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ABSTRACT

Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed
coverage using any predictive model, under the assumption that the training and
test data are i.i.d.. Recently, it has been shown that adversarial examples are able to
manipulate conformal methods to construct prediction sets with invalid coverage
rates, as the i.i.d. assumption is violated. To address this issue, a recent work,
Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify
the robustness of conformal prediction methods to adversarial noise. However,
RSCP has two major limitations: (i) its robustness guarantee is flawed when used
in practice and (ii) it tends to produce large uncertainty sets. To address these
limitations, we first propose a novel framework called RSCP+ to provide provable
robustness guarantee in evaluation, which fixes the issues in the original RSCP
method. Next, we propose two novel methods, Post-Training Transformation (PTT)
and Robust Conformal Training (RCT), to effectively reduce prediction set size
with little computation overhead. Experimental results in CIFAR10, CIFAR100,
and ImageNet suggest the baseline method only yields trivial predictions including
full label set, while our methods could boost the efficiency by up to 4.36×, 5.46×,
and 16.9× respectively and provide practical robustness guarantee.

1 INTRODUCTION

Conformal prediction (Lei & Wasserman, 2014; Papadopoulos et al., 2002; Vovk et al., 2005) has
been a powerful tool to quantify prediction uncertainties of modern machine learning models. For
classification tasks, given a test input xn+1, it could generate a prediction set C(xn+1) with coverage
guarantee:

P[yn+1 ∈ C(xn+1)] ≥ 1− α, (1)
where yn+1 is the ground truth label and 1 − α is user-specified target coverage. This property is
desirable in safety-critical applications like autonomous vehicles and clinical applications. In general,
it is common to set the coverage probability 1− α to be high, e.g. 90% or 95%, as we would like the
ground truth label to be contained in the prediction set with high probability. It is also desired to have
the smallest possible prediction sets C(xn+1) as they are more informative. In this paper, we use the
term "efficiency" to compare conformal prediction methods: we say a conformal prediction method
is more efficient if the size of the prediction set is smaller.

Despite the power of conformal prediction, recent work (Gendler et al., 2021) showed that conformal
prediction is unfortunately prone to adversarial examples – that is, the coverage guarantee in Eq. (1)
may not hold anymore because adversarial perturbation on test data breaks the i.i.d. assumption and
thus the prediction set constructed by vanilla conformal prediction becomes invalid. To solve this
problem, Gendler et al. (2021) proposes a new technique, named Randomized Smoothed Confor-
mal Prediction (RSCP), which is able to construct new prediction sets Cϵ(x̃n+1) that is robust to
adversarial examples:

P[yn+1 ∈ Cϵ(x̃n+1)] ≥ 1− α, (2)
where x̃n+1 denotes a perturbed example that satisfies ∥x̃n+1 − xn+1∥2 ≤ ϵ and ϵ > 0 is the
perturbation magnitude. The key idea of RSCP is to modify the vanilla conformal prediction
procedure with randomized smoothing (Cohen et al., 2019; Duchi et al., 2012; Salman et al., 2019)
so that the impact of adversarial perturbation could be bounded and compensated.
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Figure 1: An overview of this work: We address two limitations of RSCP (Gendler et al., 2021) by
proposing RSCP+ (Sec. 3) & PTT + RCT (Sec. 4), which enables the first provable and efficient
robust conformal prediction. As we show in the experiments in Sec. 5, our proposed method could
provide useful robust prediction sets information while the baseline failed.

However, RSCP has two major limitations: (1) the robustness guarantee of RSCP is flawed: RSCP
introduces randomized smoothing to provide robustness guarantee. Unfortunately, the derived
guarantee is invalid when Monte Carlo sampling is used for randomized smoothing, which is how
randomized smoothing is implemented in practice (Cohen et al., 2019). Therefore, their robustness
certification is invalid, despite empirically working well. (2) RSCP has low efficiency: The average
size of prediction sets of RSCP is much larger than the vanilla conformal prediction, as shown in our
experiments (Fig. D.1).

