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ABSTRACT

Linear attention mitigates the quadratic complexity of softmax attention but suffers
from a critical loss of expressiveness. We identify two primary causes: (1) The
normalization operation cancels the query norm, which breaks the correlation
between a query’s norm and the spikiness (entropy) of the attention distribution as
in softmax attention. (2) Standard techniques for enforcing non-negativity cause
destructive information loss by nullifying valid inner-product interactions. To
address these challenges, we introduce NaLaFormer, a novel linear attention
mechanism built upon a norm×direction (ND) decomposition of the query and
key vectors. We leverage each component to solve a distinct problem: The query
norm is injected into our kernel to create a query-norm-aware map that restores
the attention distribution’s spikiness. The direction vectors are processed by a
geometric, cosine-based similarity metric that guarantees non-negativity while
preserving the rich, fine-grained information of the inner product. We validate
NaLaFormer through a comprehensive multi-modal evaluation, where it sets new
state-of-the-art benchmarks for linear attention. Our model achieves up to a 7.5%
accuracy gain on ImageNet-1K and a 4.7% mIoU improvement on ADE20K over
comparable baselines. It demonstrates profound efficiency, reducing peak memory
by a transformative 92.3% in token-intensive super-resolution tasks (70K+ tokens).
NaLaFormer’s versatility is further confirmed as it surpasses strong baselines like
Mamba on common-sense reasoning and sets a new state-of-the-art on the Long
Range Arena (LRA) benchmark. Source code can be found in the supplementary
materials.

1 INTRODUCTION

Transformer models (Vaswani et al., 2017; Dosovitskiy et al., 2021) have demonstrated remark-
able success in both vision and language tasks. The core self-attention mechanism models global
contextual relationships through softmax-normalized dot-product similarity, but incurs quadratic
complexity O(N2) relative to sequence length N , creating significant computational overhead for
long sequences or high-resolution images. To address this limitation, linear attention (Katharopoulos
et al., 2020; Cai et al., 2023; Han et al., 2023; MiniMax et al., 2025; Lu et al., 2024a) replaces
the exp(⋅) operator in softmax with a linearly separable kernel ϕ(⋅). This reformulation reorders
computation priorities from exp(qik

⊺
j )vj to ϕ(qi)(ϕ(kj)

⊺vj) achieving linear complexity O(N)
through associative matrix multiplication.

Although linear attention mechanisms have gained popularity for their efficiency in sequence mod-
eling, yet they consistently underperform compared to their softmax-based counterparts. A central
limitation lies in the restricted expressiveness of the kernel function ϕ(⋅), which approximates atten-
tion through inner products of transformed queries and keys, ϕ(q)⊺ϕ(ki). Early approaches focused
on ensuring non-negativity, a necessary condition for interpreting attention scores as normalized
distributions. To this end, various activation functions have been employed, including ReLU (Han
et al., 2023; Cai et al., 2023), 1 +ELU (Katharopoulos et al., 2020), and SiLU (Yang et al., 2024b;
MiniMax et al., 2025), as well as positive-valued randomized feature mappings such as the Gaussian
kernel ϕ(x) = exp (−∣x∣2/2). However, these kernels inherently discard negative components of the
input, limiting their ability to capture the full range of semantic relationships.
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Figure 1: Entropy-norm correlation in softmax attention. We plot the relationship between feature
entropy and vector norms in a Swin Transformer sampled on ImageNet. The top row shows q-norms
(x-axis) exhibit a strong negative correlation with attention entropy (y-axis). The bottom row shows
that k-norms have no consistent effect. This observation suggests that the entropy diminishing in
linear attention may stem from insufficient query scaling, pointing to the key for restoring spikiness.

As a result, linear attention often yields overly smooth attention distributions, lacking the spikiness
characteristic of softmax attention. This leads to elevated entropy and hinders the model’s ability
to focus on semantically critical tokens. Recent efforts such as Hedgehog (Zhang et al., 2024),
FLatten Transformer (Han et al., 2023), and PolaFormer (Meng et al., 2025), attempt to address this
shortcoming by introducing element-wise power functions to sharpen token-wise attention. While
these methods empirically improve discrimination, the underlying cause of the entropy explosion in
linear attention remains poorly understood.

To further explore the property of entropy, inspired by prior studies (Dehghani et al., 2023; Naseer
et al., 2021; Milakov & Gimelshein, 2018) that have identified the qk⊺ norm cancellation in softmax
attention, we notice that linear attention exhibits a different behavior, especially showing asymmetric
sensitivity to the query and key norms. To analyze this effect, we employ a norm×direction (ND)
decomposition of linear attention:

LinearAttnt=
ϕ(qt)∑

N
i=1 ϕ(ki)

⊺vi

ϕ(qt)∑
N
j=1 ϕ(kj)

⊺
=

XXXX∣∣ϕ(qt)∣∣ dir(ϕ(qt)) ∑
N
i=1 ∣∣ϕ(ki)∣∣dir(ϕ(ki))

⊺ vi

XXXX∣∣ϕ(qt)∣∣
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

q−norm−unaware

dir(ϕ(qt))∑
N
j=1 ∣∣ϕ(kj)∣∣ dir(ϕ(kj))

⊺
. (1)

where dir(x) = x / ∣∣x∣∣ refers to the direction component. Eq. (1) exposes a critical asymmetry where
only key norms influence linear attention outputs, as query norms are reduced through normalization.
To further test this conjecture, Fig. 1 demonstrates a strong inverse correlation between entropy
and query norms in softmax attention, whereas key norms exhibit weak correlation with spikiness.
Notably, current linear attention approaches utilize element-wise kernel functions to enforce non-
negativity constraints, suffering from the norm degradation and negative values loss.

In this work, we establish a mathematical framework characterizing query norm-entropy control in
softmax attention. Based on these insights, we propose Norm-aware Linear Attention, a novel
mechanism that explicitly couples ∣∣ϕ(qt)∣∣ with spikiness to address the limitation of the query norm
unawareness in linear attention. Our theoretical analysis reveals the dynamic control of entropy
reduction (spikiness) from ∣∣ϕ(qt)∣∣. Specifically, for each direction of qt, the entropy decreases
with a great ∣∣qt∣∣ monotonically. Empirical validation through randomized sampling of attention
computations (Fig. 1 and Fig. 2 (b)) demonstrates that the ∣∣qt∣∣ is practically great enough in most
cases. To jointly preserve spikiness and norm awareness, we employ a power function for each qt with
an adaptive query norm aware power. To address norm degradation in conventional linear attention
while preserving non-negativity constraints, we proposed a cosine direction similarity algorithm
to only map the direction component. Utilizing Ptolemy’s theorem as a geometric foundation, our
method employs cosine similarity for dimensional rescaling, selectively suppressing dimensions with
distant directions and keeping closed dimensions. These synergistic innovations faithfully capture
essential properties of softmax operators while maintaining computational efficiency.

We establish NaLaFormer’s state-of-the-art performance and broad applicability through a rigorous
multi-modal evaluation spanning foundational vision benchmarks, including image classification,
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object detection, semantic segmentation, and highly challenging long-sequence scenarios. Our model
sets new performance standards for linear attention, achieving up to a 7.5% accuracy gain over
comparable models on ImageNet-1K and a 4.7% mIoU improvement on ADE20K. The architecture’s
advantages are particularly evident in token-intensive tasks: in super-resolution, which generates
extremely long token sequences (over 70K tokens) from high-resolution images, NaLaFormer
achieves a 92.3% reduction in peak memory while cutting latency by 36.4%. This long-sequence
capability is further validated on the Long Range Arena (LRA) benchmark with 61.2% average
accuracy. Finally, to verify its versatility, we train a 340M-parameter language model from scratch,
which surpasses strong autoregressive baselines like Mamba, establishing NaLaFormer as a powerful
and efficient foundation for diverse modalities.

2 PRELIMINARIES
An attention mechanism’s efficacy is rooted in its ability to model the relationship between vectors.
We posit that this relationship is defined by a fundamental duality of information: a vector’s norm,
which signals its importance, and its direction, which encodes its semantic orientation. An ideal
attention mechanism must jointly leverage both. In this section, we employ this view to explain a
failure in linear attention that underlies its gap to softmax attention.

To formalize our analysis, we first mathematically define the Norm×Direction (ND) decomposition:

Definition 1 (ND Decomposition). Let x = (x1, . . . , xd) ∈ Rd is a non-zero vector, then the ND
decomposition of x with p-norm is defined by:

ND(x;p) = ∣∣x∣∣p ⋅ dir(x), where dir(x) =
(x1, . . . , xd)

∣∣x∣∣p
.

We name dir(x) the direction components of vector x. According to the Norm Equivalence Theo-
rem (Brezis, 2011), all norms on a finite-dimensional vector space are equivalent, thus we do not
distinguish between different p-norm in the following discussions for simplicity.

