
000 LIST OF REVISIONS

001		
002	■ dBiZ, W1	7
003	■ 2qdC, W2	23
004	■ 2qdC, W2	23
005	■ dBiZ, W3	23
006	■ 2qdC, W3	24
007	■ dBiZ, W2	24
008	■ 2qdC W1	25
009	■ 2qdC W1	25
010	■ dBiZ, W1	28
011	■ bubT, Q1	28
012	■ bubT, Q2	28
013	■ dBiZ, W3	28
014	■ 2qdC, W1	28
015	■ dBiZ, Q1	28
016		
017		
018		
019		
020		
021		
022		
023		
024		
025		
026		
027		
028		
029		
030		
031		
032		
033		
034		
035		
036		
037		
038		
039		
040		
041		
042		
043		
044		
045		
046		
047		
048		
049		
050		
051		
052		
053		

054 055 056 057 058 059 NORM×DIRECTION: RESTORING THE MISSING 060 QUERY NORM IN VISION LINEAR ATTENTION 061 062 063

064 **Anonymous authors**
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

Paper under double-blind review
086
087

ABSTRACT

088 Linear attention mitigates the quadratic complexity of softmax attention but suffers
089 from a critical loss of expressiveness. We identify two primary causes: (1) The
090 normalization operation cancels the query norm, which breaks the correlation
091 between a query’s norm and the spikiness (entropy) of the attention distribution as
092 in softmax attention. (2) Standard techniques for enforcing non-negativity cause
093 destructive information loss by nullifying valid inner-product interactions. To
094 address these challenges, we introduce **NaLaFormer**, a novel linear attention
095 mechanism built upon a norm×direction (ND) decomposition of the query and
096 key vectors. We leverage each component to solve a distinct problem: The *query*
097 *norm* is injected into our kernel to create a query-norm-aware map that restores
098 the attention distribution’s spikiness. The *direction vectors* are processed by a
099 geometric, cosine-based similarity metric that guarantees non-negativity while
100 preserving the rich, fine-grained information of the inner product. We validate
101 NaLaFormer through a comprehensive multi-modal evaluation, where it sets new
102 state-of-the-art benchmarks for linear attention. Our model achieves up to a 7.5%
103 accuracy gain on ImageNet-1K and a 4.7% mIoU improvement on ADE20K over
104 comparable baselines. It demonstrates profound efficiency, reducing peak memory
105 by a transformative 92.3% in token-intensive super-resolution tasks (70K+ tokens).
106 NaLaFormer’s versatility is further confirmed as it surpasses strong baselines like
107 Mamba on common-sense reasoning and sets a new state-of-the-art on the Long
108 Range Arena (LRA) benchmark. Source code can be found in the supplementary
109 materials.
110
111

1 INTRODUCTION

112 Transformer models (Vaswani et al., 2017; Dosovitskiy et al., 2021) have demonstrated remarkable
113 success in both vision and language tasks. The core self-attention mechanism models global
114 contextual relationships through softmax-normalized dot-product similarity, but incurs quadratic
115 complexity $\mathcal{O}(N^2)$ relative to sequence length N , creating significant computational overhead for
116 long sequences or high-resolution images. To address this limitation, linear attention (Katharopoulos
117 et al., 2020; Cai et al., 2023; Han et al., 2023; MiniMax et al., 2025; Lu et al., 2024a) replaces
118 the $\exp(\cdot)$ operator in softmax with a linearly separable kernel $\phi(\cdot)$. This reformulation reorders
119 computation priorities from $\exp(\mathbf{q}_i \mathbf{k}_j^\top) \mathbf{v}_j$ to $\phi(\mathbf{q}_i)(\phi(\mathbf{k}_j)^\top \mathbf{v}_j)$ achieving linear complexity $\mathcal{O}(N)$
120 through associative matrix multiplication.

121 Although linear attention mechanisms have gained popularity for their efficiency in sequence mod-
122 eling, yet they consistently *underperform* compared to their softmax-based counterparts. A central
123 limitation lies in the restricted expressiveness of the kernel function $\phi(\cdot)$, which approximates atten-
124 tion through inner products of transformed queries and keys, $\phi(\mathbf{q})^\top \phi(\mathbf{k})$. Early approaches focused
125 on ensuring *non-negativity*, a necessary condition for interpreting attention scores as normalized
126 distributions. To this end, various activation functions have been employed, including ReLU (Han
127 et al., 2023; Cai et al., 2023), 1 + ELU (Katharopoulos et al., 2020), and SiLU (Yang et al., 2024b;
128 MiniMax et al., 2025), as well as positive-valued randomized feature mappings such as the Gaussian
129 kernel $\phi(x) = \exp(-|x|^2/2)$. However, these kernels inherently discard negative components of the
130 input, limiting their ability to capture the full range of semantic relationships.

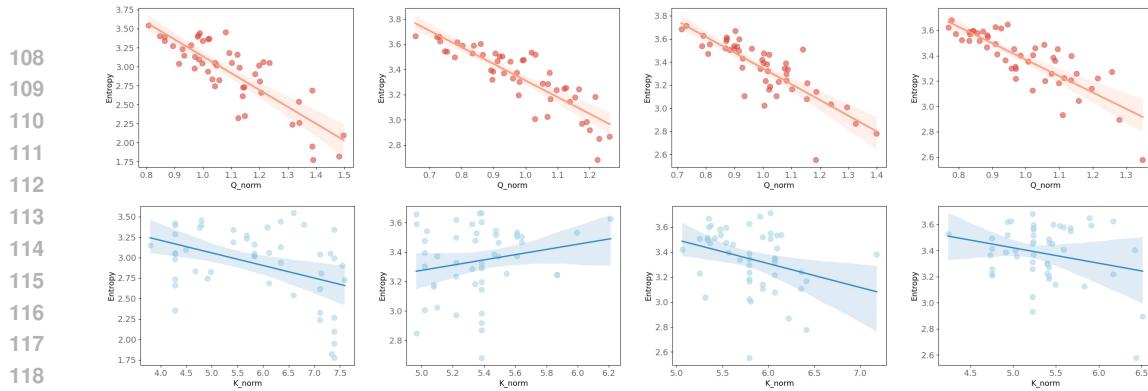


Figure 1: **Entropy-norm correlation in softmax attention.** We plot the relationship between feature entropy and vector norms in a Swin Transformer sampled on ImageNet. The top row shows **q-norms** (x -axis) exhibit a strong negative correlation with attention entropy (y -axis). The bottom row shows that **k-norms** have no consistent effect. This observation suggests that the entropy diminishing in linear attention may stem from insufficient query scaling, pointing to the key for restoring spikiness.

As a result, linear attention often yields overly smooth attention distributions, lacking the *spikiness* characteristic of softmax attention. This leads to elevated entropy and hinders the model’s ability to focus on semantically critical tokens. Recent efforts such as Hedgehog (Zhang et al., 2024), FLatten Transformer (Han et al., 2023), and PolaFormer (Meng et al., 2025), attempt to address this shortcoming by introducing element-wise power functions to sharpen token-wise attention. While these methods empirically improve discrimination, the underlying cause of the entropy explosion in linear attention remains poorly understood.

To further explore the property of entropy, inspired by prior studies (Dehghani et al., 2023; Naseer et al., 2021; Milakov & Gimelshein, 2018) that have identified the qk^\top norm cancellation in softmax attention, we notice that linear attention exhibits a different behavior, especially showing *asymmetric sensitivity* to the query and key norms. To analyze this effect, we employ a norm \times direction (ND) decomposition of linear attention:

$$\text{LinearAttn}_t = \frac{\phi(\mathbf{q}_t) \sum_{i=1}^N \phi(\mathbf{k}_i)^\top \mathbf{v}_i}{\phi(\mathbf{q}_t) \sum_{j=1}^N \phi(\mathbf{k}_j)^\top} = \frac{\|\phi(\mathbf{q}_t)\| \text{dir}(\phi(\mathbf{q}_t)) \sum_{i=1}^N \|\phi(\mathbf{k}_i)\| \text{dir}(\phi(\mathbf{k}_i))^\top \mathbf{v}_i}{\underbrace{\|\phi(\mathbf{q}_t)\|}_{\text{q-norm-unaware}} \text{dir}(\phi(\mathbf{q}_t)) \sum_{j=1}^N \|\phi(\mathbf{k}_j)\| \text{dir}(\phi(\mathbf{k}_j))^\top}. \quad (1)$$

where $\text{dir}(\mathbf{x}) = \mathbf{x} / \|\mathbf{x}\|$ refers to the direction component. Eq. (1) exposes a critical *asymmetry* where only *key norms* influence linear attention outputs, as *query norms* are reduced through normalization. To further test this conjecture, Fig. 1 demonstrates a strong inverse correlation between entropy and query norms in softmax attention, whereas key norms exhibit weak correlation with spikiness. Notably, current linear attention approaches utilize element-wise kernel functions to enforce non-negativity constraints, suffering from the norm degradation and negative values loss.

In this work, we establish a mathematical framework characterizing query norm-entropy control in softmax attention. Based on these insights, we propose **Norm-aware Linear Attention**, a novel mechanism that explicitly couples $\|\phi(\mathbf{q}_t)\|$ with spikiness to address the limitation of the query norm unawareness in linear attention. Our theoretical analysis reveals the dynamic control of entropy reduction (spikiness) from $\|\phi(\mathbf{q}_t)\|$. Specifically, for each direction of \mathbf{q}_t , the entropy decreases with a great $\|\mathbf{q}_t\|$ monotonically. Empirical validation through randomized sampling of attention computations (Fig. 1 and Fig. 2 (b)) demonstrates that the $\|\mathbf{q}_t\|$ is practically great enough in most cases. To jointly preserve spikiness and norm awareness, we employ a power function for each \mathbf{q}_t with an adaptive query norm aware power. To address norm degradation in conventional linear attention while preserving non-negativity constraints, we proposed a *cosine direction similarity* algorithm to only map the direction component. Utilizing Ptolemy’s theorem as a geometric foundation, our method employs cosine similarity for dimensional rescaling, selectively suppressing dimensions with distant directions and keeping closed dimensions. These synergistic innovations faithfully capture essential properties of softmax operators while maintaining computational efficiency.

We establish NaLaFormer’s state-of-the-art performance and broad applicability through a rigorous multi-modal evaluation spanning foundational vision benchmarks, including image classification,

object detection, semantic segmentation, and highly challenging long-sequence scenarios. Our model sets new performance standards for linear attention, achieving up to a **7.5%** accuracy gain over comparable models on ImageNet-1K and a **4.7%** mIoU improvement on ADE20K. The architecture’s advantages are particularly evident in token-intensive tasks: in super-resolution, which generates extremely long token sequences (over 70K tokens) from high-resolution images, NaLaFormer achieves a **92.3%** reduction in peak memory while cutting latency by **36.4%**. This long-sequence capability is further validated on the Long Range Arena (LRA) benchmark with **61.2%** average accuracy. Finally, to verify its versatility, we train a 340M-parameter language model from scratch, which surpasses strong autoregressive baselines like Mamba, establishing NaLaFormer as a powerful and efficient foundation for diverse modalities.

2 PRELIMINARIES

An attention mechanism’s efficacy is rooted in its ability to model the relationship between vectors. We posit that this relationship is defined by a fundamental duality of information: a vector’s **norm**, which signals its importance, and its **direction**, which encodes its semantic orientation. An ideal attention mechanism must jointly leverage both. In this section, we employ this view to explain a failure in linear attention that underlies its gap to softmax attention.

To formalize our analysis, we first mathematically define the Norm×Direction (ND) decomposition:

Definition 1 (ND Decomposition). *Let $\mathbf{x} = (x_1, \dots, x_d) \in \mathbb{R}^d$ is a non-zero vector, then the ND decomposition of \mathbf{x} with p -norm is defined by:*

$$\text{ND}(\mathbf{x}; p) = \|\mathbf{x}\|_p \cdot \text{dir}(\mathbf{x}), \text{ where } \text{dir}(\mathbf{x}) = \frac{(x_1, \dots, x_d)}{\|\mathbf{x}\|_p}.$$

We name $\text{dir}(\mathbf{x})$ the direction components of vector \mathbf{x} . According to the Norm Equivalence Theorem (Brezis, 2011), all norms on a finite-dimensional vector space are equivalent, thus we do not distinguish between different p -norm in the following discussions for simplicity.

2.1 SOFTMAX ATTENTION WITH ND DECOMPOSITION

Let $\mathbf{X} \in \mathbb{R}^{N \times D}$ denote a sequence of N tokens with dimension D . We divide the dimension into h heads, and each single head has d dimensions. In a single head, the output $\mathbf{O} = \{\mathbf{o}_t\}_{t=1}^N \in \mathbb{R}^{N \times d}$ is computed following:

$$\mathbf{O} = \text{Softmax}\left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}}\right)\mathbf{V}, \quad \mathbf{o}_t = \frac{\sum_{i=1}^N \exp(\mathbf{q}_t \mathbf{k}_i^\top / \sqrt{d})}{\sum_{j=1}^N \exp(\mathbf{q}_t \mathbf{k}_j^\top / \sqrt{d})} \mathbf{v}_i, \quad (2)$$

in which $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ denote query, key and value vectors respectively with N sequence length. The complexity of softmax attention is $\mathcal{O}(N^2d)$. Then, we rewrite Eq. (2) with the ND-decomposition, which shows an explicit relation to query and key norms.

$$\mathbf{o}_t = \sum_{i=1}^N \frac{\exp(\mathbf{q}_t \mathbf{k}_i^\top / \sqrt{d})}{\sum_{j=1}^N \exp(\mathbf{q}_t \mathbf{k}_j^\top / \sqrt{d})} \mathbf{v}_i = \sum_{i=1}^N \frac{\exp(\|\mathbf{q}_t\| \|\mathbf{k}_i\| \langle \text{dir}(\mathbf{q}_t), \text{dir}(\mathbf{k}_i) \rangle / \sqrt{d})}{\sum_{j=1}^N \exp(\|\mathbf{q}_t\| \|\mathbf{k}_j\| \langle \text{dir}(\mathbf{q}_t), \text{dir}(\mathbf{k}_j) \rangle / \sqrt{d})} \mathbf{v}_i. \quad (3)$$

This derivation reveals a critical property of softmax attention: the **Q-norm** $\|\mathbf{q}_t\|$ is **preserved** within the exponential function, in stark contrast to its *cancellation* in linear attention as shown in Eq. (1). This allows the query norm to naturally act as a temperature score, where a larger query norm sharpens the attention distribution and reduces its entropy. The collapse of **Q-norm** in conventional linear attention represents a fundamental departure from the softmax mechanism and potentially is a primary source of its diminishing entropy and performance drop.

