165441 object
order_ali 6.0 float64
walk_target excessive object
trip_ali 8.0 float64
walk_dis 1.299 float64
walk_time 15.588 float64
walk_speed 5.5 float64
diff_de_pe 68.4 float64
wait_time 52.812 float64
trip_dis 1.884 float64
trip_time 5 float64
vel_media 22 float64
bridge False bool
bridge_type no bridge object
bridge_id None object
chain bus-bus object
target_ws regular object
target_avs regular object
target_tt regular object
target_td regular object
target_alighting regular object

Table 14: Summary of Dataset Columns OD

Column Sample Value Dtype
route_short_name 1521 object
register_code 55037 int64
direction_id I object
pt_sequence 1 int64
stop_id 46021891 int64
vehicle 30661 int64
trip_number 1 int64
trip_id 30661_1521_1266 object
start_trip 2024-03-01 06:59:11 datetime64[ns]
end_trip 2024-03-01 07:15:22 datetime64[ns]
stop_time 2024-03-01 06:59:11 datetime64[ns]
n-boardings 42.0 float64
n-alighting 0 float64
lag_loading 0 int64
balance 0 int64
loading 42 int64

In this dataset, we share edge information as illustrated in Table 16, in which src is the origin
stop/station, whereas dst is the destination. The distance between them is shown in distance.
Their geospatial locations are stored into src_lat, dst_lat, src_lon, and dst_lon. The av-
erage speed and time during the collected interval is shown in average_speed, and trip_time,
respectively. The passenger loading in that edge (steet or avenue) is available in loading.

In Table 16, we share information about nodes, i.e., details related to stops and stations. Some relevant
information containing average values considering vehicles are: loading – passenger loading that
crossed a given node; n-boarding and n-alighting – amount of boarding and alighting;
n-routes, n-trips, and n-vehicles contain the number of routes, trips, and vehicles; and
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Table 15: Sample of edge features.

src dst distance src_lat dst_lat src_lon dst_lon average_speed trip_time loading
100009577 345936831 0.254 -12.902 -12.902 -38.42 -38.417 25.6 4 78
100722777 100722778 0.362 -12.899 -12.897 -38.408 -38.408 11.3 8 20
100722777 44782645 1.062 -12.899 -12.899 -38.408 -38.413 40.2 5 45
100722777 45833440 0.417 -12.899 -12.897 -38.408 -38.409 50.5 10 90
100722777 66771046 0.934 -12.899 -12.897 -38.408 -38.413 26.2 6 30

average_speed is the average of speed for each vehicle during their last trip up to the destination
node.

Table 16: Sample of node features.

node loading n-alighting n-routes n-boarding n-trips n-vehicles average_speed

100009577 2.77 0.0 1.08 0.23 1.1 1.1 6.31
100722777 28.54 4.43 1.54 4.49 1.56 1.56 22.86
100722778 36.72 1.39 1.83 0.1 2.04 2.04 16.06
101214305 12.53 3.97 1.0 1.66 1.0 1.0 19.95
101269104 125.57 3.55 4.57 9.48 5.28 5.28 38.25

In Table 17, we organized the node and edge information by considering the time interval. In our
dataset, this interval was set as 5 minutes; however, using our codes, readers can modify it according
to their needs.

Table 17: Sample Node Features with time.

interval node loading n-boarding n-alighting n-vehicles n-routes n-trips average_speed
2024-03-01 05:00:00 100009577 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2024-03-01 05:05:00 100009577 14.0 1.0 0.0 2.0 2.0 2.0 0.0
2024-03-01 05:10:00 100009577 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2024-03-01 05:15:00 100009577 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2024-03-01 05:20:00 100009577 2.0 2.0 0.0 1.0 1.0 1.0 0.0
2024-03-01 05:25:00 100009577 18.0 0.0 0.0 1.0 1.0 1.0 0.0
2024-03-01 05:30:00 100009577 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2024-03-01 05:35:00 100009577 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2024-03-01 05:40:00 100009577 1.0 1.0 0.0 1.0 1.0 1.0 0.0
2024-03-01 05:45:00 100009577 0.0 0.0 0.0 0.0 0.0 0.0 0.0

B.9 DATA STATISTICS

Aiming to understand our dataset better, we have used some basic statistics to describe the most
relevant variables. While these statistics are not included in this manuscript for the sake of brevity, they
are available in a well-organized Python notebook, which can be accessed at https://github.
com/suntdataset/sunt/blob/main/Statistics.ipynb.

C LEARNING MODELS

This section summarizes the benchmarks used in our experimental setup, providing details about the
packages, parameters, and architectures considered to model the SUNT dataset.

C.1 TIME SERIES ANALYSES

The modeling process using univariate time series was performed considering two well-known
methods: Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Gated Recurrent Units
(GRU), and Long Short-Term Memory (LSTM). Although there are several methods designed to reach
this objective, we have selected those as benchmarks for representing classical statistic-based and
ML-based methods. In addition, recognizing the growing importance of foundation models in time
series analysis, specifically those that can perform tasks without explicit training (zero-shot learning),
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we also considered a language model adapted for time series forecasting, named CHRONOS. Finally,
we used multivariate time series forecasting to make predictions on our dataset. This method is
important for public transportation because it considers multiple factors at each moment, like different
types of transportation (subway, BRT, and bus), to make more accurate predictions. For this, we used
the Series-cOre Fused Time Series forecaster (SOFTS).

C.1.1 SEASONAL AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA)

SARIMA comprises the combination of Auto-Regressive (AR) and Moving Average (MA) meth-
ods [Shumway & Stoffer, 2011]. To understand these methods better, let Xt = {x0, x1, x2, . . . , xt}
be a time series composed of observations collected over time (t). We can also express time series
as a sum of non-observable components Xt = Tt + St + εt, such that Tt represents the trend, St

the seasonality, and εt the noise produced by a random process. Typically, Tt and St are seen as
deterministic, i.e., a given observation strictly depends on past ones. On the other hand, εt represents
the stochasticity, being determined by probability density functions.

By considering the deterministic and stochastic components, one can model time series in terms
of q past random observations as Moving Average process, MA(q), xt = xt−1 + θ1 · εt−1 + θ2 ·
εt−2 + · · ·+ θq · εt−q , such that {θq} are constants and {εt} are values produced by a purely random
process with mean E(Xt) = 0 and variance var(Xt) = σ2 [Box et al., 2015, Shumway & Stoffer,
2011]. Time series can also be modeled by p past observations as an Autoregressive process, AR(p),
xt = ϕ1 · xt−1 + ϕ2 · xt−2 + · · · + ϕp · xt−p + εt, such that {ϕp} are constants and εt is value
produced by a purely random process with mean E(Xt) = 0 and variance var(Xt) = σ2 [Box et al.,
2015, Shumway & Stoffer, 2011].