2.1 SOFTMAX ATTENTION WITH ND DECOMPOSITION

Let X ∈ RN×D denote a sequence of N tokens with dimension D. We divide the dimension into h

heads, and each single head has d dimensions. In a single head, the output O = {ot}
N
t=1 ∈ R

N×d is
computed following:

O = Softmax(
QK⊺
√
d
)V, ot =

∑
N
i=1 exp(qtk

⊺
i /
√
d)

∑
N
j=1 exp(qtk

⊺
j /
√
d)

vi, (2)

in which Q,K,V ∈ RN×d denote query, key and value vectors respectively with N sequence
length. The complexity of softmax attention is O(N2d). Then, we rewrite Eq. (2) with the ND-
decomposition, which shows an explicit relation to query and key norms.

ot =
N

∑
i=1

exp(qtk
⊺
i /
√
d)

∑
N
j=1 exp(qtk

⊺
j /
√
d)

vi =
N

∑
i=1

exp(∣∣qt∣∣ ∣∣ki∣∣ ⟨dir(qt),dir(ki)⟩/
√
d)

∑
N
j=1 exp(∣∣qt∣∣ ∣∣kj ∣∣ ⟨dir(qt),dir(kj)⟩/

√
d)

vi. (3)

This derivation reveals a critical property of softmax attention: the Q-norm ∣∣qt∣∣ is preserved within
the exponential function, in stark contrast to its cancellation in linear attention as shown in Eq. (1).
This allows the query norm to naturally act as a temperature score, where a larger query norm
sharpens the attention distribution and reduces its entropy. The collapse of Q-norm in conventional
linear attention represents a fundamental departure from the softmax mechanism and potentially is a
primary source of its diminishing entropy and performance drop.

3 METHOD

To mitigate this gap, we introduce NaLaFormer, which asymmetrically reformulates the linear
attention kernel through the lens of ND decomposition. To achieve this, we explicitly restore the
previously neglected query norm by integrating it into the query kernel map to dynamically regulate
attention entropy (Sec. 3.1). Concurrently, we geometrically transform the decomposed direction
vectors via a cosine similarity metric to guarantee non-negativity without the severe information loss
of prior methods (Sec. 3.2). A rigorous theoretical proof can be found in Appendix A.2.
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Figure 2: The NaLaFormer architecture and its core mechanisms. (a) The NaLaFormer block
incorporates a simplified GLA and custom feature maps ϕq and ϕk. (b) Our norm-aware method
(right) restores the negative query norm-entropy correlation lost in standard linear attention (left). (c)
The cosine direction mechanism enforces non-negativity by decomposing similarity into norm and
direction components, preventing information loss.

3.1 QUERY-NORM-AWARE FEATURE MAP

Linear attention (Katharopoulos et al., 2020) reformulates the q, k similarity measure through linearly
separable kernel function mappings SM(q,k) = ϕ(q)ϕ(k)⊺, where the feature map ϕ(⋅) ∶ Rd → Rd′

is applied to query and key vectors. This allows for a reordering of computations, leading to an output
formulation:

ot =
N

∑
i=1

ϕ(qt)ϕ(ki)
⊺vi

∑
N
j=1 ϕ(qt)ϕ(kj)

⊺
=
ϕ(qt)∑

N
i=1 ϕ(ki)

⊺vi

ϕ(qt)∑
N
j=1 ϕ(kj)

⊺
. (4)

=

XXXX∣∣ϕ(qt)∣∣ dir(ϕ(qt)) ∑
N
i=1 ∣∣ϕ(ki)∣∣ dir(ϕ(ki))

⊺ vi

XXXX∣∣ϕ(qt)∣∣
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

q−norm−unaware

dir(ϕ(qt))∑
N
j=1 ∣∣ϕ(kj)∣∣ dir(ϕ(kj))

⊺
. (5)

Here, the cancellation of ∣∣ϕ(qt)∣∣ reveals that the mainstream linear attention is “query-norm
unaware”. As shown in Fig. 3 (row 2), this causes a breakdown of the entropy-norm correlation
observed in softmax attention. Despite existing approaches (Meng et al., 2025; Han et al., 2023;
2024c) leverages exponential functions to reduce entropy, they remain insensitive to query norm.

Motivated by this, we therefore design the query-norm-aware feature map to explicitly encode the
query’s norm into its feature map:

φq(q) = dir(q)
f(∣∣q∣∣), φk(k) = k

λ, (6)

where f(x) = λ∗(τ + tanh(x)) serves as a norm-dependent sharpening function, which dynamically
modulates the sequence entropy of the attention to restore the sharpness characteristics of standard
softmax attention. A full theoretical analysis of this property is provided in Sec. A.2. For simplicity
and to ensure a fair comparison with other power-based counterparts (Han et al., 2023), we apply the
power function for rescaling (Fig. 3). The hyperparameters λ, τ are used to constrain the exponent’s
range, ensuring it remains greater than one while also preventing numerical overflow.

Empirical Observations. With a one-line modification, we restore the negative correlation between
query norm and entropy that is lost in linear attention. To validate this, we again visualize the
entropy–norm relationship in linear attention under three feature maps using the same inputs and
layers (Fig. 3). The first row shows the simplest linear attention with ReLU(⋅), which yields relatively
high entropy and no clear correlation. The second row depicts the power-based Flatten (Han et al.,
2023) Transformer’s ReLU+power mapping, which reduces entropy and sharpens token distinctions,
yet the entropy–norm correlation remains inconsistent with softmax (Fig. 1). In the third row, we
incorporate the query norm into the power function factor. Notably, this modification restores the
negative correlation between query norm and entropy, demonstrating that our method successfully
preserves the negative correlation between query norm and entropy in softmax attention.

5
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Figure 3: We visualize the query norm-entropy relationship under three approaches: (1) Only preserve
non-negativity with 1 + ELU operator (Katharopoulos et al., 2020). (2) Keep both non-negativity
and spikiness with ReLU operator and power function as in FLatten (Han et al., 2023). (3) Our
q-norm-aware approach shows a clear correlation between entropy and query norms.

3.2 KEEP NON-NEGATITY WITH COSINE DIRECTION

A second challenge in linear attention design is enforcing non-negativity. Prevalent methods achieve
this by adopting ReLU(⋅) and 1 +ELU(⋅) to suppress negative values element-wise. However, these
approaches incur destructive information loss, as it nullifies any interactions where qiki < 0. This
often leads to a sparse and less informative similarity representation. To address this, we propose a
structure-preserving alternative based on a trigonometric isomorphism and define a mapping φc(⋅)

that transforms each scalar direction component dir(q)i and dir(k)i into a 2D vector:

φc(dir(q)i) = (
∣dir(q)i∣ cos(dir(q)i)
∣dir(q)i∣ sin(dir(q)i)

) , φc(dir(k)i) = (
∣dir(k)i∣ cos(dir(k)i)
∣dir(k)i∣ sin(dir(k)i)

) . (7)

This formulation elegantly decouples magnitude from sign, encoding their interaction through the
cosine of their angular difference. The sum of inner products of these corresponding 2D vectors for
query q and key k for each dimension i then becomes,

d

∑
i=1

φc(dir(q))iφc(dir(k))
⊺
i (8)

=
d

∑
i=1

∣dir(q)i∣∣dir(k)i∣ (cos(dir(q)i) cos(dir(k)i) + sin(dir(q)i) sin(dir(k)i)) , (9)

=
d

∑
i=1

∣dir(q)i∣∣dir(k)i∣ cos(dir(q)i − dir(k)i). (10)

Due to the properties of trigonometric functions, we have cos(x)2 + sin(x)2 = 1, thus, ∣∣φc(⋅)∣∣

is constant, which keeps the norm of the direction vector fixed. To ensure the cosine term being
non-negative, we scale each elements of the direction components into [−π

4
, π
4
] with a tanh-based

mapping tanh( x
∣∣x∣∣
) × π

4
, x ∈ {dir(q),dir(k)}. This guarantees that the resulting angle difference

remains within the interval (dir(q)i − dir(k)i) ∈ [−π
2
, π
2
].

Empirical Observations. The benefit of this information-preserving approach is empirically evident
in Fig. 4, which shows the dimensional results of the dot products between the q and k vectors under
different non-negativity-preserving feature maps. Compared with the original qiki dot product, prior
approaches that rely on ReLU to enforce non-negativity discard a significant amount of spikiness
information during the inner-product computation. Methods based on 1+ELU not only lose spikiness
but also exhibit reduced discriminability across dimensions. In contrast, our proposed method
effectively overcomes these limitations and is able to retain richer information.

