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Abstract

In this work, we evaluate various existing di-
alogue relevance metrics, find strong depen-
dencies on the dataset, often with poor cor-
relation with human scores of relevance, and
propose modifications to reduce data require-
ments while improving correlation. With these
changes, our metric achieves a new state-of-
the-art on the HUMOD dataset (Merdivan
et al., 2020). We achieve this without fine-
tuning, using only 3750 unannotated human
dialogues and a single negative example. De-
spite these limitations, we demonstrate com-
petitive performance on three datasets from
different domains. Our code including our
metric and data processing is open sourced '.

1 Introduction

The automatic evaluation of generative dialogue
systems remains an important open problem, with
potential applications from tourism (Simsek and
Fensel, 2018) to medicine (Fazzinga et al., 2021).
In recent years, there has been increased focus
on interpretable approaches (Deriu et al., 2021;
Chen et al., 2021) often through combining vari-
ous sub-metrics, each for a specific aspect of dia-
logue (Berlot-Attwell and Rudzicz, 2021; Phy et al.,
2020; Mehri and Eskenazi, 2020). One of these
key aspects is “relevance” or “dialogue coherence”,
commonly defined as whether “[r]esponses are on-
topic with the immediate dialogue history” (Finch
and Choi, 2020).

These interpretable approaches have motivated
measures of dialogue relevance that are not reliant
on expensive human annotations. Such measures
have appeared in many recent papers on dialogue
evaluation, including USR (Mehri and Eskenazi,
2020), USL-H (Phy et al., 2020), and others (Pang
et al., 2020; Merdivan et al., 2020). Additionally,

!See Supplemental Material. A Github repository will be
made available upon publication.

dialogue relevance has been used directly in train-
ing dialogue models (Xu et al., 2018).

Despite this work, comparison between these ap-
proaches has been limited. Aggravating this prob-
lem is that authors often collect human annotations
on their own datasets with varying amounts and
types of non-human responses and, as a result, com-
paring between approaches has been difficult, if not
impossible. We address this problem by evaluating
and comparing three prior approaches on three pub-
licly available datasets of dialogue annotated with
human ratings of relevance. We find poor correla-
tion with human ratings in various methods, with
high sensitivity to dataset.

Based on our observations, we propose a sim-
ple metric of logistic regression trained on BERT
features (Devlin et al., 2019), using “I don’t know.”
as the only negative example. With this metric,
described below, we achieve state-of-the-art cor-
relation on the HUMOD dataset (Merdivan et al.,
2020). We make our code, data processing, and em-
pirical setup publicly available to encourage more
comparable results in future research.

The primary contributions of this paper are: (i)
empiric evidence that current dialogue relevance
metrics for English are sensitive to dataset, and
often have poor correlation with human ratings,
(i1) a simple relevance metric that exhibits good
correlation, and (iii) the counter-intuitive result that
a single negative example can be equally effective
as random negative sampling.

2 Prior metrics

Prior metrics of relevance in dialogue can generally
be divided into more traditional approaches that are
token-based, and more current approaches based on
large pretrained models. These metrics are given
the context (i.e., the two-person conversation up
to a given point in time), as well as a response
(i.e., the next speaker’s response, also known as the
‘next turn’ in the conversation). From these, they



produce a measure of the response’s relevance to
the context. Typically, the ground-truth response
(also known as the ‘gold response’) is not assumed
to be available.

2.1 n-gram approaches

There have been attempts to use metrics based on
n-grams from machine-translation and summariza-
tion, such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005) in dialogue. A significant disadvantage of
these approaches is that they rely on access to the
ground-truth response, that may not be available
(e.g., if the model is being evaluated with self-play).
Furthermore, it has been long established that these
approaches do not work for measuring dialogue
quality (Liu et al., 2016) — this is widely hypoth-
esized to be because a single context can have a
wide variety of valid responses. Recent work ap-
plied these same methods to dialogue relevance,
and found that the correlation with human scores
was not significantly different than zero (Merdivan
et al., 2020).

2.2 Average-Embedding cosine similarity

Xu et al. (2018) proposed to measure the cosine
similarity of a vector representation of the context,
and the response. Specifically, the context and re-
sponse are represented via an aggregate (typically
an average) of the uncontextualized word embed-
dings. This approach can be modified to exploit
language models by instead using contextualized
word embeddings.