These processes can also be combined to model time series according to q past noise values and
p past observations using an Autoregressive and Moving Average (ARMA) process, as shown in
Equation 2. Formally, this process is represented by ARMA(p, q), in which p is the autoregressive
part AR(p), and q is the moving average one MA(q) [Box et al., 2015, Shumway & Stoffer, 2011].

xt = c+ ϕ1xt−1 + ϕ2xt−2 + . . .+ ϕpxt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (2)

The ARMA process was designed to model stationary time series once their mean and variance do
not vary over time [Box et al., 2015, Shumway & Stoffer, 2011]. In situations where the stationary
restriction cannot be ensured, one may use an autoregressive integrated moving average process,
ARIMA(p, d, q), defined in Equation 3. In summary, the non-stationary source is removed by
replacing xt with wt, such that wt = ∇dxt, thus providing a model for originally non-stationary time
series.

xt = c+ ϕ1wt−1 + ϕ2wt−2 + . . .+ ϕp+dwt−p−d + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (3)

The seasonal ARIMA model, referred to as SARIMA, was developed to use differencing at a lag
equal to the number of seasons (s) [Shumway & Stoffer, 2011], aiming to remove seasonal effects as
shown in Equation 4.

ΦP (B
s)ϕ(B)▽D

s ▽dxt = δ +ΘQ(B
s)θ(B)εt (4)

In time series analyses, B is just a backshift operator, i.e., (1 + B + B2)xt is equivalent to (xt +
xt−1 + xt−2). As aforementioned, ϕ(B) and θ(B) are ordinary AR and MA processes, respectively.
On the other hand, ΦP (B

s) is the seasonal autoregressive operator, and ΘQ(B
s) is the seasonal

moving average operator with P and Q orders, respectively. Finally, the ordinary and seasonal
difference components are represented by ▽d = (1 − B)d and ▽D

s = (1 − Bs)D. SARIMA is
denoted by ARIMA(p, d, q)× (P,D,Q)s.

To exemplify the usage of ARIMA, let ARIMA(0, 1, 1)× (0, 1, 1)12 be a model used to analyze a
temporal data with seasonal fluctuations occurring in every 12 months, which is shown in Equation 5
and expanded in Equation 6.
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(1−B12)(1−B)xt = (1 + ΘB12)(1 + θB)εt (5)

(1−B −B12 +B13)xt = (1 + θB +ΘB12) + ΘθB13)εt (6)

Previous formulation can also be represented by Equation 7, similarly to the AR, MA, ARMA, and
ARIMA definitions.

xt = xt−1 + xt−12 − xt−13 + εt + θεt−1 +Θεt−12 +Θθεt−13 (7)

In our experiments, we have use the SARIMAX function implemented in the statsmodels package
(version 0.13.5). To find the optimal parameters, we have performed a grid search in the following
interval: p = [0, 2], d = [0, 2], q = [0, 5], P = [0, 5], D = [0, 2], Q = [0, 2], s = [0, 2], and trend =
[‘n’, ‘c’, ‘t’, ‘ct’] such that ‘n’ means there is no trend, ‘c’ indicates a constant trend (i.e. a degree zero
component of the trend polynomial), ‘t’ indicates a linear trend over time, and ‘ct’ is both constant
and linear.

C.1.2 GATED RECURRENT UNITS (GRU)

The adoption of traditional Deep Neural Network (DNN) approaches to model temporal data has
required long products of matrices, which can lead to vanishing or exploding gradients [Zhang et al.,
2023]. Several approaches were designed to deal with this issue, including Gated Recurrent Units
(GRU) [Cho et al., 2014a]. GRU can be seen as a Recurrent Neural Network that implements two
important gates: reset and update. The reset gate is responsible for controlling how previous network
states will be remembered, i.e., it helps to capture short-term dependencies over time [Zhang et al.,
2023]. The update gate controls the influence of old states on the new ones, thus supporting the model
of long-term dependencies over time [Zhang et al., 2023].

The reset gate (Rt) in a given time instant t is expressed as Equation 8, such that Xt is a sample of
the time series (minibatch), Ht−1 is the output produced by the hidden state in previous time instant,
and Wxr, Whr, and br represent, as in usual ANN (Artificial Neural Network), learnable weights
and bias.

Rt = σ(XtWxr + Ht−1Whr + br) (8)

Likewise, Equation 9 mathematically describes the update gate. In both equations, σ(·) is a sigmoid
function to bound values into the interval (0, 1).

Zt = σ(XtWxz + Ht−1Whz + bz) (9)

After defining the reset and update gates, it is necessary to create a candidate hidden state integrating
the reset gate with the state updating mechanism [Zhang et al., 2023], as shown in Equation 10. As
previously mentioned, Wxh and Wxh are, respectively, learnable weights trained on the input data
(Xt) and the elementwise product operation between the output produced by the reset gate (Rt) and
the hidden state (Ht−1) in previous time instant. Moreover, bh is the bias used to train the candidate
hidden state. It is worth mentioning that the sigmoid activation function σ(·) used in this step was
replaced by a hyperbolic tangent function tanh(·).

H̃t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh) (10)

In the last step, we have to incorporate the update gate (Zt). In summary, Zt weighs the influences of
the hidden state in previous time instant (Ht−1) and the new candidate hidden state (H̃t) to determine
the new hidden state in the current time instant t [Zhang et al., 2023].

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t) (11)
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Table 18: GRU architecture and parameters.

Layer Input Shape Output Shape #Param
GRU [2871, 36] [2871, 12] 65,292
(gru) GRU [2871, 36] [2871, 128], [1, 128] 63,744
(linear) Linear [2871, 128] [2871, 12] 1,548

In our experiments, a GRU model was implemented using the library Pytorch (version 1.12.1), using
the architecture shown in Table 18.

Finally, during the training phase, we have defined the learning rate and the number of epochs as
0.001 and 500, optimized with the Adam algorithm.

C.1.3 LONG SHORT-TERM MEMORY (LSTM)

LSTM is also a DNN designed to deal with the problem of balancing long- and short-term information
over time. The practical difference between GRU and LSTM is the implementation of three gates:
Input, Forget, and Output gates [Hochreiter & Schmidhuber, 1997]. Similarly to reset and update
gates, the LSTM gates are implemented in Equations 12, 13, and 14, respectively, such that W· and
b· are weight and bias parameters [Zhang et al., 2023].

It = σ(XtWxi + Ht−1Whi + bi) (12)

Ft = σ(XtWxf + Ht−1Whf + bf ) (13)

Ot = σ(XtWxo + Ht−1Who + bo) (14)

LSTM also implements a candidate memory cell, which is very similar to the previous gates, but
using a hyperbolic tangent function instead of a sigmoid one as shown in Equation 15 [Zhang et al.,
2023].

C̃t = tanh(XtWxc + Ht−1Whc + bc) (15)

Finally, the output (Ct) produced by the memory cell uses the input (It) and forget Ft gates to
determine the influence of new (C̃t) and past (Ct−1) information [Zhang et al., 2023].

Ct = It ⊙ C̃t + Ft ⊙ Ct−1 (16)

In our experiments, LSTM was implemented using the library Pytorch (version 1.12.1), using the
architecture shown in Table 19.

Table 19: LSTM architecture and parameters.

Layer Input Shape Output Shape #Param
LSTM [2871, 36] [2871, 12] 86,540
(lstm) LSTM [2871, 36] [2871, 128] 84,992
(linear) Linear [2871, 128] [2871, 12] 1,548

Finally, during the training phase, we have defined the learning rate and the number of epochs as
0.001 and 500, optimized with the Adam algorithm.