3 METHOD

To mitigate this gap, we introduce NaLaFormer, which asymmetrically reformulates the linear attention kernel through the lens of ND decomposition. To achieve this, we explicitly restore the previously neglected **query norm** by integrating it into the query kernel map to dynamically regulate attention entropy (Sec. 3.1). Concurrently, we geometrically transform the decomposed **direction vectors** via a cosine similarity metric to guarantee non-negativity without the severe information loss of prior methods (Sec. 3.2). A rigorous theoretical proof can be found in Appendix A.2.

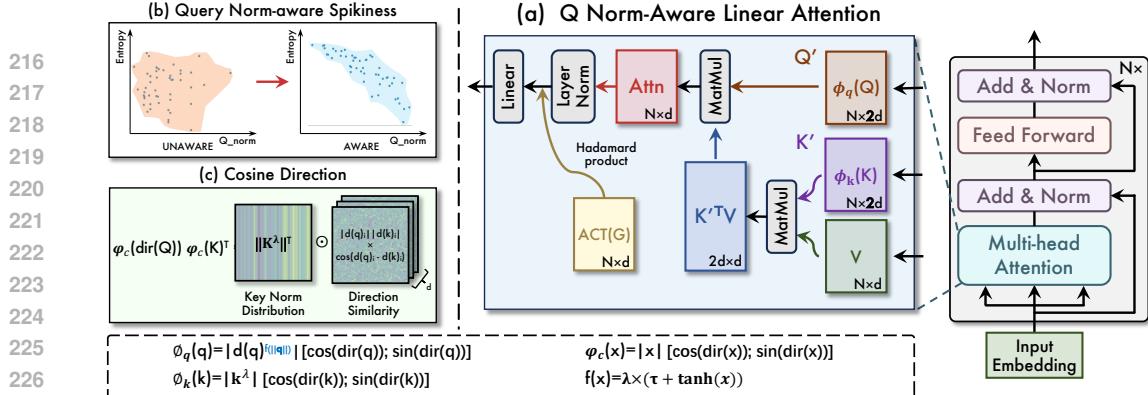


Figure 2: **The NaLaFormer architecture and its core mechanisms.** (a) The NaLaFormer block incorporates a simplified GLA and custom feature maps ϕ_q and ϕ_k . (b) Our norm-aware method (right) restores the negative query norm-entropy correlation lost in standard linear attention (left). (c) The cosine direction mechanism enforces non-negativity by decomposing similarity into norm and direction components, preventing information loss.

3.1 QUERY-NORM-AWARE FEATURE MAP

Linear attention (Katharopoulos et al., 2020) reformulates the \mathbf{q}, \mathbf{k} similarity measure through linearly separable kernel function mappings $\text{SM}(\mathbf{q}, \mathbf{k}) = \phi(\mathbf{q})\phi(\mathbf{k})^\top$, where the feature map $\phi(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ is applied to query and key vectors. This allows for a reordering of computations, leading to an output formulation:

$$\mathbf{o}_t = \sum_{i=1}^N \frac{\phi(\mathbf{q}_t)\phi(\mathbf{k}_i)^\top \mathbf{v}_i}{\sum_{j=1}^N \phi(\mathbf{q}_t)\phi(\mathbf{k}_j)^\top} = \frac{\phi(\mathbf{q}_t) \sum_{i=1}^N \phi(\mathbf{k}_i)^\top \mathbf{v}_i}{\phi(\mathbf{q}_t) \sum_{j=1}^N \phi(\mathbf{k}_j)^\top}. \quad (4)$$

$$= \frac{\underbrace{\|\phi(\mathbf{q}_t)\| \text{dir}(\phi(\mathbf{q}_t)) \sum_{i=1}^N \|\phi(\mathbf{k}_i)\| \text{dir}(\phi(\mathbf{k}_i))^\top \mathbf{v}_i}{\underbrace{\|\phi(\mathbf{q}_t)\| \text{dir}(\phi(\mathbf{q}_t)) \sum_{j=1}^N \|\phi(\mathbf{k}_j)\| \text{dir}(\phi(\mathbf{k}_j))^\top}}. \quad (5)$$

Here, the cancellation of $\|\phi(\mathbf{q}_t)\|$ reveals that the mainstream linear attention is “**query-norm unaware**”. As shown in Fig. 3 (row 2), this causes a *breakdown* of the entropy-norm correlation observed in softmax attention. Despite existing approaches (Meng et al., 2025; Han et al., 2023; 2024c) leverages exponential functions to reduce entropy, they remain insensitive to query norm.

Motivated by this, we therefore design the **query-norm-aware** feature map to explicitly encode the query’s norm into its feature map:

$$\varphi_q(\mathbf{q}) = \text{dir}(\mathbf{q})^{f(\|\mathbf{q}\|)}, \quad \varphi_k(\mathbf{k}) = \mathbf{k}^\lambda, \quad (6)$$

where $f(x) = \lambda * (\tau + \tanh(x))$ serves as a *norm-dependent sharpening* function, which dynamically modulates the sequence entropy of the attention to restore the sharpness characteristics of standard softmax attention. A full theoretical analysis of this property is provided in Sec. A.2. For simplicity and to ensure a fair comparison with other power-based counterparts (Han et al., 2023), we apply the power function for rescaling (Fig. 3). The hyperparameters λ, τ are used to constrain the exponent’s range, ensuring it remains greater than one while also preventing numerical overflow.

Empirical Observations. With a one-line modification, we restore the negative correlation between query norm and entropy that is lost in linear attention. To validate this, we again visualize the entropy–norm relationship in linear attention under three feature maps using the same inputs and layers (Fig. 3). The first row shows the simplest linear attention with $\text{ReLU}(\cdot)$, which yields relatively high entropy and no clear correlation. The second row depicts the *power-based* Flatten (Han et al., 2023) Transformer’s $\text{ReLU} + \text{power}$ mapping, which reduces entropy and sharpens token distinctions, yet the entropy–norm correlation remains inconsistent with softmax (Fig. 1). In the third row, we incorporate the query norm into the power function factor. Notably, this modification restores the negative correlation between query norm and entropy, demonstrating that our method successfully preserves the negative correlation between query norm and entropy in softmax attention.

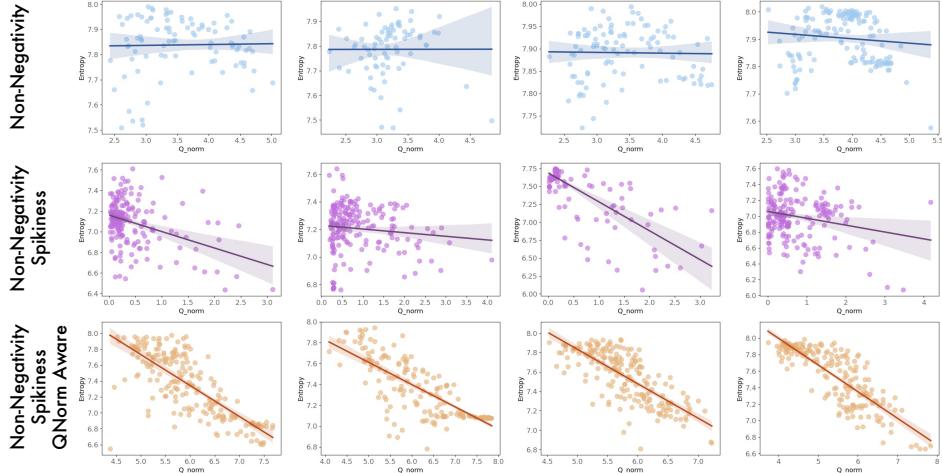


Figure 3: We visualize the query norm-entropy relationship under three approaches: (1) Only preserve non-negativity with $1 + \text{ELU}(\cdot)$ operator (Katharopoulos et al., 2020). (2) Keep both non-negativity and spikiness with ReLU operator and power function as in FLatten (Han et al., 2023). (3) Our q-norm-aware approach shows a clear correlation between entropy and query norms.

3.2 KEEP NON-NEGATIVITY WITH COSINE DIRECTION

A second challenge in linear attention design is enforcing *non-negativity*. Prevalent methods achieve this by adopting $\text{ReLU}(\cdot)$ and $1 + \text{ELU}(\cdot)$ to suppress negative values element-wise. However, these approaches incur *destructive* information loss, as it nullifies any interactions where $\mathbf{q}_i \mathbf{k}_i < 0$. This often leads to a sparse and less informative similarity representation. To address this, we propose a structure-preserving alternative based on a trigonometric isomorphism and define a mapping $\varphi_c(\cdot)$ that transforms each scalar direction component $\text{dir}(\mathbf{q})_i$ and $\text{dir}(\mathbf{k})_i$ into a 2D vector:

$$\varphi_c(\text{dir}(\mathbf{q})_i) = \begin{pmatrix} |\text{dir}(\mathbf{q})_i| \cos(\text{dir}(\mathbf{q})_i) \\ |\text{dir}(\mathbf{q})_i| \sin(\text{dir}(\mathbf{q})_i) \end{pmatrix}, \varphi_c(\text{dir}(\mathbf{k})_i) = \begin{pmatrix} |\text{dir}(\mathbf{k})_i| \cos(\text{dir}(\mathbf{k})_i) \\ |\text{dir}(\mathbf{k})_i| \sin(\text{dir}(\mathbf{k})_i) \end{pmatrix}. \quad (7)$$

This formulation elegantly decouples magnitude from sign, encoding their interaction through the cosine of their angular difference. The sum of inner products of these corresponding 2D vectors for query \mathbf{q} and key \mathbf{k} for each dimension i then becomes,

$$\sum_{i=1}^d \varphi_c(\text{dir}(\mathbf{q})_i) \varphi_c(\text{dir}(\mathbf{k})_i)^\top \quad (8)$$

$$= \sum_{i=1}^d |\text{dir}(\mathbf{q})_i| |\text{dir}(\mathbf{k})_i| (\cos(\text{dir}(\mathbf{q})_i) \cos(\text{dir}(\mathbf{k})_i) + \sin(\text{dir}(\mathbf{q})_i) \sin(\text{dir}(\mathbf{k})_i)), \quad (9)$$

$$= \sum_{i=1}^d |\text{dir}(\mathbf{q})_i| |\text{dir}(\mathbf{k})_i| \cos(\text{dir}(\mathbf{q})_i - \text{dir}(\mathbf{k})_i). \quad (10)$$

Due to the properties of trigonometric functions, we have $\cos(x)^2 + \sin(x)^2 = 1$, thus, $\|\varphi_c(\cdot)\|$ is constant, which keeps the norm of the direction vector fixed. To ensure the cosine term being non-negative, we scale each elements of the direction components into $[-\frac{\pi}{4}, \frac{\pi}{4}]$ with a tanh-based mapping $\tanh(\frac{\mathbf{x}}{\|\mathbf{x}\|}) \times \frac{\pi}{4}$, $\mathbf{x} \in \{\text{dir}(\mathbf{q}), \text{dir}(\mathbf{k})\}$. This guarantees that the resulting angle difference remains within the interval $(\text{dir}(\mathbf{q})_i - \text{dir}(\mathbf{k})_i) \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Empirical Observations. The benefit of this information-preserving approach is empirically evident in Fig. 4, which shows the dimensional results of the dot products between the \mathbf{q} and \mathbf{k} vectors under different non-negativity-preserving feature maps. Compared with the original $\mathbf{q}_i \mathbf{k}_i$ dot product, prior approaches that rely on ReLU to enforce non-negativity discard a significant amount of spikiness information during the inner-product computation. Methods based on $1 + \text{ELU}$ not only lose spikiness but also exhibit reduced discriminability across dimensions. In contrast, our proposed method effectively overcomes these limitations and is able to retain richer information.

3.3 NALAFormer: A UNIFIED NORM-AWARE LINEAR ATTENTION

We now synthesize our principles of norm-awareness and non-destructive similarity into a unified model: **NaLaFormer**. This architecture is designed to concurrently restore the critical query-norm-

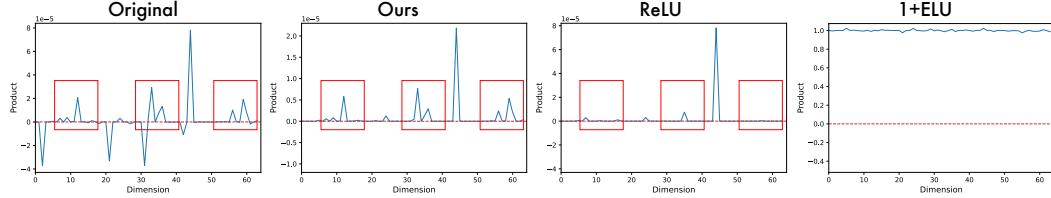


Figure 4: **Comparisons of element-wise dot product contributions for different non-negative strategies.** The plots show $q_i k_i$ value for (1) the raw inputs, (2) our novel cosine-based approach, (3) ReLU activation, and (4) 1 + ELU activation. Our approach ensures all dimensional contributions are non-negative while retaining the fine-grained “spikiness” observed in the original product.

entropy correlation of softmax attention while preserving dimensional information typically lost in other linear attention variants. This is achieved by designing feature maps $\phi_q(\cdot)$ and $\phi_k(\cdot)$ that integrate both norm- and direction-aware mappings *i.e.*, φ_q and φ_c aforementioned:

$$\phi_q(\mathbf{q}) = [\phi_q^{\cos}(\mathbf{q}); \phi_q^{\sin}(\mathbf{q})], \phi_k(\mathbf{k}) = [\phi_k^{\cos}(\mathbf{k}); \phi_k^{\sin}(\mathbf{k})]. \quad (11)$$