2.3 Fine-tuned embedding model for Next
Utterance Prediction (NUP)

This family of approaches combines a word em-
bedding model (typically max- or average-pooled
BERT word embeddings) with a simple 1-3 layer
MLP, trained for next utterance prediction (typ-
ically using negative sampling) (Mehri and Es-
kenazi, 2020; Phy et al., 2020). The embedding
model is then fine-tuned to the domain of interest.
In some variants, the model is provided with infor-
mation in addition to the context and response; e.g.,
Mehri and Eskenazi (2020) measured relevance on
annotated Topical-Chat data (Gopalakrishnan et al.,
2019) by appending the topic string to the context.
This general architecture and training paradigm
have also been directly used as a metric of over-
all dialogue quality (Ghazarian et al., 2019). In

this paper, we focus on the specific implementa-
tion by Phy et al. (2020). They use max-pooled
BERT embeddings that are passed into a single-
layer MLP followed by softmax with two classes.
Binary cross-entropy loss and random sampling of
negative examples is used at train time.

Note that, for methods that are fine-tuned or oth-
erwise require training, it will often be the case
that annotated relevance data is not available on the
domain of interest. As a result, the model perfor-
mance (i.e., correlation with human annotations)
cannot be measured on a validation set, and some
other means must be used to determine when train-
ing must stop (e.g., loss on the surrogate task, or
halting after a certain number of epochs). It is
therefore important that either the surrogate loss
correlates well with the model performance, or the
true validation curves of these methods be relatively
smooth and monotone so as to reduce the risk of
halting training on a model with poor performance.

Another concern with using trained metrics to
measure trained dialogue systems is that they may
both learn the same patterns in the training data.
An extreme example would be a dialogue model
that learns only to reproduce responses from the
training data verbatim, and a relevance metric that
learns to only accept verbatim responses from the
training data. We believe that this risk can be re-
duced by training the metric on separate data from
the model (possibly from a different domain). How-
ever, unless new training examples can be collected
easily, then this approach is only practical if the
metric can be trained with a relatively small amount
of data and therefore does not compete with the di-
alogue model for training examples.

2.4 Normalized conditional probability

Pang et al. (2020) also exploited pretrained mod-
els, however they instead relied on a generative
language model (specifically GPT-2). Their pro-
posed metric is the conditional log-probability of
the response given the context, normalized to the
range [0, 1]. Specifically, for a context ¢ with can-
didate response r, their proposed relevance score
is defined as:

max(cseh, ﬁ log P(r|q)) — cstn

clalr) = - —

, where |r| is the number of tokens in the response,
P(r|q) is the conditional probability of the re-
sponse given the context under the language model,



and ¢y, is the 51 percentile of the distribution of

ﬁ log P(r | q) over the examples being evaluated.

3 Datasets used for analysis

A literature review reveals that many of these meth-
ods have never been evaluated on the same datasets.
As such, it is unclear both how these approaches
compare, and how well (if at all) they generalize
to new data. For this reason, we consider three
publicly available English datasets of both human
and synthetic dialogue with human annotations of
relevance.

All datasets are annotated with Likert ratings of
relevance from various reviewers; following Mer-
divan et al. (2020), we average these ratings over
all reviewers. Due to variations in data collection
procedures, as well as anchoring effects when rat-
ing dialogue (Li et al., 2019), individual Likert
ratings from different datasets may not be directly
comparable. For this reason, we do not merge the
datasets and instead keep them separate. This has
the additional benefit of allowing us to observe how
methods generalize across datasets.

3.1 HUMOD Dataset

The HUMOD dataset (Merdivan et al., 2020) is
an annotated subset of the Cornell movie dialogue
dataset (Danescu-Niculescu-Mizil and Lee, 2011).
The Cornell dataset consists of 220, 579 conversa-
tions from 617 films. The HUMOD dataset is a
subset of 4750 contexts, each consisting of at least
two and at most seven turns. Every context is paired
with both the original human response, and a ran-
domly sampled human response. Each response is
annotated with crowd-sourced ratings of relevance
from 1-5. The authors measured inter-annotator
agreement via Cohen’s kappa score (Cohen, 1968),
and it was found to be 0.86 between the closest rat-
ings, and 0.42 between randomly selected ratings.
Following the authors, we split the dataset into a
training set consisting of the first 3750 contexts, a
validation set of the next 500 contexts, and a test-
set of the remaining 500 contexts. As it is unclear
how the HUMOD dataset was subsampled from
the Cornell movie dialogue dataset, we do not use
the Cornell movie dialogue dataset as training data
for any of our methods.

3.2 USR Topical-Chat Dataset (USR-TC)

The USR-TC dataset is a subset of the Topical-
Chat (TC) dialogue dataset (Gopalakrishnan et al.,

2019) created by Mehri and Eskenazi (2020). The
Topical-Chat dataset consists of approximately
11, 000 conversations between Amazon Mechani-
cal Turk workers, each grounding their conversa-
tion in a provided reading set. The USR-TC dataset
consists of 60 contexts taken from the TC frequent
test set, each consisting of 1-19 turns. Every con-
text is paired with six responses: the original hu-
man response, a newly created human response,
and four samples taken from a Transformer dialog
model (Vaswani et al., 2017). Each sample fol-
lows a different decoding strategy, namely: argmax
sampling, and nucleus sampling (Holtzman et al.,
2020) at the rates p = 0.3,0.5, 0.7, respectively.
Each response is annotated with a human 1-3 score
of relevance, produced by one of six dialogue re-
searchers. The authors reported an inter-annotator
agreement of 0.56 (Spearman’s correlation). We
divide the dataset evenly into a validation and test
set, each containing 30 contexts. We use the TC
train set as the training set.

