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Abstract

In this work, we evaluate various existing di-001
alogue relevance metrics, find strong depen-002
dencies on the dataset, often with poor cor-003
relation with human scores of relevance, and004
propose modifications to reduce data require-005
ments while improving correlation. With these006
changes, our metric achieves a new state-of-007
the-art on the HUMOD dataset (Merdivan008
et al., 2020). We achieve this without fine-009
tuning, using only 3750 unannotated human010
dialogues and a single negative example. De-011
spite these limitations, we demonstrate com-012
petitive performance on three datasets from013
different domains. Our code including our014
metric and data processing is open sourced 1.015

1 Introduction016

The automatic evaluation of generative dialogue017

systems remains an important open problem, with018

potential applications from tourism (Şimşek and019

Fensel, 2018) to medicine (Fazzinga et al., 2021).020

In recent years, there has been increased focus021

on interpretable approaches (Deriu et al., 2021;022

Chen et al., 2021) often through combining vari-023

ous sub-metrics, each for a specific aspect of dia-024

logue (Berlot-Attwell and Rudzicz, 2021; Phy et al.,025

2020; Mehri and Eskenazi, 2020). One of these026

key aspects is “relevance” or “dialogue coherence”,027

commonly defined as whether “[r]esponses are on-028

topic with the immediate dialogue history” (Finch029

and Choi, 2020).030

These interpretable approaches have motivated031

measures of dialogue relevance that are not reliant032

on expensive human annotations. Such measures033

have appeared in many recent papers on dialogue034

evaluation, including USR (Mehri and Eskenazi,035

2020), USL-H (Phy et al., 2020), and others (Pang036

et al., 2020; Merdivan et al., 2020). Additionally,037

1See Supplemental Material. A Github repository will be
made available upon publication.

dialogue relevance has been used directly in train- 038

ing dialogue models (Xu et al., 2018). 039

Despite this work, comparison between these ap- 040

proaches has been limited. Aggravating this prob- 041

lem is that authors often collect human annotations 042

on their own datasets with varying amounts and 043

types of non-human responses and, as a result, com- 044

paring between approaches has been difficult, if not 045

impossible. We address this problem by evaluating 046

and comparing three prior approaches on three pub- 047

licly available datasets of dialogue annotated with 048

human ratings of relevance. We find poor correla- 049

tion with human ratings in various methods, with 050

high sensitivity to dataset. 051

Based on our observations, we propose a sim- 052

ple metric of logistic regression trained on BERT 053

features (Devlin et al., 2019), using “I don’t know.” 054

as the only negative example. With this metric, 055

described below, we achieve state-of-the-art cor- 056

relation on the HUMOD dataset (Merdivan et al., 057

2020). We make our code, data processing, and em- 058

pirical setup publicly available to encourage more 059

comparable results in future research. 060

The primary contributions of this paper are: (i) 061

empiric evidence that current dialogue relevance 062

metrics for English are sensitive to dataset, and 063

often have poor correlation with human ratings, 064

(ii) a simple relevance metric that exhibits good 065

correlation, and (iii) the counter-intuitive result that 066

a single negative example can be equally effective 067

as random negative sampling. 068

2 Prior metrics 069

Prior metrics of relevance in dialogue can generally 070

be divided into more traditional approaches that are 071

token-based, and more current approaches based on 072

large pretrained models. These metrics are given 073

the context (i.e., the two-person conversation up 074

to a given point in time), as well as a response 075

(i.e., the next speaker’s response, also known as the 076

‘next turn’ in the conversation). From these, they 077
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produce a measure of the response’s relevance to078