3.3 NALAFORMER: A UNIFIED NORM-AWARE LINEAR ATTENTION

We now synthesize our principles of norm-awareness and non-destructive similarity into a unified
model: NaLaFormer. This architecture is designed to concurrently restore the critical query-norm-

6
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Original ReLU 1+ELUOurs

Figure 4: Comparisons of element-wise dot product contributions for different non-negative
strategies. The plots show qiki value for (1) the raw inputs, (2) our novel cosine-based approach, (3)
ReLU activation, and (4) 1 +ELU activation. Our approach ensures all dimensional contributions
are non-negative while retaining the fine-grained “spikiness” observed in the original product.

entropy correlation of softmax attention while preserving dimensional information typically lost
in other linear attention variants. This is achieved by designing feature maps ϕq(⋅) and ϕk(⋅) that
integrate both norm- and direction-aware mappings i.e., φq and φc aforementioned:

ϕq(q) = [ϕ
cos
q (q);ϕ

sin
q (q)], ϕk(k) = [ϕ

cos
k (k);ϕ

sin
k (k)]. (11)

Each cosine and sine subcomponent’s magnitude is carefully defined to be either norm-aware (for
queries) or norm-scaled (for keys), while the direction is handled by our trigonometric mapping:

ϕcos
q (q) = ∣dir(q)

f(∣∣q∣∣)
∣ cos(dir(q)), ϕsin

q (q) = ∣dir(q)
f(∣∣q∣∣)

∣ sin(dir(q)), (12)

ϕcos
k (k) = ∣k

λ
∣ cos(dir(k)), ϕsin

k (k) = ∣k
λ
∣ sin(dir(k)). (13)

Therefore, we can rewrite the outputs of linear attention as:

ot =
∑

N
i=1 ϕ(qt)ϕ(ki)

⊺

∑
N
j=1 ϕ(qt)ϕ(kj)

⊺
vi =

ϕcos
q (qt)∑

N
i=1 ϕ

cos
k (ki)

⊺vi + ϕ
sin
q (qt)∑

N
i=1 ϕ

sin
k (ki)

⊺vi

ϕcos
q (qt)∑

N
j=1 ϕ

cos
k (kj)

⊺ + ϕsin
q (qt)∑

N
j=1 ϕ

sin
k (kj)

⊺
⊙G (14)

The NaLaFormer block integrates this attention mechanism within a gated architecture (Yang et al.,
2024a; Qin et al., 2024). As shown in Fig. 2 (a), our norm-aware linear attention block first projects
inputs to Q, K, V and then calculates LinearAttn(ϕq(Q), ϕk(K),V), which then undergoes Layer
Normalization. The output is subsequently modulated element-wise by a learned gate matrix G
derived from the input, activated by SiLU, and finally passed through a linear layer to integrate
the outputs from different heads. A rigorous theoretical analysis detailing how our norm-aware
formulation systematically influences entropy reduction in both softmax and linear attention is
provided in Appendix A.2 for completeness.

4 EXPERIMENTS

In this section, we evaluate our NaLaFormer on various vision tasks. First of all, we conduct
experiments on image classification on ImageNet-1K (Deng et al., 2009), object detection and
instance segmentation on COCO (Lin et al., 2014), and semantic segmentation on ADE20K (Zhou
et al., 2019) and CityScapes (Cordts et al., 2016), comparing the performance with current efficient
models. In addition, we conduct the Single Image Super-Resolution (SISR) task using DIV2K
(Agustsson & Timofte, 2017) as the training dataset. For diffusion models, we integrate the proposed
linear attention with DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024) using ImageNet-1K
(Deng et al., 2009), the results are shown in Appendix A.10. To verify the generality of our method dBiZ,

W1on language modality, we pre-train NaLaFormer language models from scratch and evaluate the
pretrained model on common-sense reasoning tasks. At last, we assess NaLaFormer on the Long
Range Arena (LRA) task (Tay et al., 2021) to compare against other linear attention models. All
experiments were conducted on 8 NVIDIA A100, A800, A6000 and 3090 GPUs. Full experiment
details and implementation details are provided in Appendix A.3, while ablation studies are reported
in Appendix A.4.

4.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings. We train NaLaFormer from scratch on ImageNet-1K (Deng et al., 2009) using Top-1
accuracy. For fairness, we categorized baseline models into 4 classes according to their parameter
sizes and FLOPs, then make performance comparisons within each group.
Results. As shown in Tab. 1, our model consistently showing a higher accuracy comparing with
the baseline models. For instance, our NaLaFormer-T obtains an increase from 3.8% to 7.5%
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Table 1: Comparison of the ImageNet-1K classification with the SOTA efficient vision models.
The PARA” column denotes the number of model parameters, the FLOPS” column represents the
computational amount, and the “ACC” (%) column indicates the top-1 accuracy.

MODEL PARA FLOPS ACC

LocalVim-T (Huang et al., 2024) 8M 1.5G 76.2
MetaLA (Chou et al., 2024) 6M - 75.3
Mambaout-F (Yu & Wang, 2025) 7M 1.2G 78.9
EfficientVMamba-S (Pei et al., 2025) 11M 1.3G 78.7
NaLaFormer-XT 8M 1.0G 79.1
VAN-b1 (Guo et al., 2022c) 14M 2.5G 81.1
Conv2Former-N (Hou et al., 2024) 15M 2.2G 81.5
SBCFormer-L (Lu et al., 2024b) 19M 2.7G 81.1
RMT-T (Fan et al., 2024) 14M 2.5G 82.4
Agent-PVT-T (Han et al., 2024c) 12M 2.0G 78.4
NaLaFormer-T 15M 2.7G 82.6
Conv2Former-T (Hou et al., 2024) 27M 4.4G 83.2
MambaOut-T (Yu & Wang, 2025) 27M 4.5G 82.7
MogaNet-S (Li et al., 2024) 25M 5.0G 83.4
InternImage-T (Wang et al., 2023) 30M 5.0G 83.5
Vim-S (Zhu et al., 2024) 26M 3.7G 80.6
VMamba-T (Liu et al., 2024) 30M 4.9G 82.6
LocalVMamba-T (Huang et al., 2024) 26M 5.7G 82.7
SG-Former-S (Ren et al., 2023) 23M 4.8G 83.2
MOAT-0 (Yang et al., 2023) 28M 5.7G 83.3
Agent-Swin-T (Han et al., 2024c) 29M 4.5G 82.6
Pola-Swin-T (Meng et al., 2025) 29M 4.5G 82.6
ViG-H-T (Liao et al., 2025) 29M 4.5G 82.8
MILA-T (Han et al., 2024b) 25M 4.2G 83.5
RAVLT-S (Fan et al., 2025b) 26M 4.6G 84.2
NaLaFormer-S 26M 5.1G 84.3

MODEL PARA FLOPS ACC

MambaOut-S (Yu & Wang, 2025) 49M 9.0G 84.1
MogaNet-B (Li et al., 2024) 44M 9.9G 84.3
VMamba-S (Liu et al., 2024) 50M 8.7G 83.6
StructViT-B-8-1 (Kim et al., 2024) 52M 12G 84.3
SOFT-L (Lu et al., 2024a) 64M 11G 83.1
FLattn-Swin-S (Han et al., 2023) 51M 8.7G 83.5
Agent-Swin-S (Han et al., 2024c) 50M 8.7G 83.7
Pola-Swin-S (Meng et al., 2025) 50M 8.7G 83.6
MILA-S (Han et al., 2024b) 43M 7.3G 84.4
ViG-H-S (Liao et al., 2025) 50M 8.8G 83.8
NaLaFormer-B 52M 12G 85.2
InterImage-B (Wang et al., 2023) 97M 16G 84.9
MambaOut-S (Yu & Wang, 2025) 85M 16G 84.2
VMamba-B (Liu et al., 2024) 89M 15G 83.9
SG-Former-B (Ren et al., 2023) 78M 16G 84.7
FLatten-Swin-B (Han et al., 2023) 89M 15G 83.8
Agent-Swin-B (Han et al., 2024c) 88M 15G 84.0
Pola-Swin-B (Meng et al., 2025) 88M 15G 83.8
SMT-L (Lin et al., 2023) 81M 18G 84.6
RMT-L (Fan et al., 2024) 95M 18G 85.5
VRWKV-B (Duan et al., 2025) 94M 18G 82.0
InLine-Swin-B (Han et al., 2024a) 88M 15G 82.0
MILA-B (Han et al., 2024b) 96M 16G 85.3
ViG-H-B (Liao et al., 2025) 89M 16G 84.2
RAVLT-L (Fan et al., 2025b) 95M 16G 85.5
NaLaFormer-L 95M 18G 85.7

compared with baseline linear models with comparable FLOPS. Additionally, under the setting of
large size, the NaLaFormer-L consistently achieves a better performance compared with CNN, SSM
and Transformer models. Notably, our model surpasses VRWKV-B (Duan et al., 2025) over 3.7%
with fewer FLOPs. These results demonstrate our NaLaFormer improves the expressive capability of
the attention mechanisms through replacing the standard attention.

4.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. We further conducted comprehensive experiments on the object detection task using
the COCO dataset (Lin et al., 2014). To systematically evaluate architectural compatibility, we
independently integrated NaLaFormer as the backbone architecture into both Mask R-CNN (He
et al., 2017) and RetinaNet (Lin et al., 2017). All experiments were conducted using ImageNet-1k
pretrained weights following the evaluation strategy in FLatten Transformer (Han et al., 2023).