3.3 Pang et al. (2020) Annotated
DailyDialogue Dataset (P-DD)

The P-DD dataset (Pang et al., 2020) is a subset of
the DailyDialogue (DD) dataset (Li et al., 2017).
The DailyDialogue dataset consists of 13,118 con-
versations scraped from various websites, specifi-
cally digital spaces where English language learn-
ers could practice English conversation. The P-DD
dataset contains 200 contexts, each consisting of
a single turn. Each context is paired with a single
synthetic response, generated by a 2-layer LSTM
(Bahdanau et al., 2015). Responses are sampled
using top-K sampling for k£ € {1,10,100}; note
that k& varies by context. Each response is anno-
tated with ten crowdsourced 1-5 ratings of rele-
vance. The authors reported that inter-annotator
Spearman’s correlation varied between 0.57 and
0.87. Due to the very small size of the dataset (only
200 dialogues in total), and the lack of information
on how the contexts were sampled, we choose to
use this dataset exclusively for testing.

4 Evaluating Prior Metrics

For each of the aforementioned datasets, we evalu-
ate:

* COS-FT: an average embedding cosine sim-
ilarity. Specifically, we use the implementa-
tion” provided by Cséky et al. (2019). This

https://github.com/ricsinaruto/
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HUMOD USR-TC P-DD
Prior Metric S P S P S P
COS-FT 0.09 0.10 *0.26 *0.24 —0.10 —0.11
COS-MAX-BERT *0.13 *0.10 *0.20 0.14 0.03 0.02
COS-NSP-BERT 0.08 0.06 0.08 0.09 *0.30 *0.23
NORM-PROB *0.19 *0.16 *—0.24 *—0.26 *0.65 *0.59
NUP-BERT (H) *0.33 (0.02)  *0.37 (0.02) 0.10 (0.02)  *0.22 (0.01) | *0.62 (0.03)  *0.54 (0.02)
NUP-BERT (TC-S) | *0.29 (0.02) *0.35(0.03) | 10.17 (0.03) 10.20 (0.04) | *0.58 (0.05) *0.56 (0.04)
NUP-BERT (TC) *0.30 (0.01)  *0.38 (0.00) 0.16 (0.02)  *0.21(0.02) | *0.62 (0.04) *0.58 (0.03)

Table 1: Spearman (S) and Pearson (P) correlations of baseline models with average human ratings on the test sets
(correlations on the validation set can be found in the Appendix, Table 6). Models with a trained or fitted component
(i.e., NUP-BERT variants) are averaged over three runs, with the standard deviation reported in brackets. They also
have their training data specified in brackets, (H) signifies HUMOD, (TC-S) signifies a subset of TC containing
3750 dialogues (same size as the HUMOD train set), and (TC) signifies the full Topical Chat training set. A
correlation is marked with “*’ if all trials were significant at the p < 0.01 level. Otherwise, a correlation is marked
with ‘1’ if at least one trial was significant at the p < 0.01 level. Note that the COS-FT and NORM-PROB
baselines attain negative correlation with human scores on the P-DD and USR-TC datasets respectively.

HUMOD USR-TC P-DD
Metric S P S P S P
NUP-BERT (H) *0.33 (0.02)  *0.37 (0.02) 0.10 (0.02)  *0.22 (0.01) | *0.62 (0.03) *0.54 (0.02)
NUP-BERT (TC-S) | *0.29 (0.02) *0.35(0.03) | ¥0.17 (0.03) 10.20 (0.04) | *0.58 (0.05) *0.56 (0.04)
NUP-BERT (TC) *0.30 (0.01)  *0.38 (0.00) 0.16 (0.02)  *0.21(0.02) | *0.62 (0.04) *0.58 (0.03)
IDK (H) *(.58 (0.00)  *0.58 (0.00) 0.18 (0.00)  *0.24 (0.00) | *0.53 (0.00) *0.48 (0.01)
IDK (TC-S) *(.58 (0.00)  *0.58 (0.00) 0.18 (0.00)  *0.22 (0.00) | *0.54 (0.01) *0.49 (0.01)

Table 2: Comparison of our proposed metric against the NUP-BERT baseline on the test set (corresponding corre-
lations on the validation set can be found in Table 7). Note the strong improvement on HUMOD and equivalent,
or slightly improved performance on USR-TC, at the cost of performance loss on P-DD.

implementation uses average fastText 3 em-
beddings.