C.1.4 A LANGUAGE MODELING FRAMEWORK FOR TIME SERIES (CHRONOS)

CHRONOS is a framework that considers the advancements in language model architectures and
training methodologies to address the challenges of time series forecasting [Ansari et al., 2024].
Although both domains share a sequential nature, they diverge in terms of data representation.
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Natural language is composed of discrete tokens from a predefined vocabulary, while time series are
characterized by continuous-valued observations.

Consider a time series Xt = {x1, . . . , xt+H}, where the first t time steps constitute the historical
context, and the remaining H represent the forecast horizon. Language models operate on tokens
from a finite vocabulary, so using them for time series data requires mapping the observations Xt ∈ R
to a finite set of tokens. To this end, CHRONOS first scale and then quantize observations into a fixed
number of bins.

As part of the scaling process of CHRONOS, individual entries of the time series are normalized by
the mean of the absolute values in the historical context, according to Equation 17.

x̃i =
xi

s
, (17)

where s = 1
t

∑i=1
t |xi|.

Following, the real values of the scaled time series X̃t are converted into discrete tokens, by employing
quantization [Rabanser et al., 2020]. Such approach ignore time and frequency information, treating
the time series simply as a sequence and, because of that, no modifications are required to the language
model architecture, except adjusting the time series vocabulary size |Vts|, which is composed by
sequences of tokens, which depends on the quantization and may be different from the vocabulary
size of the original language model.

Such an approach disregards explicit time and frequency information, treating the time series as just
a sequence. Consequently, no modifications to the language model architecture are necessary, aside
from adapting the vocabulary size of the time series, |Vts|. This vocabulary consists of sequences of
tokens derived from the quantization process, which may differ from the original language model’s
vocabulary size. Adapting the vocabulary size involves truncating or extending the input and output
embedding layers of the language model to accommodate the specific token sequences derived from
the time series quantization process.

The forecasts produced by CHRONOS are based on probabilistic models, which allow them to
generate multiple possible future scenarios by sampling repeatedly from their predicted range. These
forecasts are initially represented as token IDs, which must be converted into real numbers and
adjusted to produce the final predictions. Therefore, it is necessary a dequantization function to
translate the token IDs into real values. Finally, these values are adjusted by reversing the scaling
process. For mean scaling, this involves multiplying the values by the scaling factor s [Ansari et al.,
2024].

C.1.5 SERIES-CORE FUSED TIME SERIES FORECASTER (SOFTS)

SOFTS [Han et al., 2024] is a model designed for forecasting multivariate time series, which are time
series data that include multiple variables, or channels, at each time step. It works by combining
all series into a global representation and then redistributing this to improve channel interactions
efficiently while reducing reliance on the quality of individual channels.

Given historical values Xt ∈ RC×L where L represents the length of the lookback window, and C is
the number of channels. The goal of SOFTS is to predict the future values Y ∈ RC×H , where H > 0
is the forecast horizon.

SOFTS consists of the following main components. First, it normalizes the time series by centering
them to zero mean and scaling them to unit variance. After forecasting, it reverses the normalization
on the predicted series. Next, the model performs embedding on the lookback window, capturing
the essential features of the data using a linear projection to embed the series of each channel to
S0 = RC×d, where d is the hidden dimension.

The embedded series then undergoes interaction through multiple layers of the STar Aggregate-
Redistribute (STAR) module Si = STAR (Si−1), i = 1, 2, · · · , N . This module uses a star-shaped
structure that allows information to flow between different channels, improving how they interact. The
STAR module differs from other common methods like attention [Vaswani et al., 2017], GNN [Kipf
& Welling, 2016], and Mixer [Tolstikhin et al., 2021], which use a distributed structure that depends
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on the quality of each channel. In contrast, the STAR module uses a centralized structure. It first
aggregates information from all channels into a global core representation and then sends this core
information to each channel. This approach reduces the complexity of interactions and decreases the
reliance on the quality of individual channels.

After passing through N layers of STAR, a linear predictor generates the forecast. Considering the
output series representation as SN , the prediction is computed as Y = Linear(SN ).

C.2 GRAPH NEURAL NETWORKS

The organization of the Origin-Destination (OD) dataset with passengers’ boarding and alighting
allowed us to create the SUNT dataset, embedding a set of quantitative, temporal, and geospatial
variables as complex network. Formally, we have used information on latitude, longitude, and time
to create a spatial-temporal graph G = {G1, G2, ..., GT }. For all t = 1, ..., T , Gt = (V,E) stands
for an attributed and directed graph at time t, where V = {v1, v2, ..., vN} is the set of N vertices
corresponding to the bus stops and stations, and E is the set of edges corresponding to feasible routes.
A directed edge (vi, vj) ∈ E, i = 1...N , j = 1...N , connects vertices vi, vj ∈ V if, and only if,
there is a feasible route for the bus traffic from the corresponding station vi to vj in the network. Gt

is a fixed graph structure since sets V and E do not change over time.

In our context, spatial data do not depend on time t, i.e., their information is time-invariant. Specif-
ically, in every vertex vi ∈ V , we store the following features: geographical position, number of
boarding and alighting per vehicle, and passenger load. The features specifically concerning edges
(vi, vj) ∈ E include the distance between stops and stations, the trip duration, the mean velocity, and
the Renovation Factor (RF). The RF is a well-known metric used in transportation research to assess
the total demand in a line, i.e., it is computed on a set of edges that belong to the line [ITDP, 2016].
Formally, this metric is the ratio of the total demand of a line to the load on its critical link. Higher
renovation factors occur when there are many short trips along the line. Corridors with very high
renovation factor rates are more profitable because they handle the same number of paying customers
with fewer vehicles [ITDP, 2016]. Besides the individual features, there is relevant information
shared by both vertices and edges, such as the number of passengers per vehicle, lines and directions,
vehicle characteristics, altitude, and trips.

To understand Graph Neural Networks (GNN) in our research, we take an input graph G, along with a
set of node features X ∈ Rd×|V |, and use this information to generate node embeddings zv , ∀v ∈ V .

The execution of GNNs depends on encoder-decoder functions to represent the graph as node
embeddings, which is processed by using Neural Message Passing (NMP). In each message-passing
iteration performed during the training phase, new knowledge from node embeddings is updated
according to information aggregated from their neighborhoods [Hamilton, 2020, Wu et al., 2021].

During each message-passing iteration in a GNN, a hidden embedding hk
v corresponding to each node

v ∈ V is updated according to information aggregated from v’s graph neighborhoodN (v) [Hamilton,
2020]. This message-passing update can be expressed by Equations (18) and (19).

hk
v = UPDATEk

(
hk−1
v ,mk

N (v)

)
(18)

mk
N (v) = AGGREGATEk

({
hk
u,∀u ∈ N (v)

})
(19)

From these equations, consider UPDATE and AGGREGATE as Neural Networks. At each iteration
k of the GNN, the AGGREGATE function takes as input the set of embeddings of the nodes in v’s
graph neighborhood N (v) and generates a message mN (v) based on this aggregated neighborhood
information. The different iterations of message passing are also sometimes known as the different
layers of the GNN [Hamilton, 2020]. The function UPDATE then combines the message mk

N (v)

with the previous embedding hk−1
v of node v to generate the updated embedding hk

v . The initial
embeddings at k = 0 are set to the input features for all the nodes, i.e., h(0)

v = xv,∀v ∈ V . After
running K iterations of the GNN message passing, we can use the output of the final layer to define
the embeddings for each node, according to Equation (20).
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zv = h(K)
v ,∀v ∈ V (20)

The authors in [Hamilton, 2020] highlight that since the AGGREGATE function takes a set as input,
GNNs defined in this way are permutation equivariant by design.