Each cosine and sine subcomponent’s magnitude is carefully defined to be either norm-aware (for queries) or norm-scaled (for keys), while the direction is handled by our trigonometric mapping:

$$\phi_q^{\cos}(\mathbf{q}) = |\text{dir}(\mathbf{q})^f(\|\mathbf{q}\|)| \cos(\text{dir}(\mathbf{q})), \quad \phi_q^{\sin}(\mathbf{q}) = |\text{dir}(\mathbf{q})^f(\|\mathbf{q}\|)| \sin(\text{dir}(\mathbf{q})), \quad (12)$$

$$\phi_k^{\cos}(\mathbf{k}) = |\mathbf{k}^\lambda| \cos(\text{dir}(\mathbf{k})), \quad \phi_k^{\sin}(\mathbf{k}) = |\mathbf{k}^\lambda| \sin(\text{dir}(\mathbf{k})). \quad (13)$$

Therefore, we can rewrite the outputs of linear attention as:

$$\mathbf{o}_t = \frac{\sum_{i=1}^N \phi(\mathbf{q}_t) \phi(\mathbf{k}_i)^\top \mathbf{v}_i}{\sum_{j=1}^N \phi(\mathbf{q}_t) \phi(\mathbf{k}_j)^\top} = \frac{\phi_q^{\cos}(\mathbf{q}_t) \sum_{i=1}^N \phi_k^{\cos}(\mathbf{k}_i)^\top \mathbf{v}_i + \phi_q^{\sin}(\mathbf{q}_t) \sum_{i=1}^N \phi_k^{\sin}(\mathbf{k}_i)^\top \mathbf{v}_i}{\phi_q^{\cos}(\mathbf{q}_t) \sum_{j=1}^N \phi_k^{\cos}(\mathbf{k}_j)^\top + \phi_q^{\sin}(\mathbf{q}_t) \sum_{j=1}^N \phi_k^{\sin}(\mathbf{k}_j)^\top} \odot \mathbf{G} \quad (14)$$

The NaLaFormer block integrates this attention mechanism within a gated architecture (Yang et al., 2024a; Qin et al., 2024). As shown in Fig. 2 (a), our norm-aware linear attention block first projects inputs to \mathbf{Q} , \mathbf{K} , \mathbf{V} and then calculates LinearAttn($\phi_q(\mathbf{Q})$, $\phi_k(\mathbf{K})$, \mathbf{V}), which then undergoes Layer Normalization. The output is subsequently modulated element-wise by a learned gate matrix \mathbf{G} derived from the input, activated by SiLU, and finally passed through a linear layer to integrate the outputs from different heads. A rigorous theoretical analysis detailing how our norm-aware formulation systematically influences entropy reduction in both softmax and linear attention is provided in Appendix A.2 for completeness.

4 EXPERIMENTS

In this section, we evaluate our **NaLaFormer** on various vision tasks. First of all, we conduct experiments on image classification on ImageNet-1K (Deng et al., 2009), object detection and instance segmentation on COCO (Lin et al., 2014), and semantic segmentation on ADE20K (Zhou et al., 2019) and CityScapes (Cordts et al., 2016), comparing the performance with current efficient models. In addition, we conduct the Single Image Super-Resolution (SISR) task using DIV2K (Agustsson & Timofte, 2017) as the training dataset. **For diffusion models, we integrate the proposed linear attention with DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024) using ImageNet-1K (Deng et al., 2009), the results are shown in Appendix A.10.** To verify the generality of our method on language modality, we pre-train NaLaFormer language models from scratch and evaluate the pretrained model on common-sense reasoning tasks. At last, we assess NaLaFormer on the Long Range Arena (LRA) task (Tay et al., 2021) to compare against other linear attention models. All experiments were conducted on 8 NVIDIA A100, A800, A6000 and 3090 GPUs. Full experiment details and implementation details are provided in Appendix A.3, while ablation studies are reported in Appendix A.4.

4.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings. We train **NaLaFormer** from scratch on ImageNet-1K (Deng et al., 2009) using Top-1 accuracy. For fairness, we categorized baseline models into 4 classes according to their parameter sizes and FLOPs, then make performance comparisons within each group.

Results. As shown in Tab. 1, our model consistently showing a higher accuracy comparing with the baseline models. For instance, our NaLaFormer-T obtains an increase from 3.8% to 7.5%

dBiZ
W1

Table 1: Comparison of the ImageNet-1K classification with the SOTA efficient vision models. The “PARA” column denotes the number of model parameters, the “FLOPS” column represents the computational amount, and the “ACC” (%) column indicates the top-1 accuracy.

MODEL	PARA	FLOPS	ACC	MODEL	PARA	FLOPS	ACC
LocalVim-T (Huang et al., 2024)	8M	1.5G	76.2	MambaOut-S (Yu & Wang, 2025)	49M	9.0G	84.1
MetaLA (Chou et al., 2024)	6M	-	75.3	MogaNet-B (Li et al., 2024)	44M	9.9G	84.3
Mambaout-F (Yu & Wang, 2025)	7M	1.2G	78.9	VMamba-S (Liu et al., 2024)	50M	8.7G	83.6
EfficientVMamba-S (Pei et al., 2025)	11M	1.3G	78.7	StructViT-B-8-1 (Kim et al., 2024)	52M	12G	84.3
NaLaFormer-XT	8M	1.0G	79.1	SOFT-L (Lu et al., 2024a)	64M	11G	83.1
VAN-b1 (Guo et al., 2022c)	14M	2.5G	81.1	FLattn-Swin-S (Han et al., 2023)	51M	8.7G	83.5
Conv2Former-N (Hou et al., 2024)	15M	2.2G	81.5	Agent-Swin-S (Han et al., 2024c)	50M	8.7G	83.7
SBCFormer-L (Lu et al., 2024b)	19M	2.7G	81.1	Pola-Swin-S (Meng et al., 2025)	50M	8.7G	83.6
RMT-T (Fan et al., 2024)	14M	2.5G	82.4	MILA-S (Han et al., 2024b)	43M	7.3G	84.4
Agent-PVT-T (Han et al., 2024c)	12M	2.0G	78.4	ViG-H-S (Liao et al., 2025)	50M	8.8G	83.8
NaLaFormer-T	15M	2.7G	82.6	NaLaFormer-B	52M	12G	85.2
Conv2Former-T (Hou et al., 2024)	27M	4.4G	83.2	InterImage-B (Wang et al., 2023)	97M	16G	84.9
MambaOut-T (Yu & Wang, 2025)	27M	4.5G	82.7	MambaOut-S (Yu & Wang, 2025)	85M	16G	84.2
MogaNet-S (Li et al., 2024)	25M	5.0G	83.4	VMamba-B (Liu et al., 2024)	89M	15G	83.9
InternImage-T (Wang et al., 2023)	30M	5.0G	83.5	SG-Former-B (Ren et al., 2023)	78M	16G	84.7
Vim-S (Zhu et al., 2024)	26M	3.7G	80.6	FLatten-Swin-B (Han et al., 2023)	89M	15G	83.8
VMamba-T (Liu et al., 2024)	30M	4.9G	82.6	Agent-Swin-B (Han et al., 2024c)	88M	15G	84.0
LocalVMamba-T (Huang et al., 2024)	26M	5.7G	82.7	Pola-Swin-B (Meng et al., 2025)	88M	15G	83.8
SG-Former-S (Ren et al., 2023)	23M	4.8G	83.2	SMT-L (Lin et al., 2023)	81M	18G	84.6
MOAT-0 (Yang et al., 2023)	28M	5.7G	83.3	RMT-L (Fan et al., 2024)	95M	18G	85.5
Agent-Swin-T (Han et al., 2024c)	29M	4.5G	82.6	VRWKV-B (Duan et al., 2025)	94M	18G	82.0
Pola-Swin-T (Meng et al., 2025)	29M	4.5G	82.6	InLine-Swin-B (Han et al., 2024a)	88M	15G	82.0
ViG-H-T (Liao et al., 2025)	29M	4.5G	82.8	MILA-B (Han et al., 2024b)	96M	16G	85.3
MILA-T (Han et al., 2024b)	25M	4.2G	83.5	ViG-H-B (Liao et al., 2025)	89M	16G	84.2
RAVLT-S (Fan et al., 2025b)	26M	4.6G	84.2	RAVLT-L (Fan et al., 2025b)	95M	16G	85.5
NaLaFormer-S	26M	5.1G	84.3	NaLaFormer-L	95M	18G	85.7

compared with baseline linear models with comparable FLOPS. Additionally, under the setting of large size, the NaLaFormer-L consistently achieves a better performance compared with CNN, SSM and Transformer models. Notably, our model surpasses VRWKV-B (Duan et al., 2025) over 3.7% with fewer FLOPs. These results demonstrate our NaLaFormer improves the expressive capability of the attention mechanisms through replacing the standard attention.

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. We further conducted comprehensive experiments on the object detection task using the COCO dataset (Lin et al., 2014). To systematically evaluate architectural compatibility, we independently integrated NaLaFormer as the backbone architecture into both Mask R-CNN (He et al., 2017) and RetinaNet (Lin et al., 2017). All experiments were conducted using ImageNet-1k pretrained weights following the evaluation strategy in FLatten Transformer (Han et al., 2023).

Results. We show the results in Tab. 2, our model surpasses the other baseline models across various frameworks. For example, our NaLaFormer-T tested on Mask R-CNN detectors with “1 ×” schedule achieves 47.6 AP^b and 43.0 AP^m, outperforming some larger baselines, such as PoLaFormer (Meng et al., 2025). Results of the experiment with RetinaNet are shown in Appendix A.9.

Table 2: Object detection and instance segmentation results on the COCO dataset using Mask R-CNN with 1 × and 3 × schedule.

METHOD	PARA (M)	FLOPS (G)	MASK R-CNN 1×							MASK R-CNN 3×						
			AP ^b	AP ^b ₅₀	AP ^b ₇₅	AP ^m	AP ^m ₅₀	AP ^m ₇₅	AP ^b	AP ^b ₅₀	AP ^b ₇₅	AP ^m	AP ^m ₅₀	AP ^m ₇₅		
PVT-T (Wang et al., 2021)	33	240	36.7	59.2	39.3	35.1	56.7	37.3	39.8	62.2	43.0	37.4	59.3	39.9		
MPViT-T (Lee et al., 2022)	28	216	42.2	64.2	45.8	39.0	61.4	41.8	44.8	66.9	49.2	41.0	64.2	44.1		
RAVLT-T (Fan et al., 2025b)	33	219	47.2	69.1	51.7	42.5	66.0	46.0	46.4	67.4	50.9	41.7	64.7	45.3		
MAViT-T (Fan et al., 2025a)	33	219	47.5	69.0	52.3	42.8	66.3	46.3	-	-	-	-	-	-		
NaLaFormer-T	33	226	47.6	69.5	52.4	43.0	66.7	46.5	46.7	67.4	51.3	42.0	65.0	45.7		
MPViT-S (Lee et al., 2022)	43	268	46.4	68.6	51.2	42.4	65.6	45.7	48.4	70.5	52.6	43.9	67.6	47.5		
FL-Swin-T (Han et al., 2023)	49	268	46.5	66.1	47.9	40.2	63.1	43.0	46.5	68.5	50.8	42.1	65.4	45.1		
VMamba-T (Liu et al., 2024)	50	271	47.3	69.3	52.0	42.7	66.4	45.9	48.8	-	-	43.7	-	-		
MILA-T (Han et al., 2024b)	44	255	46.8	69.5	51.5	42.1	66.4	45.0	48.8	71.0	53.6	43.8	68.0	46.8		
NaLaFormer-S	44	272	49.5	71.2	54.3	44.2	68.1	47.8	49.7	70.5	54.7	44.3	68.0	48.0		

4.3 SEMANTIC SEGMENTATION

Settings. In this section, we integrate our model into the semantic segmentation task on ADE20K (Zhou et al., 2019) and CityScapes (Cordts et al., 2016) datasets. Specifically, we adopt our model with the ImageNet-1K pre-trained weight using mIoU as the evaluation metric, and train it following previous works (Han et al., 2023; 2024c) on the *mmcv-segmentation* (Contributors, 2018).

Table 3: Comparisons on the semantic segmentation tasks. The table on the left presents the results on the ADE20K dataset, while the table on the right shows the results on the Cityscapes dataset.

METHOD	ADE20K			METHOD	CITYSCAPES		
	Para	Flops	mIoU		Para	Flops	mIoU
VWFormer-B1 (Yan et al., 2024)	14M	13G	44.0	VWFormer-B1 (Yan et al., 2024)	14M	-	80.4
SegFormer-B1 (Xie et al., 2021)	14M	16G	42.2	EfficientViT-B2 (Cai et al., 2023)	15M	74G	82.1
SegNeXt-S (Guo et al., 2022b)	15M	16G	44.3	SegNeXt-S (Guo et al., 2022b)	15M	125G	81.3
NaLaFormer-T	14M	15G	46.9	NaLaFormer-T	13M	111G	82.5
ViG-S (Liao et al., 2025)	28M	40G	47.9	VWFormer-B2 (Yan et al., 2024)	27M	415G	81.7
SegFormer-B2 (Xie et al., 2021)	28M	62G	46.5	SegFormer-B2 (Xie et al., 2021)	28M	717G	81.0
VRWKV-S (Duan et al., 2025)	29M	46G	47.2	SegMAN-S (Fu et al., 2025)	29M	218G	83.2
MambaOut-T (Yu & Wang, 2025)	54M	-	47.4	Efficientvit-B3 (Cai et al., 2023)	40M	179G	83.0
NaLaFormer-S	25M	29G	48.5	NaLaFormer-S	25M	206G	83.5

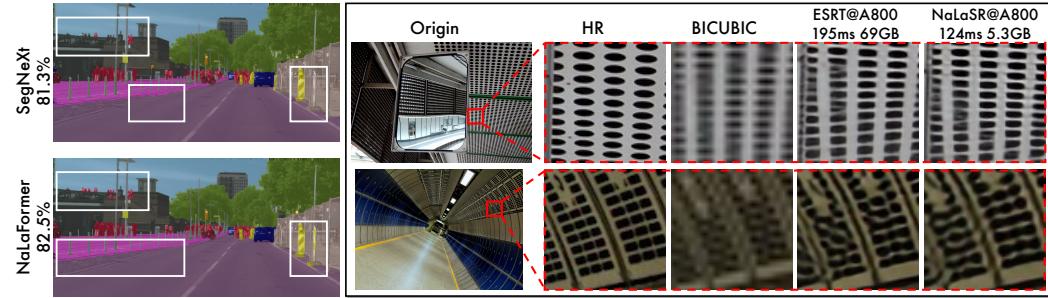


Figure 5: Visualizations illustrating NaLaFormer’s semantic segmentation results on the CityScapes dataset (left) and NaLaSR and ESRT’s super-resolution results on the Urban100 benchmark (right).

