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ABSTRACT

Linear attention mitigates the quadratic complexity of softmax attention but suffers
from a critical loss of expressiveness. We identify two primary causes: (1) The
normalization operation cancels the query norm, which breaks the correlation
between a query’s norm and the spikiness (entropy) of the attention distribution as
in softmax attention. (2) Standard techniques for enforcing non-negativity cause
destructive information loss by nullifying valid inner-product interactions. To
address these challenges, we introduce NaLaFormer, a novel linear attention
mechanism built upon a normxdirection (ND) decomposition of the query and
key vectors. We leverage each component to solve a distinct problem: The query
norm is injected into our kernel to create a query-norm-aware map that restores
the attention distribution’s spikiness. The direction vectors are processed by a
geometric, cosine-based similarity metric that guarantees non-negativity while
preserving the rich, fine-grained information of the inner product. We validate
NaLaFormer through a comprehensive multi-modal evaluation, where it sets new
state-of-the-art benchmarks for linear attention. Our model achieves up to a 7.5%
accuracy gain on ImageNet-1K and a 4.7% mloU improvement on ADE20K over
comparable baselines. It demonstrates profound efficiency, reducing peak memory
by a transformative 92.3% in token-intensive super-resolution tasks (70K+ tokens).
NaLaFormer’s versatility is further confirmed as it surpasses strong baselines like
Mamba on common-sense reasoning and sets a new state-of-the-art on the Long
Range Arena (LRA) benchmark. Source code can be found in the supplementary
materials.

1 INTRODUCTION

Transformer models (Vaswani et al., 2017; |Dosovitskiy et al.l 2021) have demonstrated remark-
able success in both vision and language tasks. The core self-attention mechanism models global
contextual relationships through softmax-normalized dot-product similarity, but incurs quadratic
complexity O(N?) relative to sequence length N, creating significant computational overhead for
long sequences or high-resolution images. To address this limitation, linear attention (Katharopoulos
et al., [2020; |Cai et al., [2023; Han et al., [2023; MiniMax et al.| [2025}; [Lu et al., 2024a) replaces
the exp(-) operator in softmax with a linearly separable kernel ¢(-). This reformulation reorders
computation priorities from exp(q;k;)v; to ¢(q;)(¢(k;)"v;) achieving linear complexity O(N)
through associative matrix multiplication.

Although linear attention mechanisms have gained popularity for their efficiency in sequence mod-
eling, yet they consistently underperform compared to their softmax-based counterparts. A central
limitation lies in the restricted expressiveness of the kernel function ¢(-), which approximates atten-
tion through inner products of transformed queries and keys, ¢(q)"¢(k; ). Early approaches focused
on ensuring non-negativity, a necessary condition for interpreting attention scores as normalized
distributions. To this end, various activation functions have been employed, including ReLLU (Han
et al.}2023;|Cai et al.| [2023)), 1 + ELU (Katharopoulos et al.,[2020), and SiLU (Yang et al., [ 2024bj
MiniMax et al.[2025), as well as positive-valued randomized feature mappings such as the Gaussian
kernel ¢(z) = exp (—|x[*/2). However, these kernels inherently discard negative components of the
input, limiting their ability to capture the full range of semantic relationships.
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Figure 1: Entropy-norm correlation in softmax attention. We plot the relationship between feature
entropy and vector norms in a Swin Transformer sampled on ImageNet. The top row shows g-norms
(z-axis) exhibit a strong negative correlation with attention entropy (y-axis). The bottom row shows
that k-norms have no consistent effect. This observation suggests that the entropy diminishing in
linear attention may stem from insufficient query scaling, pointing to the key for restoring spikiness.

As aresult, linear attention often yields overly smooth attention distributions, lacking the spikiness
characteristic of softmax attention. This leads to elevated entropy and hinders the model’s ability
to focus on semantically critical tokens. Recent efforts such as Hedgehog (Zhang et al., [2024),
FLatten Transformer (Han et al., [2023)), and PolaFormer (Meng et al.,2025), attempt to address this
shortcoming by introducing element-wise power functions to sharpen token-wise attention. While
these methods empirically improve discrimination, the underlying cause of the entropy explosion in
linear attention remains poorly understood.

To further explore the property of entropy, inspired by prior studies (Dehghani et al,[2023; Naseer
et al., 2021; [Milakov & Gimelshein, [2018) that have identified the qk'| norm cancellation in softmax
attention, we notice that linear attention exhibits a different behavior, especially showing asymmetric
sensitivity to the query and key norms. To analyze this effect, we employ a normxdirection (ND)
decomposition of linear attention:

N Ty, ; N ) ; MNT v
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where dir(x) = x / ||x]| refers to the direction component. Eq. (1)) exposes a critical asymmetry where
only key norms influence linear attention outputs, as guery norms are reduced through normalization.
To further test this conjecture, Fig. [I] demonstrates a strong inverse correlation between entropy
and query norms in softmax attention, whereas key norms exhibit weak correlation with spikiness.
Notably, current linear attention approaches utilize element-wise kernel functions to enforce non-
negativity constraints, suffering from the norm degradation and negative values loss.

In this work, we establish a mathematical framework characterizing query norm-entropy control in
softmax attention. Based on these insights, we propose Norm-aware Linear Attention, a novel
mechanism that explicitly couples ||¢(q;)|| with spikiness to address the limitation of the query norm
unawareness in linear attention. Our theoretical analysis reveals the dynamic control of entropy
reduction (spikiness) from ||¢(q;)||. Specifically, for each direction of q, the entropy decreases
with a great ||q;|| monotonically. Empirical validation through randomized sampling of attention
computations (Fig.|l|and Fig.[2|(b)) demonstrates that the ||q.|| is practically great enough in most
cases. To jointly preserve spikiness and norm awareness, we employ a power function for each q; with
an adaptive query norm aware power. To address norm degradation in conventional linear attention
while preserving non-negativity constraints, we proposed a cosine direction similarity algorithm
to only map the direction component. Utilizing Ptolemy’s theorem as a geometric foundation, our
method employs cosine similarity for dimensional rescaling, selectively suppressing dimensions with
distant directions and keeping closed dimensions. These synergistic innovations faithfully capture
essential properties of softmax operators while maintaining computational efficiency.

We establish NaLaFormer’s state-of-the-art performance and broad applicability through a rigorous
multi-modal evaluation spanning foundational vision benchmarks, including image classification,
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object detection, semantic segmentation, and highly challenging long-sequence scenarios. Our model
sets new performance standards for linear attention, achieving up to a 7.5% accuracy gain over
comparable models on ImageNet-1K and a 4.7% mloU improvement on ADE20K. The architecture’s
advantages are particularly evident in token-intensive tasks: in super-resolution, which generates
extremely long token sequences (over 70K tokens) from high-resolution images, NalL.aFormer
achieves a 92.3% reduction in peak memory while cutting latency by 36.4% . This long-sequence
capability is further validated on the Long Range Arena (LRA) benchmark with 61.2% average
accuracy. Finally, to verify its versatility, we train a 340M-parameter language model from scratch,
which surpasses strong autoregressive baselines like Mamba, establishing NalL.aFormer as a powerful
and efficient foundation for diverse modalities.

2 PRELIMINARIES

An attention mechanism’s efficacy is rooted in its ability to model the relationship between vectors.
We posit that this relationship is defined by a fundamental duality of information: a vector’s norm,
which signals its importance, and its direction, which encodes its semantic orientation. An ideal
attention mechanism must jointly leverage both. In this section, we employ this view to explain a
failure in linear attention that underlies its gap to softmax attention.

To formalize our analysis, we first mathematically define the NormxDirection (ND) decomposition:

Definition 1 (ND Decomposition). Let x = (z1,...,2q) € R? is a non-zero vector, then the ND
decomposition of x with p-norm is defined by:
ND(x;p) = |[x|p - dir(x), where dir(x) = W
Xllp

We name dir(x) the direction components of vector x. According to the Norm Equivalence Theo-
rem (Brezis| [2011])), all norms on a finite-dimensional vector space are equivalent, thus we do not
distinguish between different p-norm in the following discussions for simplicity.