After going through a series of iterations of GNN message passing, the embeddings for each node
will also contain information about all the features in their neighborhood. For example, after the first
iteration (k = 1), each node embedding will incorporate information from the nodes that are directly
connected to it, which can be reached by a path of length 1 in the graph; after the second iteration
(k = 2), each node embedding will incorporate information from not just its immediate neighbors,
but also the nodes that can be reached by a path of length 2 in the graph. This process continues, and
after k iterations, each node embedding will comprise information about its k-hop neighborhood.

The way GNNs collect feature information locally is similar to how convolutional kernels in Convo-
lutional Neural Networks (CNNs) gather information from specific regions in an image. However,
while CNNs gather information based on spatial locations, GNNs gather information based on local
graph neighborhoods [Hamilton, 2020, Zhang et al., 2018, Kipf & Welling, 2016, Wu et al., 2020].

There are several types of GNN architectures that have been proposed in the literature, some
of the most common were used in this work: GCN(Graph Convolutional Network) [Kipf &
Welling, 2016], SAGE (SAmple and aggreGatE) [Hamilton et al., 2017], GAT (Graph Attention
Networks) [Veličković et al., 2017], and CHEB (Chebyshev spectral graph convolutional opera-
tor) [Defferrard et al., 2016]. They have been widely used in various tasks such as node classification,
link prediction, and graph classification.

C.2.1 GRAPH CONVOLUTIONAL NETWORK (GCN)

GCN uses a graph convolution operation to learn representations of nodes and edges in a graph. One
of the key features of GCNs is weight-sharing, which means that the same weight matrix is used for
every node in the graph, by employing the symmetric-normalized aggregation as well as the self-loop
update approach. This allow GCNs to learn representations of large graphs efficiently.

The symmetric-normalized aggregation employed by Kipf & Welling [2016] in the GCNs is defined
according to Equation ( 21).

mN (v) =
∑

u∈N (v)

hu√
|N (v) || N (u)|

(21)

As a simplification of the neural message passing approach, now the aggregation is taken over the
node’s neighbors as well as the node itself, omitting the explicit update step. Therefore, the GCN
message passing function is defined according to Equation (22).

hk
v = σ

Wk
∑

u∈N (v)∪{v}

hu√
|N (v) || N (u)|

 , (22)

where the weight matrix Wk is a trainable parameter matrix and σ denotes an elementwise non-
linearity, as for example ReLU [Kipf & Welling, 2016].

In our experiments, GCN was implemented using the library Pytorch (version 1.12.1), using the
architecture shown in Table 27.

Table 20: GCN architecture and parameters.

Layer Input Shape Output Shape #Param
GCN [2871, 36], [2, 4158], [4158] [2871, 12] 6,284
(conv1) GCNConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(linear) Linear [2871, 128] [2871, 12] 1,548
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C.2.2 LOCAL EXTREMA CONVOLUTION (LECONV)

LEConv [Ranjan et al., 2020] is a GCN that captures local extremum information by utilizing the
difference operator to determine the importance of nodes relative to their neighbors, as defined in
Equation (23).

x′
v = xvW1 +

∑
u∈N (v)

e(u,v) · (W2xv −W3xu), (23)

where e(u,v) denotes the edge weight from source node u to target node v; and W1,W2, W3 are
learnable parameters.

In our experiments, LEConv was implemented using the library Pytorch (version 1.12.1), using the
architecture shown in Table 21.

Table 21: LEConv architecture and parameters.

Layer Input Shape Output Shape #Param
LEConv [2871, 36], [2, 4158], [4158] [2871, 12] 15,628
(conv1) LEConv [2871, 36], [2, 4158], [4158] [2871, 128] 14,080
(linear) Linear [2871, 128] [2871, 12] 1,548

C.2.3 GRAPH ATTENTION NETWORKS (GAT)

On the other hand, GATs are a type of GNN that uses attention mechanisms to learn representations
of nodes in a graph. Attention mechanisms allow GATs to focus on the most important neighbors for
each node, improving the network’s performance.

According to [Veličković et al., 2017], GAT uses attention weights to define a weighted sum of the
neighbors as defined in Equation (24).

x′
v =

∑
u∈N (v)∪{v}

α(v,u)Wxu (24)

where α(v,u) denotes the attention on neighbor u ∈ N (v) when we are aggregating information at
node v. It is possible to add multiple attention heads, which is closely related to the transformer
architecture defined by Vaswani et al. [2017]. In this approach, one computes distinct attention weights
using independently parameterized attention layers. In our experiments, GAT was implemented using
the library Pytorch (version 1.12.1), using the architecture shown in Table 22.

Table 22: GAT architecture and parameters.

Layer Input Shape Output Shape #Param
GAT [2871, 36], [2, 4158], [4158] [2871, 12] 6,540
(conv1) GATConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,992
(linear) Linear [2871, 128] [2871, 12] 1,548

C.2.4 SELF-SUPERVISED GRAPH ATTENTION NETWORK (SUPERGAT)

SuperGAT[Kim & Oh, 2022] was proposed for guiding attention heads with the presence or absence
of an edge between a node pair. The authors exploit the link prediction task to self-supervise attention
with the label 1 if an edge exists for a pair of nodes u and v, and label 0 otherwise. Therefore, they
analyze what graph attention learns and how it relates to the presence of edges. In this analysis,
SuperGAT focus on two commonly used attention mechanisms, GAT’s original single-layer neural
network (GO) and dot-product (DP), been extended in two variants: SuperGAT scaled dot-product
(SD), and SuperGAT mixed GO and DP (MX), as defined in Equation (25).

x′
v = α(v,v)Wxv +

∑
u∈N (v)

αSD or MX
(v,u) Wxu, (25)
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where αSD
(v,u) divides the dot-product of nodes by a square root of dimension as Transformer [Vaswani

et al., 2017], preventing some large values to dominate the entire attention after softmax. In another
direction, αMX

(v,u) multiplies GO and DP attention with sigmoid, motivated by the gating mechanism
of GRUs [Cho et al., 2014a]. Since DP attention with the sigmoid function represents the probability
of an edge, it can softly exclude unlikely neighbors while implicitly prioritizing the remaining
nodes [Kim & Oh, 2022].

In our experiments, SuperGAT was implemented using the library Pytorch (version 1.12.1), using the
architecture shown in Table 23 with its MX variant.

Table 23: SuperGAT architecture and parameters.