Results. As shown in Tab. 3 , NaLaFormer achieves superior segmentation accuracy while maintaining favorable model complexity. On the ADE20K dataset, NaLaFormer-T and NaLaFormer-S achieve 46.9% and 48.5% mIoU respectively, bringing up to 4.7% and 2.0% improvements compared with models of similar scale. On the Cityscape dataset, NaLaFormer-T achieves 82.5% mIoU, consistently surpassing counterparts with comparable model sizes. As further illustrated in Fig. 5 left, the visualization on the Cityscapes dataset demonstrates that NaLaFormer captures sharper boundaries and richer structural details compared to and SegNeXt (Guo et al., 2022b), highlighting its superiority in complex scenes. More visualizations are shown in Appendix A.8.

4.4 SUPER RESOLUTION

Settings. We conduct the experiments on the SR tasks following previous efficient SISR work, ESRT (Lu et al., 2022). We use DIV2K (Agustsson & Timofte, 2017) as the training dataset, and utilize both PSNR and SSIM to evaluate the performance of the reconstructed SR images. Meanwhile, we make statistics on both memory consumption and inference duration.

Results. As shown in Tab. 13, NaLaSR achieves comparable PSNR and SSIM to ESRT (Lu et al., 2022) across all benchmarks, while greatly reducing latency and memory by up to 56.5% and 92.3%. Fig. 5 right presents the visual comparison between NaLaSR and ESRT (Lu et al., 2022) on $\times 4$ Urban100, where the cropped regions are enlarged for clarity. NaLaSR reconstructs sharper textures and more regular structures than ESRT, while significantly reducing latency and memory usage. For more visualizations and full results including $\times 3$ scale, see Appendix A.9.

Table 4: Comparison between our method and other SR Models on lightweight image super-resolution. The “LAT” denotes the inference latency and “MEM” represents peak memory usage.

MODEL	SCALE	SET5		SET14		BSD100		URBAN100	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Bicubic	$\times 4$	28.42	0.81	26.00	0.70	25.96	0.67	23.14	0.66
LAPAR-B (Li et al., 2020)	$\times 4$	31.94	0.89	28.46	0.78	27.52	0.73	25.85	0.79
ECBSR-M16C64 (Zhang et al., 2021)	$\times 4$	31.92	0.89	28.34	0.78	27.48	0.74	25.81	0.78
ESRT (Lu et al., 2022)	$\times 4$	32.01	0.89	28.44	0.77	27.48	0.73	25.85	0.78
NaLaSR	$\times 4$	32.00	0.89	28.50	0.78	27.49	0.73	25.83	0.78
Efficiency		SCALE	LAT	MEM	LAT	MEM	LAT	MEM	LAT
ESRT (Lu et al., 2022)	$\times 4$	195ms	3.0G	188ms	7.0G	79ms	2.2G	195ms	69G
NaLaSR	$\times 4$	159ms	2.3G	147ms	2.9G	72ms	2.1G	124ms	5.3G
- SAVE	$\times 4$	18.5%	23.3%	21.8%	58.6%	8.9%	4.5%	36.4%	92.3%

Table 5: Comparisons on common-sense reasoning tasks.

Our model shows a competitive performance and gains a consistent improvement in multiple sub-tasks, and achieves the best average accuracy and lower perplexity.

MODEL	WIKI. ppl ↓	LMB. ppl ↓	PIQA acc ↑	HELLA. acc _n ↑	WINO. acc ↑	ARC _e acc ↑	ARC _c acc _n ↑	AVG.
Transformer++	28.39	42.69	63.3	34.0	50.4	44.5	24.2	43.3
RetNet	32.33	49.19	63.5	33.5	52.5	44.5	23.4	43.5
Mamba	28.39	39.66	65.0	35.4	50.1	46.3	23.6	44.1
GLA	28.65	43.35	64.8	34.5	51.4	45.1	22.7	43.7
DeltaNet	29.08	50.87	63.6	33.6	51.7	46.0	23.0	43.6
NaLa+DN	27.82	49.77	64.9	34.3	52.7	46.5	23.1	44.3 _{+0.7}
Gated DeltaNet	26.59	31.67	65.8	35.2	50.8	46.0	23.5	44.3
NaLa+GDN	25.89	32.32	65.6	36.2	53.2	45.4	23.8	44.8 _{+0.5}

4.5 LANGUAGE MODELING

Settings. We train our model from scratch with parameter sizes of 340M and test it on common-sense reasoning tasks. Our method is integrated in DeltaNet (Yang et al., 2024b) and Gated DeltaNet (Yang et al., 2025) by replacing SiLU(\cdot) function with query norm-aware feature map.

Results. As shown in Tab. 5, baselines such as Deltanet (Yang et al., 2024b) and Gated Deltanet (Yang et al., 2025) demonstrate a consistent performance gain across various language reasoning tasks. By equipping with the proposed kernel functions, our model consistently outperform Deltanet and Gated Deltanet.

4.6 EFFICIENCY ANALYSIS

The efficiency comparison with methods of similar FLOPs on classification tasks, presented in Fig. 7, demonstrates that NaLaFormer matches or exceeds baseline accuracy with substantially reduced computation. Fig. 6 shows that, NaLaFormer attains competitive throughput across NLP tasks, outperforming softmax attention and surpassing other baselines. Furthermore, we evaluate the efficiency NaLaFormer on Long Range Arena (LRA) benchmarks, as shown in Tab. 6, NaLaFormer achieves strong performance, sustaining higher training throughput. Full results and details can be found in Appendix A.9.

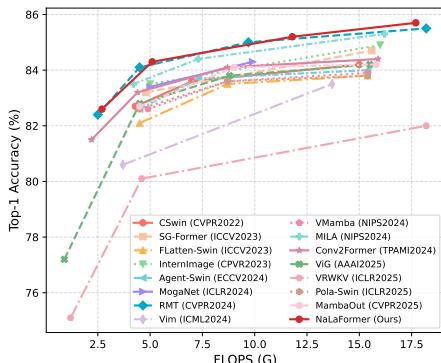


Figure 7: Efficiency analysis with Accuracy vs. FLOPs curves on the ImageNet-1K.

5 CONCLUSION

In this work, we introduced NaLaFormer, a query norm-aware linear attention that restores the missing role of query norms and preserves non-negativity through cosine direction similarity. Our approach bridges the gap between softmax and linear attention by reducing the entropy in query norm awareness and avoid suppressing negative values. We validated the effectiveness of NaLaFormer across a wide range of vision tasks, including image classification, detection, segmentation, and super-resolution, as well as on language modeling and the Long Range Arena benchmark. The results consistently show that NaLaFormer achieves higher accuracy and better efficiency than existing linear attention models, offering a more practical balance between performance and efficiency.

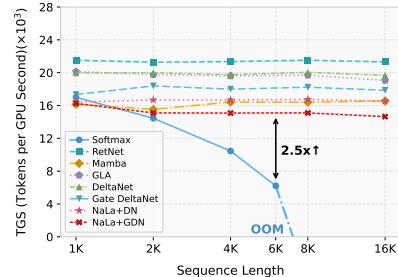


Figure 6: Comparison on training throughput of 340M models on a single A6000 GPU.

Table 6: Results on LRA tasks compared with other efficient Transformer models. “THR” denotes throughput (in TGS) and “MEM” denotes peak memory usage (in MB).

MODEL	ACC _{avg}	THR _{avg}	MEM _{avg}
Softmax	58.1	439.7	9004
Kernelized	56.6	528.5	9606
Nystrom	57.9	1007.7	2832
Linformer	55.1	918.8	1897
Skyformer	59.4	719.5	3985
PolaFormer	60.7	915.6	2047
NaLaFormer	61.2	827.7	2603

540
541 **ETHICS STATEMENT**542 This work was conducted in full accordance with the ICLR Code of Ethics. Our research adheres to
543 principles of honesty, transparency, and reproducibility, and all experimental claims are faithfully
544 reported. The study does not involve data collection or usage that would raise privacy, consent, or
545 licensing concerns, nor does it present foreseeable risks of harm. We have properly cite prior works,
546 contributions, and funding sources, and no conflicts of interest exist. Overall, this paper does not
547 violate any institutional, legal, or ICLR ethical guidelines.548
549 **REPRODUCIBILITY STATEMENT**
550551 We have taken extensive measures to ensure the reproducibility of our results. The main text provides
552 clear descriptions of our models, training procedures, and evaluation protocols, while additional
553 implementation details and hyperparameter settings are included in the appendix. All datasets used in
554 our experiments are publicly available, and we provide a complete description of preprocessing steps
555 in the supplementary materials. We provide the experiment code in the supplementary materials to
556 facilitate replication of our results.557
558 **LLM USAGE STATEMENT**
559560 This work made limited use of large language models (LLMs) exclusively for minor language polishing
561 and wording refinement, with the goal of improving readability. The LLMs were not involved
562 in research ideation, methodology development, experiment design, implementation, analysis, or
563 the formulation of scientific claims. All core contributions, including theoretical insights, model
564 design, experiments, and conclusions, were entirely developed by the authors. Additionally, in their
565 roles as peer reviewers, the authors used LLMs to assist in understanding the structure and reasoning
566 of manuscripts and to help draft review wording. These uses served solely as supportive tools to
567 facilitate comprehension and articulation, without influencing any scientific assessments, decisions,
568 or judgments made during the review process.569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
597 Dataset and study. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
598 (CVPR), pp. 1122–1131, 2017.

599 Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning
600 about physical commonsense in natural language. In Proc. Association for the Advancement of
601 Artificial Intelligence (AAAI), pp. 7432–7439, 2020.

602 Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, and Judy Hoffman. Hydra attention:
603 Efficient attention with many heads. In Proc. European Conference on Computer Vision (ECCV),
604 pp. 35–49, 2022.

605 Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations, volume 2.
606 Springer, 2011.

607 Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song Han. Efficientvit: Lightweight multi-scale
608 attention for high-resolution dense prediction. In Proc. International Conference on Computer
609 Vision (ICCV), pp. 17256–17267, 2023.

610 Yuhong Chou, Man Yao, Kexin Wang, Yuqi Pan, Rui-Jie Zhu, Jibin Wu, Yiran Zhong, Yu Qiao,
611 Bo Xu, and Guoqi Li. Metala: Unified optimal linear approximation to softmax attention map. In
612 Proc. Annual Conference on Neural Information Processing (NeurIPS), 2024.

613 Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, and Chunhua Shen. Conditional positional
614 encodings for vision transformers. In Proc. International Conference on Learning Representations
615 (ICLR), 2023.

616 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
617 Oyyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
618 CoRR, abs/1803.05457, 2018.

619 MMCV Contributors. MMCV: OpenMMLab computer vision foundation. <https://github.com/open-mmlab/mmcv>, 2018.

620 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
621 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
622 scene understanding. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
623 (CVPR), pp. 3213–3223, 2016.

624 Mostafa Dehghani, Josip Djolonga, and et al. Basil Mustafa. Scaling vision transformers to 22 billion
625 parameters. In Proc. International Conference on Machine Learning (ICML), pp. 7480–7512,
626 2023.

627 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
628 archical image database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
629 (CVPR), pp. 248–255, 2009.

630 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
631 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
632 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
633 In Proc. International Conference on Learning Representations (ICLR), 2021.

634 Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
635 Li, Jifeng Dai, and Wenhui Wang. Vision-rwkv: Efficient and scalable visual perception with
636 rwkv-like architectures. In Proc. International Conference on Learning Representations (ICLR),
637 2025.

638 Qihang Fan, Huaibo Huang, Mingrui Chen, Hongmin Liu, and Ran He. RMT: retentive networks
639 meet vision transformers. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
640 (CVPR), pp. 5641–5651, 2024.

648 Qihang Fan, Huaibo Huang, Yuang Ai, and Ran He. Rectifying magnitude neglect in linear attention.
 649 [CoRR](#), abs/2507.00698, 2025a.
 650

651 Qihang Fan, Huaibo Huang, and Ran He. Breaking the low-rank dilemma of linear attention. In
 652 [Proc. IEEE Conference on Computer Vision and Pattern Recognition \(CVPR\)](#), pp. 25271–25280,
 653 2025b.

654 Yunxiang Fu, Meng Lou, and Yizhou Yu. Segman: Omni-scale context modeling with state space
 655 models and local attention for semantic segmentation. In [Proceedings of the Computer Vision and](#)
 656 [Pattern Recognition Conference](#), pp. 19077–19087, 2025.

657 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. [CoRR](#),
 658 abs/2312.00752, 2023.

660 Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. CMT:
 661 convolutional neural networks meet vision transformers. In [Proc. IEEE Conference on Computer](#)
 662 [Vision and Pattern Recognition \(CVPR\)](#), pp. 12165–12175, 2022a.

663 Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu, Ming-Ming Cheng, and Shi-Min Hu.
 664 Segnext: Rethinking convolutional attention design for semantic segmentation. In [Proc. Annual](#)
 665 [Conference on Neural Information Processing \(NeurIPS\)](#), 2022b.

667 Meng-Hao Guo, Chengze Lu, Zheng-Ning Liu, Ming-Ming Cheng, and Shimin Hu. Visual attention
 668 network. [CoRR](#), abs/2202.09741, 2022c.

669 Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vision
 670 transformer using focused linear attention. In [Proc. International Conference on Computer Vision](#)
 671 [\(ICCV\)](#), pp. 5938–5948, 2023.

673 Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, and
 674 Gao Huang. Bridging the divide: Reconsidering softmax and linear attention. In [Proc. Annual](#)
 675 [Conference on Neural Information Processing \(NeurIPS\)](#), 2024a.

676 Dongchen Han, Ziyi Wang, Zhuofan Xia, Yizeng Han, Yifan Pu, Chunjiang Ge, Jun Song, Shiji Song,
 677 Bo Zheng, and Gao Huang. Demystify mamba in vision: A linear attention perspective. In [Proc.](#)
 678 [Annual Conference on Neural Information Processing \(NeurIPS\)](#), 2024b.