In this paper, we will address these two limitations of RSCP to allow efficient and provably robust
conformal prediction by proposing a new theoretical framework RSCP+ in Sec. 3 to guarantee
robustness, along with two new methods (PTT & RCT) in Sec. 4 to effectively decrease the prediction
set size. We summarize our contributions below:

1. We first identify the major issue of RSCP in robustness certification and address this issue
by proposing a new theoretical framework called RSCP+. The main difference between
RSCP+ and RSCP is that our RSCP+ uses the Monte Carlo estimator directly as the base
score for RSCP, and amends the flaw of RSCP with simple modification on the original
pipeline. To our best knowledge, RSCP+ is the first method to provide practical certified
robustness for conformal prediction.

2. We further propose two methods to improve the efficiency of RSCP+: a scalable, training-
free method called PTT and a general robust conformal training framework called RCT.
Empirical results suggest PTT and RCT are necessary for providing guaranteed robust
prediction sets.

3. We conduct extensive experiments on CIFAR10, CIFAR100 and ImageNet with RSCP+,
PTT and RCT. Results show that without our method the baseline only gives trivial pre-
dictions, which are uninformative and useless. In contrast, our methods provide practical
robustness certification and boost the efficiency of the baseline by up to 4.36× on CIFAR10,
5.46× on CIFAR100, and 16.9× on ImageNet.

2 BACKGROUND AND RELATED WORKS

2.1 CONFORMAL PREDICTION

Suppose D = {(xi, yi)}ni=1 is an i.i.d. dataset, where xi ∈ Rp denotes the features of ith sample and
yi ∈ [K] := {1, . . . ,K} denotes its label. Conformal prediction method divides D into two parts: a
training set Dtrain = {(xi, yi)}mi=1 and a calibration set Dcal = D \Dtrain. The training set Dtrain is
utilized to train a classifier function π̂(x) : Rp → [0, 1]K . Given classifier π̂, a non-conformity score
function S(x, y) : Rp × [K] → R is defined for each class y based on classifier’s prediction π̂(x).
Next, the calibration set Dcal is utilized to calculate threshold τ , which is the (1− α)(1 + 1/|Dcal|)
empirical quantile of calibration scores {S(x, y)}(x,y)∈Dcal . Given a test sample xn+1, conformal
prediction construct a prediction set C(xn+1; τ) as:

C(xn+1; τ) = {k ∈ [K] | S(xn+1, k) ≤ τ}, (3)
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where
τ = Q1−α({S(x, y)}(x,y)∈Dcal) (4)

and Qp(Dcal) denote the p(1 + 1/|Dcal|)-th empirical quantile of the calibration scores. In the
remainder of the paper, we may omit the parameter τ and write the prediction set simply as C(x)
when the context is clear. Conformal prediction ensures the coverage guarantee in Eq. (1) by showing
that the score corresponding to the ground truth label is bounded by τ with probability 1 − α, i.e.
P(S(xn+1, yn+1) ≤ τ) ≥ 1− α.

Note that the above conformal prediction pipeline works for any non-conformity score S(x, y),
but the statistical efficiency of conformal prediction is affected by the choice of non-conformity
score. Common non-conformity scores include HPS (Lei et al., 2013; Sadinle et al., 2019) and APS
(Romano et al., 2020):

SHPS(x, y) = 1− π̂y(x), SAPS(x, y) =
∑

y′∈[K]

π̂y′(x)1{π̂y′ (x)>π̂y(x)} + π̂y(x) · u, (5)

where u is a random variable sampled from a uniform distribution over [0, 1].