2.1 SOFTMAX ATTENTION WITH ND DECOMPOSITION

Let X e RV*P denote a sequence of N tokens with dimension D. We divide the dimension into A
heads, and each single head has d dimensions. In a single head, the output O = {ot}t]\i L e RNVxdjg
computed following:

! N k' /Vd
O = Softmax( QK _ Xz exp(qek; [Vd)

V) = 79
V-RARN £, exp(aik] V) -

in which Q,K,V e RV*? denote query, key and value vectors respectively with N sequence
length. The complexity of softmax attention is O(N?2d). Then, we rewrite Eq. with the ND-
decomposition, which shows an explicit relation to query and key norms.

X ek VD A exp(lad il (dir(an), dix())/V)
SN epladkg VA E S esplad 1] {dinan), dir())/Va)

This derivation reveals a critical property of softmax attention: the Q-norm ||q;|| is preserved within
the exponential function, in stark contrast to its cancellation in linear attention as shown in Eq. (I)).
This allows the query norm to naturally act as a temperature score, where a larger query norm
sharpens the attention distribution and reduces its entropy. The collapse of Q-norm in conventional
linear attention represents a fundamental departure from the softmax mechanism and potentially is a
primary source of its diminishing entropy and performance drop.

@

3)

Oy

3 METHOD

To mitigate this gap, we introduce NaLaFormer, which asymmetrically reformulates the linear
attention kernel through the lens of ND decomposition. To achieve this, we explicitly restore the
previously neglected query norm by integrating it into the query kernel map to dynamically regulate
attention entropy (Sec.[3.1I). Concurrently, we geometrically transform the decomposed direction
vectors via a cosine similarity metric to guarantee non-negativity without the severe information loss
of prior methods (Sec.[3.2). A rigorous theoretical proof can be found in Appendix
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Figure 2: The NaLaFormer architecture and its core mechanisms. (a) The NalLaFormer block
incorporates a simplified GLA and custom feature maps ¢, and ¢. (b) Our norm-aware method
(right) restores the negative query norm-entropy correlation lost in standard linear attention (left). (c)
The cosine direction mechanism enforces non-negativity by decomposing similarity into norm and
direction components, preventing information loss.

3.1 QUERY-NORM-AWARE FEATURE MAP

Linear attention (Katharopoulos et al.,[2020) reformulates the q, k similarity measure through linearly

separable kernel function mappings SM(q, k) = ¢(q)$(k)T, where the feature map ¢(-) : R? - RY
is applied to query and key vectors. This allows for a reordering of computations, leading to an output
formulation:

o3 M@)otk Tvi_ o(an) By o(k)Tv: @
A Tio@)sk)T  dla) Tty o(k;)T

__Totenll dir(é(an)) T llokoll dir(é(k))™ vi )
Totell  dir(é(ar)) £;5 o0kl dir(é(k;)"

Here, the cancellation of ||¢(q.)|| reveals that the mainstream linear attention is “query-norm
unaware”. As shown in Fig. 3] (row 2), this causes a breakdown of the entropy-norm correlation
observed in softmax attention. Despite existing approaches (Meng et al., 2025} Han et al.| 2023}
2024c)) leverages exponential functions to reduce entropy, they remain insensitive to query norm.

Motivated by this, we therefore design the query-norm-aware feature map to explicitly encode the
query’s norm into its feature map:

wq(a) = dir(q)' D o) (k) = k*, (6)

where f(x) = A » (7 + tanh(x)) serves as a norm-dependent sharpening function, which dynamically
modulates the sequence entropy of the attention to restore the sharpness characteristics of standard
softmax attention. A full theoretical analysis of this property is provided in Sec.[A.2] For simplicity
and to ensure a fair comparison with other power-based counterparts (Han et al.|[2023)), we apply the
power function for rescaling (Fig. [3). The hyperparameters \, 7 are used to constrain the exponent’s
range, ensuring it remains greater than one while also preventing numerical overflow.

Empirical Observations. With a one-line modification, we restore the negative correlation between
query norm and entropy that is lost in linear attention. To validate this, we again visualize the
entropy—norm relationship in linear attention under three feature maps using the same inputs and
layers (Fig. . The first row shows the simplest linear attention with ReLU(+), which yields relatively
high entropy and no clear correlation. The second row depicts the power-based Flatten (Han et al.|
2023)) Transformer’s ReLLU +power mapping, which reduces entropy and sharpens token distinctions,
yet the entropy—norm correlation remains inconsistent with softmax (Fig.[I). In the third row, we
incorporate the query norm into the power function factor. Notably, this modification restores the
negative correlation between query norm and entropy, demonstrating that our method successfully
preserves the negative correlation between query norm and entropy in softmax attention.
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Figure 3: We v1suahze the query norm- entropy relationship under three approaches: (l) Only preserve
non-negativity with 1 + ELU operator (Katharopoulos et al.,2020). (2) Keep both non-negativity
and spikiness with ReL'U operator and power function as in FLatten (Han et al., 2023). (3) Our
g-norm-aware approach shows a clear correlation between entropy and query norms.
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3.2 KEEP NON-NEGATITY WITH COSINE DIRECTION

A second challenge in linear attention design is enforcing non-negativity. Prevalent methods achieve
this by adopting ReLU(-) and 1 + ELU(+) to suppress negative values element-wise. However, these
approaches incur destructive information loss, as it nullifies any interactions where q;k; < 0. This
often leads to a sparse and less informative similarity representation. To address this, we propose a
structure-preserving alternative based on a trigonometric isomorphism and define a mapping ¢.(+)
that transforms each scalar direction component dir(q); and dir(k); into a 2D vector:

. \ _ (Idir(q)s| cos(dir(q);) . N _ (Idir(k);| cos(dir(k);)
(@) = (| S ) #0990 = (G o) O
This formulation elegantly decouples magnitude from sign, encoding their interaction through the
cosine of their angular difference. The sum of inner products of these corresponding 2D vectors for
query q and key k for each dimension 7 then becomes,

Z @c(dir(q) )ipe(dir(k)); ®)

|d1r(q) || dir(k);| (cos(dir(q);) cos(dir(k);) + sin(dir(q);) sin(dir(k);)), 9)

M I

|dir(q);|| dir(k);| cos(dir(q); — dir(k);). (10)

I
[uy

3

Due to the properties of trigonometric functions, we have cos(z)? + sin(x)? = 1, thus, |l¢.(-)|
is constant, which keeps the norm of the direction vector fixed. To ensure the cosine term being
non-negative, we scale each elements of the direction components into [-7, 7] with a tanh-based
mapping tanh (= Tl ) x 7,z € {dir(q), dir(k)}. This guarantees that the resulting angle difference

remains within the interval (dir(q); - dir(k);) € [-5, 5 ].

Empirical Observations. The benefit of this information-preserving approach is empirically evident
in Fig. @] which shows the dimensional results of the dot products between the g and k vectors under
different non-negativity-preserving feature maps. Compared with the original q;k; dot product, prior
approaches that rely on ReLLU to enforce non-negativity discard a significant amount of spikiness
information during the inner-product computation. Methods based on 1+ ELU not only lose spikiness
but also exhibit reduced discriminability across dimensions. In contrast, our proposed method
effectively overcomes these limitations and is able to retain richer information.

3.3 NALAFORMER: A UNIFIED NORM-AWARE LINEAR ATTENTION

We now synthesize our principles of norm-awareness and non-destructive similarity into a unified
model: NaLaFormer. This architecture is designed to concurrently restore the critical query-norm-
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Figure 4: Comparisons of element-wise dot product contributions for different non-negative
strategies. The plots show q;k; value for (1) the raw inputs, (2) our novel cosine-based approach, (3)
ReLU activation, and (4) 1 + ELU activation. Our approach ensures all dimensional contributions
are non-negative while retaining the fine-grained “spikiness” observed in the original product.

entropy correlation of softmax attention while preserving dimensional information typically lost
in other linear attention variants. This is achieved by designing feature maps ¢,(-) and ¢y (-) that
integrate both norm- and direction-aware mappings i.e., ¢, and ¢, aforementioned:

¢q(a) = [¢57(); 07" (@)], ok (k) = [457 (k); 03" ()]. (11)

Each cosine and sine subcomponent’s magnitude is carefully defined to be either norm-aware (for
queries) or norm-scaled (for keys), while the direction is handled by our trigonometric mapping:

¢ (q) = | dir(q) 90| cos(dir(q)),  ¢3™(q) = | dir(q)' 4P |sin(dir(a)), (12)
¢57° (k) = [k cos(dir(k)), " (k) = i sin(dir (k). (13)