680 Dongchen Han, Tianzhu Ye, Yizeng Han, Zhuofan Xia, Siyuan Pan, Pengfei Wan, Shiji Song, and
 681 Gao Huang. Agent attention: On the integration of softmax and linear attention. In [Proc. European](#)
 682 [Conference on Computer Vision \(ECCV\)](#), pp. 124–140, 2024c.

683 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. In [Proc.](#)
 684 [International Conference on Computer Vision \(ICCV\)](#), pp. 2980–2988, 2017.

686 Qibin Hou, Cheng-Ze Lu, Ming-Ming Cheng, and Jiashi Feng. Conv2former: A simple transformer-
 687 style convnet for visual recognition. [Transactions on Pattern Analysis and Machine Intelligence](#),
 688 46(12):8274–8283, 2024.

689 Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
 690 state space model with windowed selective scan. In [Proc. European Conference on Computer](#)
 691 [Vision Workshop \(ECCV Workshop\)](#), pp. 12–22, 2024.

693 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 694 rnns: Fast autoregressive transformers with linear attention. In [Proc. International Conference on](#)
 695 [Machine Learning \(ICML\)](#), pp. 5156–5165, 2020.

696 Manjin Kim, Paul Hongsuck Seo, Cordelia Schmid, and Minsu Cho. Learning correlation structures
 697 for vision transformers. In [Proc. IEEE Conference on Computer Vision and Pattern Recognition](#)
 698 [\(CVPR\)](#), pp. 18941–18951, 2024.

700 Youngwan Lee, Jonghee Kim, Jeffrey Willette, and Sung Ju Hwang. Mpvit: Multi-path vision
 701 transformer for dense prediction. In [Proc. IEEE Conference on Computer Vision and Pattern](#)
[Recognition \(CVPR\)](#), pp. 7277–7286, 2022.

702 Siyuan Li, Zedong Wang, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin
 703 Zheng, and Stan Z. Li. Moganet: Multi-order gated aggregation network. In Proc. International
 704 Conference on Learning Representations (ICLR), 2024.

705 Wenbo Li, Kun Zhou, Lu Qi, Nianjuan Jiang, Jiangbo Lu, and Jiaya Jia. Lapar: Linearly-assembled
 706 pixel-adaptive regression network for single image super-resolution and beyond. 33:20343–20355,
 707 2020.

708 Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwanggil Jeon, and Wei Wu. Feedback network for
 709 image super-resolution. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
 710 (CVPR), pp. 3867–3876, 2019.

711 Bencheng Liao, Xinggang Wang, Lianghui Zhu, Qian Zhang, and Chang Huang. Vig: Linear-
 712 complexity visual sequence learning with gated linear attention. In Proc. Association for the
 713 Advancement of Artificial Intelligence (AAAI), pp. 5182–5190, 2025.

714 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 715 Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In Proc. European
 716 Conference on Computer Vision (ECCV), pp. 740–755, 2014.

717 Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 718 object detection. In Proc. International Conference on Computer Vision (ICCV), pp. 2999–3007,
 719 2017.

720 Weifeng Lin, Ziheng Wu, Jiayu Chen, Jun Huang, and Lianwen Jin. Scale-aware modulation
 721 meet transformer. In Proc. International Conference on Learning Representations (ICLR), pp.
 722 5992–6003, 2023.

723 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Jianbin
 724 Jiao, and Yunfan Liu. Vmamba: Visual state space model. In Proc. Annual Conference on Neural
 725 Information Processing (NeurIPS), 2024.

726 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 727 Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. International
 728 Conference on Computer Vision (ICCV), pp. 9992–10002, 2021.

729 Jiachen Lu, Junge Zhang, Xiatian Zhu, Jianfeng Feng, Tao Xiang, and Li Zhang. Softmax-free linear
 730 transformers. International Journal of Computer Vision, 132:3355–3374, 2024a.

731 Xiangyong Lu, Masanori Suganuma, and Takayuki Okatani. Sbcformer: Lightweight network
 732 capable of full-size imagenet classification at 1 FPS on single board computers. In Proc. Winter
 733 Conference on Applications of Computer Vision (WACV), pp. 1112–1122, 2024b.

734 Zhisheng Lu, Juncheng Li, Hong Liu, Chaoyan Huang, Linlin Zhang, and Tieyong Zeng. Transformer
 735 for single image super-resolution. In Proc. IEEE Conference on Computer Vision and Pattern
 736 Recognition (CVPR) Workshops, pp. 457–466, June 2022.

737 Nanye Ma, Mark Goldstein, Michael S. Albergo, Nicholas M. Boffi, Eric Vanden-Eijnden, and
 738 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 739 transformers. In Proc. European Conference on Computer Vision (ECCV), 2024.

740 Weikang Meng, Yadan Luo, Xin Li, Dongmei Jiang, and Zheng Zhang. Polaformer: Polarity-
 741 aware linear attention for vision transformers. In Proc. International Conference on Learning
 742 Representations (ICLR), 2025.

743 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 744 models. In Proc. International Conference on Learning Representations (ICLR), 2017.

745 Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax. CoRR,
 746 abs/1805.02867, 2018.

747 MiniMax, Aonian Li, Bangwei Gong, and et al. Minimax-01: Scaling foundation models with
 748 lightning attention. CoRR, abs/2501.08313, 2025.

756 Yury Nahshan, Joseph Kampeas, and Emir Haleva. Linear log-normal attention with unbiased
 757 concentration. In Proc. International Conference on Learning Representations (ICLR), 2024.

758

759 Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,
 760 and Ming-Hsuan Yang. Intriguing properties of vision transformers. In Proc. Annual Conference
 761 on Neural Information Processing (NeurIPS), pp. 23296–23308, 2021.

762 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 763 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
 764 Word prediction requiring a broad discourse context. In Proc. Annual Meeting of the Association
 765 for Computational Linguistics (ACL), 2016.

766 William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proc. International
 767 Conference on Computer Vision (ICCV), pp. 4172–4182, 2023.

768

769 Xiaohuan Pei, Tao Huang, and Chang Xu. Efficientmamba: Atrous selective scan for light weight
 770 visual mamba. In Proc. Association for the Advancement of Artificial Intelligence (AAAI), pp.
 771 6443–6451, 2025.

772 Yifan Pu, Zhuofan Xia, Jiayi Guo, Dongchen Han, Qixiu Li, Duo Li, Yuhui Yuan, Ji Li, Yizeng
 773 Han, Shiji Song, Gao Huang, and Xiu Li. Efficient diffusion transformer with step-wise dynamic
 774 attention mediators. In Proc. European Conference on Computer Vision (ECCV), 2024.

775

776 Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
 777 Kong, and Yiran Zhong. Cosformer: Rethinking softmax in attention. In Proc. International
 778 Conference on Learning Representations (ICLR), 2022.

779 Zhen Qin, Weigao Sun, Dong Li, Xuyang Shen, Weixuan Sun, and Yiran Zhong. Various lengths,
 780 constant speed: Efficient language modeling with lightning attention. In Proc. International
 781 Conference on Machine Learning (ICML), 2024.

782

783 Yuwei Qiu, Kaihao Zhang, Chenxi Wang, Wenhan Luo, Hongdong Li, and Zhi Jin. Mb-taylorformer:
 784 Multi-branch efficient transformer expanded by taylor formula for image dehazing. In Proc.
 785 International Conference on Computer Vision (ICCV), pp. 12756–12767, 2023.

786 Sucheng Ren, Xingyi Yang, Songhua Liu, and Xinchao Wang. Sg-former: Self-guided transformer
 787 with evolving token reallocation. In Proc. International Conference on Computer Vision (ICCV),
 788 pp. 5980–5991, 2023.

789

790 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 791 adversarial winograd schema challenge at scale. In Proc. Association for the Advancement of
 792 Artificial Intelligence (AAAI), pp. 8732–8740, 2020.

793

794 Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
 795 Attention with linear complexities. In Proc. Winter Conference on Applications of Computer
 796 Vision (WACV), pp. 3530–3538, 2021.

797

798 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
 799 SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023.

800

801 Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, and Yunhe Wang. Efficient residual dense
 802 block search for image super-resolution. In Proceedings of the AAAI conference on artificial
 803 intelligence, volume 34, pp. 12007–12014, 2020.

804

805 Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 806 Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

807

808 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 809 Furu Wei. Retentive network: A successor to transformer for large language models. CoRR,
 810 abs/2307.08621, 2023.

811

812 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
 813 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
 814 transformers. In Proc. International Conference on Learning Representations (ICLR), 2021.

810 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 811 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In Proc.
 812 International Conference on Machine Learning (ICML), pp. 10347–10357, 2021.

813

814 Hugo Touvron, Thibaut Lavril, and et al. Gautier Izacard. Llama: Open and efficient foundation
 815 language models. CoRR, abs/2302.13971, 2023.

816

817 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 818 Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Annual Conference on Neural
 819 Information Processing (NeurIPS), pp. 5998–6008, 2017.

820

821 Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 822 and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
 823 convolutions. In Proc. International Conference on Computer Vision (ICCV), pp. 548–558, 2021.

824

825 Wenhai Wang, Enze Xie, Xiang Li, Deng Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 826 and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
 827 Visual Media, 8:415–424, 2022.

828

829 Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong
 830 Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, and Yu Qiao. Internimage: Exploring large-scale
 831 vision foundation models with deformable convolutions. In Proc. IEEE Conference on Computer
 832 Vision and Pattern Recognition (CVPR), pp. 14408–14419, 2023.

833

834 Zhaozhi Wang, Yue Liu, Yunfan Liu, Hongtian Yu, Yaowei Wang, Qixiang Ye, and Yunjie Tian.
 835 vheat: Building vision models upon heat conduction. CoRR, abs/2405.16555, 2024.

836

837 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, José M. Álvarez, and Ping Luo. Seg-
 838 former: Simple and efficient design for semantic segmentation with transformers. In Proc. Annual
 839 Conference on Neural Information Processing (NeurIPS), pp. 12077–12090, 2021.

840

841 Haotian Yan, Ming Wu, and Chuang Zhang. Multi-scale representations by varying window attention
 842 for semantic segmentation. In The Twelfth International Conference on Learning Representations,
 843 ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024.

844

845 Chenglin Yang, Siyuan Qiao, Qihang Yu, Xiaoding Yuan, Yukun Zhu, Alan L. Yuille, Hartwig Adam,
 846 and Liang-Chieh Chen. MOAT: alternating mobile convolution and attention brings strong vision
 847 models. In Proc. International Conference on Learning Representations (ICLR), 2023.

848

849 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 850 transformers with hardware-efficient training. In Proc. International Conference on Machine
 851 Learning (ICML), 2024a.

852

853 Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
 854 with the delta rule over sequence length. In Proc. Annual Conference on Neural Information
 855 Processing (NeurIPS), 2024b.

856

857 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 858 delta rule. In Proc. International Conference on Learning Representations (ICLR), 2025.

859

860 Haoran You, Yunyang Xiong, Xiaoliang Dai, Bichen Wu, Peizhao Zhang, Haoqi Fan, Peter Vajda, and
 861 Yingyan Celine Lin. Castling-vit: Compressing self-attention via switching towards linear-angular
 862 attention at vision transformer inference. In Proc. IEEE Conference on Computer Vision and
 863 Pattern Recognition (CVPR), pp. 14431–14442, 2023.

864

865 Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? In Proc. IEEE
 866 Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4484–4496, 2025.

867

868 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 869 really finish your sentence? In Proc. Annual Meeting of the Association for Computational
 870 Linguistics (ACL), pp. 4791–4800, 2019.

864 Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the
865 porcupine: Expressive linear attentions with softmax mimicry. In Proc. International Conference
866 on Learning Representations (ICLR), 2024.

867 Xindong Zhang, Hui Zeng, and Lei Zhang. Edge-oriented convolution block for real-time super reso-
868 lution on mobile devices. In Proceedings of the 29th ACM international conference on multimedia,
869 pp. 4034–4043, 2021.

870 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
871 Semantic understanding of scenes through the ADE20K dataset. International Journal of Computer
872 Vision, 127:302–321, 2019.

873 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
874 mamba: Efficient visual representation learning with bidirectional state space model. In Proc.
875 International Conference on Machine Learning (ICML), 2024.

876 Lianghui Zhu, Zilong Huang, Bencheng Liao, Jun Hao Liew, Hanshu Yan, Jiashi Feng, and Xinggang
877 Wang. Dig: Scalable and efficient diffusion models with gated linear attention. In Proc. IEEE
878 Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7664–7674, 2025.

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **A APPENDIX**

919

- 920 • **A.1 LLM Usage Statement.**
- 921 • **A.2 Entropy Analysis.** The mathematical proof and supporting explanation of the proposed
922 linear attention.
- 923 • **A.3 Datasets and Experiment Details.** Training settings and datasets for all experiments.
- 924 • **A.4 Ablation Study.** Ablation study to evaluate the effectiveness of each component.
- 925 • **A.5 Limitations.** The limitations of this work.
- 926 • **A.6 Discussion.** Differences from previous works.
- 927 • **A.7 Related Work.** Related works about vision transformer and linear attention.
- 928 • **A.8 Visualizations.** More visualizations about the experiments.
- 929 • **A.9 Tables.** Full tables about the experimental results.
- 930 • **A.10 Diffusion Transformer Results.** DiT experiments.
- 931 • **A.11 Future Work.**

932

933 **A.1 LLM USAGE STATEMENT**

934 This work made limited use of large language models (LLMs) exclusively for minor language polishing
935 and wording refinement, with the goal of improving readability. The LLMs were not involved
936 in research ideation, methodology development, experiment design, implementation, analysis, or
937 the formulation of scientific claims. All core contributions, including theoretical insights, model
938 design, experiments, and conclusions, were entirely developed by the authors. Additionally, in their
939 roles as peer reviewers, the authors used LLMs to assist in understanding the structure and reasoning
940 of manuscripts and to help draft review wording. These uses served solely as supportive tools to
941 facilitate comprehension and articulation, without influencing any scientific assessments, decisions,
942 or judgments made during the review process.