the context. Typically, the ground-truth response079

(also known as the ‘gold response’) is not assumed080

to be available.081

2.1 n-gram approaches082

There have been attempts to use metrics based on083

n-grams from machine-translation and summariza-084

tion, such as BLEU (Papineni et al., 2002), ROUGE085

(Lin, 2004), and METEOR (Banerjee and Lavie,086

2005) in dialogue. A significant disadvantage of087

these approaches is that they rely on access to the088

ground-truth response, that may not be available089

(e.g., if the model is being evaluated with self-play).090

Furthermore, it has been long established that these091

approaches do not work for measuring dialogue092

quality (Liu et al., 2016) – this is widely hypoth-093

esized to be because a single context can have a094

wide variety of valid responses. Recent work ap-095

plied these same methods to dialogue relevance,096

and found that the correlation with human scores097

was not significantly different than zero (Merdivan098

et al., 2020).099

2.2 Average-Embedding cosine similarity100

Xu et al. (2018) proposed to measure the cosine101

similarity of a vector representation of the context,102

and the response. Specifically, the context and re-103

sponse are represented via an aggregate (typically104

an average) of the uncontextualized word embed-105

dings. This approach can be modified to exploit106

language models by instead using contextualized107

word embeddings.108

2.3 Fine-tuned embedding model for Next109

Utterance Prediction (NUP)110

This family of approaches combines a word em-111

bedding model (typically max- or average-pooled112

BERT word embeddings) with a simple 1-3 layer113

MLP, trained for next utterance prediction (typ-114

ically using negative sampling) (Mehri and Es-115

kenazi, 2020; Phy et al., 2020). The embedding116

model is then fine-tuned to the domain of interest.117

In some variants, the model is provided with infor-118

mation in addition to the context and response; e.g.,119

Mehri and Eskenazi (2020) measured relevance on120

annotated Topical-Chat data (Gopalakrishnan et al.,121

2019) by appending the topic string to the context.122

This general architecture and training paradigm123

have also been directly used as a metric of over-124

all dialogue quality (Ghazarian et al., 2019). In125

this paper, we focus on the specific implementa- 126

tion by Phy et al. (2020). They use max-pooled 127

BERT embeddings that are passed into a single- 128

layer MLP followed by softmax with two classes. 129

Binary cross-entropy loss and random sampling of 130

negative examples is used at train time. 131

Note that, for methods that are fine-tuned or oth- 132

erwise require training, it will often be the case 133

that annotated relevance data is not available on the 134

domain of interest. As a result, the model perfor- 135

mance (i.e., correlation with human annotations) 136

cannot be measured on a validation set, and some 137

other means must be used to determine when train- 138

ing must stop (e.g., loss on the surrogate task, or 139

halting after a certain number of epochs). It is 140

therefore important that either the surrogate loss 141

correlates well with the model performance, or the 142

true validation curves of these methods be relatively 143

smooth and monotone so as to reduce the risk of 144

halting training on a model with poor performance. 145

Another concern with using trained metrics to 146

measure trained dialogue systems is that they may 147

both learn the same patterns in the training data. 148

An extreme example would be a dialogue model 149

that learns only to reproduce responses from the 150

training data verbatim, and a relevance metric that 151

learns to only accept verbatim responses from the 152

training data. We believe that this risk can be re- 153

duced by training the metric on separate data from 154

the model (possibly from a different domain). How- 155

ever, unless new training examples can be collected 156

easily, then this approach is only practical if the 157

metric can be trained with a relatively small amount 158

of data and therefore does not compete with the di- 159

alogue model for training examples. 160

2.4 Normalized conditional probability 161

Pang et al. (2020) also exploited pretrained mod- 162

els, however they instead relied on a generative 163

language model (specifically GPT-2). Their pro- 164

posed metric is the conditional log-probability of 165

the response given the context, normalized to the 166

range [0, 1]. Specifically, for a context q with can- 167

didate response r, their proposed relevance score 168

is defined as: 169

c(q | r) = −
max(c5th,

1
|r| logP (r | q))− c5th

c5th

, where |r| is the number of tokens in the response, 170

P (r | q) is the conditional probability of the re- 171

sponse given the context under the language model, 172
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and c5th is the 5th percentile of the distribution of173
1
|r| logP (r | q) over the examples being evaluated.174