* COS-MAX-BERT: another cosine similar-
ity. For better comparison with BERT-based
approaches, and inspired by BERT-RUBER
(Ghazarian et al., 2019), we instead use max-
pooled BERT contextualized word embed-
dings.

* COS-NSP-BERT: another cosine similarity
embedding modified to use BERT, specifically
altered to use the pretrained features extracted
from the [CLS] token for the pretrained next-
sentence-prediction head.

e NUP-BERT: a fine-tuned BERT next-
utterance prediction approach. Specifically,
we use the NUP score implementation*
provided by Phy et al. (2020). We experiment
with fine-tuning BERT to the HUMOD test
set (3750 dialogues), the full TC test set,
and TC-S (a subset of the TC training set
containing only 3750 dialogues).

dialog-eval
*https://fasttext.cc/
“https://github.com/vitouphy/usl_
dialogue_metric

* NORM-PROB: a GPT-2 based normalized
conditional-probability approach. Specifi-
cally, we use the implementation® provided by
Pang et al. (2020). Note that the P-DD dataset
was released in the same paper.

In all cases, we use hugging-face
bert-base-uncased as the pretrained
BERT model. Only NUP-BERT was fine-tuned.
To prevent an unfair fitting to any specific dialogue
model, and to better reflect the evaluation of
a new dialogue model, only human responses
were used at train time. All hyperparameters
were left at their recommended values. Note that
test-set performance is averaged over 3 runs for
NUP-BERT.

Also note that n-gram approaches were not eval-
vated. This is in part due to previous evidence
suggesting no correlation (Merdivan et al., 2020),
and, in part, as these methods require the gold-truth
reference for comparison. As a result, these meth-
ods cannot be used to fairly evaluate the gold-truth
response. Since our annotated datasets are rela-
tively small and contain limited amounts of human

Shttps://github.com/alexzhou907/
dialogue_evaluation
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generated responses, we decided that discarding the
annotated ground-truth responses would harm our
ability to evaluate the other metrics. Furthermore,
the P-DD dataset does not include ground-truth hu-
man responses, thereby making evaluation on this
dataset impossible.

4.1 Analysis

Table 1 makes it immediately clear that the nor-
malized probability (NORM-PROB) and cosine
similarity (COS-FT, COS-MAX-BERT, COS-NSP-
BERT) approaches do not generalize well across
datasets. Although NORM-PROB works very well
on the P-DD dataset, it has weak performance on
HUMOD and has, in fact, a significant negative cor-
relation on USR-TC. As this metric was developed
for the P-DD dataset, and the P-DD dataset consists
solely of synthetic responses from an LSTM model,
we believe that this approach is over-fitted to mea-
suring relevance on this LSTM model. Similarly,
although the cosine-similarity approach using Fast-
Text word embeddings has the best performance
on the USR-TC dataset, it performs poorly on HU-
MOD, and has negative correlation on P-DD. As
such, it is clear that, while both cosine-similarity
and normalized probability approaches can perform
well, they have serious limitations. They are very
sensitive to the domain and models under evalua-
tion, and are capable of becoming negatively corre-
lated with human ratings under suboptimal condi-
tions.

The final baseline, NUP-BERT, appears to have
the best overall performance, outperforming each
of the other baselines on at least 2 of the datasets.
Despite this, we can see that performance on HU-
MOD and USR-TC is still fairly weak. We can also
observe that although fine-tuning on HUMOD data
results in lower Spearman’s correlation on USR-
TC, the general trend is that performance tends to
be comparable regardless of training data. This
appears to be true both with respect to domain (H
vs TC) and amount of training data (TC vs TC-S).

Overall, the results of Table 1 are concerning as
they suggest that at least two current approaches
generalize poorly across either dialogue models,
or domains. As a result, research into new dia-
logue relevance metrics is required. Furthermore,
it is clear that the methodology for the evaluation
of dialogue relevance metrics must be updated to
use various dialogue models in various different
domains.

5 IDK: A novel metric for dialogue
relevance

Based on these results, we propose a number of
modifications to the NUP-BERT metric to produce
a novel metric that we call IDK (“I don’t know”).
The overall architecture is mostly unchanged, how-
ever the training procedure and the exact features
used are altered.

First, based on the observation that the amount of
training data has little impact, we decide to freeze
BERT features entirely and do not fine-tune to the
domain. Instead, we focus on the next-utterance-
prediction task. More specifically, whereas the
NUP-BERT baseline uses max-pooled BERT word
embeddings, we instead use the pre-trained next
sentence prediction features — from the hugging-
face v2.11.0 documentation ©: “(classification to-
ken) further processed by a Linear layer and a Tanh
activation function. The Linear layer weights are
trained from the next sentence prediction (classifi-
cation) objective during pre-training”.