Therefore, we can rewrite the outputs of linear attention as:

S d(a)ek)” @0 (a0 Bik 4 (ki) Vi + 6" (q) B 45" (ki) v
S da)e(k)T T s (an) Xty 050 (ky)T + o5t (an) iy ¢5 (kj)T

The NaLaFormer block integrates this attention mechanism within a gated architecture (Yang et al.,
2024a} |Qin et al.l|2024). As shown in Fig. [Z] (a), our norm-aware linear attention block first projects
inputs to Q, K, V and then calculates Linear Attn(¢,(Q), ¢x(K), V), which then undergoes Layer
Normalization. The output is subsequently modulated element-wise by a learned gate matrix G
derived from the input, activated by SiL.U, and finally passed through a linear layer to integrate
the outputs from different heads. A rigorous theoretical analysis detailing how our norm-aware
formulation systematically influences entropy reduction in both softmax and linear attention is
provided in Appendix [A.2]for completeness.

oG (14)

4 EXPERIMENTS

In this section, we evaluate our NaLaFormer on various vision tasks. First of all, we conduct
experiments on image classification on ImageNet-1K (Deng et al.|, [2009)), object detection and
instance segmentation on COCO (Lin et al.,[2014)), and semantic segmentation on ADE20K (Zhou
et al.,[2019) and CityScapes (Cordts et al., 2016), comparing the performance with current efficient
models. In addition, we conduct the Single Image Super-Resolution (SISR) task using DIV2K
(Agustsson & Timoftel 2017) as the training dataset. For diffusion models, we integrate the proposed
linear attention with DiT (Peebles & Xie, 2023) and SiT (Ma et al.| 2024)) using ImageNet-1K
(Deng et al., [2009)), the results are shown in Appendix To verify the generality of our method
on language modality, we pre-train NaLaFormer language models from scratch and evaluate the
pretrained model on common-sense reasoning tasks. At last, we assess NaL.aFormer on the Long
Range Arena (LRA) task (Tay et al., 2021) to compare against other linear attention models. All
experiments were conducted on 8 NVIDIA A100, A800, A6000 and 3090 GPUs. Full experiment
details and implementation details are provided in Appendix [A.3] while ablation studies are reported

in Appendix[A.4]
4.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings. We train NaLaFormer from scratch on ImageNet-1K (Deng et al., 2009) using Top-1
accuracy. For fairness, we categorized baseline models into 4 classes according to their parameter
sizes and FLOPs, then make performance comparisons within each group.

Results. As shown in Tab. [I} our model consistently showing a higher accuracy comparing with
the baseline models. For instance, our NalLaFormer-T obtains an increase from 3.8% to 7.5%

3

iz,
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Table 1: Comparison of the ImageNet-1K classification with the SOTA efficient vision models.
The PARA” column denotes the number of model parameters, the FLOPS” column represents the
computational amount, and the “AcCC” (%) column indicates the top-1 accuracy.

MODEL | PARA  FLOPS | AcC MODEL | PARA  FLOPs | Acc
LocalVim-T (Huang et al.||2024) SM 1.5G 76.2  MambaOut-S (Yu & Wang!2025) 49M 9.0G 84.1
MetalLA (Chou et al.||2024) 6M - 75.3 MogaNet-B (Li et al.[|2024) 44M 9.9G 84.3
Mambaout-F (Yu & Wang![2025) ™ 1.2G 78.9  VMamba-S (Liu et al.||2024) 50M 8.7G 83.6
EfficientVMamba-S (Pe1 et al.|[[2025) 11M 1.3G 78.7 StructViT-B-8-T (Kim et al.[[2024) | 52M 12G 84.3
NalLaFormer-XT &M 1.0G 79.1  SOFT-L (Lu et al.]|[2024a) 64M 11G 83.1
VAN-b1 (Guo et all2022¢) 14M 25G g1.1  FLattn-Swin-S (Han et al.|[2023) 51M 8.7G 83.5
Conv2Former-N (Hou et al.] 2024} 15M  22G | 815 AgentSwin-S (Hanetal 2024c) | SOM — 87G | 837
SBCFormer-L (Lu et al.| 2024b} 1I9M  27G | 81.1 Pola-Swin-S (Mengetal 2025) | SOM  8.7G | 83.6
RMT-T (Fan et al.l 2024:} . 14M 2.5G 82.4 MILA-S (Han et al.! 2024bl 43M 7.3G 84.4
Agent-PVT-T (Han et al.|2024¢} 12M  20G | 784  ViG-H-S (Liao et al.|2025) 50M  88G | 838
NalaEormesT 15M 27G 82.6 NaLaFormer-B 52M 12G 85.2
Conv2Former-T (Hou et al.][2024} 27M  44G | 832  Interlmage-B (Wangetal.;2023) | 97M 16G | 84.9
MambaOut-T (Yu & Wang|[2025) 27M  45G | 827  MambaOut-S (Yu & Wang||2025) | 85M 16G | 842
MogaNet-S (Li et al.]2024) 25M  50G | 834  VMamba-B (Liu et al.[2024) 89M  15G | 839
InternImage-T (Wang et al.|[2023) 30M 5.0G 83.5  SG-Former-B (Ren et al./[2023) 78M 16G 84.7
Vim-S (Zhu et al.|[2024) 26M 3.7G 80.6  FLatten-Swin-B (Han et al.[[2023) | 89M 15G 83.8
VMamba-T (Ciu et al.] '2024:. 30M 49G 82.6  Agent-Swin-B (Han et al.|[2024c) 88M 15G 84.0
LocalVMamba-T (Huang et al.|2024) | 26M  5.7G | 82.7  Pola-Swin-B (Meng et al.|2025) 88M 15G 83.8
SG-Former-S (Ren et al.[[2023) 23M 48G | 832  SMT-L (Lin et al.;|2023) 81M 18G 84.6
MOAT-0 (Yang et al.|[2023) 28M 57G | 833 RMT-L (Fan et al.[[2024) 95M 18G 85.5
Agent-Swin-T (Han et al.|[2024c) 29M 4.5G 82.6  VRWKYV-B (Duan et al.||2025) 94M 18G 82.0
Pola-Swin-T (Meng et al.|2025) 29M 4.5G 82.6  InLine-Swin-B (Han et al.[|2024a) | 88M 15G 82.0
ViG-H-T (Liao et al.]|2025) 29M 4.5G 82.8  MILA-B (Han et al.|[2024b) 96M 16G 85.3
MILA-T (Han et al.|[2024b) 25M 4.2G 83.5 ViG-H-B (Liao et al.{[2025) 89M 16G 84.2
RAVLT-S (Fan et al.|{[2025b) 26M 4.6G 84.2 RAVLT-L (Fan et al.|[2025b) 95M 16G 85.5
NaLaFormer-S 26M 5.1G 84.3  NaLaFormer-L 95M 18G 85.7

compared with baseline linear models with comparable FLOPS. Additionally, under the setting of
large size, the NaLaFormer-L consistently achieves a better performance compared with CNN, SSM
and Transformer models. Notably, our model surpasses VRWKV-B (Duan et al.| 2025) over 3.7%
with fewer FLOPs. These results demonstrate our NaLLaFormer improves the expressive capability of
the attention mechanisms through replacing the standard attention.

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. We further conducted comprehensive experiments on the object detection task using
the COCO dataset (Lin et al., [2014). To systematically evaluate architectural compatibility, we
independently integrated NalLaFormer as the backbone architecture into both Mask R-CNN (He
et al.,|2017) and RetinaNet (Lin et al.,[2017). All experiments were conducted using ImageNet-1k
pretrained weights following the evaluation strategy in FLatten Transformer (Han et al., 2023)).

Results. We show the results in Tab. [2, our model surpasses the other baseline models across various
frameworks. For example, our NaLaFormer-T tested on Mask R-CNN detectors with “1 x” schedule
achieves 47.6 AP® and 43.0 AP™, outperforming some larger baselines, such as PoLaFormer (Meng
et al} [2025). Results of the experiment with RetinaNet are shown in Appendix [A.9]

Table 2: Object detection and instance segmentation results on the COCO dataset using Mask R-CNN
with 1 x and 3 x schedule.