943 **A.2 ENTROPY ANALYSIS**

944 In this section, we use the Positive Sequence Entropy (PSE) (Meng et al., 2025) to connect the
945 probability distribution with the sequence of query-key similarity (one row in the feature map). In the
946 following derivation, we use the Positive Sequence Entropy (PSE) (Meng et al., 2025) to connect the
947 softmax self-attention with $PSE(\cdot)$. We investigate the probability distribution generated from one
948 single query vector and a series of key vectors with PSE, analyzing how $PSE(\mathbf{x})$ varying with query
949 norm with softmax.

950 We first give the definition of PSE as following,

951 **Definition 2** (Positive Sequence Entropy). *Let a sequence $\mathbf{x} = (x_1, \dots, x_N)$, in which $x_i \geq 0$,
952 $i = 1, \dots, N$, and $s = \sum_{i=1}^N x_i > 0$. The uncertainty of this positive sequence is defined by:*

$$953 \quad PSE(\mathbf{x}) = - \sum_{i=1}^N \frac{x_i}{s} \log\left(\frac{x_i}{s}\right), \quad s = \sum_{i=1}^N x_i. \quad (15)$$

954 Assuming \mathbf{q} is a directional fixed vector with norm c , i.e., $\mathbf{q}_t = c_t \cdot d(\mathbf{q}_t)$, we only consider the
955 relation between PSE and c_t . Then, we have the following two theorems:

956 **Theorem 1** (Query Norm-aware Entropy Reduction in Softmax Attention). *Given that $\mathbf{x}_i = \mathbf{q}\mathbf{k}_i^\top$
957 be a positive sequence and let $\Phi : (-\infty, +\infty) \mapsto [0, +\infty)$ be a spiky function serving to reduce
958 the PSE through mapping each x_i . In the case $\Phi(\cdot) = \exp(\cdot)$, existing a constant value c_0
959 satisfying: For $c > c_0$, we have*

$$960 \quad PSE(\Phi((c\mathbf{q})\mathbf{k}^\top)) = PSE(\Phi(c\mathbf{x})) < PSE(\Phi(\mathbf{x})).$$

972 *Proof.* Without loss of generality, we assume the sum of the positive sequence have, $\sum_{i=1}^N \Phi(x_i) = 1$,
 973 and directly set query norm as a scalar $c \in \mathbb{R}$. Then, the PSE of \mathbf{x} degraded into Shannon entropy as,
 974

$$\begin{aligned} 975 \quad \text{PSE}(\Phi(\mathbf{x})) &= H(\Phi(\mathbf{x})) \\ 976 \\ 977 \quad &= - \sum_{i=1}^N \Phi(x_i) \log(\Phi(x_i)) \\ 978 \end{aligned}$$

979 When query norm varies, the PSE is,
 980

$$\begin{aligned} 982 \quad S_c &= \sum_{i=1}^N \Phi(cx_i) = \sum_{i=1}^N \Phi(x_i)^c = \|\Phi(\mathbf{x})\|_c^c \\ 983 \\ 985 \quad \text{PSE}(\Phi(c\mathbf{x})) &= \text{PSE}(\Phi(\mathbf{x})^c) = \log(S_c) - \sum_{i=1}^N \frac{\Phi(x_i)^c}{S_c} \log(\Phi(x_i)^c) \\ 986 \\ 987 \\ 988 \quad &= c \log(\|\Phi(\mathbf{x})\|_c) - c \sum_{i=1}^N \frac{\Phi(x_i)^c}{\|\Phi(\mathbf{x})\|_c} \log(\Phi(x_i)) \\ 989 \end{aligned}$$

990 Due to the definition of L_p norm, $\lim_{p \rightarrow \infty} \|x\|_p = x_{max}$, and $x_i \in [0, 1]$, we have $\|x\|_p \leq x_{max}$ for
 991 $p > 1$. Therefore,
 992

$$993 \quad c \log(\|\Phi(\mathbf{x})\|_c) - c \sum_{i=1}^N \frac{\Phi(x_i)^c}{\|\Phi(\mathbf{x})\|_c} \log(\Phi(x_i)) \leq c \log(\Phi(x_{max})) - c \sum_{i=1}^N \left(\frac{\Phi(x_i)}{\Phi(x_{max})} \right)^c \log(\Phi(x_i))$$

998 When $c \rightarrow +\infty$, $\left(\frac{\Phi(x_i)}{\Phi(x_{max})} \right)^c \rightarrow 0$ for all $x_i \neq x_{max}$:
 999

$$\begin{aligned} 1000 \quad \lim_{c \rightarrow +\infty} c \log(\Phi(x_{max})) - c \sum_{i=1}^N \left(\frac{\Phi(x_i)}{\Phi(x_{max})} \right)^c \log(\Phi(x_i)) \\ 1001 \\ 1003 \quad &= c \log(\Phi(x_{max})) - c \log(\Phi(x_{max})) = 0 \\ 1004 \end{aligned}$$

1005 Therefore, because PSE is positive, there exists c_0 , for all $c > c_0$, $\text{PSE}(\Phi(c\mathbf{x})) < \text{PSE}(\Phi(\mathbf{x}))$ \square
 1006

1008 Consequently, the Theorem 1 proves the theorem softmax attention is query norm aware with a
 1009 dynamic control on entropy reduction. \blacksquare
 1010

1011 Similar to linear attention, we continue with the case in previous linear attention with feature maps,
 1012 and prove that the PSE of existing linear attentions is query norm-unaware.

1014 **Theorem 2** (Query Norm-unaware of Entropy in Linear Attention). *Given that $\mathbf{x} =$
 1015 (x_1, \dots, x_N) , $\mathbf{x}_c = (cx_1, \dots, cx_N)$, are positive sequences, where $c > 0$ denotes the ratio
 1016 of the query norm, and $\phi(\cdot)$ is a element-wise feature map satisfying $c_1\phi(\mathbf{q}) \leq \phi(c\mathbf{q}) \leq c_2\phi(\mathbf{q})$.
 1017 Then, we have*

$$1018 \quad |\text{PSE}(\Phi(\mathbf{x}_c)) - \text{PSE}(\Phi(\mathbf{x}))| \leq \log\left(\frac{c_2}{c_1}\right) + \frac{c_2 - c_1}{c_1} \text{PSE}(\Phi(\mathbf{x})).$$

1022 *Proof.* For most of the linear attentions, such as vanilla linear attention (Katharopoulos et al., 2020),
 1023 FLatten (Han et al., 2023), Efficientvit (Cai et al., 2023) and PolaFormer (Meng et al., 2025), they
 1024 all have $c_1\phi(\mathbf{q}) \leq \phi(c\mathbf{q}) \leq c_2\phi(\mathbf{q})$, and for ReLU(\cdot) feature map, $c_1 = c_2$. Therefore, we have the
 1025 following derivations:

1026 If the feature map is a linear transformation, *i.e.*, $\Phi(x_m) = \phi(\mathbf{q})\phi(\mathbf{k}_m)^\top$ and $\Phi(cx) = c\Phi(\mathbf{x})$, such
 1027 as $\text{ReLU}(\cdot)$, we have,
 1028

$$\begin{aligned}
 1029 \quad S &= \sum_{m=1}^N \Phi(x_m) \\
 1030 \quad \text{PSE}_{\text{linear}}(\mathbf{x}) &= \log(S) - \sum_{i=1}^N \frac{\Phi(x_i)}{S} \log(\Phi(x_i)) \\
 1031 \quad \text{PSE}_{\text{linear}}(c\mathbf{x}) &= \log(c) + \log(S) - \sum_{i=1}^N \frac{c\Phi(x_i)}{c \cdot S} (\log(\Phi(x_i)) + \log(c)) \\
 1032 \quad &= \log(c) + \log(S) - \sum_{i=1}^N \frac{c\Phi(x_i)}{c \cdot S} (\log(\Phi(x_i))) - \sum_{i=1}^N \frac{c\Phi(x_i)}{c \cdot S} \log(c) \\
 1033 \quad &= \log(S) - \sum_{i=1}^N \frac{c\Phi(x_i)}{c \cdot S} (\log(\Phi(x_i))) + \log(c) - \sum_{i=1}^N \frac{c\Phi(x_i)}{c \cdot S} \log(c) \\
 1034 \quad &= \text{PSE}_{\text{linear}}(\mathbf{x}).
 \end{aligned}$$

1044
 1045 For a linear attention with nonlinear feature map, such as Log-Normal Attention (Nahshan et al.,
 1046 2024), FLatten (Han et al., 2023), Efficientvit (Cai et al., 2023) and PoLaFormer (Meng et al., 2025),
 1047 they all have $c_1\phi(\mathbf{q}) \leq \phi(c\mathbf{q}) \leq c_2\phi(\mathbf{q})$ (and for $\text{ReLU}(\cdot)$ feature map, $c_1 = c_2$), thus, we have:
 1048

1049 For clarity, we suppose the original positive sequence is normalized, *i.e.*, $\sum_{m=1}^N \Phi(x_m) =$
 1050 $\sum_{m=1}^N \phi(\mathbf{q})\phi(\mathbf{k}_m)^\top = 1$, then, under the assumption $c_1\phi(\mathbf{q}) \leq \phi(c\mathbf{q}) \leq c_2\phi(\mathbf{q})$, we have
 1051

$$c_1\Phi(x_m) \leq \Phi_c(x_m) := \phi(c\mathbf{q})\phi(\mathbf{k}^\top) \leq c_2\Phi(x_m) \quad (16)$$

$$S_c = \sum_{i=1}^N \Phi_c(x_i) \quad (17)$$

$$c_1S \leq S_c \leq c_2S \quad (18)$$

$$S = 1 \quad (19)$$

$$PSE(\Phi(\mathbf{x})) = \log(S) - \sum_{i=1}^N \frac{\Phi(x_i)}{S} \log(\Phi(x_i)) \quad (20)$$

$$= \sum_{i=1}^N \Phi(x_i) \log(\Phi(x_i)) \quad (S=1) \quad (21)$$

$$PSE(\Phi(\mathbf{x}_c)) = \log(S_c) - \sum_{i=1}^N \frac{\Phi_c(x_i)}{S_c} \log(\Phi_c(x_i)) \quad (22)$$

$$\leq \log(c_2) - \sum_{i=1}^N \frac{\Phi_c(x_i)}{S_c} \log(\Phi_c(x_i)). \quad (23)$$

1069 Since $S_c > 0$ and $\Phi_c(x_m) > 0$, we have
 1070

$$\log(c_2) - \sum_{i=1}^N \frac{\Phi_c(x_i)}{S_c} \log(\Phi_c(x_i)) \quad (24)$$

$$\leq \log(c_2) - \sum_{i=1}^N \frac{\Phi_c(x_i)}{S_c} (\log(\Phi(x_i)) + \log(c_1)) \quad (25)$$

$$= \log\left(\frac{c_2}{c_1}\right) - \sum_{i=1}^N \frac{\Phi_c(x_i)}{S_c} \log(\Phi(x_i)). \quad (26)$$

1080 Due to $\sum_{m=1}^N \Phi(x_m) = 1, \Phi(x_m) \geq 0$, we have $\Phi(x_m) \leq 1, \log(\Phi(x_m)) \leq 0$ then
 1081

$$1082 \log\left(\frac{c_2}{c_1}\right) - \sum_{i=1}^N \frac{\Phi_c(x_i)}{S_c} \log(\Phi(x_i)) \quad (27)$$

$$1084 \leq \log\left(\frac{c_2}{c_1}\right) - \sum_{i=1}^N \frac{c_2 \Phi(x_i)}{c_1 S} \log(\Phi(x_i)) \quad (28)$$

$$1087 = \log\left(\frac{c_2}{c_1}\right) - \frac{c_2}{c_1} \sum_{i=1}^N \Phi(x_i) \log(\Phi(x_i)) \quad (29)$$

$$1090 = \log\left(\frac{c_2}{c_1}\right) + \frac{c_2}{c_1} PSE(\Phi(\mathbf{x})). \quad (30)$$

1092 Similar with the derivations above, we have the lower bound of $PSE(\mathbf{x}_c)$,

$$1093 PSE(\Phi(\mathbf{x}_c)) \geq \log\left(\frac{c_1}{c_2}\right) + \frac{c_1}{c_2} PSE(\Phi(\mathbf{x})). \quad (31)$$

1096 Therefore,

$$1097 \log\left(\frac{c_1}{c_2}\right) + \left(\frac{c_1}{c_2} - 1\right) PSE(\Phi(\mathbf{x})) \leq PSE(\Phi(\mathbf{x}_c)) - PSE(\Phi(\mathbf{x})) \leq \log\left(\frac{c_2}{c_1}\right) + \left(\frac{c_2}{c_1} - 1\right) PSE(\Phi(\mathbf{x})). \quad (32)$$

1100 Since $c_2 > c_1 > 0$, we have $\log\left(\frac{c_2}{c_1}\right) > 0$ and ,

$$1103 |PSE(\Phi(\mathbf{x}_c)) - PSE(\Phi(\mathbf{x}))| \leq \log\left(\frac{c_2}{c_1}\right) + \frac{c_2 - c_1}{c_1} PSE(\Phi(\mathbf{x})) \quad (33)$$

1105 Here, both c_1 and c_2 vary with c .

1106 For example, as the feature map of Linear Log-Normal Attention (Nahshan et al., 2024), $\phi(\mathbf{q}) =$
 1107 $\exp(\mathbf{q})$, we have

$$1109 \exp\left(\min_d(\mathbf{q}_d)\right) \cdot \Phi(x_m) \leq \Phi_c(x_m) \leq \exp\left(\max_d(\mathbf{q}_d)\right) \cdot \Phi(x_m), \quad (34)$$

$$1110 |PSE(\Phi(\mathbf{x}_c)) - PSE(\Phi(\mathbf{x}))| \leq \log\left(\frac{c_2}{c_1}\right) + \frac{c_2 - c_1}{c_1} PSE(\Phi(\mathbf{x})) \quad (35)$$

$$1112 = \mathbf{q}_{max} - \mathbf{q}_{min} + (\exp(\mathbf{q}_{max} - \mathbf{q}_{min}) - 1) PSE(\Phi(\mathbf{x})) \quad (36)$$

1114 From the equation above and the properties of \exp function, it can be seen that when the query
 1115 norm changes, the $PSE(\Phi(\mathbf{x}_c))$ of linear attention only fluctuates around $\Phi(PSE(\mathbf{x}))$, showing no
 1116 negative correlation with the query norm. \square

1117 According to the derivations about Eq. (36), it is evident that the error, $|PSE(\Phi(\mathbf{x}_c)) - PSE(\Phi(\mathbf{x}))|$,
 1118 is controlled by the feature map. Only when the steepness (*i.e.*, the second derivative) of the feature
 1119 map function varies with the query norm can the query norm directly affect the variation of entropy in
 1120 linear attention. Considering the Lemma 2 in PolaFormer (Meng et al., 2025), the composite function
 1121 of the element-wise feature map with first and second derivative is concave, thus the feature map we
 1122 proposed, power function with the exponent greater than 1 as well as changing with query norm can
 1123 compensate for the property in softmax attention where the query norm influences PSE.