Second, to improve generalization and reduce
variation in training (particularly important as the
practitioner likely does not have access to anno-
tated relevance data), and operating on the assump-
tion that relevance is captured by a few key dimen-
sions of the NUP features, we add L1 regularization
to our regression weights (A = 1).

Third, in place of random sampling we use a
fixed negative sample, “i don’t know", at all time
steps. This allows us to train the model on less data,
as a corpus from which to sample negative samples
is no longer required.

Additionally, we perform a minor simplification
of the model to reduce the number of weights, using
logistic regression in place of 2-class softmax. We
train for 2 epochs using binary cross-entropy loss —
the same as the NUP-BERT baseline. We use the
Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of 0.001.

Table 2 reports the correlation between the met-
ric’s responses and the average human rating. We
achieve a Pearson’s correlation on HUMOD of 0.58
which, to our knowledge, represents a new state-of-
the-art performance for reference-less metrics on
HUMOD. This performance surpasses the previous
SOTA (0.138 with HAN-R(CE) (Merdivan et al.,
2020)), as well as our provided baselines. This
performance is also very close to the supervised

®https://huggingface.co/transformers/
v2.11.0/model_doc/bert.html
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SOTA of 0.602 using a supervised fine-tuned BERT
model (Merdivan et al., 2020).

We have included some examples of the our met-
ric’s output on the HUMOD dataset in Table 3, and
we have included a scatter plot of IDK vs human
scores in the Appendix, Figures 1-3.

Compared to our baselines, we see that our pro-
posed metric has strong improvement on the HU-
MOD dataset and equivalent or stronger perfor-
mance on USR-TC, at a cost of reduced perfor-
mance on P-DD. As the performance drop on P-DD
is less than the performance gain on HUMOD, and
as HUMOD is human data rather than LSTM data,
we consider this tradeoff to be a net benefit. How-
ever, this reinforces our previous conclusion that
these approaches are highly sensitive to the dataset.
The absolute performance of all metrics studied, in-
cluding our own, vary considerable by dataset. Fur-
thermore, even the relative performance of closely
related metrics such as IDK and NUP-BERT, or
COS-FT and COS-NSP-BERT, varies considerably
between datasets.

It is worth noting that our approach does not
out-perform the cosine and normalized-conditional
probability baselines in all cases — only the major-
ity of cases. As such, when annotated human data
is not available for testing, it would appear that our
approach is the preferred choice.

5.1 Ablation tests

Table 4 outlines correlation when ablating the L1
regularization, or when using randomly sampled
negative examples in place of “i don’t know".
Specifically, we produce negative examples by
shuffling the responses of the next 3750 dialogues
in the dataset.

The clearest observation is that L1 regularization
is critical to good performance when using “i don’t
know" in place of negative samples — otherwise, the
model presumably overfits. Second, we can see that
using “i don’t know" in place of negative samples
has a mixed, but relatively minor effect. Thirdly we
can see that the effect of L1 regularization is quite
positive when training on TC data (regardless of
the negative samples), and mixed but smaller when
training on HUMOD data.

Overall, this suggests that when annotated rele-
vance data is not available, then L1 regularization
may be helpful. Its effect varies by domain, but
appears to have a much stronger positive effect than
a negative effect.

Dialogue Turn Human ‘ IDK ‘
Mommy — - -
Yes, darling. - -
Did you ever make a wish? - -
Oh, lots of times. - -
Did your wishes ever come 5.00 | 4.97
true?

What’s your real name? 1.00 | 3.81
Sometimes. 4.67 | 4.60
From high school Mary? Yeah, 1.00 | 1.13
I saw her about six months ago

at a convention in Las Vegas.

I made a wish today, and it 5| 49
came true just like Edward said

it would.

When I am sure I am among 2.33 | 3.01
friends.

Yes, Albert? - -
John, we’re going huntin’. - -
Who’s goin? - -
We’re all going. - -
Nick’s going? 4.67 | 4.65
1 will keep you safe. We are 2.00 | 1.09
both older.

Nick , Vince , Albert and John. 4.00 | 4.95
A ride? Hell, that’s a good idea. 2.33 | 4.68
Okay, let’s go. Hey, let’s go.

No women? 4.00 | 2.39
1 guess so 3.00 | 2.59

Table 3: Two multi-turn examples from HUMOD test
set. The randomly sampled distractor turns are itali-
cized, and are not part of the context in subsequent
turns. For ease of comparison, IDK scores’ range was
linearly shifted and re-scaled to 1-5. These scores were
generated using IDK trained on HUMOD.

Looking at the table, we can also see that, when
combined with L1 regularization, performance us-
ing “i don’t know” in place of random negative
samples is typically slightly lower, but compara-
ble. Therefore, this approach seems to be most
appropriate when data is scarce.