2.2 RANDOMIZED SMOOTHED CONFORMAL PREDICTION

To ensure the coverage guarantee still holds under adversarial perturbation, Gendler et al. (2021)
proposed Randomized Smoothed Conformal Prediction (RSCP), which defines a new non-conformity
score S̃ that can construct new prediction sets that are robust against adversarial attacks. The key idea
of RSCP is to consider the worst-case scenario that S̃ may be affected by adversarial perturbations:

S̃(x̃n+1, y) ≤ S̃(xn+1, y) +Mϵ,∀y ∈ [K], (6)

where xn+1 denotes the clean example, x̃n+1 denotes the perturbed example that satisfies ∥x̃n+1 −
xn+1∥2 ≤ ϵ and Mϵ is a non-negative constant. Eq. (6) indicates that the new non-conformity score
S̃ on adversarial examples may be inflated, but fortunately the inflation can be bounded. Therefore,
to ensure the guarantee in Eq. (2) is satisfied, the threshold τ in the new prediction set needs to be
adjusted to τadj defined as τadj = τ +Mϵ to compensate for potential adversarial perturbations, and
then Cϵ can be constructed as follows:

Cϵ(x; τadj) = {k ∈ [K] | S̃(x, k) ≤ τadj}, (7)

where x is any test example. From Eq. (6), the validity of Cϵ could be verified by following derivation:

yn+1 ∈ C(xn+1)⇒ S̃(xn+1, yn+1) ≤ τ ⇒ S̃(x̃n+1, yn+1) ≤ τadj ⇒ yn+1 ∈ Cϵ(x̃n+1). (8)

Thus, the coverage guarantee in Eq. (2) is satisfied. To obtain a valid Mϵ, Gendler et al. (2021)
proposed to leverage randomized smoothing (Cohen et al., 2019; Duchi et al., 2012) to construct S̃.
Specifically, define

S̃(x, y) = Φ−1 [SRS(x, y)] and SRS(x, y) = Eδ∼N (0,σ2Ip)S(x+ δ, y), (9)

where δ is a Gaussian random variable, σ is the standard deviation of δ which controls the strength of
smoothing, and Φ−1(·) is Gaussian inverse cdf. We call SRS(x, y) the randomized smoothed score
from a base score S(x, y), as SRS(x, y) is the smoothed version of S(x, y) using Gaussian noise on
the input x. Since Φ−1 is defined on the interval [0, 1], the base score S must satisfy S(x, y) ∈ [0, 1].
One nice property from randomized smoothing (Cohen et al., 2019) is that it guarantees that S̃ is
Lipschitz continuous with Lipschitz constant 1

σ , i.e. |S̃(x̃n+1,yn+1)−S̃(xn+1,yn+1)|
∥x̃n+1−xn+1∥2

≤ 1
σ . Hence, we

have
∥x̃n+1 − xn+1∥2 ≤ ϵ =⇒ S̃(x̃n+1, yn+1) ≤ S̃(xn+1, yn+1) +

ϵ

σ
, (10)

which is exactly Eq. (6) with Mϵ = ϵ
σ . Therefore, when using S̃ in conformal prediction, the

threshold should be adjusted by:

τadj = τ +
ϵ

σ
. (11)
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3 CHALLENGE 1: ROBUSTNESS GUARANTEE

In this section, we point out a flaw in the robustness certification of RSCP (Gendler et al., 2021)
and propose a new scheme called RSCP+ to provide provable robustness guarantee in practice. As
we discuss in Sec. 2.2, the key idea of RSCP is introducing a new conformity score S̃ that satisfies
Eq. (10), which gives an upper bound to the impact of adversarial perturbation. However, in practice,
S̃ is intractable due to expectation calculation in SRS. A common practice in randomized smoothing
literature is:

• Step 1: Approximate SRS by Monte Carlo estimator:

ŜRS(x, y) =
1

NMC

NMC∑
i=1

S(x+ δi, y), δi ∼ N (0, σ2Ip). (12)

• Step 2: Bound the estimation error via some concentration inequality.

In RSCP, however, Step 2 is missing, because bounding the error simultaneously on the calibration
set is difficult, as discussed in Appendix A.1. We argue that the missing error bound makes the
robustness guarantee of RSCP invalid in practice.