METHOD PARA  FLOPS MaAsK R-CNN 1x Mask R-CNN 3x

M) (G) | AP AP, AP AP™ API, AP | AP® AP AP) AP™ APZ, AP
PVT.T (Wang et al.|2021} 33 240 | 367 592 393 351 567 373 | 398 622 430 374 593 399
MPVIiT-T (Cee et al.|[2022} 28 216 | 422 642 458 390 614 418 | 448 669 492 410 642 441

RAVLT-T (Fan et al.|[2025b) 33 219 472  69.1 517 425 660 460 | 464 674 509 417 647 453
MAVIT-T (Fan et al.|[2025a) 33 219 475 69.0 523 428 663 463 - - - - - -
NaLaFormer-T 33 226 476 69.5 524 430 66.7 465 | 46.7 674 513 420 650 457

MPVIT-S (Lee et al.|[2022) 43 268 464 686 512 424 656 457 | 484 705 526 439 676 475
FL-Swin-T"(Han et al.[[2023) 49 268 46.5 66.1 479 402  63.1 43.0 | 465 685 508 421 654 451
VMamba-T (Liu et al.|[2024) 50 271 473 693 520 427 664 459 | 4838 - - 43.7 - -

MILA-T (Han et al.||2024b) 44 255 468 695 515 421 664 450 | 488 710 536 438 68.0 468
NaLaFormer-S 44 272 495 712 543 442 681 478 | 497 705 547 443 68.0 48.0

4.3 SEMANTIC SEGMENTATION

Settings. In this section, we integrate our model into the semantic segmentation task on ADE20K
(Zhou et al.,2019) and CityScapes (Cordts et al.|[2016)) datasets. Specifically, we adopt our model
with the ImageNet-1K pre-trained weight using mloU as the evaluation metric, and train it following
previous works (Han et al.} 2023} 2024c) on the mmcv-segmentation (Contributors}, 2018)).
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Table 3: Comparisons on the semantic segmentation tasks. The table on the left presents the results
on the ADE20K dataset, while the table on the right shows the results on the Cityscapes dataset.

ADE20K CITYSCAPES

Para Flops mloU ‘ METHOD | Para  Flops mloU

VWFormer-B1 Yan etal.| 14M  13G 44.0 14M - 80.4
14M 16G 422 15M  74G 82.1
I5SM  16G 443 I5M 125G 81.3
14M  15G  46.9 13M 111G 82.5

28M  40G 479 | VWFormer-B2 (Yan et al.] 2024' 27TM 415G 81.7

28M  62G  46.5 | SegFormer-B2 (Xie etal.|2021) | 28M 717G 81.0
20M  46G 472 | SegMAN-S (Fu et al.| 2025] 29M 218G 832
54M - 474 | Efficientvit-B3 (Caietal|2023) | 40M 179G  83.0

25M 29G  48.5 | NaLaFormer-S 25M 206G  83.5

METHOD

ESRT@AB00  NalaSR@AB00
BICUBIC 195ms 69GB  124ms 5.3GB

L

Figure 5: Visualizations illustrating NaLaFormer’s semantic segmentation results on the CityScapes
dataset (left) and NaLaSR and ESRT’s super-resolution results on the Urban100 benchmark (right).
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Results. As shown in Tab. 3], NaLaFormer achieves superior segmentation accuracy while main-
taining favorable model complexity. On the ADE20K dataset, NaLaFormer-T and NaL.aFormer-S
achieve 46.9% and 48.5% mloU respectively, bringing up to 4.7% and 2.0% improvements compared
with models of similar scale. On the Cityscape dataset, NaLaFormer-T achieves 82.5% mloU, consis-
tently surpassing counterparts with comparable model sizes. As further illustrated in Fig. [5left, the
visualization on the Cityscapes dataset demonstrates that NaLLaFormer captures sharper boundaries
and richer structural details compared to and SegNeXt [2022b)), highlighting its superiority
in complex scenes. More visualizations are shown in Appendix [A.§]

4.4 SUPER RESOLUTION

Settings. We conduct the experiments on the SR tasks following previous efficient SISR work, ESRT
2022). We use DIV2K (Agustsson & Timofte| [2017) as the training dataset, and utilize
both PSNR and SSIM to evaluate the performance of the reconstructed SR images. Meanwhile, we
make statistics on both memory consumption and inference duration.

Results. As shown in Tab.[T3] NaLaSR achieves comparable PSNR and SSIM to ESRT

across all benchmarks, while greatly reducing latency and memory by up to 56.5% and 92.3%.
Fig i%] right presents the visual comparison between NaLaSR and ESRT on x4
Urban100, where the cropped regions are enlarged for clarity. NaLaSR reconstructs sharper textures
and more regular structures than ESRT, while significantly reducing latency and memory usage. For
more visualizations and full results including x3 scale, see Appendix[A.9]

Table 4: Comparison between our method and other SR Models on lightweight image super-resolution.
The “LAT” denotes the inference latency and “MEM” represents peak memory usage.

SET5S SET14 BSD100 URBAN100
MODEL SCALE | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
Bicubic x4 28.42 0.81 26.00 0.70 25.96 0.67 23.14 0.66
LAPAR-B (Li et al. x4 31.94 0.89 28.46 0.78 27.52 0.73 25.85 0.79

ECBSR-M16C64 1

m x4 3192 089 | 2834 078 | 2748 074 | 2581 0.78

ESRT .1[2022] x4 32.01 0.89 | 2844  0.77 2748 073 | 2585 0.78
NaLaSR x4 3200 089 | 2850 0.78 2749 073 | 2583 0.78
Efficiency | SCALE | LAT  MEM | LAT MEM | LAT MEM | LAT MEM
ESRT (Lu et al | m | x4 195ms  3.0G | 188ms 7.0G | 79ms  2.2G | 195ms  69G
NaLaSR x4 159ms 23G | 147ms 29G  72ms 2.1G | 124ms 5.3G
- SAVE x4 18.5% 23.3% | 218% 58.6% 89%  4.5% | 364% 92.3%
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Table 5: Comparisons on common-sense reasoning tasks. - 2s-

Our model shows a competitive performance and gains a X -

g
X
consistent improvement in multiple sub-tasks, and achieves £ 5- & . . . A
the best average accuracy and lower perplexity. LI S ; ; : .
a g R e %
(G}
MODEL WIKI. LMB.[PIQA HELLA. WINO. ARC, ARC.| ¢ g 127 o sormen L e
ppll ppll |acct acc,? acct acct accy? 2 e vamee
[ T @ GLA
Transformer++ | 28.39 42.69| 63.3 340 504 445 242 |433 3 =i h
RetNet 3233 49.19| 635 335 525 445 234 |435 g e
Mamba 28.39 39.66| 65.0 354 50.1 463 23.6 |44.1 F oo ; OO .
GLA 28.65 43.35| 648 345 514 451 227 |437 1« x e e 1ex
Sequence Length

NaLa+DN 27.82 49.77 | 649 343 527 46.5 23.1 (443,07 Figure 6: Comparison on training
Gated DeltaNet| 26.59 31.67| 658 352 50.8 46.0 23.5 ‘44.3 throughput of 340M models on a sin-

DeltaNet [29.08 50487‘ 63.6 33.6 51.7 460 23.0 ‘4346
NaLa+GDN  25.89 32.32‘ 656 362 532 454 238

44.8, 5 gle A6000 GPU.

4.5 LANGUAGE MODELING

Settings. We train our model from scratch with parameter sizes of 340M and test it on common-sense
reasoning tasks. Our method is integrated in DeltaNet (Yang et al., 2024b)) and Gated DeltaNet (Yang
et al.,2025) by replacing SiLU(-) function with query norm-aware feature map.

Results. As shown in Tab. E], baselines such as Deltanet (Yang et al., | 2024b) and Gated Deltanet
(Yang et al.| 2025) demosntrate a consistent performance gain across various language reasoning
tasks. By equipping with the proposed kernel functions, our model consistently outperform Deltanet
and Gated Deltanet.

4.6 EFFICIENCY ANALYSIS

The efficiency comparison with methods of similar FLOPs on classification tasks, presented in
Fig. [/} demonstrates that NaL.aFormer matches or exceeds baseline accuracy with substantially
reduced computation. Fig. [ shows that, NaLaFormer attains competitive throughput across NLP
tasks, outperforming softmax attention and surpassing other baselines. Furthermore, we evaluate the
efficiency NaLaFormer on Long Range Arena (LRA) benchmarks, as shown in Tab. [6| NaLaFormer
achieves strong performance, sustaining higher training throughput. Full results and details can be
found in Appendix[A.9]

86 ] Table 6: Results on LRA tasks compared with
other efficient Transformer models. “THR” de-
notes throughput (in TGS) and “MEM” denotes
peak memory usage (in MB).