1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 A.3 EXPERIMENT SETTINGS
1135

1136 **Implementation Details.** Building upon the framework illustrated in Fig. 2, we construct a hierarchi-
1137 cal vision backbone NaLaFormer. Consistent with established works (Fan et al., 2025b; 2024; Liu
1138 et al., 2021), we develope a set of NaLaFormer backbones, each with varying configurations of block
1139 count and channel dimensions across their respective stages whose the ratio of MLP is set to 3.5. The
1140 architecture details are illustrated in the Tab. 7.

1141
1142 Table 7: Architecture details of NaLaFormer.
1143

1144 Model	1145 Blocks	1146 Channels	1147 Heads
1146 NaLaFormer-XT	1147 [2, 2, 4, 2]	1148 [32, 64, 192, 384]	1149 [1, 2, 6, 12]
1147 NaLaFormer-T	1148 [2, 2, 6, 2]	1149 [64, 128, 256, 512]	1150 [1, 2, 4, 8]
1148 NaLaFormer-S	1149 [3, 5, 9, 3]	1150 [64, 128, 320, 512]	[1, 2, 5, 8]
1149 NaLaFormer-B	1150 [4, 6, 12, 6]	[96, 192, 384, 512]	[1, 2, 6, 8]
1150 NaLaFormer-L	[4, 7, 19, 8]	[96, 192, 448, 640]	[1, 2, 7, 10]

1151
1152 **Image Classification.** In this task, we train all of our models with AdamW optimizer for 320 epochs,
1153 including 20 epochs for linear warm-up. The basic learning rate is set to 0.001 for 128 micro batchsize
1154 and 1024 global batchsize. The training framework is developed on the top of the official DeiT
1155 implementation. Additionally, we use CPE (Chu et al., 2023) to serve as the positional encoding.
1156 When mapping each $d(\mathbf{x})$, we set $f(x) = \frac{\pi}{4} \tanh(x)$ to make the cosine function only inhibits the
1157 directions with opposite signals.

1158 **Object Detection and Segmentation.** We further conducted comprehensive experiments on the
1159 object detection task using the COCO dataset (Lin et al., 2014), which contains 118K training images
1160 and 5K validation images annotated with 80 object categories. We use our model as backbone with
1161 pretrained weights on ImageNet-1K. We conduct the experiments following the *mmcv-detection*
1162 (Contributors, 2018) project. The model are trained under both $1 \times$ (12 epochs) and $3 \times$ (36 epochs).
1163 We use the AdamW optimizer with 0.0001 learning rate, 0.0001 weight decay and “step” policy.
1164

1165 **Semantic Segmentation.** We conduct the semantic segmentation of ADE20K dataset (Zhou et al.,
1166 2019). This widely adopted dataset comprises 25,000 densely annotated images depicting complex
1167 real-world environments with rich contextual interactions between objects and their spatial configura-
1168 tions. We employ the pretrained NaLaFormer models on two representative segmentation models,
1169 SemanticFPN and UperNet. The experiment is conducted based on *mmcv-segmentation* (Contributors,
1170 2018). The training iteration is set to 40000 for SemanticFPN models and 160000 for UperNet
1171 models. All models are trained using AdamW optimizer with 0.0001 learning rate and 0.001 weight
1172 decay.
1173

1174 **Super Resolution.** To both evaluate the accuracy of our method under super resolution and highlight
1175 the computational efficiency advantage that its linear complexity offers in super-resolution, we make
1176 the experiments following previous efficient SISR work, ESRT (Lu et al., 2022). We use DIV2K
1177 (Agustsson & Timofte, 2017) as the training dataset, and for evaluation, we use four benchmark
1178 datasets, including Set5, Set14, BSD100 and Urban100 as used in ESRT, utilizing both PSNR and
1179 SSIM to evaluate the performance of the reconstructed SR images. Meanwhile, we conducted
1180 statistics on both memory consumption and inference duration.

1181 **Language Modeling.** We compare NaLaFormer with several baseline models, including Trans-
1182 former++ (Touvron et al., 2023), Gated Linear Attention (Yang et al., 2024a), RetNet (Sun et al.,
1183 2023), Mamba (Gu & Dao, 2023), DeltaNet (Yang et al., 2024b) and Gated DeltaNet (Yang et al.,
1184 2025). Each model is pretrained on the subset of the SlimPajama dataset (Soboleva et al., 2023). We
1185 train our model from scratch with parameter sizes of 340M on 15B tokens with a batch size of 0.5M
1186 tokens and test it on common-sense reasoning tasks, which includes WikiText (Merity et al., 2017),
1187 LAMBADA (Paperno et al., 2016), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al.,
1188 2018), HellaSwag (Zellers et al., 2019), PiQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al.,
1189 2020). All downstream tasks are conducted based on *lm-evaluation-harness*. We test throughput of
1190 the baseline models on a single A6000 GPU.

1188
1189

A.4 ABLATION STUDY

1190
1191
1192
1193
1194
1195
1196
1197
1198

Impact of Components in Norm-aware Linear Attention. We evaluate the effectiveness of each component in NaLaFormer. In row 1, we keep non-negativity and spikiness with $\text{ReLU}(\cdot)$ and a constant power function. In row 2, we utilize the cosine inhibit to additionally preserve the norm. In row 3, we replace the constant power with a norm aware power. As shown in Table 8, it is important to note that the norm awareness yields a 0.4% improvement in row 2 and row 3, indicating that norm-aware spikiness effectively capture the lost information due to the norm cancellation. We examine the impact of norm consistency with cosine inhibit in row 1 and row 2 by only preserving negative values, with our cosine inhibit, the information in negative values improves the performance 0.4%.

1199
1200
1201
1202
1203
1204
1205
1206

Impact of Components in Vision Model with NaLaFormer. The ImageNet classification experiments are conducted on top of the current sota method, RALA (Fan et al., 2025b). To ensure a fair comparison with the RALA baseline, we follow its model design. In order to verify that the performance gains of our method indeed stem from the advanced linear-attention mechanism, we further include the following ablation studies under the XT-size settings: blocks [2, 2, 4, 2], channels [32, 64, 192, 384], and heads [1, 2, 6, 12]. The results indicate that the influence of these components on model performance is limited, thereby further demonstrating the superiority of our norm-aware linear attention. The results are shown in Table. 10

1207
1208
1209
1210
1211
1212

Comparison with other Linear Attention. To ensure fair comparison with existing linear attention approaches, we adopt the evaluation protocol from FLatten-Transformer (Han et al., 2023) with Swin-T setting by only replacing the attention mechanism to our Norm-aware linear attention. As shown in Table 9, NaLaFormer achieves consistent performance gains across all baseline models, surpassing both conventional linear attention variants and softmax attention, while maintaining linear complexity.

1213
1214
1215
1216

Ablation Study in τ and λ . We conduct the ablation study on both image classification (CV) and document retrieval (NLP) from LRA benchmark. The results are shown in Table 11

Table 8: Ablation on the FL-Swin-T setting.

NON NEGATIVITY	SPIKY	NORM AWARE	COSINE DIR SIM	ACC. (%)
✓	✓			82.1 <small>-0.8</small>
✓	✓		✓	82.5 <small>-0.4</small>
✓	✓	✓	✓	82.9

Table 9: Comparison with other linear attention models on the Swin-T setting.

METHOD	PARAMS	FLOPS	Acc(%)
Swin-T (Liu et al., 2021)	28M	4.4G	81.2
Hydra Attn (Bolya et al., 2022)	29M	4.5G	80.7
Efficient Attn (Shen et al., 2021)	29M	4.5G	81.0
Linear Angular (You et al., 2023)	29M	4.5G	79.4
Enhanced Attn (Cai et al., 2023)	29M	4.5G	81.8
FLatten Attn (Han et al., 2023)	29M	4.5G	82.1
Agent Attn (Han et al., 2024c)	29M	4.5G	82.6
InLine Attn (Han et al., 2024a)	30M	4.5G	82.4
PolaFormer (Meng et al., 2025)	29M	4.5G	82.6
NaLaFormer	29M	4.8G	82.9

1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 10: Ablation studies of vision models with NaLaFormer-XT.

W.O.	RoPE	CPE	Layerscales	Swish	Ours-XT
ACC	79.1%	78.9%	79.1%	78.7%	79.1%

Table 11: Ablation studies in τ and λ .

λ	τ	RETRIEVAL (NLP)	IMAGE (CV)
3	0.5	80.42	44.54
5	0.5	80.17	41.91
7	0.5	80.13	40.73
3	1	80.13	41.80
3	2	80.35	42.12

1242
1243

A.5 LIMITATIONS

1244 While this work validates the efficacy of NaLaFormer across diverse vision-language tasks, we
 1245 anticipate that its linear self-attention architecture holds significant potential for other cross-modality
 1246 applications, such as text-to-image and text-to-video generation. However, direct evaluation in such
 1247 contexts presents considerable challenges, primarily due to the substantial computational complexity
 1248 associated with training diffusion models from scratch. Future efforts will actively pursue these
 1249 promising directions and develop novel strategies to accelerate training efficiency, thereby enabling
 1250 scalable deployment of NaLaFormer in complex generative modeling tasks.

1251
1252

A.6 DISCUSSION

1253 **Differences from Previous Works.** Existing works, such as Cosformer (Qin et al., 2022) and RoPE
 1254 (Su et al., 2024), keep part of the information with trigonometric functions by using cosine-based
 1255 functions. Cosformer replaces the softmax in attention with a cosine-based distance metric, using
 1256 cosine similarity to directly measure query-key alignment, while RoPE encodes absolute positions
 1257 via rotation matrices in complex space to represent the relative position. However, both kinds of
 1258 cosine similarity are employed for **positional decay**, which differs from our cosine inhibition method
 1259 targeting the **similarity and dimensions with opposite signals**, shown as follows:

$$1260 \quad 1261 \quad \text{SM}_{\text{cosformer}}(\mathbf{q}_n, \mathbf{k}_m) = \phi(\mathbf{q}_n)\phi(\mathbf{k}_m)^\top \underbrace{\cos\left(\frac{(m-n)\pi}{2M}\right)}_{\text{relative position}}, \quad (37)$$

$$1264 \quad \text{SM}_{\text{rope}}(\mathbf{q}_n, \mathbf{k}_m) = \phi(\mathbf{q}_n) \underbrace{R_{\Theta, n-m}^d}_{\text{relative position}} \varphi(\mathbf{k}_m)^\top, \quad (38)$$

$$1267 \quad \text{SM}_{\text{ours}}(\mathbf{q}, \mathbf{k}) = \sum_{i=1}^d \underbrace{\cos(\phi(\mathbf{q})_i - \phi(\mathbf{k})_i)}_{\text{dimensional cosine similarity}} \quad (39)$$

1270
1271

A.7 RELATED WORK

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Vision Transformer. The success of the Transformer architecture (Vaswani et al., 2017) in natural language processing (NLP), particularly its self-attention mechanism for modeling long-range dependencies, has catalyzed its adoption in computer vision (CV). The vision transformer (Dosovitskiy et al., 2021) marked a paradigm shift by discarding convolutions entirely. The vision transformer partitions images into patches, linearly embeds these patches into sequential tokens, and processes them through a pure Transformer encoder. Nevertheless, the quadratic computational complexity inherent in self-attention mechanisms incurs substantial computational overhead, rendering ViT training computationally intensive. Existing researches have proposed multiple strategies to enhance ViT’s efficiency. For instance, DeiT (Touvron et al., 2021) achieves data-efficient training through knowledge distillation, whereas the Swin Transformer (Liu et al., 2021) employs shifted window mechanisms to balance local feature extraction with global context modeling while maintaining linear complexity. These advancements have established Transformer-based architectures as fundamental frameworks for visual tasks, effectively bridging the methodological divide between NLP-oriented architectures and CV’s inherent geometric constraints. However, these improvements primarily address architectural adaptations rather than resolving the fundamental limitations of softmax-based attention mechanisms, thereby retaining significant training costs. Recent studies have explored alternative paradigms for visual representation learning to mitigate these constraints. Building on sequential image processing principles, several approaches employ state space models (SSMs) for patch encoding. Notably, VMamba (Liu et al., 2024; Huang et al., 2024) leverages SSM-based encoding through raster-scan ordering to extract hierarchical features while preserving the theoretical guarantee of linear computational complexity inherent to SSMs. In addition, VHeat (Wang et al., 2024) reconceptualizes image understanding through thermodynamic simulations, modeling image patches as heat sources, and analyzing thermal conduction processes, reducing the complexity to $\mathcal{O}(N^{1.5})$ through discrete cosine transforms (DCT) and inverse DCT operations.