To address this issue, we propose an elegant and effective approach, RSCP+, to fill in the gap and
provide the guarantee. In particular, the intrinsic difficulty in bounding Monte Carlo error inspires
us to avoid the estimation. Thus, in RSCP+ we propose a new approach to incorporate the Monte
Carlo estimator ŜRS directly as the (non-)conformity score, which could be directly calculated, unlike
SRS. Here, one question may arise is: Can a randomized score (e.g. ŜRS) be applied in conformal
prediction and maintain the coverage guarantee? The answer is yes: as we discuss in Appendix A.2,
many classical (non-)conformity scores (e.g. APS (Romano et al., 2020)) are randomized scores,
and the proofs for them are similar to the deterministic scores, as long as the i.i.d. property between
calibration and test scores is preserved. Therefore, our ŜRS is a legit (non-)conformity score.

The challenge of using ŜRS is to derive an inequality similar to Eq. (10), i.e. connect ŜRS(x̃n+1, y)

and ŜRS(xn+1, y) (the grey dotted line in Fig. 2), so that we can bound the impact from adversarial
noises and compensate for it accordingly. To achieve this, we use SRS as a bridge (as shown in Fig. 2),
and present the result in Theorem 1.

Figure 2: Diagram illustrating our RSCP+. (Left) (1) The dotted line shows our target: bound
Monte-Carlo estimator score ŜRS under perturbation; (2) The orange arrow denotes the bound of the
randomized smoothed score SRS under perturbation, given by (Gendler et al., 2021); (3) The grey
arrows denote Hoeffding’s inequality connecting randomized smoothed score SRS and Monte Carlo
estimator score ŜRS. The target (1) could be derived by (2) + (3). (Right) RSCP+ algorithm.

Theorem 1. Let (xn+1, yn+1) be the clean test sample and x̃n+1 be perturbed input data that
satisfies ∥x̃n+1 − xn+1∥2 ≤ ϵ. Then, with probability 1− 2β:

ŜRS(x̃n+1, yn+1)− bHoef(β) ≤ Φ
[
Φ−1[ŜRS(xn+1, yn+1) + bHoef(β)] +

ϵ

σ

]
,

where bHoef(β) =
√

−lnβ
2NMC

, NMC is the number of Monte Carlo examples, Φ is standard Gaussian cdf,

σ is smoothing strength and ŜRS is the Monte Carlo score defined in Eq. (12).
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Proof of Theorem 1. The main idea of the proof is connecting ŜRS(xn+1, yn+1) and
ŜRS(x̃n+1, yn+1) via the corresponding SRS, as shown in Fig. 2. By Hoeffding’s inequality (See
Appendix A.3 for further discussion), we have

SRS(xn+1, yn+1) ≤ ŜRS(xn+1, yn+1) + bHoef(β) (13)
by Eq. (A.8) and

SRS(x̃n+1, yn+1) ≥ ŜRS(x̃n+1, yn+1)− bHoef(β) (14)
by Eq. (A.9), both with probability 1− β. Meanwhile, by plugging in the definition of S̃, Eq. (10) is
equivalent to

Φ−1[SRS(x̃n+1, yn+1)] ≤ Φ−1[SRS(xn+1, yn+1)] +
ϵ

σ
. (15)

Combining the three inequalities above and applying union bound gives:

SRS(x̃n+1, yn+1) ≤ Φ
[
Φ−1[SRS(xn+1, yn+1)] +

ϵ

σ

]
Eq. (13)−−−−−−−−−→

with prob. 1 − β
SRS(x̃n+1, yn+1) ≤ Φ

[
Φ−1[ŜRS(xn+1, yn+1) + bHoef] +

ϵ

σ

]
Eq. (14)−−−−−−−−−→

with prob. 1 − 2β
ŜRS(x̃n+1, yn+1)− bHoef(β) ≤ Φ

[
Φ−1[ŜRS(xn+1, yn+1) + bHoef(β)] +

ϵ

σ

]
,

(16)

with probability 1− 2β, which proves Theorem 1.

Remark. The bound in Theorem 1 could be further improved using Empirical Bernstein’s inequality
(Maurer & Pontil, 2009). We found in our experiments that the improvement is light on CIFAR10 and
CIFAR100, but could be significant on ImageNet. For more discussion see Appendix A.3.3.