3 Datasets used for analysis175

A literature review reveals that many of these meth-176

ods have never been evaluated on the same datasets.177

As such, it is unclear both how these approaches178

compare, and how well (if at all) they generalize179

to new data. For this reason, we consider three180

publicly available English datasets of both human181

and synthetic dialogue with human annotations of182

relevance.183

All datasets are annotated with Likert ratings of184

relevance from various reviewers; following Mer-185

divan et al. (2020), we average these ratings over186

all reviewers. Due to variations in data collection187

procedures, as well as anchoring effects when rat-188

ing dialogue (Li et al., 2019), individual Likert189

ratings from different datasets may not be directly190

comparable. For this reason, we do not merge the191

datasets and instead keep them separate. This has192

the additional benefit of allowing us to observe how193

methods generalize across datasets.194

3.1 HUMOD Dataset195

The HUMOD dataset (Merdivan et al., 2020) is196

an annotated subset of the Cornell movie dialogue197

dataset (Danescu-Niculescu-Mizil and Lee, 2011).198

The Cornell dataset consists of 220, 579 conversa-199

tions from 617 films. The HUMOD dataset is a200

subset of 4750 contexts, each consisting of at least201

two and at most seven turns. Every context is paired202

with both the original human response, and a ran-203

domly sampled human response. Each response is204

annotated with crowd-sourced ratings of relevance205

from 1-5. The authors measured inter-annotator206

agreement via Cohen’s kappa score (Cohen, 1968),207

and it was found to be 0.86 between the closest rat-208

ings, and 0.42 between randomly selected ratings.209

Following the authors, we split the dataset into a210

training set consisting of the first 3750 contexts, a211

validation set of the next 500 contexts, and a test-212

set of the remaining 500 contexts. As it is unclear213

how the HUMOD dataset was subsampled from214

the Cornell movie dialogue dataset, we do not use215

the Cornell movie dialogue dataset as training data216

for any of our methods.217

3.2 USR Topical-Chat Dataset (USR-TC)218

The USR-TC dataset is a subset of the Topical-219

Chat (TC) dialogue dataset (Gopalakrishnan et al.,220

2019) created by Mehri and Eskenazi (2020). The 221

Topical-Chat dataset consists of approximately 222

11, 000 conversations between Amazon Mechani- 223

cal Turk workers, each grounding their conversa- 224

tion in a provided reading set. The USR-TC dataset 225

consists of 60 contexts taken from the TC frequent 226

test set, each consisting of 1-19 turns. Every con- 227

text is paired with six responses: the original hu- 228

man response, a newly created human response, 229

and four samples taken from a Transformer dialog 230

model (Vaswani et al., 2017). Each sample fol- 231

lows a different decoding strategy, namely: argmax 232

sampling, and nucleus sampling (Holtzman et al., 233

2020) at the rates p = 0.3, 0.5, 0.7, respectively. 234

Each response is annotated with a human 1-3 score 235

of relevance, produced by one of six dialogue re- 236

searchers. The authors reported an inter-annotator 237

agreement of 0.56 (Spearman’s correlation). We 238

divide the dataset evenly into a validation and test 239

set, each containing 30 contexts. We use the TC 240

train set as the training set. 241

3.3 Pang et al. (2020) Annotated 242

DailyDialogue Dataset (P-DD) 243

The P-DD dataset (Pang et al., 2020) is a subset of 244

the DailyDialogue (DD) dataset (Li et al., 2017). 245

The DailyDialogue dataset consists of 13,118 con- 246

versations scraped from various websites, specifi- 247

cally digital spaces where English language learn- 248

ers could practice English conversation. The P-DD 249

dataset contains 200 contexts, each consisting of 250

a single turn. Each context is paired with a single 251

synthetic response, generated by a 2-layer LSTM 252

(Bahdanau et al., 2015). Responses are sampled 253

using top-K sampling for k ∈ {1, 10, 100}; note 254

that k varies by context. Each response is anno- 255

tated with ten crowdsourced 1-5 ratings of rele- 256

vance. The authors reported that inter-annotator 257

Spearman’s correlation varied between 0.57 and 258

0.87. Due to the very small size of the dataset (only 259

200 dialogues in total), and the lack of information 260

on how the contexts were sampled, we choose to 261

use this dataset exclusively for testing. 262

4 Evaluating Prior Metrics 263

For each of the aforementioned datasets, we evalu- 264

ate: 265

• COS-FT: an average embedding cosine sim- 266

ilarity. Specifically, we use the implementa- 267

tion2 provided by Csáky et al. (2019). This 268

2https://github.com/ricsinaruto/
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HUMOD USR-TC P-DD
Prior Metric S P S P S P
COS-FT 0.09 0.10 *0.26 *0.24 −0.10 −0.11
COS-MAX-BERT *0.13 *0.10 *0.20 0.14 0.03 0.02
COS-NSP-BERT 0.08 0.06 0.08 0.09 *0.30 *0.23
NORM-PROB *0.19 *0.16 *−0.24 *−0.26 *0.65 *0.59
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.03) *0.54 (0.02)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.04) *0.58 (0.03)

Table 1: Spearman (S) and Pearson (P) correlations of baseline models with average human ratings on the test sets
(correlations on the validation set can be found in the Appendix, Table 6). Models with a trained or fitted component
(i.e., NUP-BERT variants) are averaged over three runs, with the standard deviation reported in brackets. They also
have their training data specified in brackets, (H) signifies HUMOD, (TC-S) signifies a subset of TC containing
3750 dialogues (same size as the HUMOD train set), and (TC) signifies the full Topical Chat training set. A
correlation is marked with ‘*’ if all trials were significant at the p < 0.01 level. Otherwise, a correlation is marked
with ‘�’ if at least one trial was significant at the p < 0.01 level. Note that the COS-FT and NORM-PROB
baselines attain negative correlation with human scores on the P-DD and USR-TC datasets respectively.

HUMOD USR-TC P-DD
Metric S P S P S P
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.03) *0.54 (0.02)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.04) *0.58 (0.03)
IDK (H) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01)
IDK (TC-S) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01)

Table 2: Comparison of our proposed metric against the NUP-BERT baseline on the test set (corresponding corre-
lations on the validation set can be found in Table 7). Note the strong improvement on HUMOD and equivalent,
or slightly improved performance on USR-TC, at the cost of performance loss on P-DD.