Layer Input Shape Output Shape #Param
SuperGAT [2871, 36], [2, 4158] [2871, 12] 6,540
(conv1) SuperGATConv [2871, 36], [2, 4158] [2871, 128] 4,992
(linear) Linear [2871, 128] [2871, 12] 1,548

C.2.5 EFFICIENT GRAPH CONVOLUTION (EGC)

EGC [Tailor et al., 2021] provides both spatial and spectral interpretations for an isotropic GNN
architecture [Tailor et al., 2021]. As an isotropic model, it requires memory proportional to the
number of vertices in the graph (O(V )); in contrast, anisotropic models require memory proportional
to the number of edges (O(E)). For a layer with in-dimension of F and out-dimension of F ′, the
authors use B basis weights Wb ∈ RF ′×F , computing the output for each node v ∈ V by calculating
combination weighting coefficients w(v) ∈ RB , and weighting the results of each aggregation using
the different basis weights Wb. Therefore, the layer output for node v is the weighted combination
of aggregation outputs as defined in Equation (26).

x′
v =

B∑
b=1

w
(v)
b

∑
u∈N (v)

α(v,u)Wbxu, (26)

where α(v,u) is some function of nodes v and u, and N (v) denotes the neighbours of v. A popular
method pioneered by GAT, as previously mentioned, to boost representational power is to represent
α using a learned function of the two nodes’ representations such as attention heads.

In our experiments, EGC was implemented using the library Pytorch (version 1.12.1), using the
architecture shown in Table 24.

Table 24: EGC architecture and parameters.

Layer Input Shape Output Shape #Param
EGC [2871, 36], [2, 4158] [2871, 12] 5,164
(conv1) EGConv [2871, 36], [2, 4158] [2871, 128] 3,616
(linear) Linear [2871, 128] [2871, 12] 1,548

C.2.6 SAMPLE AND AGGREGATE (SAGE)

SAGE is a GNN architecture that, instead of training individual embeddings for each node, learns a
set of aggregation functions that are applied to the features of a node’s local neighborhood to create
an embedding for that node [Hamilton et al., 2017]. Each aggregator function aggregates information
from a different number of hops, or search depth, away from a given node.

The embedding generation, or forward propagation algorithm, of SAGE assumes that the param-
eters of K aggregator functions (denoted AGGREGATE(k), ∀k ∈ 1, ...,K), which aggregate
information from node neighbors, were learned. Moreover, a set of weight matrices Wk, which
is used to propagate information between different search depths (layers of the model) was also
learned [Hamilton et al., 2017].
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Given a graph G and features for all its nodes xv, ∀v ∈ V , k denotes the current step in the depth
of the search and hk denotes a node’s representation at this step. First, each node v ∈ V aggregates
the representations of its immediate neighboring nodes using Equation (27), a slight modification of
Equation (19).

hk
N (v) = AGGREGATE(k)

({
hk−1
u ,∀u ∈ N (v)

})
(27)

Several types of aggregation functions can be used in SAGE, such as SUM, MEAN, MAX, and
others [Hamilton et al., 2017].

After aggregating the neighboring feature vectors, SAGE then concatenates the node’s current
representation, hk−1

v , with the aggregated neighborhood vector, and this concatenated vector is fed
through a fully connected layer with nonlinear activation function σ. Such concatenation is performed
according to Equation (39).

hk
v = σ

(
Wk · CONCAT

(
hk−1
v ,hk

N (v)

))
(28)

After running K iterations of the SAGE, we can use the output of the final layer to define the
embeddings for each node, also according to Equation(20) [Hamilton et al., 2017]. In our experiments,
SAGE was implemented using the library Pytorch (version 1.12.1), using the architecture shown in
Table 25.

Table 25: SAGE architecture and parameters.

Layer Input Shape Output Shape #Param
SAGE [2871, 36], [2, 4158] [2871, 12] 10,892
(conv1) SAGEConv [2871, 36], [2, 4158] [2871, 128] 9,344
(linear_out) Linear [2871, 128] [2871, 12] 1,548

C.2.7 CHEBYSHEV SPECTRAL GRAPH CONVOLUTIONAL OPERATOR (CHEB)

In another direction, CHEB [Defferrard et al., 2016] implements an efficient generalization of the
CNNs to arbitrary graphs, considering that basic convolutional filters on graphs can be represented
as polynomials of the Laplacian L of G. An input vector X ∈ RN is a signal defined on a graph
G with N nodes. Then a graph convolution of input signals X with filters g on G is defined by
∗GX = pM (L)x. Therefore, pM (L) is defined as the spectral filter of the eigenvalues of the Laplacian,
and M is the polynomial degree of the eigenvalues. According to Hamilton [2020], if we use a degree
M polynomial, then we ensure that the filtered signal at each node depends on information in its
M-hop neighborhood. CHEB defined pM (L) using Chebyshev polynomials [Mason & Handscomb,
2002]. In our experiments, CHEB was implemented using the library Pytorch (version 1.12.1), using
the architecture shown in Table 26.

Table 26: CHEB architecture and parameters.

Layer Input Shape Output Shape #Param
CHEB [2871, 36], [2, 4158], [4158] [2871, 12] 15,500
(conv1) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 13,952
(linear) Linear [2871, 128] [2871, 12] 1,548

C.2.8 SIMPLE SPECTRAL GRAPH CONVOLUTION (S2GC)

According to Zhu & Koniusz [2021], without specially designed architectures, the performance
of GCNs degrades quickly with increased depth. As the aggregated neighborhood size and neural
network depth are two completely orthogonal aspects of graph representation, several methods
focus on summarizing the neighborhood by aggregating M-hop neighborhoods of nodes while using
shallow neural networks. However, these methods still encounter oversmoothing, and suffer from
high computation and storage costs. Because of that, Zhu & Koniusz [2021] proposed a modified
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Markov Diffusion Kernel to derive a variant of GCN called Simple Spectral Graph Convolution
(S2GC)) network with the softmax classifier after the linear layer:

Ŷ = softmax

(
1

M

M∑
m=1

(
(1− α)

(
D̂

−1/2
ÂD̂

−1/2
)m

X + αX
)

W

)
, (29)

where Â = A + I denotes the adjacency matrix with inserted self-loops and D̂ be the diagonal degree
matrix. In our experiments, S2GC was implemented using the library Pytorch (version 1.12.1), where
is named as SSGConv, using the architecture shown in Table 27.

Table 27: S2GC architecture and parameters.

Layer Input Shape Output Shape #Param
S2GC [2871, 36], [2, 4158], [4158] [2871, 12] 6,284
(conv1) S2GConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(linear) Linear [2871, 128] [2871, 12] 1,548

C.2.9 PATH INTEGRAL BASED GRAPH NEURAL NETWORKS (PAN)

PAN [Ma et al., 2020] introduces a convolution operation that considers all paths between the message
sender and receiver, with learnable weights based on path length, corresponding to the maximal
entropy random walk. It extends the graph Laplacian into a new transition matrix, called the Maximal
Entropy Transition (MET) matrix, derived from a path integral formalism [Feynman et al., 2010].

Similar to the basis formed by the graph Laplacian, the convolutional layer of PAN is based on the
spectrum of MET matrix, as defined in Equation (30)

X(h+1) = METhXhWh, (30)

where h refers to the layer number. Applying MET to the input X essentially performs a weighted
average over the neighbors of a given node. This raises whether the normalization consistent with the
path integral formulation is the most effective approach in a data-driven context.

In our experiments, PAN was implemented using the library Pytorch (version 1.12.1), where is named
as PANConv, using the architecture shown in Table 28.

Table 28: PAN architecture and parameters.