5.2 Additional Experiments: Triplet Loss

An intuitive limitation of using “i don’t know” as
a negative example with binary-cross-entropy loss
is that this encourages the model to always map
“i don’t know” to exactly zero. However, the rele-
vance of “i don’t know” evidently varies by context.
Clearly, it is a far less relevant response to “I was in-



HUMOD USR-TC P-DD
Data | L1 | IDK S 3 S P S P
H v | v | *0.58(0.00) *0.58 (0.00) | 0.18 (0.00) *0.24 (0.00) | *0.53 (0.00) _*0.48 (0.01)
H v | %042 (0.06)  *0.42 (0.05) | *0.24 (0.00) *0.25 (0.00) | *0.29 (0.06)  *0.32 (0.03)
H v #0.61 (0.00)  *0.61 (0.00) | 0.12(0.00) *0.21 (0.01) | *0.55(0.00) *0.52 (0.01)
H #0.60 (0.00)  *0.61 (0.00) | 0.18(0.00) *0.26 (0.01) | *0.54 (0.00)  *0.50 (0.01)
TCS | v | v | *0.58(0.00) *0.58 (0.00) | 0.18 (0.00) #0.22 (0.00) | 0.54 (0.01) *0.49 (0.01)
TC-S v | %036 (0.04)  *0.34(0.05) | 0.17(0.01)  0.11(0.01) | *0.34 (0.03)  *0.32 (0.04)
TC-S | v #0.59 (0.01)  *0.54 (0.03) | $0.18 (0.04) *0.27 (0.02) | *0.52 (0.03)  *0.43 (0.05)
TC-S ¥0.35 (0.07)  *0.41 (0.01) | $0.13(0.10)  *0.21 (0.03) | $0.23 (0.10)  +0.27 (0.11)

Table 4: Test correlation of various ablations of the proposed metric. The L1 column signifies whether L1 regular-
ization is used (with A = 1), and the IDK column indicates whether the negative samples are “i don’t know”, or
a random shuffle of 3750 other human responses. Note that L1 regularization is beneficial when training on TC-S
data (particularly if generalization to other domains is required).

terrupted all week and couldn’t get anything done,
it was terrible!” than it is to “what is the key to
artificial general intelligence?”” Motivated by this
intuition, we experimented with a modified triplet
loss:

ft(e,r) = max (y(c, r) —y(c, ') +m, 0)
L(e,r) = —log(1+m — fi(e,r))

Intuitively, a triplet loss would allow for the rele-
vance of “i don’t know” to shift, without impacting
the loss as long as the ground-truth responses con-
tinue to score sufficiently higher. Note that the loss
is modified to combat gradient saturation due to the
sigmoid non-linearity. However, the results (see
Table 5) suggest equivalence, at best. Often, this
loss performs equivalently to binary cross-entropy
(BCE) but it can also produce degenerate solutions
(note the high variance when training on TC data).
Furthermore, it does not appear to produce superior
correlations.

For this reason, we believe that, although adapt-
ing triplet loss for next-utterance prediction in place
of binary cross-entropy could be made to work, it
does not appear to provide any advantages. If vali-
dation data is available, it can be used to confirm
whether the model has reached a degenerate solu-
tion, and thus this loss could be used interchange-
ably with BCE. However, there does not appear to
be any advantage in doing so.

6 Related Work

In addition to the prior metrics already discussed,
the area of dialogue relevance is both motivated
by, and jointly developed with, the problem of
automatic dialogue evaluation. As relevance is a
major component of good dialogue, developments
flow from one problem to the other, and vice versa.

The NUP-BERT relevance metric is very similar
to BERT-RUBER (Ghazarian et al., 2019); both
train a small MLP to perform the next-utterance-
prediction task based on aggregated BERT features.
Both of these share a heritage with earlier attempts
to evaluate dialogue using self-supervised meth-
ods, such as adversarial approaches to dialogue
evaluation that train a classifier to distinguish hu-
man from generated samples (Kannan and Vinyals,
2017). Another example of shared development
is the use of word-overlap metrics such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
that have been imported wholesale into both dia-
logue relevance and overall quality from the fields
of machine-translation and summarization, respec-
tively.

Simultaneously, metrics of dialogue relevance
have been motivated by dialogue evaluation. There
is a long history of evaluating dialogue models on
various aspects of the overall quality; Finch and
Choi (2020) performed a meta-analysis of prior
work, and proposed dimensions of: grammaticality,
relevance, informativeness, emotional understand-
ing, engagingness, consistency, proactivity, and
satisfaction. New approaches to dialogue evalua-
tion have emerged from this body of work, seek-
ing to aggregate individual measures of various
dimensions of dialogue, often including relevance
(Mehri and Eskenazi, 2020; Phy et al., 2020; Berlot-
Attwell and Rudzicz, 2021).