With Theorem 1, we could construct the prediction set accordingly and derive the robustness guarantee
in Corollary 2 in the following.
Corollary 2. (Robustness guarantee for RSCP+) The RSCP+ prediction set

C+
ϵ (x̃n+1; τMC) =

{
k ∈ [K] | ŜRS(x̃n+1, k)− bHoef(β) ≤ Φ

[
Φ−1[τMC + bHoef(β)] +

ϵ

σ

]}
(17)

satisfies robust coverage guarantee in Eq. (2), i.e. P(yn+1 ∈ C+
ϵ (x̃n+1; τMC)) ≥ 1− α. Here, the

threshold τMC is calculated according to Eq. (4) with S = ŜRS and 1− α replaced by 1− α+ 2β,
i.e. τMC = Q1−α+2β({ŜRS(x, y)}(x,y)∈Dcal).

Proof of Corollary 2. Since we have τMC = Q1−α+2β({ŜRS(x, y)}(x,y)∈Dcal), conformal prediction
guarantees coverage on clean examples:

P[ŜRS(xn+1, yn+1) ≤ τMC] ≥ 1− α+ 2β. (18)
Plug Eq. (18) into Eq. (16) in Theorem 1 and apply union bound, we get

P
{
ŜRS(x̃n+1, yn+1)− bHoef(β) ≤ Φ

[
Φ−1[τMC + bHoef(β)] +

ϵ

σ

]}
≥ 1− α. (19)

4 CHALLENGE 2: IMPROVING EFFICIENCY

So far, we have modified RSCP to RSCP+ that can provide a certified guarantee in Sec. 3. However,
there exists another challenge – directly applying RSCP+ often leads to trivial prediction sets that
give the entire label set, as shown in our experiment Tabs. 1 and 2. The reason is that RSCP is
conservative: instead of giving an accurate coverage as vanilla CP, RSCP attains a higher coverage
due to its threshold inflation (Eq. (11)), and thus gives a larger prediction set on both clean and
perturbed data. We define conservativeness of RSCP as the increase in the average size of prediction
sets after threshold inflation: see Appendix A.4 where we give a formal definition. Since RSCP+ is
modified from RSCP, it’s expected to inherit the conservativeness, leading to trivial predictions. To
address this challenge and make RSCP+ useful, in this section, we propose to address this problem by
modifying the base score S with two new methods: Post Training Transformation (PTT) and Robust
Conformal Training (RCT).
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4.1 POST-TRAINING TRANSFORMATION (PTT)

Intuition. We first start with a quantitative analysis of the conservativeness by threshold inflation.
As an approximation to the conservativeness, we measure the coverage gap between inflated coverage
1− αadj and target coverage 1− α:

αgap = (1− αadj)− (1− α) = α− αadj. (20)

Next, we conduct a theoretical analysis on αgap. Let ΦS̃(t) be the cdf of score S̃(x, y), where
(x, y) ∼ Pxy. For simplicity, suppose ΦS̃(t) is known. Recall that in conformal prediction, the
threshold τ is the minimum value that satisfies the coverage condition:

τ = argmin
t∈R

{
P(x,y)∼Pxy

[S̃(x, y) ≤ t] ≥ (1− α).
}

(21)

Notice that P(x,y)∼Pxy
[S̃(x, y) ≤ t] is exactly ΦS̃(t), we have:

ΦS̃(τ) = 1− α. (22)

Suppose the threshold is inflated as τadj = τ +Mϵ. Similarly, we could derive 1−αadj = ΦS̃(τadj) =
ΦS̃(τ +Mϵ) by Eq. (11). Now the coverage gap αgap can be computed as:

αgap = α− αadj = ΦS̃(τ +Mϵ)− ΦS̃(τ) ≈ Φ′
S̃
(τ) ·Mϵ (23)

The last step is carried out by the linear approximation of ΦS̃ : g(x+ z)− g(x) ≈ g′(x) · z.