Layer Input Shape Output Shape #Param
PAN [2871, 36], [2, 4158] [2871, 12] 6,286
(conv1) PANConv [2871, 36], [2, 4158] [2871, 128], [2871, 2871] 4,738
(linear) Linear [2871, 128] [2871, 12] 1,548

C.3 ANTI-SYMMETRIC DEEP GRAPH NETWORKS (A-DGN)

A-DGN [Gravina et al., 2023] is a framework for effective long-term propagation of information
in Deep Graph Networks (DGNs) architectures designed through the lens of ordinary differential
equations (ODEs).

DGNs are a class of learning models designed to map and compress complex relational information
from graphs into feature vectors that capture both the graph’s topology and label information. DGNs
are composed of multiple layers, which updates node representations by aggregating the nodes and
their neighbors, following a message-passing approach. However, in some cases, relying solely on
local node interactions is insufficient to learn meaningful embeddings. In such scenarios, DGNs often
need to capture information from distant node interactions within the graph, which can be achieved
by stacking multiple layers.
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A-DGN preserves long-range information between nodes while establishing conditions that prevent
gradient vanishing or explosion. Therefore, in A-DGN, a node is updated according to Equation (31).

x′
v = xv + ϵ · σ((W −WT − γI)xv +Φ(X,N(v)) + b), (31)

where (W−WT ) is the anti-symmetric weight matrix; Φ(X,N(v)) denotes a MessagePassing layer,
which can be any function that aggregates nodes (and edges) information; I is the identity matrix; γ
is a hyper-parameter that regulates the strength of the diffusion; X is the node feature matrix of the
whole graph; σ is the discretization step; and b is a bias vector that contain the trainable parameters
of the system.

In our experiments, A-DGN was implemented using the library Pytorch (version 1.12.1), where is
named as AntiSymmetricConv, using the architecture shown in Table 29.

Table 29: A-DGN architecture and parameters.

Layer Input Shape Output Shape #Param
A-DGN [2871, 36], [2, 4158] [2871, 12] 3,072
(conv1) A-DGNConv [2871, 36], [2, 4158] [2871, 36] 2,628

(act) Tanh [2871, 36] [2871, 36] –
(phi) GCNConv [2871, 36], [2, 4158] [2871, 36] 1,296

(linear) Linear [2871, 36] [2871, 12] 444

C.4 TEMPORAL GRAPH NEURAL NETWORKS

C.4.1 GRAPH CONVOLUTIONAL RECURRENT NETWORKS (GCRN)

GCRN [Seo et al., 2018] is one extension of CHEB [Defferrard et al., 2016] for modeling and
predicting time-varying graph-based data by merging CNN for graph-structured data and Recurrent
Neural Networks (RNNs) to identify simultaneously meaningful spatial structures and dynamic
patterns.

A special class of RNN is the LSTM, described in Section . To generalize the LSTM model to
graphs, Seo et al. [2018] replaced the convolution defined by Equations 12, 13, 14, and 15, to a graph
convolution ∗G , as defined in Equations 32, 33, 34, and 35.

It = σ(Wxi ∗G Xt + Whi ∗G Ht−1 + bi) (32)

Ft = σ(Wxf ∗G Xt + Whf ∗G Ht−1 + bf ) (33)

Ot = σ(Wxo ∗G Xt + Who ∗G Ht−1 + bo) (34)

C̃t = tanh(Wxc ∗G Xt + Whc ∗G Ht−1 + bc) (35)

In our experiments, we named GConvLSTM the GCRN architecture that stacks a graph CNN for
feature extraction and an LSTM as described previously.

In addition, as mentioned by the authors Seo et al. [2018], GCRN is not limited to LSTMs and is
straightforward to apply to any kind of recursive networks. In our experiments, we named GConvGRU
the GCRN architecture that stacks a graph CNN for feature extraction and a GRU, by replacing
formulation of GRU defined by Equations 8, 9, and 10 to Equations 36, 37, and 38.

Rt = σ(Wxr ∗G Xt + Whr ∗G Ht−1 + br) (36)

Zt = σ(Wxz ∗G Xt + Whz ∗G Ht−1 + bz) (37)
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H̃t = tanh(Wxh ∗G Xt + Whh ∗G (Rt ⊙Ht−1) + bh) (38)

In our experiments, GConvLSTM and GConvGRU were implemented using the library Pytorch
(version 1.12.1), using the architectures shown in Tables 30 and 31, respectively.

Table 30: GConvLSTM architecture and parameters.

Layer Input Shape Output Shape #Param
GConvLSTM [2871, 36], [2, 4158], [4158] [2871, 12], [2871, 128], [2871, 128] 87,436
(recurrent) GConvLSTM [2871, 36], [2, 4158], [4158] [2871, 128], [2871, 128] 85,888

(convxi) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convhi) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512
(convxf ) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convhf ) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512
(convxc) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convhc) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512
(convxo) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convho) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512

(linear)Linear [2871, 128] [2871, 12] 1,548

Table 31: GConvGRU architecture and parameters.

Layer Input Shape Output Shape #Param
GConvGRU [2871, 36], [2, 4158], [4158] [2871, 12] 65,292
(recurrent) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 63,744

(convxz) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convhz) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512
(convxr) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convhr) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512
(convxh) CHEBConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(convhh) CHEBConv [2871, 128], [2, 4158], [4158] [2871, 128] 16,512

(linear)Linear [2871, 128] [2871, 12] 1,548

C.4.2 TEMPORAL GRAPH CONVOLUTIONAL NETWORK (TGCN)

TGCN [Zhao et al., 2019] is a neural network-based traffic forecasting method that combines the
Graph Convolutional Network (GCN) and the Gated Recurrent Unit (GRU). The GCN is used to
capture the topological structure of the urban road network for obtaining the spatial dependence, and
the GRU is used to capture the dynamic variation of traffic information on the roads for obtaining the
temporal dependence and eventually for realizing traffic prediction tasks.

In such a context, traffic forecasting can be viewed as learning a mapping function f based on the
road network, represented by a graph G and feature matrix X ∈ RN×P , where P is the number of
node attribute features, that is, the length of the historical time series. Therefore, Xt denotes the
traffic speed in all sections at time t. Traffic speeds of future T moments are calculated as follows:

[Xt+1, ...,Xt+T ] = f(G;Xt−n, ...,Xt−1,Xt)), (39)

where n is the length of a given historical time series, which represents the time steps of the historical
traffic data, and T is the time series length that needs to be forecasted. Consider the historical
traffic data as input into the TGCN model to obtain n hidden states, H, that covered spatiotemporal
characteristics: {Ht−n, · · · ,Ht−1,Ht}. The TGCN formulas are represented in Equations 40, 41,
and 42, where f(A,Xt) represents 2-layer GCN, X represents the feature matrix, and A the adjacency
matrix.

Rt = σ (Wr ∗ [f (A,Xt) ,Ht−1] + br) (40)
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Zt = σ (Wz ∗ [f (A,Xt) ,Ht−1] + bz) (41)

H̃t = tanh(Wh ∗ [f (A,Xt) , (Rt ⊙Ht−1)] + bh (42)

Therefore, the TGCN model can deal with complex spatial dependence and temporal dynamics.
In our experiments, TGCN was implemented using the library Pytorch (version 1.12.1), using the
architecture shown in Table 32.

Table 32: Model architecture and parameters for TGCN.