Another connection between these tasks is that
they share common problems such as the diver-
sity of valid responses. Furthermore, our findings
that existing relevance metrics generalize poorly to
new domains is consistent with previous findings
in dialogue evaluation. Prior trained automatic di-
alogue evaluation metrics such as ADEM (Lowe
et al., 2017) have been found to generalize poorly



HUMOD USR-TC P-DD
Data | L1 | IDK S 3 S P S 3
H v | v | ®059(0.01) *0.55(0.02) | 0.17(0.01) *0.28 (0.01) | *0.54 (0.03) _ *0.44 (0.02)
H v | *0.15(0.05)  #0.19 (0.06) | $0.19 (0.01)  *0.25(0.02) | 0.10(0.04)  +0.17 (0.05)
H v %045 (0.24)  *0.42(0.21) | 0.14(0.04)  $0.23(0.10) | 10.39(0.21)  *0.34 (0.14)
H #0.61 (0.00)  *0.60 (0.01) | 0.17(0.00)  *0.23(0.01) | *0.55(0.01)  *0.53 (0.01)
TCS | v | v | *0.32(0.44) *0.25(0.55) | 0.12(0.06) 0.10(0.24) | *0.24 (0.47) _ *0.21 (0.46)
TC-S v | *¥0270.11)  *026(0.10) | 0.16(0.02)  0.14(0.03) | 10.22(0.12)  $0.22 (0.09)
TC-S | v £0.20 (0.69)  *-0.20 (0.65) | -0.03 (0.17) $-0.05(0.29) | *-0.18 (0.62)  *-0.19 (0.54)
TC-S $0.18 (0.20)  *0.18 (0.06) | 0.04 (0.07)  0.09(0.17) | 0.10(0.07)  0.07 (0.06)

Table 5: Repeat of ablation experiments, however using modified triplet loss (m = 0.4) in place of binary cross
entropy. Contrary to our intuition, we do not find any improvement in performance. Comparing against Table 4, we
find either equivalent or degraded performance, with an additional tendency to converge to a degenerate solution

(e.g., see high variances in TC-S with L1 and IDK).

to other domains, or even datasets (Lowe, 2019).
Our work suggests that this challenge extends to
the subproblem of dialogue relevance as well.

7 Discussion

Our experiments demonstrate that several pub-
lished measures of dialogue relevance have poor, or
even negative, correlation when evaluated on new
datasets of dialogue relevance, suggesting overfit-
ting to either model or domain. As such, it is clear
that further research into new measures of dialogue
relevance is required, and that great care must be
taken in their evaluation to compare against a num-
ber of different models in a number of domains.
Furthermore, it is also clear that for the current
practitioner who requires a measure of relevance,
there are no guarantees that current methods will
perform well on a given domain. As such, it ap-
pears to be wise to collect a small validation dataset
of human-annotated relevance data for use in se-
lecting a relevance metric. If good correlation is
not imperative, then a NUP-based approach such
as our outlined metric appears to be the best option
for achieving acceptable correlation, even if not
trained on the same domain.

When training data is scarce, our results suggest
that the use of strong regularization allows for the
use of a single negative example, “i don’t know”,
in the place of randomly sampled negative samples.
Additionally, our results appear to suggest that the
performance of metrics based on NUP-BERT is
fairly agnostic to the domain of the training data.
As such, training data can be used from a different
dialogue domain in place of the domain of interest.

Having said this, it is clear that further research
into what exactly these metrics are measuring, and
why they fail to generalize, is clearly merited. As
an example, although our empiric results suggest

that use of a single negative example generalizes
across domains, there is no compelling theoretical
reason why this should be the case. More generally,
all the metrics outlined are complex, dependent on
large corpora of text, and, due to cost, created with-
out access to the target task of relevance. As a re-
sult, they are all dependent on either surrogate tasks
(i.e., NUP), or unsupervised learning (e.g., Fast-
Text embeddings). Consequently, it is especially
difficult to conclude what exactly these metrics are
measuring. At present, the only strong justification
that these metrics are indeed measuring relevance
is good correlation with human judgements — and
poor generalization across similar domains is not
an encouraging result.

Although the metric outlined is not appropri-
ate for final model evaluation (as it risks unfairly
favouring dialogue models based on the same pre-
trained BERT, or similar architectures), our aim is
that it will prove useful for rapid prototyping and
hyperparameter search. Additionally, it is our hope
that our findings on the domain sensitivity of exist-
ing metrics will spur further research into both the
cause of — and solutions to — this problem.
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A Scatter Plots

Figures 1, 2, and 3 illustrate IDK vs human scores
of relevance, where the IDK training data is HU-
MOD. A regression line is fitted to highlight the
trend.