implementation uses average fastText 3 em-269

beddings.270

• COS-MAX-BERT: another cosine similar-271

ity. For better comparison with BERT-based272

approaches, and inspired by BERT-RUBER273

(Ghazarian et al., 2019), we instead use max-274

pooled BERT contextualized word embed-275

dings.276

• COS-NSP-BERT: another cosine similarity277

embedding modified to use BERT, specifically278

altered to use the pretrained features extracted279

from the [CLS] token for the pretrained next-280

sentence-prediction head.281

• NUP-BERT: a fine-tuned BERT next-282

utterance prediction approach. Specifically,283

we use the NUP score implementation4284

provided by Phy et al. (2020). We experiment285

with fine-tuning BERT to the HUMOD test286

set (3750 dialogues), the full TC test set,287

and TC-S (a subset of the TC training set288

containing only 3750 dialogues).289

dialog-eval
3https://fasttext.cc/
4https://github.com/vitouphy/usl_

dialogue_metric

• NORM-PROB: a GPT-2 based normalized 290

conditional-probability approach. Specifi- 291

cally, we use the implementation5 provided by 292

Pang et al. (2020). Note that the P-DD dataset 293

was released in the same paper. 294

In all cases, we use hugging-face 295

bert-base-uncased as the pretrained 296

BERT model. Only NUP-BERT was fine-tuned. 297

To prevent an unfair fitting to any specific dialogue 298

model, and to better reflect the evaluation of 299

a new dialogue model, only human responses 300

were used at train time. All hyperparameters 301

were left at their recommended values. Note that 302

test-set performance is averaged over 3 runs for 303

NUP-BERT. 304

Also note that n-gram approaches were not eval- 305

uated. This is in part due to previous evidence 306

suggesting no correlation (Merdivan et al., 2020), 307

and, in part, as these methods require the gold-truth 308

reference for comparison. As a result, these meth- 309

ods cannot be used to fairly evaluate the gold-truth 310

response. Since our annotated datasets are rela- 311

tively small and contain limited amounts of human 312

5https://github.com/alexzhou907/
dialogue_evaluation
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generated responses, we decided that discarding the313