Results. We show the results in Tab. 2, our model surpasses the other baseline models across various
frameworks. For example, our NaLaFormer-T tested on Mask R-CNN detectors with “1 ×” schedule
achieves 47.6 APb and 43.0 APm, outperforming some larger baselines, such as PoLaFormer (Meng
et al., 2025). Results of the experiment with RetinaNet are shown in Appendix A.9.

Table 2: Object detection and instance segmentation results on the COCO dataset using Mask R-CNN
with 1 × and 3 × schedule.

METHOD
PARA FLOPS MASK R-CNN 1× MASK R-CNN 3×
(M) (G) APb APb

50 APb
75 APm APm

50 APm
75 APb APb

50 APb
75 APm APm

50 APm
75

PVT-T (Wang et al., 2021) 33 240 36.7 59.2 39.3 35.1 56.7 37.3 39.8 62.2 43.0 37.4 59.3 39.9
MPViT-T (Lee et al., 2022) 28 216 42.2 64.2 45.8 39.0 61.4 41.8 44.8 66.9 49.2 41.0 64.2 44.1
RAVLT-T (Fan et al., 2025b) 33 219 47.2 69.1 51.7 42.5 66.0 46.0 46.4 67.4 50.9 41.7 64.7 45.3
MAViT-T (Fan et al., 2025a) 33 219 47.5 69.0 52.3 42.8 66.3 46.3 - - - - - -
NaLaFormer-T 33 226 47.6 69.5 52.4 43.0 66.7 46.5 46.7 67.4 51.3 42.0 65.0 45.7
MPViT-S (Lee et al., 2022) 43 268 46.4 68.6 51.2 42.4 65.6 45.7 48.4 70.5 52.6 43.9 67.6 47.5
FL-Swin-T (Han et al., 2023) 49 268 46.5 66.1 47.9 40.2 63.1 43.0 46.5 68.5 50.8 42.1 65.4 45.1
VMamba-T (Liu et al., 2024) 50 271 47.3 69.3 52.0 42.7 66.4 45.9 48.8 - - 43.7 - -
MILA-T (Han et al., 2024b) 44 255 46.8 69.5 51.5 42.1 66.4 45.0 48.8 71.0 53.6 43.8 68.0 46.8
NaLaFormer-S 44 272 49.5 71.2 54.3 44.2 68.1 47.8 49.7 70.5 54.7 44.3 68.0 48.0

4.3 SEMANTIC SEGMENTATION

Settings. In this section, we integrate our model into the semantic segmentation task on ADE20K
(Zhou et al., 2019) and CityScapes (Cordts et al., 2016) datasets. Specifically, we adopt our model
with the ImageNet-1K pre-trained weight using mIoU as the evaluation metric, and train it following
previous works (Han et al., 2023; 2024c) on the mmcv-segmentation (Contributors, 2018).
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Table 3: Comparisons on the semantic segmentation tasks. The table on the left presents the results
on the ADE20K dataset, while the table on the right shows the results on the Cityscapes dataset.

ADE20K CITYSCAPES
METHOD Para Flops mIoU METHOD Para Flops mIoU

VWFormer-B1 (Yan et al., 2024) 14M 13G 44.0 VWFormer-B1 (Yan et al., 2024) 14M - 80.4
SegFormer-B1 (Xie et al., 2021) 14M 16G 42.2 EfficientViT-B2 (Cai et al., 2023) 15M 74G 82.1
SegNeXt-S (Guo et al., 2022b) 15M 16G 44.3 SegNeXt-S (Guo et al., 2022b) 15M 125G 81.3
NaLaFormer-T 14M 15G 46.9 NaLaFormer-T 13M 111G 82.5
ViG-S (Liao et al., 2025) 28M 40G 47.9 VWFormer-B2 (Yan et al., 2024) 27M 415G 81.7
SegFormer-B2 (Xie et al., 2021) 28M 62G 46.5 SegFormer-B2 (Xie et al., 2021) 28M 717G 81.0
VRWKV-S (Duan et al., 2025) 29M 46G 47.2 SegMAN-S (Fu et al., 2025) 29M 218G 83.2
MambaOut-T (Yu & Wang, 2025) 54M - 47.4 Efficientvit-B3 (Cai et al., 2023) 40M 179G 83.0
NaLaFormer-S 25M 29G 48.5 NaLaFormer-S 25M 206G 83.5

Origin HR BICUBIC
ESRT@A800
195ms 69GB

NaLaSR@A800
124ms 5.3GB

Se
gN

eX
t

81
.3
%

N
aL

aF
or
m
er

82
.5
%

Figure 5: Visualizations illustrating NaLaFormer’s semantic segmentation results on the CityScapes
dataset (left) and NaLaSR and ESRT’s super-resolution results on the Urban100 benchmark (right).

Results. As shown in Tab. 3 , NaLaFormer achieves superior segmentation accuracy while main-
taining favorable model complexity. On the ADE20K dataset, NaLaFormer-T and NaLaFormer-S
achieve 46.9% and 48.5% mIoU respectively, bringing up to 4.7% and 2.0% improvements compared
with models of similar scale. On the Cityscape dataset, NaLaFormer-T achieves 82.5% mIoU, consis-
tently surpassing counterparts with comparable model sizes. As further illustrated in Fig. 5 left, the
visualization on the Cityscapes dataset demonstrates that NaLaFormer captures sharper boundaries
and richer structural details compared to and SegNeXt (Guo et al., 2022b), highlighting its superiority
in complex scenes. More visualizations are shown in Appendix A.8.

4.4 SUPER RESOLUTION

Settings. We conduct the experiments on the SR tasks following previous efficient SISR work, ESRT
(Lu et al., 2022). We use DIV2K (Agustsson & Timofte, 2017) as the training dataset, and utilize
both PSNR and SSIM to evaluate the performance of the reconstructed SR images. Meanwhile, we
make statistics on both memory consumption and inference duration.

Results. As shown in Tab. 13, NaLaSR achieves comparable PSNR and SSIM to ESRT (Lu et al.,
2022) across all benchmarks, while greatly reducing latency and memory by up to 56.5% and 92.3%.
Fig. 5 right presents the visual comparison between NaLaSR and ESRT (Lu et al., 2022) on ×4
Urban100, where the cropped regions are enlarged for clarity. NaLaSR reconstructs sharper textures
and more regular structures than ESRT, while significantly reducing latency and memory usage. For
more visualizations and full results including ×3 scale, see Appendix A.9.
Table 4: Comparison between our method and other SR Models on lightweight image super-resolution.
The “LAT” denotes the inference latency and “MEM” represents peak memory usage.

SET5 SET14 BSD100 URBAN100
MODEL SCALE PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.81 26.00 0.70 25.96 0.67 23.14 0.66
LAPAR-B (Li et al., 2020) ×4 31.94 0.89 28.46 0.78 27.52 0.73 25.85 0.79
ECBSR-M16C64 (Zhang et al., 2021) ×4 31.92 0.89 28.34 0.78 27.48 0.74 25.81 0.78
ESRT (Lu et al., 2022) ×4 32.01 0.89 28.44 0.77 27.48 0.73 25.85 0.78
NaLaSR ×4 32.00 0.89 28.50 0.78 27.49 0.73 25.83 0.78
Efficiency SCALE LAT MEM LAT MEM LAT MEM LAT MEM

ESRT (Lu et al., 2022) ×4 195ms 3.0G 188ms 7.0G 79ms 2.2G 195ms 69G
NaLaSR ×4 159ms 2.3G 147ms 2.9G 72ms 2.1G 124ms 5.3G

- SAVE ×4 18.5% 23.3% 21.8% 58.6% 8.9% 4.5% 36.4% 92.3%
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Table 5: Comparisons on common-sense reasoning tasks.
Our model shows a competitive performance and gains a
consistent improvement in multiple sub-tasks, and achieves
the best average accuracy and lower perplexity.

MODEL
WIKI. LMB. PIQA HELLA. WINO. ARCe ARCc AVG.ppl ↓ ppl ↓ acc ↑ accn ↑ acc ↑ acc ↑ accn ↑

Transformer++ 28.39 42.69 63.3 34.0 50.4 44.5 24.2 43.3
RetNet 32.33 49.19 63.5 33.5 52.5 44.5 23.4 43.5
Mamba 28.39 39.66 65.0 35.4 50.1 46.3 23.6 44.1
GLA 28.65 43.35 64.8 34.5 51.4 45.1 22.7 43.7

DeltaNet 29.08 50.87 63.6 33.6 51.7 46.0 23.0 43.6
NaLa+DN 27.82 49.77 64.9 34.3 52.7 46.5 23.1 44.3+0.7

Gated DeltaNet 26.59 31.67 65.8 35.2 50.8 46.0 23.5 44.3
NaLa+GDN 25.89 32.32 65.6 36.2 53.2 45.4 23.8 44.8+0.5
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Figure 6: Comparison on training
throughput of 340M models on a sin-
gle A6000 GPU.

4.5 LANGUAGE MODELING

Settings. We train our model from scratch with parameter sizes of 340M and test it on common-sense
reasoning tasks. Our method is integrated in DeltaNet (Yang et al., 2024b) and Gated DeltaNet (Yang
et al., 2025) by replacing SiLU(⋅) function with query norm-aware feature map.