84

82

MODEL | ACCayy THRayy MEMyyg
$ 804
7 Softmax 58.1 439.7 9004
e Soronmar (023 i upSatsey Kernelized 56.6 528.5 9606
FLatten-Swin (ICCV2023) Conv2Former (TPAMI2024)
e Nystrom S e
S oot e Linformer | = 53.1° 9188 = 1897
Vim (ICML2024) —&— NalaFormer (Ours) Skyf()rn’ler 594 7 1 95 3985
S T w0 Tus w0 ws PolaFormer | 60.7 9156 2047
Figure 7: Efficiency analysis with Accuracy NaLaFormer 61.2 827.7 2603

vs. FLOPs curves on the ImageNet-1K.

5 CONCLUSION

In this work, we introduced NaLaFormer, a query norm-aware linear attention that restores the
missing role of query norms and preserves non-negativity through cosine direction similarity. Our
approach bridges the gap between softmax and linear attention by reducing the entropy in query norm
awareness and avoid suppressing negative values. We validated the effectiveness of NalLaFormer
across a wide range of vision tasks, including image classification, detection, segmentation, and
super-resolution, as well as on language modeling and the Long Range Arena benchmark. The results
consistently show that NalL.aFormer achieves higher accuracy and better efficiency than existing linear
attention models, offering a more practical balance between performance and efficiency.

10
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A APPENDIX

* [A.JJLLM Usage Statement.

* [A.2|Entropy Analysis. The mathematical proof and supporting explanation of the proposed
linear attention.

* [A3]Datasets and Experiment Details. Training settings and datasets for all experiments.
* [A:4 Ablation Study. Ablation study to evaluate the effectiveness of each component.

¢ [A.3]Limitations. The limitations of this work.

» [A.6| Discussion. Differences from previous works.

* [A7|Related Work. Related works about vision transformer and linear attention.

. Visualizations. More visualizations about the experiments.

* [A.9 Tables. Full tables about the experimental results.

. Diffusion Transformer Results. DiT experiments.

¢ [A.11]Future Work.

A.1 LLM USAGE STATEMENT

This work made limited use of large language models (LLMs) exclusively for minor language polish-
ing and wording refinement, with the goal of improving readability. The LLMs were not involved
in research ideation, methodology development, experiment design, implementation, analysis, or
the formulation of scientific claims. All core contributions, including theoretical insights, model
design, experiments, and conclusions, were entirely developed by the authors. Additionally, in their
roles as peer reviewers, the authors used LLMs to assist in understanding the structure and reasoning
of manuscripts and to help draft review wording. These uses served solely as supportive tools to
facilitate comprehension and articulation, without influencing any scientific assessments, decisions,
or judgments made during the review process.

A.2 ENTROPY ANALYSIS

In this section, we use the Positive Sequence Entropy (PSE) (Meng et al., 2025) to connect the
probability distribution with the sequence of query-key similarity (one row in the feature map). In the
following derivation, we use the Positive Sequence Entropy (PSE) (Meng et al.,[2025)) to connect the
softmax self-attention with PSE(-). We investigate the probability distribution generated from one
single query vector and a series of key vectors with PSE, analyzing how PSE(x) varying with query
norm with softmax.

We first give the definition of PSE as following,

Definition 2 (Positive Sequence Entropy). Let a sequence x = (21, ...,xN), in which x; > 0,
i=1,...,N,and s = Zf\il x; > 0. The uncertainty of this positive sequence is defined by:
N

ZT; Z; L
PSE(x) :—Zglog(?), s=y ;. (15)
i=1 i=1

Assuming q is a directional fixed vector with norm ¢, i.e., q¢ = ¢; - d(qt), we only consider the
relation between PSE and ¢;. Then, we have the following two theorems:

Theorem 1 (Query Norm-aware Entropy Reduction in Softmax Attention). Given that x; = gk,
be a positive sequence and let ® : (—oo,+00) = [0, +00) be a spiky function serving to reduce
the PSE through mapping each x;. In the case ®(-) = exp(-), existing a constant value c
satisfying: For c > co, we have

PSE(®((cq)k™)) = PSE(®(cx)) < PSE(®(x)).
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Proof. Without loss of generality, we assume the sum of the positive sequence have, Zi]\il d(x;) =1,
and directly set query norm as a scaler c € R. Then, the PSE of x degraded into Shannon entropy as,

PSE((x)) = H(®(x))

N
- Zl ®(z;)log(®(x;))

When query norm varies, the PSE is,

=

Se = 0(cx;) = Zcb(x )= lllex)ll:

i=1
<I>(fl? )y

PSE(2(cx)) - PSE(8(x)%) = Iox(53) - 3 24 og(0())
= cClo, X —C 7('%1)(. (6] ZT;
- clog([2(Oll) ~ 25 e oa(@(2)

Due to the definition of L, norm, lim,_,. ||Z||, = Tmaz-and z; € [0, 1], we have ||z||, <= T qq for
p > 1. Therefore,

N @(.’L‘i)c al <I)(xz)
clog(||®(x)||c) —¢ ) ——=—log(®(z;)) < clog(®(xmaz c “log(®(x;
g([[2(x)lle) 2 el g(P(xi)) g(P( ) - Z(q)( maz)) g(®(xi))
When ¢ — +o0, (qu(w'i) ))C — 0 forall z; # Tymaz:

N .
hm clog(®(zmaz)) — CZ (I)((Ml))

=clog(®(Tmaz)) - ClOg((b(x.,,mw)) =0

) log(®(x:))

Therefore, because PSE is positive, there exists cg, for all ¢ > ¢p, PSE(®(cx)) < PSE(®(x)) O

Consequently, the Theorem |I| proves the theorem softmax attention is query norm aware with a
dynamic control on entropy reduction. [ |

Similar to linear attention, we continue with the case in previous linear attention with feature maps,
and prove that the PSE of existing linear attentions is query norm-unaware.

Theorem 2 (Query Norm-unaware of Entropy in Linear Attention). Given that x =
(%1,-..,2N), Xc = (cx1,...,cxN), are positive sequences, where ¢ > 0 denotes the ratio
of the query norm, and ¢(-) is a element-wise feature map satisfying c19(q) < ¢(cq) < cad(q).
Then, we have

|PSE(®(x.)) - PSE(®(x))| < log(—) L2ma PSE(<I>(X))

Proof. For most of the linear attentions, such as vanilla linear attention (Katharopoulos et al., |[2020),
FLatten (Han et al.| 2023)), Efficientvit (Cai et al.,|2023)) and PolaFormer (Meng et al.,[2025), they
all have ¢19(q) < ¢(cq) < ca9(q), and for ReLU(-) feature map,c; = co. Therefore, we have the
following derivations:
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If the feature map is a linear transformation, i.e., ®(x,,) = ¢(q)@d(ky, )T and ®(cx) = ¢P(x), such
as ReLU(+), we have,

M=

S = (b(x’m)

1

PSElincar( ) - IOg(S) Z

3
Il

D tog( )

Nocd
PSEjinear (cx) =log(c) +1og(S) - Z Z) (log(®(z;)) +1og(c))

N N c
- 10g(c) +1oE(5) - 3 <5 Z)aog(@(m))) > e lox(o
C x NC xZ;
- 1og(5) - 3 S22 log(0) +log(c) - 33 2 b0

= PSElincar (X) .