Linearly Rescaled IDK vs Human ratings on the
HUMOD test split
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Figure 1: IDK scores, linearly re-scaled to the range 1-
5, versus human scores of relevance, on the HUMOD
test set.

Linearly Rescaled IDK vs Human ratings on
the USR-TC test split
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Figure 2: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the USR-TC
test set.

B Performance on validation data split

Correlations of the models on the validation set are
outlined in Table 6 for prior metrics, and in Table 7
for all ablations and variants of our model.

Linearly Rescaled IDK vs Human ratings on the
P-DD test split
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Figure 3: IDK scores, linearly re-scaled to the range 1-
5, versus human scores of relevance, on the P-DD test
set.



Table 6: Spearman (S) and Pearson (P) correlations of prior metrics with human ratings on the validation splits of
all provided dataset. As NUP-BERT is trained we perform 3 runs, reporing the mean and standard deviation. (*)
denotes p < 0.01 accross all trials. Underline indicates a negative correlation. The inter-rater correlation (average
correlation of one rater versus the average of all other raters) is also reported. NOTE: USR scores are human only

HUMOD USR-TC
Prior Metric S P S P
COS-FT 0.08 0.08 *0.27 0.17
COS-MAX-BERT 0.08 0.05 0.18 *0.19
COS-NSP-BERT 0.06 *0.09 *0.23 *0.25
NORM-PROB *0.27 *0.25 *—0.29 *—0.30
NUP-BERT (H) *0.37 (0.01) *0.38 (0.00) | *0.38 (0.02) *0.39 (0.01)
NUP-BERT (TC-S) | *0.32 (0.01) *0.36 (0.02) | *0.38 (0.04) *0.41 (0.04)
NUP-BERT (TC) *0.33 (0.02) *0.37 (0.02) | *0.45 (0.07) *0.44 (0.02)

for all excet COS-BERT’s

Name

H_IDK L1

H_IDK bce_L1

H_IDK bce
H_IDK

H_Rand3750_L1
H_Rand3750 bce L1
H_Rand3750_bce

H_Rand3750

TC-S_IDK L1
TC-S_IDK _bce_L1
TC-S_IDK_bce

TC-S_IDK

TC-S_Rand3750_L1
TC-S_Rand3750_bce_L1
TC-S_Rand3750_bce
TC-S_Rand3750

HUMOD Spear

*0.56 (0.01)
*0.57 (0.00)
*0.39 (0.05)
*0.15 (0.05)
*0.42 (0.22)
*0.58 (0.00)
*0.58 (0.00)
*0.58 (0.00)
*0.29 (0.43)
*0.57 (0.00)
*0.35 (0.04)
*0.25 (0.10)

%20.19 (0.67)

*0.56 (0.01)
*0.31 (0.05)

10.15 (0.17)

HUMOD Pear

%0.53 (0.02)
%0.56 (0.00)
%0.40 (0.05)
%0.19 (0.06)
%0.40 (0.20)
%0.58 (0.00)
*0.57 (0.01)
%0.58 (0.00)
%0.23 (0.53)
%0.56 (0.00)
%0.33 (0.05)
%0.24 (0.10)

%.0.20 (0.63)
%0.52 (0.03)
%0.36 (0.03)
*0.11 (0.02)

TC Spear
*0.45 (0.03)
*0.42 (0.01)
*0.36 (0.02)

0.09 (0.05)
*0.44 (0.00)
*0.45 (0.00)
*0.46 (0.00)
*0.46 (0.00)
*0.39 (0.07)
*0.43 (0.00)
*0.40 (0.01)
*0.34 (0.05)

*-0.13 (0.52)
*0.44 (0.03)
10.16 (0.29)
1-0.14 (0.24)

TC Pear

0.4 (0.02)
0.41 (0.00)
*0.34 (0.00)
$0.21 (0.05)
*0.45 (0.01)
%0.46 (0.00)
%0.43 (0.02)
%0.45 (0.02)
0.41 (0.07)
%0.40 (0.00)
+0.31 (0.01)
%0.36 (0.03)

*.0.14 (0.50)
%0.40 (0.02)
$0.18 (0.26)

$-0.06 (0.27)

Table 7: Validation correlation of all of tested variants and ablations of our model. H vs. TC-S indicates training
set (HUMOD or subset of TopicalChat respectively). IDK vs. Rand3750 indicates whether negative examples
where “i don’t know” or random. If bce is present, then binary cross entropy was used as the loss, otherwise our
modified triplet loss is used. If L1 is present, then L1 regulaization with A = 1 is used, otherwise no regularization
is used. Again, standard deviation over three trials is reported in parentheses, and “*’ is used to indicate that all
trials were significant at p < 0.01. ‘1’ indicates at least on trial was significantly different from zero at p < 0.01