Results. As shown in Tab. 5, baselines such as Deltanet (Yang et al., 2024b) and Gated Deltanet
(Yang et al., 2025) demosntrate a consistent performance gain across various language reasoning
tasks. By equipping with the proposed kernel functions, our model consistently outperform Deltanet
and Gated Deltanet.

4.6 EFFICIENCY ANALYSIS

The efficiency comparison with methods of similar FLOPs on classification tasks, presented in
Fig. 7, demonstrates that NaLaFormer matches or exceeds baseline accuracy with substantially
reduced computation. Fig. 6 shows that, NaLaFormer attains competitive throughput across NLP
tasks, outperforming softmax attention and surpassing other baselines. Furthermore, we evaluate the
efficiency NaLaFormer on Long Range Arena (LRA) benchmarks, as shown in Tab. 6, NaLaFormer
achieves strong performance, sustaining higher training throughput. Full results and details can be
found in Appendix A.9.
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Pola-Swin (ICLR2025)
MambaOut (CVPR2025)
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Figure 7: Efficiency analysis with Accuracy
vs. FLOPs curves on the ImageNet-1K.

Table 6: Results on LRA tasks compared with
other efficient Transformer models. “THR” de-
notes throughput (in TGS) and “MEM” denotes
peak memory usage (in MB).

MODEL ACCavg THRavg MEMavg

Softmax 58.1 439.7 9004
Kernelized 56.6 528.5 9606
Nystrom 57.9 1007.7 2832
Linformer 55.1 918.8 1897
Skyformer 59.4 719.5 3985
PolaFormer 60.7 915.6 2047
NaLaFormer 61.2 827.7 2603

5 CONCLUSION

In this work, we introduced NaLaFormer, a query norm-aware linear attention that restores the
missing role of query norms and preserves non-negativity through cosine direction similarity. Our
approach bridges the gap between softmax and linear attention by reducing the entropy in query norm
awareness and avoid suppressing negative values. We validated the effectiveness of NaLaFormer
across a wide range of vision tasks, including image classification, detection, segmentation, and
super-resolution, as well as on language modeling and the Long Range Arena benchmark. The results
consistently show that NaLaFormer achieves higher accuracy and better efficiency than existing linear
attention models, offering a more practical balance between performance and efficiency.
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A APPENDIX

• A.1 LLM Usage Statement.
• A.2 Entropy Analysis. The mathematical proof and supporting explanation of the proposed

linear attention.

• A.3 Datasets and Experiment Details. Training settings and datasets for all experiments.

• A.4 Ablation Study. Ablation study to evaluate the effectiveness of each component.

• A.5 Limitations. The limitations of this work.

• A.6 Discussion. Differences from previous works.

• A.7 Related Work. Related works about vision transformer and linear attention.

• A.8 Visualizations. More visualizations about the experiments.

• A.9 Tables. Full tables about the experimental results.

• A.10 Diffusion Transformer Results. DiT experiments.

• A.11 Future Work.

A.1 LLM USAGE STATEMENT

This work made limited use of large language models (LLMs) exclusively for minor language polish-
ing and wording refinement, with the goal of improving readability. The LLMs were not involved
in research ideation, methodology development, experiment design, implementation, analysis, or
the formulation of scientific claims. All core contributions, including theoretical insights, model
design, experiments, and conclusions, were entirely developed by the authors. Additionally, in their
roles as peer reviewers, the authors used LLMs to assist in understanding the structure and reasoning
of manuscripts and to help draft review wording. These uses served solely as supportive tools to
facilitate comprehension and articulation, without influencing any scientific assessments, decisions,
or judgments made during the review process.

A.2 ENTROPY ANALYSIS

In this section, we use the Positive Sequence Entropy (PSE) (Meng et al., 2025) to connect the
probability distribution with the sequence of query-key similarity (one row in the feature map). In the
following derivation, we use the Positive Sequence Entropy (PSE) (Meng et al., 2025) to connect the
softmax self-attention with PSE(⋅). We investigate the probability distribution generated from one
single query vector and a series of key vectors with PSE, analyzing how PSE(x) varying with query
norm with softmax.

We first give the definition of PSE as following,

Definition 2 (Positive Sequence Entropy). Let a sequence x = (x1, ..., xN), in which xi ≥ 0,
i = 1, . . . ,N , and s = ∑

N
i=1 xi > 0. The uncertainty of this positive sequence is defined by:

PSE(x) = −
N

∑
i=1

xi

s
log(

xi

s
), s =

N

∑
i=1

xi. (15)

Assuming q is a directional fixed vector with norm c, i.e., qt = ct ⋅ d(qt), we only consider the
relation between PSE and ct. Then, we have the following two theorems:

Theorem 1 (Query Norm-aware Entropy Reduction in Softmax Attention). Given that xi = qk
⊺
i

be a positive sequence and let Φ ∶ (−∞,+∞) ↦ [0,+∞) be a spiky function serving to reduce
the PSE through mapping each xi. In the case Φ(⋅) = exp(⋅), existing a constant value c0
satisfying: For c > c0, we have

PSE(Φ((cq)k⊺)) = PSE(Φ(cx)) < PSE(Φ(x)).
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Proof. Without loss of generality, we assume the sum of the positive sequence have, ∑N
i=1Φ(xi) = 1,

and directly set query norm as a scaler c ∈ R. Then, the PSE of x degraded into Shannon entropy as,

PSE(Φ(x)) = H(Φ(x))

= −
N

∑
i=1

Φ(xi) log(Φ(xi))

When query norm varies, the PSE is,

Sc =
N

∑
i=1

Φ(cxi) =
N

∑
i=1

Φ(xi)
c
= ∣∣∣Φ(x)∣∣cc

PSE(Φ(cx)) = PSE(Φ(x)c) = log(Sc) −
N

∑
i=1

Φ(xi)
c

Sc
log(Φ(xi)

c
)

= c log(∣∣Φ(x)∣∣c) − c
N

∑
i=1

Φ(xi)
c

∣∣Φ(x)∣∣c
log(Φ(xi))

Due to the definition of Lp norm, limp→∞ ∣∣x∣∣p = xmax,and xi ∈ [0,1], we have ∣∣x∣∣p <= xmax for
p > 1. Therefore,

c log(∣∣Φ(x)∣∣c) − c
N

∑
i=1

Φ(xi)
c

∣∣Φ(x)∣∣c
log(Φ(xi)) ≤ c log(Φ(xmax)) − c

N

∑
i=1

(
Φ(xi)

Φ(xmax)
)
c log(Φ(xi))

When c→ +∞, ( Φ(xi)

Φ(xmax)
)c → 0 for all xi ≠ xmax:

lim
c→+∞

c log(Φ(xmax)) − c
N

∑
i=1

(
Φ(xi)

Φ(xmax)
)
c log(Φ(xi))

=c log(Φ(xmax)) − c log(Φ(xmax)) = 0

Therefore, because PSE is positive, there exists c0, for all c > c0, PSE(Φ(cx)) < PSE(Φ(x))

Consequently, the Theorem 1 proves the theorem softmax attention is query norm aware with a
dynamic control on entropy reduction. ∎

Similar to linear attention, we continue with the case in previous linear attention with feature maps,
and prove that the PSE of existing linear attentions is query norm-unaware.

Theorem 2 (Query Norm-unaware of Entropy in Linear Attention). Given that x =
(x1, . . . , xN), xc = (cx1, . . . , cxN), are positive sequences, where c > 0 denotes the ratio
of the query norm, and ϕ(⋅) is a element-wise feature map satisfying c1ϕ(q) ≤ ϕ(cq) ≤ c2ϕ(q).
Then, we have

∣PSE(Φ(xc)) −PSE(Φ(x))∣ ≤ log(
c2
c1
) +

c2 − c1
c1

PSE(Φ(x)).

Proof. For most of the linear attentions, such as vanilla linear attention (Katharopoulos et al., 2020),
FLatten (Han et al., 2023), Efficientvit (Cai et al., 2023) and PolaFormer (Meng et al., 2025), they
all have c1ϕ(q) ≤ ϕ(cq) ≤ c2ϕ(q), and for ReLU(⋅) feature map,c1 = c2. Therefore, we have the
following derivations:
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If the feature map is a linear transformation, i.e., Φ(xm) = ϕ(q)ϕ(km)
⊺ and Φ(cx) = cΦ(x), such

as ReLU(⋅), we have,

S =
N

∑
m=1

Φ(xm)

PSElinear(x) = log(S) −
N

∑
i=1

Φ(xi)

S
log(Φ(xi))

PSElinear(cx) = log(c) + log(S) −
N

∑
i=1

c Φ(xi)

c ⋅ S
(log(Φ(xi)) + log(c))

= log(c) + log(S) −
N

∑
i=1

c Φ(xi)

c ⋅ S
(log(Φ(xi))) −

N

∑
i=1

c Φ(xi)

c ⋅ S
log(c)

= log(S) −
N

∑
i=1

c Φ(xi)

c ⋅ S
(log(Φ(xi))) + log(c) −

N

∑
i=1

c Φ(xi)

c ⋅ S
log(c)

= PSElinear(x).