For a linear attention with nonlinear feature map, such as Log-Normal Attention (Nahshan et al.|
2024), FLatten (Han et al., [2023), Efficientvit (Cai et al.,|2023) and PoLaFormer (Meng et al., [2025),
they all have ¢1¢(q) < ¢(cq) < ca¢(q) (and for ReLU(-) feature map,cy = ¢3), thus, we have:

For clearity, we suppose the original positive sequence is normalized, i.e., Z,I,YL:l(I)(mm) =
YN L #(q)d(km)T = 1, then, under the assumption ¢16(q) < ¢(cq) < c2¢(q), we have

1P () € Pe(m) = p(cq)d(k") < co® () (16)
N
Sc: Zq)c(xz) (17)
15 <8, €S (18)
S=1 (19)
Y, (i)
PSE(®(x)) = log(S5) - Z 5 10g(®(:)) (20)
N
Z@(ml)log(é x;)) (S=1) 1)
N ®.(x;)
PSE(®(x.)) =log(Sc) - Zl o log(®c(z:)) (22)
N
< log(c) - Z q)céx’) log(®.(x;)). (23)
Since S, > 0 and ®.(x,,) > 0, we have
N
g(c2) - 3. T4 10g(@. (1) o9
i=1
L Pe(i)
<log(ez) = ), = (log(®(x:)) +log(e1)) (25)
N .
—log( ) > cpcé 2 log(®(z;))- (26)
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Dueto YN _ ®(x,,) = 1,8(x,,) 2 0, we have ®(z,,) < 1,log(®(x,,)) < 0 then
q)c(l'z)

( ) Zl — log(®(x1) (27)
s1og(jj> ;"2‘1’(“) o8(® (1)) 28)
=lo (—)——Z@(w ) log(®(x:)) (29)
:1og(a +EPSE(<I>(X)). (30)

Similar with the derivations above, we have the lower bound of PSFE(x.),
1
PSE(®(x.)) > log() + %PSE(@(X)). 31)
(6] C
Therefore,

1og(z—;) N (% “1)PSE(®(x)) < PSE(D(x.)) - PSE(B(x)) < log(f) . (7 _1)PSE(®(x)).
(32)

Since ¢y > ¢; > 0, we have log(g—z) >0and,
|[PSE(®(x.)) - PSE(®(x))| < log(—) + & PSE((I)(x)) (33)

Here, both ¢; and ¢y vary with c.

For example, as the feature map of Linear Log-Normal Attention (Nahshan et al., [2024), ¢(q) =
exp(q), we have

eXp(mC}n(Qd)) : (I)(xm) < q)c(xm) < exp(mgx(qd)) : (I)(xm)a (34)

|PSE(®(x.)) - PSE(®(x))| < log(g) + 020_101 PSE(®(x)) (35)

= Qmaz — Amin + (exp(qmax - qmin) - 1)PSE((I)(X)) (36)

From the equation above and the properties of exp function, it can be seen that when the query
norm changes, the PSE(®(x.)) of linear attention only fluctuates around ®(PSE(x)), showing no
negative correlation with the query norm. O

According to the derivations about Eq. (36), it is evident that the error, )—PSE(®(x))|,
is controlled by the feature map. Only when the steepness (i.e., the second derivative) of the feature
map function varies with the query norm can the query norm directly affect the variation of entropy in
linear attention. Considering the Lemma 2 in PolaFormer (Meng et al.| [2025)), the composite function
of the element-wise feature map with first and second derivative is concave, thus the feature map we
proposed, power function with the exponent greater than 1 as well as changing with query norm can
compensate for the property in softmax attention where the query norm influences PSE.
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A.3 EXPERIMENT SETTINGS

Implementation Details. Building upon the framework illustrated in Fig. 2] we construct a hierarchi-
cal vision backbone NalLaFormer. Consistent with established works (Fan et al.| 2025b; [2024} [Liu
et al.,[2021)), we develope a set of NaLaFormer backbones, each with varying configurations of block
count and channel dimensions across their respective stages whose the ratio of MLP is set to 3.5. The
architecture details are illustrated in the Tab.

Table 7: Architecture details of NalLaFormer.

Model |  Blocks | Channels |  Heads

NaLaFormer-XT | [2, 2, 4, 2] [32,64,192,384] | [1,2,6,12]
NalLaFormer-T [2,2,6,2] | [64,128,256,512] | [1,2,4,8]
NaLaFormer-S [3,5,9, 3] [64, 128, 320, 512] [1,2,5, 8]
NaLaFormer-B [4,6,12,6] | [96, 192,384, 512] | [1,2,6, 8]
NaLaFormer-L | [4,7, 19, 8] | [96, 192, 448, 640] | [1, 2,7, 10]

Image Classification. In this task, we train all of our models with AdamW optimizer for 320 epochs,
including 20 epochs for linear warm-up. The basic learning rate is set to 0.001 for 128 micro batchsize
and 1024 global batchsize. The training framework is developed on the top of the official DeiT
implementation. Additionally, we use CPE (Chu et al., [2023)) to serve as the positional encoding.
When mapping each d(x), we set f(x) = 7 tanh(z) to make the cosine function only inhibits the
directions with opposite signals.

Object Detection and Segmentation. We further conducted comprehensive experiments on the
object detection task using the COCO dataset (Lin et al.,|2014), which contains 118K training images
and 5K validation images annotated with 80 object categories. We use our model as backbone with
pretrained weights on ImageNet-1K. We conduct the experiments following the mmcv-detection
(Contributors, [2018]) project. The model are trained under both 1x (12 epochs) and 3x (36 epochs).
We use the AdamW optimizer with 0.0001 learning rate, 0.0001 weight decay and “step” policy.

Semantic Segmentation. We conduct the semantic segmentation of ADE20K dataset (Zhou et al.,
2019). This widely adopted dataset comprises 25,000 densely annotated images depicting complex
real-world environments with rich contextual interactions between objects and their spatial configura-
tions. We employ the pretrained NaLLaFormer models on two representative segmentation models,
SemanticFPN and UperNet. The experiment is conducted based on mmcv-segmentation (Contributors|
2018). The training iteration is set to 40000 for SemanticFPN models and 160000 for UperNet
models. All models are trained using AdamW optimizer with 0.0001 learning rate and 0.001 weight
decay.

Super Resolution. To both evaluate the accuracy of our method under super resolution and highlight
the computational efficiency advantage that its linear complexity offers in super-resolution, we make
the experiments following previous efficient SISR work, ESRT (Lu et al.| 2022). We use DIV2K
(Agustsson & Timofte, [2017) as the training dataset, and for evaluation, we use four benchmark
datasets, including Set5, Set14, BSD100 and Urban100 as used in ESRT, utilizing both PSNR and
SSIM to evaluate the performance of the reconstructed SR images. Meanwhile, we conducted
statistics on both memory consumption and inference duration.

Language Modeling. We compare NalL.aFormer with several baseline models, including Trans-
former++ (Touvron et al} [2023)), Gated Linear Attention (Yang et al., [2024a)), RetNet (Sun et al.|
2023)), Mamba (Gu & Dao, 2023)), DeltaNet (Yang et al.,|2024b)) and Gated DeltaNet (Yang et al.}
2025). Each model is pretrained on the subset of the SlimPajama dataset (Soboleva et al., [2023). We
train our model from scratch with parameter sizes of 340M on 15B tokens with a batch size of 0.5M
tokens and test it on common-sense reasoning tasks, which includes WikiText (Merity et al.l 2017)),
LAMBADA (Paperno et al., 2016)), ARC-easy (Clark et al., [2018), ARC-challenge (Clark et al.,
2018)), HellaSwag (Zellers et al.;[2019), PiIQA (Bisk et al.,|2020) and WinoGrande (Sakaguchi et al.|
2020). All downstream tasks are conducted based on Im-evaluation-harness. We test throughput of
the baseline models on a single A6000 GPU.

22



Under review as a conference paper at ICLR 2026

A.4 ABLATION STUDY

Impact of Components in Norm-aware Linear Attention. We evaluate the effectiveness of each
component in NaLaFormer. In row 1, we keep non-negativity and spikiness with ReLU(-) and a
constant power function. In row 2, we utilize the cosine inhibit to additionally preserve the norm. In
row 3, we replace the constant power with a norm aware power. As shown in Table|8] it is important
to note that the norm awareness yields a 0.4% improvement in row 2 and row 3, indicating that
norm-aware spikiness effectively capture the lost information due to the norm cancellation. We
examine the impact of norm consistency with cosine inhibit in row 1 and row 2 by only preserving
negative values, with our cosine inhibit, the information in negative values improves the performance
0.4%.

Impact of Components in Vision Model with NalLaFormer. The ImageNet classification exper-
iments are conducted on top of the current sota method, RALA (Fan et al., 2025b). To ensure a
fair comparison with the RALA baseline, we follow its model design. In order to verify that the
performance gains of our method indeed stem from the advanced linear-attention mechanism, we
further include the following ablation studies under the XT-size settings: blocks [2, 2, 4, 2], channels
[32, 64, 192, 384], and heads [1, 2, 6, 12]. The results indicate that the influence of these components
on model performance is limited, thereby further demonstrating the superiority of our norm-aware
linear attention. The results are shown in Table.