Layer Input Shape Output Shape #Param
TGCN [2871, 36], [2, 4158], [4158] [2871, 12], [2871, 128] 114,444
(recurrent) TGCN [2871, 36], [2, 4158], [4158] [2871, 128] 112,896

(convz) GCNConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(linearz) Linear [2871, 256] [2871, 128] 32,896
(convr) GCNConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(linearr) Linear [2871, 256] [2871, 128] 32,896
(convh) GCNConv [2871, 36], [2, 4158], [4158] [2871, 128] 4,736
(linearh) Linear [2871, 256] [2871, 128] 32,896

(linear) Linear [2871, 128] [2871, 12] 1,548

C.4.3 ATTENTION TEMPORAL GRAPH CONVOLUTIONAL NETWORK (A3TGCN)

A3TGCN [Bai et al., 2021] is an improvement of TGCN, in which the attention mechanism was
introduced to re-weight the influence of historical traffic states and thus to capture the global variation
trends of the traffic state.

Considering the previous formulation of TGCN, the hidden states were fed into the attention model to
determine the context vector that covers the global traffic variation information. Thus, the weight, a, of
each hidden state, H, was calculated by Softmax using a multilayer perception: {at−n, · · · , at−1, at}.
The context vector that covers global traffic variation information was calculated using the weighted
sum. Finally, forecasting results were outputted using the fully connected layer.

Therefore, A3TGCN uses GCN to capture the topological features of the road network, ensuring
spatial dependence, GRU to capture the dynamic variation in node attributes, revealing the local
temporal tendencies of traffic conditions, and an attention model to discern the global trends in traffic
conditions. In our experiments, A3TGCN was implemented using the library Pytorch (version 1.12.1),
using the architecture shown in Table 33.

Table 33: A3TGCN architecture and parameters.

Layer Input Shape Output Shape #Param
A3TGCN [2871, 36], [2, 4158], [4158] [2871, 12] 101,005
(recurrent) A3TGCN [2871, 1, 36], [2, 4158], [4158] [2871, 128] 99,457
(linear) Linear [2871, 128] [2871, 12] 1,548

C.4.4 DIFFUSION CONVOLUTIONAL RECURRENT NEURAL NETWORK (DCRNN)

DCRNN [Li et al., 2017] integrates diffusion convolution, the Sequence to Sequence architecture and
the scheduled sampling technique, also to predict the future traffic speed given previously observed
traffic flow.

DCRNN models the spatial dependency by relating traffic flow to a diffusion process, which explicitly
captures the stochastic nature of traffic dynamics. This diffusion process is characterized by a random
walk on a graph G. After many steps, a Markov process converges to a stationary distribution [Li
et al., 2017].

As prior approaches, DCRNN similarly employs GRU to characterize temporal dependencies. It
achieves this by substituting matrix multiplications within GRU with diffusion convolution ⋆G ,
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resulting in the development of the proposed Diffusion Convolutional Gated Recurrent Unit (DCGRU).
Consequently, Equations 40, 41, and 42 are replaced by the subsequent Equations 43, 44, and 45.

Rt = σ (Wr ⋆G [Xt,Ht−1] + br) (43)

Zt = σ (Wz ⋆G [Xt,Ht−1] + bz) (44)

H̃t = tanh (Wc ⋆G [Xt, (Rt ⊙Ht−1)] + bh) (45)

Following that, DCRNN utilizes the Sequence to Sequence architecture, wherein historical time series
data is inputted into an encoder. The final states of the encoder are then employed to initialize the
decoder. Subsequently, the decoder generates predictions, relying on either preceding ground truth
data or the model’s output. Finally, to mitigate the discrepancy between the input distributions of
training and testing, which can cause degraded performance, DCRNN integrates scheduled sampling,
feeding the model with either the ground truth observation with probability ϵi or the prediction by the
model with probability 1-ϵi at the ith iteration. During the training process, ϵi gradually decreases to
0 to allow the model to learn the testing distribution. In our experiments, DCRNN was implemented
using the library Pytorch (version 1.12.1), using the architecture shown in Table 34.

Table 34: Model architecture and parameters for DCRNN

Layer Input Shape Output Shape #Param
DCRNN [2871, 36], [2, 4158], [4158] [2871, 12] 127,884
(recurrent) DCRNN [2871, 36], [2, 4158], [4158] [2871, 128] 126,336
(convxz) DCRNNConv [2871, 164], [2, 4158], [4158] [2871, 128] 42,112
(convxr) DCRNNConv [2871, 164], [2, 4158], [4158] [2871, 128] 42,112
(convxh) DCRNNConv [2871, 164], [2, 4158], [4158] [2871, 128] 42,112

(linear) Linear [2871, 128] [2871, 12] 1,548

D EVALUATION PROCESS

This section summarizes the evaluation process designed to train and assess the performance of the
learning models. After exploring classification and regression tasks, specific metrics were considered
to analyze the obtained results, as discussed in the following sections.

D.1 CLASSIFICATION TASKS

This section summarizes the evaluation process designed to assess the performance of the learning
models. After exploring classification and regression tasks, specific metrics were considered to
analyze the obtained results, as discussed in the following sections.

The validation metrics were computed using confusion (contingency) matrices, with the number of
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) aggregated
from the outputs produced by a 10-fold cross-validation strategy.

The first adopted metric was accuracy (Equation 46), which is responsible for computing the total
number of correct classifications, represented by the sum of TP and TN, divided by the number n
of examples used in validation (attempts), thus producing an overall performance result to compare
distinct approaches.

Acc =
(TP + TN)

n
(46)

Another metric considered in our experiments was the F1-score, which provides a harmonic mean of
precision and recall. Precision computes the rate of correct classifications for the positive label over
the total number of attempts classified as positive (both correct and incorrect). Recall computes the
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number of true positive classifications divided by the total number of elements expected to be under
the positive label.

F1-score =
2× (Recall× Precision)

(Recall+ Precision)
(47)

In such equations, n represents the total number of classified instances, Recall corresponds to
the true positive rate (Equation 48), and Precision takes into account the number of instances
correctly (true positive) or incorrectly (false positive) classified as positive (Equation 49).

Recall =
TP

(TP + FN)
(48)

Precision =
TP

(TP + FP )
(49)

We also used the Matthews correlation coefficient (MCC) [Matthews, 1975], which is similar to
the well-known Pearson’s correlation coefficient, with the main difference being the usage of the
contingency matrix, as shown in Equation 50. The interpretation of this coefficient is based on the
interval [−1,+1], where +1 represents a perfect match between expected and predicted labels. When
it is equal to 0, learning models are confirmed to provide random predictions. When values approach
−1, a total disagreement is verified between expected and predicted labels.

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(50)

Besides the results presented in the manuscript, we have also assessed the results by visually analyzing
the chart produced by the ROC (Receiver Operating Characteristic) curve and computing the area
under the curve (AUC). The ROC curve plots the true positive rate (TPR), Equation 48, against the
false positive rate (FPR), Equation 51.

FPR =
FP

FP + TN
(51)

D.2 REGRESSION TASKS

Regarding node regression, we predict the passenger load at bus stops and stations over time. Due to
the temporal dependency, we have trained and validated our analyses with a sliding window strategy
instead of using cross-validation.