For a linear attention with nonlinear feature map, such as Log-Normal Attention (Nahshan et al.,
2024), FLatten (Han et al., 2023), Efficientvit (Cai et al., 2023) and PoLaFormer (Meng et al., 2025),
they all have c1ϕ(q) ≤ ϕ(cq) ≤ c2ϕ(q) (and for ReLU(⋅) feature map,c1 = c2), thus, we have:

For clearity, we suppose the original positive sequence is normalized, i.e., ∑N
m=1Φ(xm) =

∑
N
m=1 ϕ(q)ϕ(km)

⊺ = 1, then, under the assumption c1ϕ(q) ≤ ϕ(cq) ≤ c2ϕ(q), we have

c1Φ(xm) ≤ Φc(xm) ∶= ϕ(cq)ϕ(k
⊺
) ≤ c2Φ(xm) (16)

Sc =
N

∑
i=1

Φc(xi) (17)

c1S ≤ Sc ≤ c2S (18)
S = 1 (19)

PSE(Φ(x)) = log(S) −
N

∑
i=1

Φ(xi)

S
log(Φ(xi)) (20)

=
N

∑
i=1

Φ(xi) log(Φ(xi)) (S=1) (21)

PSE(Φ(xc)) = log(Sc) −
N

∑
i=1

Φc(xi)

Sc
log(Φc(xi)) (22)

≤ log(c2) −
N

∑
i=1

Φc(xi)

Sc
log(Φc(xi)). (23)

Since Sc > 0 and Φc(xm) > 0, we have

log(c2) −
N

∑
i=1

Φc(xi)

Sc
log(Φc(xi)) (24)

≤ log(c2) −
N

∑
i=1

Φc(xi)

Sc
(log(Φ(xi)) + log(c1)) (25)

= log(
c2
c1
) −

N

∑
i=1

Φc(xi)

Sc
log(Φ(xi)). (26)
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Due to ∑N
m=1Φ(xm) = 1,Φ(xm) ≥ 0, we have Φ(xm) ≤ 1, log(Φ(xm)) ≤ 0 then

log(
c2
c1
) −

N

∑
i=1

Φc(xi)

Sc
log(Φ(xi)) (27)

≤ log(
c2
c1
) −

N

∑
i=1

c2Φ(xi)

c1S
log(Φ(xi)) (28)

= log(
c2
c1
) −

c2
c1

N

∑
i=1

Φ(xi) log(Φ(xi)) (29)

= log(
c2
c1
) +

c2
c1

PSE(Φ(x)). (30)

Similar with the derivations above, we have the lower bound of PSE(xc),

PSE(Φ(xc)) ≥ log(
c1
c2
) +

c1

c2
PSE(Φ(x)). (31)

Therefore,

log(
c1
c2
) + (

c1

c2
− 1)PSE(Φ(x)) ≤ PSE(Φ(xc)) − PSE(Φ(x)) ≤ log(

c2
c1
) + (

c2
c1
− 1)PSE(Φ(x)).

(32)

Since c2 > c1 > 0, we have log( c2
c1
) > 0 and ,

∣PSE(Φ(xc)) − PSE(Φ(x))∣ ≤ log(
c2

c1
) +

c2 − c1
c1

PSE(Φ(x)) (33)

Here, both c1 and c2 vary with c.

For example, as the feature map of Linear Log-Normal Attention (Nahshan et al., 2024), ϕ(q) =
exp(q), we have

exp(min
d
(qd)) ⋅Φ(xm) ≤ Φc(xm) ≤ exp(max

d
(qd)) ⋅Φ(xm), (34)

∣PSE(Φ(xc)) − PSE(Φ(x))∣ ≤ log(
c2

c1
) +

c2 − c1
c1

PSE(Φ(x)) (35)

= qmax − qmin + (exp(qmax − qmin) − 1)PSE(Φ(x)) (36)

From the equation above and the properties of exp function, it can be seen that when the query
norm changes, the PSE(Φ(xc)) of linear attention only fluctuates around Φ(PSE(x)), showing no
negative correlation with the query norm.

According to the derivations about Eq. (36), it is evident that the error, ∣PSE(Φ(xc))−PSE(Φ(x))∣,
is controlled by the feature map. Only when the steepness (i.e., the second derivative) of the feature
map function varies with the query norm can the query norm directly affect the variation of entropy in
linear attention. Considering the Lemma 2 in PolaFormer (Meng et al., 2025), the composite function
of the element-wise feature map with first and second derivative is concave, thus the feature map we
proposed, power function with the exponent greater than 1 as well as changing with query norm can
compensate for the property in softmax attention where the query norm influences PSE.
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A.3 EXPERIMENT SETTINGS

Implementation Details. Building upon the framework illustrated in Fig. 2, we construct a hierarchi-
cal vision backbone NaLaFormer. Consistent with established works (Fan et al., 2025b; 2024; Liu
et al., 2021), we develope a set of NaLaFormer backbones, each with varying configurations of block
count and channel dimensions across their respective stages whose the ratio of MLP is set to 3.5. The
architecture details are illustrated in the Tab. 7.

Table 7: Architecture details of NaLaFormer.

Model Blocks Channels Heads

NaLaFormer-XT [2, 2, 4, 2] [32, 64, 192, 384] [1, 2, 6, 12]
NaLaFormer-T [2, 2, 6, 2] [64, 128, 256, 512] [1, 2, 4, 8]
NaLaFormer-S [3, 5, 9, 3] [64, 128, 320, 512] [1, 2, 5, 8]
NaLaFormer-B [4, 6, 12, 6] [96, 192, 384, 512] [1, 2, 6, 8]
NaLaFormer-L [4, 7, 19, 8] [96, 192, 448, 640] [1, 2, 7, 10]

Image Classification. In this task, we train all of our models with AdamW optimizer for 320 epochs,
including 20 epochs for linear warm-up. The basic learning rate is set to 0.001 for 128 micro batchsize
and 1024 global batchsize. The training framework is developed on the top of the official DeiT
implementation. Additionally, we use CPE (Chu et al., 2023) to serve as the positional encoding.
When mapping each d(x), we set f(x) = π

4
tanh(x) to make the cosine function only inhibits the

directions with opposite signals.

Object Detection and Segmentation. We further conducted comprehensive experiments on the
object detection task using the COCO dataset (Lin et al., 2014), which contains 118K training images
and 5K validation images annotated with 80 object categories. We use our model as backbone with
pretrained weights on ImageNet-1K. We conduct the experiments following the mmcv-detection
(Contributors, 2018) project. The model are trained under both 1× (12 epochs) and 3× (36 epochs).
We use the AdamW optimizer with 0.0001 learning rate, 0.0001 weight decay and “step” policy.

Semantic Segmentation. We conduct the semantic segmentation of ADE20K dataset (Zhou et al.,
2019). This widely adopted dataset comprises 25,000 densely annotated images depicting complex
real-world environments with rich contextual interactions between objects and their spatial configura-
tions. We employ the pretrained NaLaFormer models on two representative segmentation models,
SemanticFPN and UperNet. The experiment is conducted based on mmcv-segmentation (Contributors,
2018). The training iteration is set to 40000 for SemanticFPN models and 160000 for UperNet
models. All models are trained using AdamW optimizer with 0.0001 learning rate and 0.001 weight
decay.

Super Resolution. To both evaluate the accuracy of our method under super resolution and highlight
the computational efficiency advantage that its linear complexity offers in super-resolution, we make
the experiments following previous efficient SISR work, ESRT (Lu et al., 2022). We use DIV2K
(Agustsson & Timofte, 2017) as the training dataset, and for evaluation, we use four benchmark
datasets, including Set5, Set14, BSD100 and Urban100 as used in ESRT, utilizing both PSNR and
SSIM to evaluate the performance of the reconstructed SR images. Meanwhile, we conducted
statistics on both memory consumption and inference duration.

Language Modeling. We compare NaLaFormer with several baseline models, including Trans-
former++ (Touvron et al., 2023), Gated Linear Attention (Yang et al., 2024a), RetNet (Sun et al.,
2023), Mamba (Gu & Dao, 2023), DeltaNet (Yang et al., 2024b) and Gated DeltaNet (Yang et al.,
2025). Each model is pretrained on the subset of the SlimPajama dataset (Soboleva et al., 2023). We
train our model from scratch with parameter sizes of 340M on 15B tokens with a batch size of 0.5M
tokens and test it on common-sense reasoning tasks, which includes WikiText (Merity et al., 2017),
LAMBADA (Paperno et al., 2016), ARC-easy (Clark et al., 2018), ARC-challenge (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), PiQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al.,
2020). All downstream tasks are conducted based on lm-evaluation-harness. We test throughput of
the baseline models on a single A6000 GPU.
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A.4 ABLATION STUDY

Impact of Components in Norm-aware Linear Attention. We evaluate the effectiveness of each
component in NaLaFormer. In row 1, we keep non-negativity and spikiness with ReLU(⋅) and a
constant power function. In row 2, we utilize the cosine inhibit to additionally preserve the norm. In
row 3, we replace the constant power with a norm aware power. As shown in Table 8, it is important
to note that the norm awareness yields a 0.4% improvement in row 2 and row 3, indicating that
norm-aware spikiness effectively capture the lost information due to the norm cancellation. We
examine the impact of norm consistency with cosine inhibit in row 1 and row 2 by only preserving
negative values, with our cosine inhibit, the information in negative values improves the performance
0.4%.