Comparison with other Linear Attention. To ensure fair comparison with existing linear attention
approaches, we adopt the evaluation protocol from FLatten-Transformer (Han et al.l [2023)) with
Swin-T setting by only replacing the attention mechanism to our Norm-aware linear attention. As
shown in Table[9} NaLaFormer achieves consistent performance gains across all baseline models,
surpassing both conventional linear attention variants and softmax attention, while maintaining linear
complexity.

Ablation Study in 7 and . We conduct the ablation study on both image classification (CV) and
document retrieval (NLP) from LRA benchmark. The results are shown in Table[TT]

Table 8: Ablation on the FL-Swin-T setting. Table 10: Ablation studies of vision models with
NaLaFormer-XT.
NoON NORM COSINE
SPIKY ‘ Acc. (%)
NEGATIVITY AWARE DIR SIM w.0. | RoPE  CPE  Layerscales Swish  Ours-XT
v v 82.1os Acc | 79.1% 789%  79.1%  787%  79.1%
v v v 82.504
v v v v 82.9

Table 9: Comparison with other linear attention

models on the Swin-T setting. Table 11: Ablation studies in 7 and .
METHOD | PARAMS FLOPS ACC(%) A 7 | RETRIEVAL (NLP) IMAGE (CV)
Swin-T (Liu et al.|2021) 28M 44G 81.2
Hydra Attn (Bolya et al.[2022) 29M 4.5G 80.7 3 05 80.42 44.54
Efficient Attn (Shen et al.[[2021) 29M 4.5G 81.0
Linear Angular (You et al.|[2023) 29M 4.5G 79.4 5 05 80.17 4191
Enhanced Attn (Cai et al.|[2023) 29M 4.5G 81.8 7 0.5 80.13 40.73
FLatten Attn (Han et al][2023] 2M 435G 82.1 3] 80.13 41.80
Agent Attn (Han et al.|[2024c) 29M 4.5G 82.6
InLine Attn (Han et al.|2024a) 30M 4.5G 824 3 2 80.35 42.12
PolaFormer (Meng et al.|[2025) 29M 4.5G 82.6
NaLaFormer 29M 4.8G 82.9
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A.5 LIMITATIONS

While this work validates the efficacy of NaLaFormer across diverse vision-language tasks, we
anticipate that its linear self-attention architecture holds significant potential for other cross-modality
applications, such as text-to-image and text-to-video generation. However, direct evaluation in such
contexts presents considerable challenges, primarily due to the substantial computational complexity
associated with training diffusion models from scratch. Future efforts will actively pursue these
promising directions and develop novel strategies to accelerate training efficiency, thereby enabling
scalable deployment of NalLaFormer in complex generative modeling tasks.

A.6 DISCUSSION

Differences from Previous Works. Existing works, such as Cosformer (Qin et al.}[2022) and RoPE
(Su et al} |2024)), keep part of the information with trigonometric functions by using cosine-based
functions. Cosformer replaces the softmax in attention with a cosine-based distance metric, using
cosine similarity to directly measure query-key alignment, while RoPE encodes absolute positions
via rotation matrices in complex space to represent the relative position. However, both kinds of
cosine similarity are employed for positional decay, which differs from our cosine inhibition method
targeting the similarity and dimensions with opposite signals, shown as follows:

m-—-n)m
SMcosformer(qna km) = ¢(QH)¢(km)T COS(%L (37)
—_—
relative position
SMrope(an: kin) = $(An) RS o (k)" (38)
—_———
relative position

d

SMours(qvk) = Z COS(¢(q)i - ¢(k)1) (39)
=1

dimensional cosine similarity
A.7 RELATED WORK

Vision Transformer. The success of the Transformer architecture (Vaswani et al.,|2017) in natural
language processing (NLP), particularly its self-attention mechanism for modeling long-range depen-
dencies, has catalyzed its adoption in computer vision (CV). The vision transformer (Dosovitskiy,
et al.,[2021)) marked a paradigm shift by discarding convolutions entirely. The vision transformer
partitions images into patches, linearly embeds these patches into sequential tokens, and processes
them through a pure Transformer encoder. Nevertheless, the quadratic computational complexity
inherent in self-attention mechanisms incurs substantial computational overhead, rendering ViT
training computationally intensive. Existing researches have proposed multiple strategies to enhance
ViT’s efficiency. For instance, DeiT (Touvron et al.,|2021)) achieves data-efficient training through
knowledge distillation, whereas the Swin Transformer (Liu et al.| 2021) employs shifted window
mechanisms to balance local feature extraction with global context modeling while maintaining linear
complexity. These advancements have established Transformer-based architectures as foundamental
frameworks for visual tasks, effectively bridging the methodological divide between NLP-oriented
architectures and CV’s inherent geometric constraints. However, these improvements primarily
address architectural adaptations rather than resolving the fundamental limitations of softmax-based
attention mechanisms, thereby retaining significant training costs. Recent studies have explored
alternative paradigms for visual representation learning to mitigate these constraints. Building on
sequential image processing principles, several approaches employ state space models (SSMs) for
patch encoding. Notably, VMamba (Liu et al.|, [2024; Huang et al., |2024) leverages SSM-based
encoding through raster-scan ordering to extract hierarchical features while preserving the theoretical
guarantee of linear computational complexity inherent to SSMs. In addition, VHeat (Wang et al.,
2024) reconceptualizes image understanding through thermodynamic simulations, modeling image
patches as heat sources, and analyzing thermal conduction processes, reducing the complexity to
O(N'?) through discrete cosine transforms (DCT) and inverse DCT operations.

Linear Attention. Linear attention employs kernel-based similarity approximation to circumvent the
exp(qgk") in standard softmax attention. The foundational work (Katharopoulos et al., 2020) intro-
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duces a linear separable kernel ¢(+) as an alternative to the exp operator, exploiting the associative
property of matrix multiplication to reduce computational complexity from O(N?) to O(N). Sub-
sequent variants adopt this Softmax-free paradigm with diverse kernel functions, including ReLLU
(Han et al.| [2023}Cai et al.,[2023), 1+ELU (Katharopoulos et al., 2020) and SiLU (Yang et al.,|2024b;
MiniMax et al.,[2025). Furthermore, to enhance position awareness, Cosformer (Qin et al., [2022)
integrates ReLU with Ptolemy’s theorem, incorporating locality inductive biases through feature map
re-weighting while empirically enforcing non-negativity constraints. Beyond kernel design, recent
studies focus on preserving the spikiness property inherent in softmax attention. Hedgehog (Zhang
et al.l 2024) and MB-TaylorFormer (Qiu et al.| [2023)) employ series expansions to approximate the
exp function, while FLatten Transformer (Han et al.|[2023)) and PolaFormer (Meng et al.,[2025) utilize
power functions to sharpen attention distributions. Notably, lightning attention (Qin et al.,2024) com-
bines SiLU kernels with a gate mechanism, achieving scalability up to 456B parameters (MiniMax
et al., [2025). Inline Han et al.|(2024a) provides an important insight by proving that the softmax
function is injective in most cases, whereas linear attention is not. By modifying the normalization
scheme, it restores the injectivity of linear attention. In addition, Inline introduces a local-attention
residual (a convolution module) to enhance local bias, thereby compensating for softmax’s strong
capability in modeling local patterns. This work highlights the importance of injectivity in linear
attention and uses vectors with identical norms but different directions as counterexamples to address
this limitation. However, Inline overlooks the relationship between attention distribution uncertainty
and the query/key norms—an essential property of the softmax function. MALA (Fan et al.,2025a)
notices the neglect of norms, its simple non-negative constraint on the feature map causes negative
values to be ignored, thereby leading to information loss during inner product computation. In autore-
gressive architectures, linear attention enables RNNs parallelization through unidirectional encoding.
Gated Linear Attention enhances this capability via data-dependent gating on K"V hidden states,
demonstrating superior performance in length generalization and recall-intensive tasks. Existing
kernel functions exhibit performance degradation compared to standard softmax attention. MetaLA
Chou et al.[(2024)) constructs a lightweight recurrent-form linear attention by defining the optimal
linear approximation conditions of the softmax attention map, however, when applied to encoder
architectures, such as ViT models or bidirectional attention, the model performance becomes sensitive
to the scanning order, making it less suitable for vision tasks. However, existing kernel-based linear
attention mechanisms generally suffer from performance degradation compared to standard softmax
attention. In this work, we analyze the sources of information loss by the cancellation of query norms
and the non-negativity enforcement in linear attention and address these issues through our proposed
method.
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A.8 MORE VISUALIZATIONS

More visualizations are provided in this section.