annotated ground-truth responses would harm our314

ability to evaluate the other metrics. Furthermore,315

the P-DD dataset does not include ground-truth hu-316

man responses, thereby making evaluation on this317

dataset impossible.318

4.1 Analysis319

Table 1 makes it immediately clear that the nor-320

malized probability (NORM-PROB) and cosine321

similarity (COS-FT, COS-MAX-BERT, COS-NSP-322

BERT) approaches do not generalize well across323

datasets. Although NORM-PROB works very well324

on the P-DD dataset, it has weak performance on325

HUMOD and has, in fact, a significant negative cor-326

relation on USR-TC. As this metric was developed327

for the P-DD dataset, and the P-DD dataset consists328

solely of synthetic responses from an LSTM model,329

we believe that this approach is over-fitted to mea-330

suring relevance on this LSTM model. Similarly,331

although the cosine-similarity approach using Fast-332

Text word embeddings has the best performance333

on the USR-TC dataset, it performs poorly on HU-334

MOD, and has negative correlation on P-DD. As335

such, it is clear that, while both cosine-similarity336

and normalized probability approaches can perform337

well, they have serious limitations. They are very338

sensitive to the domain and models under evalua-339

tion, and are capable of becoming negatively corre-340

lated with human ratings under suboptimal condi-341

tions.342

The final baseline, NUP-BERT, appears to have343

the best overall performance, outperforming each344

of the other baselines on at least 2 of the datasets.345

Despite this, we can see that performance on HU-346

MOD and USR-TC is still fairly weak. We can also347

observe that although fine-tuning on HUMOD data348

results in lower Spearman’s correlation on USR-349

TC, the general trend is that performance tends to350

be comparable regardless of training data. This351

appears to be true both with respect to domain (H352

vs TC) and amount of training data (TC vs TC-S).353

Overall, the results of Table 1 are concerning as354

they suggest that at least two current approaches355

generalize poorly across either dialogue models,356

or domains. As a result, research into new dia-357

logue relevance metrics is required. Furthermore,358

it is clear that the methodology for the evaluation359

of dialogue relevance metrics must be updated to360

use various dialogue models in various different361

domains.362

5 IDK: A novel metric for dialogue 363

relevance 364

Based on these results, we propose a number of 365

modifications to the NUP-BERT metric to produce 366

a novel metric that we call IDK (“I don’t know”). 367

The overall architecture is mostly unchanged, how- 368

ever the training procedure and the exact features 369

used are altered. 370

First, based on the observation that the amount of 371

training data has little impact, we decide to freeze 372

BERT features entirely and do not fine-tune to the 373

domain. Instead, we focus on the next-utterance- 374

prediction task. More specifically, whereas the 375

NUP-BERT baseline uses max-pooled BERT word 376

embeddings, we instead use the pre-trained next 377

sentence prediction features – from the hugging- 378

face v2.11.0 documentation 6: “(classification to- 379

ken) further processed by a Linear layer and a Tanh 380

activation function. The Linear layer weights are 381

trained from the next sentence prediction (classifi- 382

cation) objective during pre-training”. 383

Second, to improve generalization and reduce 384

variation in training (particularly important as the 385

practitioner likely does not have access to anno- 386

tated relevance data), and operating on the assump- 387

tion that relevance is captured by a few key dimen- 388

sions of the NUP features, we add L1 regularization 389

to our regression weights (λ = 1). 390

Third, in place of random sampling we use a 391

fixed negative sample, “i don’t know", at all time 392

steps. This allows us to train the model on less data, 393

as a corpus from which to sample negative samples 394

is no longer required. 395

Additionally, we perform a minor simplification 396

of the model to reduce the number of weights, using 397

logistic regression in place of 2-class softmax. We 398

train for 2 epochs using binary cross-entropy loss – 399

the same as the NUP-BERT baseline. We use the 400

Adam optimizer (Kingma and Ba, 2015) with an 401

initial learning rate of 0.001. 402

Table 2 reports the correlation between the met- 403

ric’s responses and the average human rating. We 404

achieve a Pearson’s correlation on HUMOD of 0.58 405

which, to our knowledge, represents a new state-of- 406

the-art performance for reference-less metrics on 407

HUMOD. This performance surpasses the previous 408

SOTA (0.138 with HAN-R(CE) (Merdivan et al., 409

2020)), as well as our provided baselines. This 410

performance is also very close to the supervised 411

6https://huggingface.co/transformers/
v2.11.0/model_doc/bert.html
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SOTA of 0.602 using a supervised fine-tuned BERT412

model (Merdivan et al., 2020).413

We have included some examples of the our met-414

ric’s output on the HUMOD dataset in Table 3, and415

we have included a scatter plot of IDK vs human416

scores in the Appendix, Figures 1-3.417

Compared to our baselines, we see that our pro-418

posed metric has strong improvement on the HU-419

MOD dataset and equivalent or stronger perfor-420

mance on USR-TC, at a cost of reduced perfor-421

mance on P-DD. As the performance drop on P-DD422

is less than the performance gain on HUMOD, and423

as HUMOD is human data rather than LSTM data,424

we consider this tradeoff to be a net benefit. How-425

ever, this reinforces our previous conclusion that426

these approaches are highly sensitive to the dataset.427

The absolute performance of all metrics studied, in-428

cluding our own, vary considerable by dataset. Fur-429

thermore, even the relative performance of closely430

related metrics such as IDK and NUP-BERT, or431

COS-FT and COS-NSP-BERT, varies considerably432

between datasets.433

It is worth noting that our approach does not434

out-perform the cosine and normalized-conditional435

probability baselines in all cases – only the major-436

ity of cases. As such, when annotated human data437

is not available for testing, it would appear that our438

approach is the preferred choice.439

5.1 Ablation tests440

Table 4 outlines correlation when ablating the L1441

regularization, or when using randomly sampled442

negative examples in place of “i don’t know".443

Specifically, we produce negative examples by444

shuffling the responses of the next 3750 dialogues445

in the dataset.446

The clearest observation is that L1 regularization447

is critical to good performance when using “i don’t448

know" in place of negative samples – otherwise, the449

model presumably overfits. Second, we can see that450

using “i don’t know" in place of negative samples451

has a mixed, but relatively minor effect. Thirdly we452

can see that the effect of L1 regularization is quite453

positive when training on TC data (regardless of454

the negative samples), and mixed but smaller when455

training on HUMOD data.456

Overall, this suggests that when annotated rele-457

vance data is not available, then L1 regularization458

may be helpful. Its effect varies by domain, but459

appears to have a much stronger positive effect than460

a negative effect.461

Dialogue Turn Human IDK
Mommy – - -
Yes, darling. - -
Did you ever make a wish? - -
Oh, lots of times. - -
Did your wishes ever come
true?

5.00 4.97

What’s your real name? 1.00 3.81
Sometimes. 4.67 4.60
From high school Mary? Yeah,
I saw her about six months ago
at a convention in Las Vegas.

1.00 1.13

I made a wish today, and it
came true just like Edward said
it would.

5 4.9

When I am sure I am among
friends.

2.33 3.01

Yes, Albert? - -
John, we’re going huntin’. - -
Who’s goin? - -
We’re all going. - -
Nick’s going? 4.67 4.65
I will keep you safe. We are
both older.

2.00 1.09

Nick , Vince , Albert and John. 4.00 4.95
A ride? Hell, that’s a good idea.
Okay, let’s go. Hey, let’s go.

2.33 4.68

No women? 4.00 2.39
I guess so 3.00 2.59

Table 3: Two multi-turn examples from HUMOD test
set. The randomly sampled distractor turns are itali-
cized, and are not part of the context in subsequent
turns. For ease of comparison, IDK scores’ range was
linearly shifted and re-scaled to 1-5. These scores were
generated using IDK trained on HUMOD.