Impact of Components in Vision Model with NaLaFormer. The ImageNet classification exper- 2qdC,
W2iments are conducted on top of the current sota method, RALA (Fan et al., 2025b). To ensure a

fair comparison with the RALA baseline, we follow its model design. In order to verify that the
performance gains of our method indeed stem from the advanced linear-attention mechanism, we
further include the following ablation studies under the XT-size settings: blocks [2, 2, 4, 2], channels
[32, 64, 192, 384], and heads [1, 2, 6, 12]. The results indicate that the influence of these components
on model performance is limited, thereby further demonstrating the superiority of our norm-aware
linear attention. The results are shown in Table. 10

Comparison with other Linear Attention. To ensure fair comparison with existing linear attention
approaches, we adopt the evaluation protocol from FLatten-Transformer (Han et al., 2023) with
Swin-T setting by only replacing the attention mechanism to our Norm-aware linear attention. As 2qdC,

W2shown in Table 9, NaLaFormer achieves consistent performance gains across all baseline models,
surpassing both conventional linear attention variants and softmax attention, while maintaining linear
complexity.

Ablation Study in τ and λ. We conduct the ablation study on both image classification (CV) and
document retrieval (NLP) from LRA benchmark. The results are shown in Table 11 dBiZ,

W3
Table 8: Ablation on the FL-Swin-T setting.

NON SPIKY
NORM COSINE ACC. (%)NEGATIVITY AWARE DIR SIM

✓ ✓ 82.1-0.8
✓ ✓ ✓ 82.5-0.4
✓ ✓ ✓ ✓ 82.9

Table 9: Comparison with other linear attention
models on the Swin-T setting.

METHOD PARAMS FLOPS ACC(%)

Swin-T (Liu et al., 2021) 28M 4.4G 81.2
Hydra Attn (Bolya et al., 2022) 29M 4.5G 80.7
Efficient Attn (Shen et al., 2021) 29M 4.5G 81.0
Linear Angular (You et al., 2023) 29M 4.5G 79.4
Enhanced Attn (Cai et al., 2023) 29M 4.5G 81.8
FLatten Attn (Han et al., 2023) 29M 4.5G 82.1
Agent Attn (Han et al., 2024c) 29M 4.5G 82.6
InLine Attn (Han et al., 2024a) 30M 4.5G 82.4
PolaFormer (Meng et al., 2025) 29M 4.5G 82.6
NaLaFormer 29M 4.8G 82.9

Table 10: Ablation studies of vision models with
NaLaFormer-XT.

W.O. RoPE CPE Layerscales Swish Ours-XT

ACC 79.1% 78.9% 79.1% 78.7% 79.1%

Table 11: Ablation studies in τ and λ.

λ τ RETRIEVAL (NLP) IMAGE (CV)

3 0.5 80.42 44.54
5 0.5 80.17 41.91
7 0.5 80.13 40.73
3 1 80.13 41.80
3 2 80.35 42.12
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A.5 LIMITATIONS

While this work validates the efficacy of NaLaFormer across diverse vision-language tasks, we
anticipate that its linear self-attention architecture holds significant potential for other cross-modality
applications, such as text-to-image and text-to-video generation. However, direct evaluation in such
contexts presents considerable challenges, primarily due to the substantial computational complexity
associated with training diffusion models from scratch. Future efforts will actively pursue these
promising directions and develop novel strategies to accelerate training efficiency, thereby enabling
scalable deployment of NaLaFormer in complex generative modeling tasks.

A.6 DISCUSSION

Differences from Previous Works. Existing works, such as Cosformer (Qin et al., 2022) and RoPE 2qdC,
W3

dBiZ,
W2

(Su et al., 2024), keep part of the information with trigonometric functions by using cosine-based
functions. Cosformer replaces the softmax in attention with a cosine-based distance metric, using
cosine similarity to directly measure query-key alignment, while RoPE encodes absolute positions
via rotation matrices in complex space to represent the relative position. However, both kinds of
cosine similarity are employed for positional decay, which differs from our cosine inhibition method
targeting the similarity and dimensions with opposite signals, shown as follows:

SMcosformer(qn,km) = ϕ(qn)ϕ(km)
⊺ cos(

(m − n)π

2M
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
relative position

, (37)

SMrope(qn,km) = ϕ(qn) Rd
Θ,n−m

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
relative position

φ(km)
⊺, (38)

SMours(q,k) =
d

∑
i=1

cos(ϕ(q)i − ϕ(k)i)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dimensional cosine similarity

(39)

A.7 RELATED WORK

Vision Transformer. The success of the Transformer architecture (Vaswani et al., 2017) in natural
language processing (NLP), particularly its self-attention mechanism for modeling long-range depen-
dencies, has catalyzed its adoption in computer vision (CV). The vision transformer (Dosovitskiy
et al., 2021) marked a paradigm shift by discarding convolutions entirely. The vision transformer
partitions images into patches, linearly embeds these patches into sequential tokens, and processes
them through a pure Transformer encoder. Nevertheless, the quadratic computational complexity
inherent in self-attention mechanisms incurs substantial computational overhead, rendering ViT
training computationally intensive. Existing researches have proposed multiple strategies to enhance
ViT’s efficiency. For instance, DeiT (Touvron et al., 2021) achieves data-efficient training through
knowledge distillation, whereas the Swin Transformer (Liu et al., 2021) employs shifted window
mechanisms to balance local feature extraction with global context modeling while maintaining linear
complexity. These advancements have established Transformer-based architectures as foundamental
frameworks for visual tasks, effectively bridging the methodological divide between NLP-oriented
architectures and CV’s inherent geometric constraints. However, these improvements primarily
address architectural adaptations rather than resolving the fundamental limitations of softmax-based
attention mechanisms, thereby retaining significant training costs. Recent studies have explored
alternative paradigms for visual representation learning to mitigate these constraints. Building on
sequential image processing principles, several approaches employ state space models (SSMs) for
patch encoding. Notably, VMamba (Liu et al., 2024; Huang et al., 2024) leverages SSM-based
encoding through raster-scan ordering to extract hierarchical features while preserving the theoretical
guarantee of linear computational complexity inherent to SSMs. In addition, VHeat (Wang et al.,
2024) reconceptualizes image understanding through thermodynamic simulations, modeling image
patches as heat sources, and analyzing thermal conduction processes, reducing the complexity to
O(N1.5) through discrete cosine transforms (DCT) and inverse DCT operations.

Linear Attention. Linear attention employs kernel-based similarity approximation to circumvent the
exp(qk⊺) in standard softmax attention. The foundational work (Katharopoulos et al., 2020) intro-
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duces a linear separable kernel ϕ(⋅) as an alternative to the exp operator, exploiting the associative
property of matrix multiplication to reduce computational complexity from O(N2) to O(N). Sub-
sequent variants adopt this Softmax-free paradigm with diverse kernel functions, including ReLU
(Han et al., 2023; Cai et al., 2023), 1+ELU (Katharopoulos et al., 2020) and SiLU (Yang et al., 2024b;
MiniMax et al., 2025). Furthermore, to enhance position awareness, Cosformer (Qin et al., 2022)
integrates ReLU with Ptolemy’s theorem, incorporating locality inductive biases through feature map
re-weighting while empirically enforcing non-negativity constraints. Beyond kernel design, recent
studies focus on preserving the spikiness property inherent in softmax attention. Hedgehog (Zhang
et al., 2024) and MB-TaylorFormer (Qiu et al., 2023) employ series expansions to approximate the
exp function, while FLatten Transformer (Han et al., 2023) and PolaFormer (Meng et al., 2025) utilize
power functions to sharpen attention distributions. Notably, lightning attention (Qin et al., 2024) com-
bines SiLU kernels with a gate mechanism, achieving scalability up to 456B parameters (MiniMax
et al., 2025). Inline Han et al. (2024a) provides an important insight by proving that the softmax
function is injective in most cases, whereas linear attention is not. By modifying the normalization
scheme, it restores the injectivity of linear attention. In addition, Inline introduces a local-attention
residual (a convolution module) to enhance local bias, thereby compensating for softmax’s strong
capability in modeling local patterns. This work highlights the importance of injectivity in linear
attention and uses vectors with identical norms but different directions as counterexamples to address
this limitation. However, Inline overlooks the relationship between attention distribution uncertainty
and the query/key norms—an essential property of the softmax function. MALA (Fan et al., 2025a) 2qdC