Efficientvit SegNeXt
82.1% 81.3%

NalLaFormer
82.5%

Origin HR BICUBIC ESRT NalaSR

Urban100 BSD100 Setl4 Set5

Urban100

Figure 9: Visualizations of the NaLaSR in four different benchmarks comparing with ESRT under x4
scale.
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A.9 FULL TABLES

Full tables of the experimental results are shown in this section.

Table 12: Object detection and instance segmentation results on the COCO dataset using RetinaNet
with 1 x schedule.

RETINANET 1x
AP® APY, AP AP%L AP%, APY
PVTv2-bl (Wang et al.|2022) Trans | 412 619 439 254 445 543
SBCFormer-L (Lu et al.[[2024b) | Trans | 41.1 623 433 247 443 560
MPViT-XS (Lee et al.[|[2022) Trans | 459 674 494 285 501 608
SOFT + +-T (Lu et al.|[2024a) Linear | 419 627 447 278 454 556
Pola-PVT-T (Meng et al.|[2025) | Linear | 40.0 60.7 423 250 43.6 529

METHOD ‘ TYPE ‘

NaLaFormer-T Linear | 46.2 679 495 299 504 61.6
MPVIiT-S (Lee et al.|[2022) Trans | 45.7 573 488 287 497 592
CMT-S (Guo et al.[|2022a) Trans | 44.3 65.5 47.5 27.1 483 59.1
Pola-PVT-S (Meng et al.[[2025) | Linear | 43.2 64.1 464 28.0 464 579
NaLaFormer-S Linear | 47.2 68.0 50.7 29.0 513 633

Table 13: Full table of SISR: Comparison between our method and other SR Models on lightweight
image super-resolution. The “LAT” denotes the inference latency and “MEM” represents peak
memory usage.

MODEL | | SETS | SET14 | BSD100 |  URBAN100
Performance ‘ SCALE ‘ PSNR SSIM ‘ PSNR SSIM ‘ PSNR SSIM ‘ PSNR SSIM
Bicubic x4 28.42 0.81 26.00 0.70 25.96 0.67 23.14 0.66
SRFBN-S (Li et al.|2019) x4 31.98 0.89 28.45 0.78 27.44 0.73 25.71 0.77
LAPAR-B (Li et al.[|2020) x4 31.94 0.89 28.46 0.78 27.52 0.73 25.85 0.79
ESRN-V (Song et al.{[2020) x4 31.99 0.89 28.49 0.78 27.50 0.73 25.87 0.78
ECBSR-M16C64 (Zhang et al.[[2021) x4 31.92 0.89 28.34 0.78 27.48 0.74 25.81 0.78
ESRT (Lu et al.}[2022) x4 32.01 0.89 28.44 0.77 27.48 0.73 25.85 0.78
NaLaSR x4 32.00 0.89 28.50 0.78 27.49 0.73 25.83 0.78
Bicubic x3 30.39 0.87 27.55 0.77 27.21 0.74 24.46 0.73
SRFBN-S (Li et al.|2019) x3 34.20 0.93 30.10 0.84 28.96 0.80 27.66 0.84
LAPAR-B (Li et al.||2020) x3 34.20 0.93 30.17 0.84 29.03 0.80 27.85 0.85
ESRN-V (Song et al.[[2020) %3 34.23 0.93 30.27 0.84 29.03 0.80 27.95 0.85
ESRT (Lu et al.[[2022) x3 34.13 0.92 30.24 0.84 28.99 0.80 27.88 0.85
NaLaSR %3 34.21 0.93 30.24 0.84 29.00 0.80 27.87 0.85
Efficiency | SCALE | LAT  MEM | LAT MEM | LAT MEM | LAT  MEM
ESRT (Lu et al.}2022) x4 195ms  3.0G 188ms  7.0G 79ms 22G | 195ms  69G
NaLaSR x4 159ms 23G | 147ms 2.9G 72ms 2.1G 124ms  5.3G
- SAVE x4 18.5% 233% | 21.8% 58.6% | 8.9% 4.5% | 36.4% 92.3%
ESRT (Lu et al.|[2022) x3 283ms  4.6G | 222ms 10G 145ms  2.8G | 316ms 79G
NaLaSR x3 189ms 29G | 176ms 4.1G | 132ms 2.3G | 138ms 8.9G
- SAVE x3 33.4% 38.1% | 20.8% 59.4% | 8.7% 19.1% | 56.5% 88.8%

Table 14: Full table of LRA: Throughput and Peak Memory of various models. A denotes the
accuracy, T denotes the throughput of each model and M denotes the peak memory cost.

| | Softmax  Kernelized Nystrom Linformer Informer Skyformer  PoLaFormer NaLaFormer (ours)

A 39.14 32.63 38.94 38.43 37.86 40.77 42.15 42.54
Img | T | 736.36 862.32 1251.28 1613.19 85.85 923.04 1340.89 1314.03
(k) | M 9645 13013 5941 3471 5357 8091 4505 4211

A 70.39 69.86 69.34 65.39 56.44 70.73 70.53 71.31
Path | T | 691.67 811.59 1125.08 1057.03 299.94 748.98 1065.63 1292.93
(k) | M 4831 6515 2980 1745 2687 4055 2286 2107

A 38.71 38.46 37.95 36.44 37.05 38.69 3735 38.21
List | T | 402.06 496.48 834.85 528.52 305.53 627.14 949.80 802.51
(2k) | M 4473 6084 1186 881 2737 1712 1151 2520

A 61.55 60.02 62.36 57.29 62.13 64.7 73.06 73.48
Text | T | 252.06 327.27 1330.68 970.90 521.16 949.80 876.74 521.49
(4k) | M | 17122 11720 2043 1742 5736 3082 1155 2102

A 80.93 82.11 80.89 77.85 79.35 82.06 80.5 80.42
Retri | T | 116.30 144.83 496.48 424.18 142.94 348.60 344.93 207.29
(4k) | M 8947 10699 2011 1649 3399 2987 1139 2079

A 58.14 56.62_1 52 57.90_0.24 55.08 306 5457 357  59.39:1.25 60.72,2.58 61.19,3.05
Avg | T | 439.69 52850.1.20 1007.68,2.29 91877200 271.08.062 719514180 915.60.2.08 827.65,1.8%

M | 9003.6  9606.2.1.07 28322.0.31 1897.6x0.21 3983.25044 3985.4.0.41a 20472,0.22 2603.840.29
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A.10 DIFFUSION TRANSFORMER

Diffusion Transformers provide a suitable setting for evaluating the effectiveness of linear attention.
Following the work DiT (Peebles & Xiel [2023) and SiT (Ma et al.}2024)), we conducted experiments
on diffusion transformer S/2 to further validate our approach using ImageNet-1K (Deng et al., [2009),
and the results are shown in Table

Table 15: Results of DiT experiments.

Model \ FID| sFID| IS? Precision? Recall

62.06 11.77 22.81 0.39 0.56

DiT (Peebles & Xie, [2023)) 68.40

DiG (Zhu et al.| [2025)

NaLaDiT 61.64 1240 23.24 0.40 0.58
SiT (Ma et al., [2024) 58.61 9.25 24.31 041 0.59
EfficientSiT (Pu et al., 2024) | 53.57 9.01 27.26 043 0.61
NaLaSiT 53.08 8.94 27.63 0.43 0.62

A.11 FUTURE WORK

This work reveals the fundamental relationship between query norms and attention entropy and
introduces a norm-aware linear attention mechanism that restores this property. In future research, we
will further explore the interaction between our method and different positional encoding schemes, as
the observed performance variations mainly stem from how positional encodings capture absolute or
relative positional information. We also plan to investigate a broader family of Injection schemes
beyond the current power-function design, including alternative spiky mappings such as exponential
forms. In addition, while our method is primarily developed for Vision Transformers, extending
norm-aware feature maps to decoder-only Transformer architectures remains a promising direction.
Finally, for practical deployment in resource-constrained settings, techniques such as quantization
will be explored to further improve efficiency.
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