Looking at the table, we can also see that, when 462

combined with L1 regularization, performance us- 463

ing “i don’t know” in place of random negative 464

samples is typically slightly lower, but compara- 465

ble. Therefore, this approach seems to be most 466

appropriate when data is scarce. 467

5.2 Additional Experiments: Triplet Loss 468

An intuitive limitation of using “i don’t know” as 469

a negative example with binary-cross-entropy loss 470

is that this encourages the model to always map 471

“i don’t know” to exactly zero. However, the rele- 472

vance of “i don’t know” evidently varies by context. 473

Clearly, it is a far less relevant response to “I was in- 474
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HUMOD USR-TC P-DD
Data L1 IDK S P S P S P
H X X *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01)
H X *0.42 (0.06) *0.42 (0.05) *0.24 (0.00) *0.25 (0.00) *0.29 (0.06) *0.32 (0.03)
H X *0.61 (0.00) *0.61 (0.00) 0.12 (0.00) *0.21 (0.01) *0.55 (0.00) *0.52 (0.01)
H *0.60 (0.00) *0.61 (0.00) 0.18 (0.00) *0.26 (0.01) *0.54 (0.00) *0.50 (0.01)
TC-S X X *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01)
TC-S X *0.36 (0.04) *0.34 (0.05) 0.17 (0.01) 0.11 (0.01) *0.34 (0.03) *0.32 (0.04)
TC-S X *0.59 (0.01) *0.54 (0.03) �0.18 (0.04) *0.27 (0.02) *0.52 (0.03) *0.43 (0.05)
TC-S *0.35 (0.07) *0.41 (0.01) �0.13 (0.10) *0.21 (0.03) �0.23 (0.10) �0.27 (0.11)

Table 4: Test correlation of various ablations of the proposed metric. The L1 column signifies whether L1 regular-
ization is used (with λ = 1), and the IDK column indicates whether the negative samples are “i don’t know”, or
a random shuffle of 3750 other human responses. Note that L1 regularization is beneficial when training on TC-S
data (particularly if generalization to other domains is required).

terrupted all week and couldn’t get anything done,475

it was terrible!” than it is to “what is the key to476

artificial general intelligence?” Motivated by this477

intuition, we experimented with a modified triplet478

loss:479

ft(c, r) = max
(
y(c, r)− y(c, r′) +m, 0

)
L(c, r) = − log (1 +m− ft(c, r))