Key idea. Eq. (23) suggests that we could reduce αgap by reducing the slope of ΦS̃ near the
original threshold τ , i.e. Φ′

S(τ). This inspires us to the idea: can we perform a transformation on S̃

to reduce the slope while keeping the information in it? Directly applying transformation on S̃ is not
a valid option because it would break the Lipschitz continuity of S̃ in Eq. (10): for example, applying
a discontinuous function on S̃ may make it discontinuous. However, we could apply a transformation
Q on the base score S, which modifies S̃ indirectly while preserving the continuity, as long as the
transformed score,Q◦S, still lies in the interval [0, 1]. The next question is: how shall we design this
transformation Q? Here, we propose that the desired transformation Q should satisfy the following
two conditions:

1. (Slope reduction) By applying Q, we should reduce the slope Φ′
S̃
(τ), thus decrease the

coverage gap αgap. Since we are operating on base score S, we approximate this condition
by reducing the slope Φ′

S(τ). We give a rigorous theoretical analysis of a synthetic dataset
and an empirical study on real data to justify the effectiveness of this approximation in
Appendices B.6 and B.7, respectively.

2. (Monotonicity) Q should be monotonically non-decreasing. It could be verified that under
this condition, (Q ◦ S) is equivalent to S in vanilla CP (See our proof in Appendix B.5).
Hence, the information in S is kept after transformation Q.

These two conditions ensure that transformation Q could alleviate the conservativeness of RSCP
without losing the information in the original base score. With the above conditions in mind, we
design a two-step transformation Q by composing (I) ranking and (II) Sigmoid transformation on
base score S, denoted as Q = Qsig ◦ Qrank. We describe each transformation below.

Transformation (I): ranking transformation Qrank. The first problem we encounter is that we
have no knowledge about the score distribution ΦS in practice, which makes designing transformation
difficult. To address this problem, we propose a simple data-driven approach called ranking transfor-
mation to turn the unknown distribution ΦS into a uniform distribution. With this, we could design the
following transformations on it and get the analytical form of the final transformed score distribution
ΦQ◦S . For ranking transformation, we sample an i.i.d. holdout set Dholdout = {(xi, yi)}Nholdout

i=1 from
PXY , which is disjoint with the calibration set Dcal. Next, scores {S(x, y)}(x,y)∈Dholdout are calculated
on the holdout set and the transformation Qrank is defined as:

Qrank(s) =
r
[
s; {S(x, y)}(x,y)∈Dholdout

]
|Dholdout|

.
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Here, r(x;H) denotes the rank of x in set H , where ties are broken randomly. We want to emphasize
that this rank is calculated on the holdout set Dholdout for both calibration samples and test samples.
We argue that the new score Qrank ◦ S is uniformly distributed,which is a well-known result in
statistics(Kuchibhotla, 2020). See more discussion in Appendix B.3.

Transformation (II): Sigmoid transformation Qsig. After ranking transformation, we get a
uniformly distributed score. The next goal is reducing Φ′

S(τ). For this, we introduce Sigmoid
transformation Qsig. In this step, a sigmoid function ϕ is applied on S:

Qsig(s) = ϕ [(s− b)/T ] ,

where b, T are hyper-parameters controlling this transformation. Due to space constraint, we discuss
more details of Sigmoid transformation in Appendix B.4, where we show that the distribution of
transformed score ΦQsig◦Qrank◦S is the inverse of Sigmoid transformation Q−1

sig (Eq. (B.2)), and by
setting b = 1− α and T properly small, the Sigmoid transformation could reduce Φ′

S(τ).

Summary. Combining ranking transformation and sigmoid transformation, we derive a new (non-
)conformity score SPTT:

SPTT(x, y) = (Qsig ◦ Qrank ◦ S)(x, y). (24)

It could be verified that SPTT(x, y) ∈ [0, 1] for any S thanks to the sigmoid function, hence we
could plug in S ← SPTT(x, y) into Eq. (9) as a base score. Additionally, SPTT(x, y) is monotonically
non-decreasing, satisfying the monotonicity condition described at the beginning of this section. We
provide a rigorous theoretical study on PTT over on a synthetic dataset in Appendix B.7. Additionally,
we craft a case in Appendix B.8 where PTT may not improve the efficiency. Despite this theoretical
possibility, we observe that PTT consistently improves over the baseline in experiments.