The first metric considered in our experiments was the mean squared error (MSE), shown in Equation,
computing the differences between expected (yi) and predicted (ŷi) values. We also used two related
metrics: Root-Mean-Squared Error (RMSE) and Mean Absolute Error (MAE), both depicted in
Equations 53 and 54.

MSE =
1

n

n∑
(yi − ŷi)

2 (52)

RMSE =

√
1

n

n∑
(yi − ŷi)2 (53)

MAE =
1

n

n∑
|yi − ŷi| (54)

Aiming to perform different interpretations, we have analyzed our results using the mean absolute
percentage error (MAPE) and the coefficient of determination (R2). MAPE, presented in Equation 3,
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expresses the prediction errors in terms of percentages of actual values. R2, presente in Equation 56,
is a metric used to assess the proportion of variance in the expected values explained by the predicted
ones, i.e., how closely the data matches the regression model. In this equation, ȳ is the mean of the
expected values.

MAPE =
1

n

n∑∣∣∣∣yi − ŷi
yi

∣∣∣∣ (55)

R2 = 1−
∑n

(yi − ŷi)
2∑n

(yi − ȳ)2
(56)

D.3 LOSS FUNCTIONS

The loss functions used to train ANN-based models depends on the analyzed task. For binary
classification tasks, we have considered Binary Cross-Entropy (BCE) as defined in Equation 57,
assuming the possible labels are {0, 1}. In this equation, XT is a set of instances selected to test the
model, yi ∈ XT is the class for the i-th tested instance, and ŷi is its respective prediction.

LBCE = − 1

|XT |

|XT |∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (57)

In case of classification tasks with more classes, we have used Cross-Entropy (CE) defined in
Equation 58, such that C represents all possible classes.

LCE = − 1

|XT |

|XT |∑
i=1

|C|∑
c=1

yi,c log(ŷi,c) (58)

Finally, GNNs trained to perform regression tasks can also use a special loss function as defined
in Equation 59. In this equation, λ is a hyper-parameter, and Lreg is a normalization term to avoid
overfitting issues.

loss = ∥yt − ŷt∥+ λLreg (59)

E DATASET AND BENCHMARK ACCESS

To support the maintenance of our contributions, we have shared all data and code in a GitHub
repository (https://github.com/suntdataset/sunt.git). The data includes all raw
and graph-based datasets. The code consists of scripts used to preprocess and transform the raw
datasets, as well as models used as benchmarks. We emphasize that the code contains notebooks
with commands organized into a structure that supports better comprehension of our work and the
reproducibility of our results.

E.1 DATA SHEET

E.1.1 MOTIVATION

1. For what purpose was the dataset created? The SUNT dataset primarily aims to contribute
to research in intelligent urban transportation fields, such as identifying transit patterns and
developing machine learning solutions. Additionally, the dataset can benefit researchers
from other domains interested in designing new theoretical and practical approaches,
utilizing SUNT for validation purposes.

2. Who created the dataset and on behalf of which entity? The dataset was created by
researchers from a public university (Omitted due to the double-anonymous requirements)
in Brazil in collaboration with the companies Integra (Consortium of bus companies in
Salvador) and NeoDados (Intelligent Solutions).
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3. Who funded the creation of the dataset? This work was supported by Integra (Consortium
of bus companies in Salvador), NeoDados (Intelligent Solutions), and CNPq (National
Council for Scientific and Technological Development), Brazil, under grants (Omitted due
to the double-anonymous requirements), and 68/2022 - Master’s and Doctorate Program
for Innovation - MAI/DAI.

E.1.2 DISTRIBUTION

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset is
entirely open to the public.

2. How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset,
codes, and models are already available at https://github.com/suntdataset/
sunt.git.

3. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

E.1.3 MAINTENANCE

1. Who will be supporting/hosting/maintaining the dataset? The GitHub will host the
dataset. The authors will support and maintain the dataset as new data from the local public
transport is collected over time.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
The owner/curator/manager(s) of the dataset can be contacted through the following emails
(Omitted due to the double-anonymous requirements).

3. Is there an erratum? No. If any errors are discovered in the future, we will publish errata
on the main page of our GitHub repository.

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, we will update the dataset as necessary to maintain its correctness and
up-to-date information. Announcements will be made accordingly. We will publish the
dataset versions on the main web page of the GitHub repository.

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? The dataset does not
contain personal information.

6. Will the older version of the dataset continue to be supported/hosted/maintained?Yes,
all dataset versions will be continuously maintained, hosted, and improved with new infor-
mation.

7. If others want to extend/augment/build on/contribute to the dataset, is there some
mechanisms for them to do so? Once the dataset comprises information on the pub-
lic transportation in Salvador, managed by local companies, all improvements will be
administrated by the original researchers.

E.1.4 COMPOSITION

1. What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Depending on the dataset, the instances may represent information
about: vehicles, trips, temporal data, geospatial locations, users’ boarding and alighting,
and graph structures.

2. How many instances are there in total (of each type, if appropriate)? SUNT comprises
61 files of AVL-lines and AVL-vehicle from three bus companies. The size comprises, on
daily average, 2.5 million entries in AVL-vehicle and 200 thousand entries in AVL-lines.
Considering March, the AFC dataset contains a total of 36,851,307 passenger trips, while
April has 38,238,530. In relation to March and April, LTI contains a total of 45,249,646 and
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43,789,980 instances, respectively. GTFS is composed of: the routes file with 412 registers,
trips file with 51,615 registers, stops file with 2,975 registers, and stop times file with
1,679,961 registers. In relation to the remaining dataset, created after the processing steps,
the number instances may vary depending on how the temporal information is configured.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? The dataset contains all instances considering the collected interval between
March and April 2024.

4. Is there a label or target associated with each instance? The most important advantage of
SUNT is the possibility of working on different learning tasks. In our benchmarks, we have
created model focused on regression and classification (graph nodes and edges). However,
depending on the users’ objectives, labels can be created or adjusted to meed different
learning requirements.

5. Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation, testing)?
No.

7. Are there any errors, sources of noise, or redundancies in the dataset? No.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained.

9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

E.1.5 COLLECTION PROCESS

1. How was the data associated with each instance acquired? The integration process was
performed using temporal and geospatial information of passengers, vehicles, trips, and
stops/stations as discussed in Section 3 of our manuscript.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? We mostly used
the ADCS (Automatic Data Collection System), which comprises AVL and AFC technologies,
to collect the data.

3. Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors), and how were they compensated (e.g., how much were crowdworkers paid)?
Integra (Consortium of bus companies in Salvador) and NeoDados (Intelligent Solutions)
have collected the data.

4. Does the dataset relate to people? No.

5. Did you collect the data from the individuals in question directly or obtain it via third
parties or other sources (e.g., websites)? No.

E.1.6 USES

1. Has the dataset been used for any tasks already? The dataset has been used only for the
learning tasks reported in Section 4.

2. What (other) tasks could the dataset be used for? Further use of the dataset includes
graph-based optimization problems, multi-objective optimization, and learning tasks using
Concept Drift, among other possibilities. Please refer to Section A for detailed future works.

3. Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? No, there is not. The
repository stores raw and processed data, which adds to the flexibility of future uses.

4. Are there tasks for which the dataset should not be used? No.
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