Intuitively, a triplet loss would allow for the rele-480

vance of “i don’t know” to shift, without impacting481

the loss as long as the ground-truth responses con-482

tinue to score sufficiently higher. Note that the loss483

is modified to combat gradient saturation due to the484

sigmoid non-linearity. However, the results (see485

Table 5) suggest equivalence, at best. Often, this486

loss performs equivalently to binary cross-entropy487

(BCE) but it can also produce degenerate solutions488

(note the high variance when training on TC data).489

Furthermore, it does not appear to produce superior490

correlations.491

For this reason, we believe that, although adapt-492

ing triplet loss for next-utterance prediction in place493

of binary cross-entropy could be made to work, it494

does not appear to provide any advantages. If vali-495

dation data is available, it can be used to confirm496

whether the model has reached a degenerate solu-497

tion, and thus this loss could be used interchange-498

ably with BCE. However, there does not appear to499

be any advantage in doing so.500

6 Related Work501

In addition to the prior metrics already discussed,502

the area of dialogue relevance is both motivated503

by, and jointly developed with, the problem of504

automatic dialogue evaluation. As relevance is a505

major component of good dialogue, developments506

flow from one problem to the other, and vice versa.507

The NUP-BERT relevance metric is very similar 508

to BERT-RUBER (Ghazarian et al., 2019); both 509

train a small MLP to perform the next-utterance- 510

prediction task based on aggregated BERT features. 511

Both of these share a heritage with earlier attempts 512

to evaluate dialogue using self-supervised meth- 513

ods, such as adversarial approaches to dialogue 514

evaluation that train a classifier to distinguish hu- 515

man from generated samples (Kannan and Vinyals, 516

2017). Another example of shared development 517

is the use of word-overlap metrics such as BLEU 518

(Papineni et al., 2002) and ROUGE (Lin, 2004) 519

that have been imported wholesale into both dia- 520

logue relevance and overall quality from the fields 521

of machine-translation and summarization, respec- 522

tively. 523

Simultaneously, metrics of dialogue relevance 524

have been motivated by dialogue evaluation. There 525

is a long history of evaluating dialogue models on 526

various aspects of the overall quality; Finch and 527

Choi (2020) performed a meta-analysis of prior 528

work, and proposed dimensions of: grammaticality, 529

relevance, informativeness, emotional understand- 530

ing, engagingness, consistency, proactivity, and 531

satisfaction. New approaches to dialogue evalua- 532

tion have emerged from this body of work, seek- 533

ing to aggregate individual measures of various 534

dimensions of dialogue, often including relevance 535

(Mehri and Eskenazi, 2020; Phy et al., 2020; Berlot- 536

Attwell and Rudzicz, 2021). 537

Another connection between these tasks is that 538

they share common problems such as the diver- 539

sity of valid responses. Furthermore, our findings 540

that existing relevance metrics generalize poorly to 541

new domains is consistent with previous findings 542

in dialogue evaluation. Prior trained automatic di- 543

alogue evaluation metrics such as ADEM (Lowe 544

et al., 2017) have been found to generalize poorly 545
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HUMOD USR-TC P-DD
Data L1 IDK S P S P S P
H X X *0.59 (0.01) *0.55 (0.02) 0.17 (0.01) *0.28 (0.01) *0.54 (0.03) *0.44 (0.02)
H X *0.15 (0.05) *0.19 (0.06) �0.19 (0.01) *0.25 (0.02) 0.10 (0.04) �0.17 (0.05)
H X *0.45 (0.24) *0.42 (0.21) 0.14 (0.04) �0.23 (0.10) �0.39 (0.21) *0.34 (0.14)
H *0.61 (0.00) *0.60 (0.01) 0.17 (0.00) *0.23 (0.01) *0.55 (0.01) *0.53 (0.01)
TC-S X X *0.32 (0.44) *0.25 (0.55) 0.12 (0.06) �0.10 (0.24) *0.24 (0.47) *0.21 (0.46)
TC-S X *0.27 (0.11) *0.26 (0.10) 0.16 (0.02) 0.14 (0.03) �0.22 (0.12) �0.22 (0.09)
TC-S X *-0.20 (0.69) *-0.20 (0.65) -0.03 (0.17) �-0.05 (0.29) *-0.18 (0.62) *-0.19 (0.54)
TC-S �0.18 (0.20) *0.18 (0.06) 0.04 (0.07) 0.09 (0.17) 0.10 (0.07) 0.07 (0.06)

Table 5: Repeat of ablation experiments, however using modified triplet loss (m = 0.4) in place of binary cross
entropy. Contrary to our intuition, we do not find any improvement in performance. Comparing against Table 4, we
find either equivalent or degraded performance, with an additional tendency to converge to a degenerate solution
(e.g., see high variances in TC-S with L1 and IDK).

to other domains, or even datasets (Lowe, 2019).546

Our work suggests that this challenge extends to547

the subproblem of dialogue relevance as well.548

7 Discussion549

Our experiments demonstrate that several pub-550

lished measures of dialogue relevance have poor, or551

even negative, correlation when evaluated on new552

datasets of dialogue relevance, suggesting overfit-553

ting to either model or domain. As such, it is clear554

that further research into new measures of dialogue555

relevance is required, and that great care must be556

taken in their evaluation to compare against a num-557

ber of different models in a number of domains.558

Furthermore, it is also clear that for the current559

practitioner who requires a measure of relevance,560

there are no guarantees that current methods will561

perform well on a given domain. As such, it ap-562

pears to be wise to collect a small validation dataset563

of human-annotated relevance data for use in se-564

lecting a relevance metric. If good correlation is565

not imperative, then a NUP-based approach such566

as our outlined metric appears to be the best option567

for achieving acceptable correlation, even if not568

trained on the same domain.569

When training data is scarce, our results suggest570

that the use of strong regularization allows for the571

use of a single negative example, “i don’t know”,572

in the place of randomly sampled negative samples.573

Additionally, our results appear to suggest that the574

performance of metrics based on NUP-BERT is575

fairly agnostic to the domain of the training data.576

As such, training data can be used from a different577

dialogue domain in place of the domain of interest.578

Having said this, it is clear that further research579

into what exactly these metrics are measuring, and580

why they fail to generalize, is clearly merited. As581

an example, although our empiric results suggest582

that use of a single negative example generalizes 583

across domains, there is no compelling theoretical 584

reason why this should be the case. More generally, 585

all the metrics outlined are complex, dependent on 586

large corpora of text, and, due to cost, created with- 587

out access to the target task of relevance. As a re- 588

sult, they are all dependent on either surrogate tasks 589

(i.e., NUP), or unsupervised learning (e.g., Fast- 590

Text embeddings). Consequently, it is especially 591

difficult to conclude what exactly these metrics are 592

measuring. At present, the only strong justification 593

that these metrics are indeed measuring relevance 594

is good correlation with human judgements – and 595

poor generalization across similar domains is not 596

an encouraging result. 597

Although the metric outlined is not appropri- 598

ate for final model evaluation (as it risks unfairly 599

favouring dialogue models based on the same pre- 600

trained BERT, or similar architectures), our aim is 601

that it will prove useful for rapid prototyping and 602

hyperparameter search. Additionally, it is our hope 603

that our findings on the domain sensitivity of exist- 604

ing metrics will spur further research into both the 605

cause of – and solutions to – this problem. 606
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A Scatter Plots778

Figures 1, 2, and 3 illustrate IDK vs human scores779

of relevance, where the IDK training data is HU-780

MOD. A regression line is fitted to highlight the781

trend.782

Figure 1: IDK scores, linearly re-scaled to the range 1-
5, versus human scores of relevance, on the HUMOD
test set.