W1notices the neglect of norms, its simple non-negative constraint on the feature map causes negative
values to be ignored, thereby leading to information loss during inner product computation. In autore-
gressive architectures, linear attention enables RNNs parallelization through unidirectional encoding.
Gated Linear Attention enhances this capability via data-dependent gating on K⊺V hidden states,
demonstrating superior performance in length generalization and recall-intensive tasks. Existing
kernel functions exhibit performance degradation compared to standard softmax attention. MetaLA
Chou et al. (2024) constructs a lightweight recurrent-form linear attention by defining the optimal 2qdC

W1linear approximation conditions of the softmax attention map, however, when applied to encoder
architectures, such as ViT models or bidirectional attention, the model performance becomes sensitive
to the scanning order, making it less suitable for vision tasks. However, existing kernel-based linear
attention mechanisms generally suffer from performance degradation compared to standard softmax
attention. In this work, we analyze the sources of information loss by the cancellation of query norms
and the non-negativity enforcement in linear attention and address these issues through our proposed
method.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.8 MORE VISUALIZATIONS

More visualizations are provided in this section.
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Figure 8: Comparison of the visualizations among different models.
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Figure 9: Visualizations of the NaLaSR in four different benchmarks comparing with ESRT under ×4
scale.
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A.9 FULL TABLES

Full tables of the experimental results are shown in this section.

Table 12: Object detection and instance segmentation results on the COCO dataset using RetinaNet
with 1 × schedule.

METHOD TYPE
RETINANET 1×

APb APb
50 APb

75 APb
S APb

M APb
L

PVTv2-b1 (Wang et al., 2022) Trans 41.2 61.9 43.9 25.4 44.5 54.3
SBCFormer-L (Lu et al., 2024b) Trans 41.1 62.3 43.3 24.7 44.3 56.0
MPViT-XS (Lee et al., 2022) Trans 45.9 67.4 49.4 28.5 50.1 60.8
SOFT + +-T (Lu et al., 2024a) Linear 41.9 62.7 44.7 27.8 45.4 55.6
Pola-PVT-T (Meng et al., 2025) Linear 40.0 60.7 42.3 25.0 43.6 52.9
NaLaFormer-T Linear 46.2 67.9 49.5 29.9 50.4 61.6
MPViT-S (Lee et al., 2022) Trans 45.7 57.3 48.8 28.7 49.7 59.2
CMT-S (Guo et al., 2022a) Trans 44.3 65.5 47.5 27.1 48.3 59.1
Pola-PVT-S (Meng et al., 2025) Linear 43.2 64.1 46.4 28.0 46.4 57.9
NaLaFormer-S Linear 47.2 68.0 50.7 29.0 51.3 63.3

Table 13: Full table of SISR: Comparison between our method and other SR Models on lightweight
image super-resolution. The “LAT” denotes the inference latency and “MEM” represents peak
memory usage.

MODEL SET5 SET14 BSD100 URBAN100

Performance SCALE PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 28.42 0.81 26.00 0.70 25.96 0.67 23.14 0.66
SRFBN-S (Li et al., 2019) ×4 31.98 0.89 28.45 0.78 27.44 0.73 25.71 0.77
LAPAR-B (Li et al., 2020) ×4 31.94 0.89 28.46 0.78 27.52 0.73 25.85 0.79
ESRN-V (Song et al., 2020) ×4 31.99 0.89 28.49 0.78 27.50 0.73 25.87 0.78
ECBSR-M16C64 (Zhang et al., 2021) ×4 31.92 0.89 28.34 0.78 27.48 0.74 25.81 0.78
ESRT (Lu et al., 2022) ×4 32.01 0.89 28.44 0.77 27.48 0.73 25.85 0.78
NaLaSR ×4 32.00 0.89 28.50 0.78 27.49 0.73 25.83 0.78
Bicubic ×3 30.39 0.87 27.55 0.77 27.21 0.74 24.46 0.73
SRFBN-S (Li et al., 2019) ×3 34.20 0.93 30.10 0.84 28.96 0.80 27.66 0.84
LAPAR-B (Li et al., 2020) ×3 34.20 0.93 30.17 0.84 29.03 0.80 27.85 0.85
ESRN-V (Song et al., 2020) ×3 34.23 0.93 30.27 0.84 29.03 0.80 27.95 0.85
ESRT (Lu et al., 2022) ×3 34.13 0.92 30.24 0.84 28.99 0.80 27.88 0.85
NaLaSR ×3 34.21 0.93 30.24 0.84 29.00 0.80 27.87 0.85
Efficiency SCALE LAT MEM LAT MEM LAT MEM LAT MEM

ESRT (Lu et al., 2022) ×4 195ms 3.0G 188ms 7.0G 79ms 2.2G 195ms 69G
NaLaSR ×4 159ms 2.3G 147ms 2.9G 72ms 2.1G 124ms 5.3G

- SAVE ×4 18.5% 23.3% 21.8% 58.6% 8.9% 4.5% 36.4% 92.3%

ESRT (Lu et al., 2022) ×3 283ms 4.6G 222ms 10G 145ms 2.8G 316ms 79G
NaLaSR ×3 189ms 2.9G 176ms 4.1G 132ms 2.3G 138ms 8.9G

- SAVE ×3 33.4% 38.1% 20.8% 59.4% 8.7% 19.1% 56.5% 88.8%

Table 14: Full table of LRA: Throughput and Peak Memory of various models. A denotes the
accuracy, T denotes the throughput of each model and M denotes the peak memory cost.

Softmax Kernelized Nystrom Linformer Informer Skyformer PoLaFormer NaLaFormer (ours)

A 39.14 32.63 38.94 38.43 37.86 40.77 42.15 42.54
Img T 736.36 862.32 1251.28 1613.19 85.85 923.04 1340.89 1314.03
(1k) M 9645 13013 5941 3471 5357 8091 4505 4211

A 70.39 69.86 69.34 65.39 56.44 70.73 70.53 71.31
Path T 691.67 811.59 1125.08 1057.03 299.94 748.98 1065.63 1292.93
(1k) M 4831 6515 2980 1745 2687 4055 2286 2107

A 38.71 38.46 37.95 36.44 37.05 38.69 37.35 38.21
List T 402.06 496.48 834.85 528.52 305.53 627.14 949.80 802.51
(2k) M 4473 6084 1186 881 2737 1712 1151 2520

A 61.55 60.02 62.36 57.29 62.13 64.7 73.06 73.48
Text T 252.06 327.27 1330.68 970.90 521.16 949.80 876.74 521.49
(4k) M 17122 11720 2043 1742 5736 3082 1155 2102

A 80.93 82.11 80.89 77.85 79.35 82.06 80.5 80.42
Retri T 116.30 144.83 496.48 424.18 142.94 348.60 344.93 207.29
(4k) M 8947 10699 2011 1649 3399 2987 1139 2079

A 58.14 56.62−1.52 57.90−0.24 55.08−3.06 54.57−3.57 59.39+1.25 60.72+2.58 61.19+3.05
Avg T 439.69 528.50×1.20 1007.68×2.29 918.77×2.09 271.08×0.62 719.51×1.80 915.60×2.08 827.65×1.88

M 9003.6 9606.2×1.07 2832.2×0.31 1897.6×0.21 3983.2×0.44 3985.4×0.44 2047.2×0.22 2603.8×0.29

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A.10 DIFFUSION TRANSFORMER

Diffusion Transformers provide a suitable setting for evaluating the effectiveness of linear attention.
Following the work DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024), we conducted experiments
on diffusion transformer S/2 to further validate our approach using ImageNet-1K (Deng et al., 2009),
and the results are shown in Table 15. dBiZ,

W1
Table 15: Results of DiT experiments.

Model FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

DiT (Peebles & Xie, 2023) 68.40 - - - -
DiG (Zhu et al., 2025) 62.06 11.77 22.81 0.39 0.56
NaLaDiT 61.64 12.40 23.24 0.40 0.58
SiT (Ma et al., 2024) 58.61 9.25 24.31 0.41 0.59
EfficientSiT (Pu et al., 2024) 53.57 9.01 27.26 0.43 0.61
NaLaSiT 53.08 8.94 27.63 0.43 0.62

A.11 FUTURE WORK

This work reveals the fundamental relationship between query norms and attention entropy and
introduces a norm-aware linear attention mechanism that restores this property. In future research, we
will further explore the interaction between our method and different positional encoding schemes, as bubT,

Q1the observed performance variations mainly stem from how positional encodings capture absolute or
relative positional information. We also plan to investigate a broader family of Injection schemes
beyond the current power-function design, including alternative spiky mappings such as exponential bubT,

Q2

dBiZ,
W3

forms. In addition, while our method is primarily developed for Vision Transformers, extending
norm-aware feature maps to decoder-only Transformer architectures remains a promising direction.

2qdC,
W1

Finally, for practical deployment in resource-constrained settings, techniques such as quantization

dBiZ,
Q1

will be explored to further improve efficiency.
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