Linear Attention. Linear attention employs kernel-based similarity approximation to circumvent the $\exp(\mathbf{q}\mathbf{k}^\top)$ in standard softmax attention. The foundational work (Katharopoulos et al., 2020) intro-

2qdC,
W3
dBiZ,
W2

1296 duces a linear separable kernel $\phi(\cdot)$ as an alternative to the \exp operator, exploiting the associative
 1297 property of matrix multiplication to reduce computational complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N)$. Sub-
 1298 sequent variants adopt this Softmax-free paradigm with diverse kernel functions, including ReLU
 1299 (Han et al., 2023; Cai et al., 2023), 1+ELU (Katharopoulos et al., 2020) and SiLU (Yang et al., 2024b;
 1300 MiniMax et al., 2025). Furthermore, to enhance position awareness, Cosformer (Qin et al., 2022)
 1301 integrates ReLU with Ptolemy’s theorem, incorporating locality inductive biases through feature map
 1302 re-weighting while empirically enforcing non-negativity constraints. Beyond kernel design, recent
 1303 studies focus on preserving the spikiness property inherent in softmax attention. Hedgehog (Zhang
 1304 et al., 2024) and MB-TaylorFormer (Qiu et al., 2023) employ series expansions to approximate the
 1305 \exp function, while FLatten Transformer (Han et al., 2023) and PolaFormer (Meng et al., 2025) utilize
 1306 power functions to sharpen attention distributions. Notably, lightning attention (Qin et al., 2024) com-
 1307 bines SiLU kernels with a gate mechanism, achieving scalability up to 456B parameters (MiniMax
 1308 et al., 2025). [Inline Han et al. \(2024a\)](#) provides an important insight by proving that the softmax
 1309 function is injective in most cases, whereas linear attention is not. By modifying the normalization
 1310 scheme, it restores the injectivity of linear attention. In addition, [Inline](#) introduces a local-attention
 1311 residual (a convolution module) to enhance local bias, thereby compensating for softmax’s strong
 1312 capability in modeling local patterns. This work highlights the importance of injectivity in linear
 1313 attention and uses vectors with identical norms but different directions as counterexamples to address
 1314 this limitation. However, [Inline](#) overlooks the relationship between attention distribution uncertainty
 1315 and the query/key norms—an essential property of the softmax function. [MALA](#) (Fan et al., 2025a) notices
 1316 the neglect of norms, its simple non-negative constraint on the feature map causes negative
 1317 values to be ignored, thereby leading to information loss during inner product computation. In autore-
 1318 gressive architectures, linear attention enables RNNs parallelization through unidirectional encoding.
 1319 Gated Linear Attention enhances this capability via data-dependent gating on $\mathbf{K}^\top \mathbf{V}$ hidden states,
 1320 demonstrating superior performance in length generalization and recall-intensive tasks. Existing
 1321 kernel functions exhibit performance degradation compared to standard softmax attention. [MetaLA](#)
 1322 [Chou et al. \(2024\)](#) constructs a [lightweight recurrent-form linear attention by defining the optimal](#)
 1323 [linear approximation conditions of the softmax attention map, however, when applied to encoder](#)
 1324 [architectures, such as ViT models or bidirectional attention, the model performance becomes sensitive](#)
 1325 [to the scanning order, making it less suitable for vision tasks.](#) However, existing kernel-based linear
 1326 attention mechanisms generally suffer from performance degradation compared to standard softmax
 1327 attention. In this work, we analyze the sources of information loss by the cancellation of query norms
 1328 and the non-negativity enforcement in linear attention and address these issues through our proposed
 1329 method.

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

2qdC
W12qdC
W1

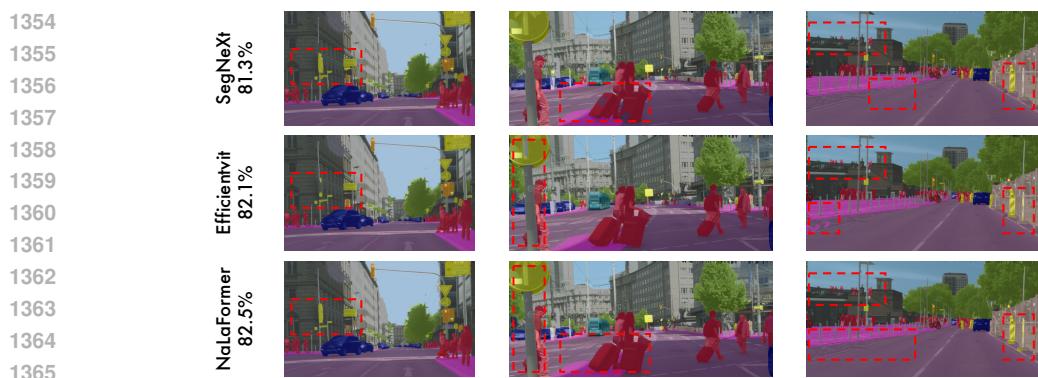
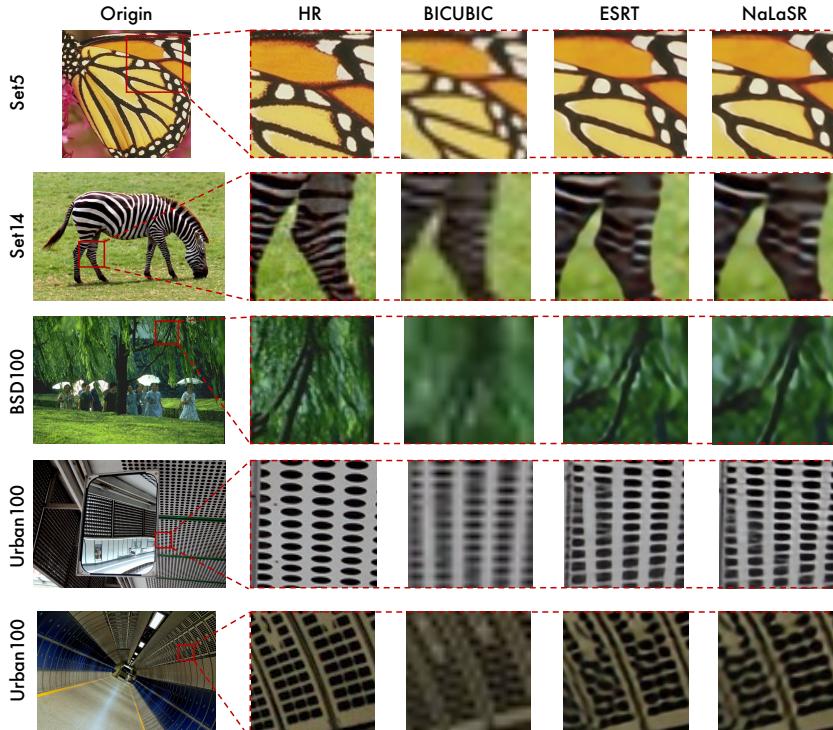
1350 A.8 MORE VISUALIZATIONS
13511352 More visualizations are provided in this section.
13531354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 8: Comparison of the visualizations among different models.

Figure 9: Visualizations of the NaLaSR in four different benchmarks comparing with ESRT under $\times 4$ scale.

A.9 FULL TABLES

Full tables of the experimental results are shown in this section.

Table 12: Object detection and instance segmentation results on the COCO dataset using RetinaNet with $1 \times$ schedule.

METHOD	TYPE	RETINANET $1 \times$					
		AP ^b	AP ₅₀ ^b	AP ₇₅ ^b	AP _S ^b	AP _M ^b	AP _L ^b
PVTv2-b1 (Wang et al., 2022)	Trans	41.2	61.9	43.9	25.4	44.5	54.3
SBCFormer-L (Lu et al., 2024b)	Trans	41.1	62.3	43.3	24.7	44.3	56.0
MPViT-XS (Lee et al., 2022)	Trans	45.9	67.4	49.4	28.5	50.1	60.8
SOFT + +T (Lu et al., 2024a)	Linear	41.9	62.7	44.7	27.8	45.4	55.6
Pola-PVT-T (Meng et al., 2025)	Linear	40.0	60.7	42.3	25.0	43.6	52.9
NaLaFormer-T	Linear	46.2	67.9	49.5	29.9	50.4	61.6
MPViT-S (Lee et al., 2022)	Trans	45.7	57.3	48.8	28.7	49.7	59.2
CMT-S (Guo et al., 2022a)	Trans	44.3	65.5	47.5	27.1	48.3	59.1
Pola-PVT-S (Meng et al., 2025)	Linear	43.2	64.1	46.4	28.0	46.4	57.9
NaLaFormer-S	Linear	47.2	68.0	50.7	29.0	51.3	63.3

Table 13: Full table of SISR: Comparison between our method and other SR Models on lightweight image super-resolution. The “LAT” denotes the inference latency and “MEM” represents peak memory usage.

MODEL	SCALE	SET5		SET14		BSD100		URBAN100	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Performance									
Bicubic	$\times 4$	28.42	0.81	26.00	0.70	25.96	0.67	23.14	0.66
SRFBN-S (Li et al., 2019)	$\times 4$	31.98	0.89	28.45	0.78	27.44	0.73	25.71	0.77
LAPAR-B (Li et al., 2020)	$\times 4$	31.94	0.89	28.46	0.78	27.52	0.73	25.85	0.79
ESRN-V (Song et al., 2020)	$\times 4$	31.99	0.89	28.49	0.78	27.50	0.73	25.87	0.78
ECBSR-M16C64 (Zhang et al., 2021)	$\times 4$	31.92	0.89	28.34	0.78	27.48	0.74	25.81	0.78
ESRT (Lu et al., 2022)	$\times 4$	32.01	0.89	28.44	0.77	27.48	0.73	25.85	0.78
NaLaSR	$\times 4$	32.00	0.89	28.50	0.78	27.49	0.73	25.83	0.78
Efficiency									
Bicubic	$\times 3$	30.39	0.87	27.55	0.77	27.21	0.74	24.46	0.73
SRFBN-S (Li et al., 2019)	$\times 3$	34.20	0.93	30.10	0.84	28.96	0.80	27.66	0.84
LAPAR-B (Li et al., 2020)	$\times 3$	34.20	0.93	30.17	0.84	29.03	0.80	27.85	0.85
ESRN-V (Song et al., 2020)	$\times 3$	34.23	0.93	30.27	0.84	29.03	0.80	27.95	0.85
ESRT (Lu et al., 2022)	$\times 3$	34.13	0.92	30.24	0.84	28.99	0.80	27.88	0.85
NaLaSR	$\times 3$	34.21	0.93	30.24	0.84	29.00	0.80	27.87	0.85
Efficiency									
ESRT (Lu et al., 2022)	$\times 4$	195ms	3.0G	188ms	7.0G	79ms	2.2G	195ms	69G
NaLaSR	$\times 4$	159ms	2.3G	147ms	2.9G	72ms	2.1G	124ms	5.3G
- SAVE	$\times 4$	18.5%	23.3%	21.8%	58.6%	8.9%	4.5%	36.4%	92.3%
ESRT (Lu et al., 2022)	$\times 3$	283ms	4.6G	222ms	10G	145ms	2.8G	316ms	79G
NaLaSR	$\times 3$	189ms	2.9G	176ms	4.1G	132ms	2.3G	138ms	8.9G
- SAVE	$\times 3$	33.4%	38.1%	20.8%	59.4%	8.7%	19.1%	56.5%	88.8%

Table 14: Full table of LRA: Throughput and Peak Memory of various models. A denotes the accuracy, T denotes the throughput of each model and M denotes the peak memory cost.

	Softmax	Kernelized	Nystrom	Linformer	Informer	Skyformer	PoLaFormer	NaLaFormer (ours)
Img (1k)	A	39.14	32.63	38.94	38.43	37.86	40.77	42.15
	T	736.36	862.32	1251.28	1613.19	85.85	923.04	1340.89
	M	9645	13013	5941	3471	5357	8091	4505
Path (1k)	A	70.39	69.86	69.34	65.39	56.44	70.73	70.53
	T	691.67	811.59	1125.08	1057.03	299.94	748.98	1065.63
	M	4831	6515	2980	1745	2687	4055	2286
List (2k)	A	38.71	38.46	37.95	36.44	37.05	38.69	37.35
	T	402.06	496.48	834.85	528.52	305.53	627.14	949.80
	M	4473	6084	1186	881	2737	1712	1151
Text (4k)	A	61.55	60.02	62.36	57.29	62.13	64.7	73.06
	T	252.06	327.27	1330.68	970.90	521.16	949.80	876.74
	M	17122	11720	2043	1742	5736	3082	1155
Retri (4k)	A	80.93	82.11	80.89	77.85	79.35	82.06	80.5
	T	116.30	144.83	496.48	424.18	142.94	348.60	344.93
	M	8947	10699	2011	1649	3399	2987	1139
Avg	A	58.14	56.62 _{-1.52}	57.90 _{-0.24}	55.08 _{-3.06}	54.57 _{-3.57}	59.39 _{+1.25}	60.72 _{+2.58}
	T	439.69	528.50 _{+1.20}	1007.68 _{+2.29}	918.77 _{+2.09}	271.08 _{+0.62}	719.51 _{+1.80}	915.60 _{+2.08}
	M	9003.6	9606.2 _{+1.07}	2832.2 _{+0.31}	1897.6 _{+0.21}	3983.2 _{+0.44}	3985.4 _{+0.44}	2047.2 _{+0.22}

1458 A.10 DIFFUSION TRANSFORMER
1459

1460 Diffusion Transformers provide a suitable setting for evaluating the effectiveness of linear attention.
1461 Following the work DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024), we conducted experiments
1462 on diffusion transformer S/2 to further validate our approach using ImageNet-1K (Deng et al., 2009),
1463 and the results are shown in Table 15.

1464 Table 15: Results of DiT experiments.
1465

Model	FID ↓	sFID ↓	IS ↑	Precision ↑	Recall ↑
DiT (Peebles & Xie, 2023)	68.40	-	-	-	-
DiG (Zhu et al., 2025)	62.06	11.77	22.81	0.39	0.56
NaLaDiT	61.64	12.40	23.24	0.40	0.58
SiT (Ma et al., 2024)	58.61	9.25	24.31	0.41	0.59
EfficientSiT (Pu et al., 2024)	53.57	9.01	27.26	0.43	0.61
NaLaSiT	53.08	8.94	27.63	0.43	0.62

1476 A.11 FUTURE WORK
1477

1478 This work reveals the fundamental relationship between query norms and attention entropy and
1479 introduces a norm-aware linear attention mechanism that restores this property. In future research, we
1480 will further [explore the interaction between our method and different positional encoding schemes](#), as
1481 the observed performance variations mainly stem from how positional encodings capture absolute or
1482 relative positional information. We also plan to [investigate a broader family of Injection schemes](#)
1483 [beyond the current power-function design](#), including alternative spiky mappings such as exponential
1484 forms. In addition, while our method is primarily developed for Vision Transformers, extending
1485 norm-aware feature maps to [decoder-only Transformer architectures remains a promising direction](#).
1486 Finally, for practical deployment [in resource-constrained settings](#), techniques such as quantization
1487 will be explored to further improve efficiency.

1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511