Figure 2: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the USR-TC
test set.

B Performance on validation data split783

Correlations of the models on the validation set are784

outlined in Table 6 for prior metrics, and in Table 7785

for all ablations and variants of our model.786

Figure 3: IDK scores, linearly re-scaled to the range 1-
5, versus human scores of relevance, on the P-DD test
set.
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HUMOD USR-TC
Prior Metric S P S P
COS-FT 0.08 0.08 *0.27 0.17
COS-MAX-BERT 0.08 0.05 0.18 *0.19
COS-NSP-BERT 0.06 *0.09 *0.23 *0.25
NORM-PROB *0.27 *0.25 *−0.29 *−0.30
NUP-BERT (H) *0.37 (0.01) *0.38 (0.00) *0.38 (0.02) *0.39 (0.01)
NUP-BERT (TC-S) *0.32 (0.01) *0.36 (0.02) *0.38 (0.04) *0.41 (0.04)
NUP-BERT (TC) *0.33 (0.02) *0.37 (0.02) *0.45 (0.07) *0.44 (0.02)

Table 6: Spearman (S) and Pearson (P) correlations of prior metrics with human ratings on the validation splits of
all provided dataset. As NUP-BERT is trained we perform 3 runs, reporing the mean and standard deviation. (*)
denotes p < 0.01 accross all trials. Underline indicates a negative correlation. The inter-rater correlation (average
correlation of one rater versus the average of all other raters) is also reported. NOTE: USR scores are human only
for all excet COS-BERT’s

Name HUMOD Spear HUMOD Pear TC Spear TC Pear
H_IDK_L1 *0.56 (0.01) *0.53 (0.02) *0.45 (0.03) *0.44 (0.02)
H_IDK_bce_L1 *0.57 (0.00) *0.56 (0.00) *0.42 (0.01) *0.41 (0.00)
H_IDK_bce *0.39 (0.05) *0.40 (0.05) *0.36 (0.02) *0.34 (0.00)
H_IDK *0.15 (0.05) *0.19 (0.06) 0.09 (0.05) �0.21 (0.05)
H_Rand3750_L1 *0.42 (0.22) *0.40 (0.20) *0.44 (0.00) *0.45 (0.01)
H_Rand3750_bce_L1 *0.58 (0.00) *0.58 (0.00) *0.45 (0.00) *0.46 (0.00)
H_Rand3750_bce *0.58 (0.00) *0.57 (0.01) *0.46 (0.00) *0.43 (0.02)
H_Rand3750 *0.58 (0.00) *0.58 (0.00) *0.46 (0.00) *0.45 (0.02)
TC-S_IDK_L1 *0.29 (0.43) *0.23 (0.53) *0.39 (0.07) *0.41 (0.07)
TC-S_IDK_bce_L1 *0.57 (0.00) *0.56 (0.00) *0.43 (0.00) *0.40 (0.00)
TC-S_IDK_bce *0.35 (0.04) *0.33 (0.05) *0.40 (0.01) *0.31 (0.01)
TC-S_IDK *0.25 (0.10) *0.24 (0.10) *0.34 (0.05) *0.36 (0.03)
TC-S_Rand3750_L1 *-0.19 (0.67) *-0.20 (0.63) *-0.13 (0.52) *-0.14 (0.50)
TC-S_Rand3750_bce_L1 *0.56 (0.01) *0.52 (0.03) *0.44 (0.03) *0.40 (0.02)
TC-S_Rand3750_bce *0.31 (0.05) *0.36 (0.03) �0.16 (0.29) �0.18 (0.26)
TC-S_Rand3750 �0.15 (0.17) *0.11 (0.02) �-0.14 (0.24) �-0.06 (0.27)

Table 7: Validation correlation of all of tested variants and ablations of our model. H vs. TC-S indicates training
set (HUMOD or subset of TopicalChat respectively). IDK vs. Rand3750 indicates whether negative examples
where “i don’t know” or random. If bce is present, then binary cross entropy was used as the loss, otherwise our
modified triplet loss is used. If L1 is present, then L1 regulaization with λ = 1 is used, otherwise no regularization
is used. Again, standard deviation over three trials is reported in parentheses, and ‘*’ is used to indicate that all
trials were significant at p < 0.01. ‘�’ indicates at least on trial was significantly different from zero at p < 0.01
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