4.2 ROBUST CONFORMAL TRAINING (RCT)

While our proposed PTT provides a training-free approach to improve efficiency, there is another
line of work (Einbinder et al., 2022b; Stutz et al., 2021) studying how to train a better base classifier
for conformal prediction. However, these methods are designed for standard conformal prediction
instead of robust conformal prediction considered in our paper. In this section, we introduce a training
pipeline called RCT, which simulates the RSCP process in training to further improve the efficiency
of robust conformal prediction.

Conformal training. Stutz et al. (2021) proposed a general framework to train a classifier for
conformal prediction. It simulates conformal prediction in training by splitting the training batch
B into a calibration set Bcal and a prediction set Bpred, then performing conformal prediction on
them. The key idea is to use soft surrogate τ soft and c(x, y; τ soft) to approximate the threshold τ and
prediction set C(x; τ), making the pipeline differentiable: τ soft = Qsoft

1−α({Sθ(x, y)}(x,y)∈Bcal), where
Qsoft

q (H) denotes the q(1 + 1
|H| )-quantile of set H derived by smooth sorting (Blondel et al., 2020;

Cuturi et al., 2019), and c(x, y; τ soft) = ϕ
[
τ soft−Sθ(x,y)

Ttrain

]
, where ϕ(z) = 1/(1 + e−z) is the sigmoid

function and temperature Ttrain is a hyper-parameter. We introduce more details in Appendix C.1.

Figure 3: Pipeline of our proposed Robust Conformal Training (RCT) method.
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Incorporating RSCP into training. Inspired by Stutz et al. (2021), we propose to incorporate
RSCP (Gendler et al., 2021) (and of course, RSCP+ since the major steps are the same) into the
training stage as shown in Fig. 3. We adopt soft threshold τ soft and soft prediction c(x, y; τ soft) from
Stutz et al. (2021), and add randomized smoothing S̃ and threshold adjustment τ soft

adj = τ soft + ϵ
σ to

the pipeline as in RSCP. Next, we need to examine the differentiability of our pipeline. The threshold
adjustment and Gaussian inverse cdf Φ−1 step in the calculation of S̃ is differentiable, but the gradient
of SRS = Eδ∼N (0,σ2Ip)S(x + δ, y) is difficult to evaluate, as the calculation of S(x, y) involves a
deep neural network and expectation. Luckily, several previous works (Salman et al., 2019; Zhai
et al., 2020) have shown that the Monte-Carlo approximation works well in practice:

∇θEδ∼N (0,σ2Ip)S(x+ δ, y) ≈ 1

Ntrain

Ntrain∑
i=1

∇θS(x+ δi, y). (25)

With these approximations, the whole pipeline becomes differentiable and training could be performed
by back-propagation. For the training objective, we can use the same loss function:

L(x, ygt) = Lclass(c(x, y; τ
soft), ygt) + λLsize(c(x, y; τ

soft)), (26)

where classification loss Lclass(c(x, y; τ
soft), ygt) = 1− c(x, ygt; τ

soft), size loss Lsize(c(x, y; τ
soft)) =

max(0,
∑K

y=1 c(x, y; τ
soft) − κ), ygt denotes the ground truth label, c(x, y; τ soft) denotes the soft

prediction introduced in Stutz et al. (2021), κ is a hyper-parameter.

Remark. Since the methods we proposed in Sec. 4 (PTT and RCT) are directly applied to base scores,
they are orthogonal to the RSCP+ we proposed in Sec. 3. That is to say, PTT and RCT not only
work on RSCP+ but also work on original RSCP as well. Nevertheless, we argue that RSCP+ with
PTT/RCT would be more desirable in practice since it provides guaranteed robustness which is the
original purpose of provable robust conformal prediction. Hence, we will focus on this benchmark in
the experiments section in the main text. However, we also provide experiment results on RSCP +
PTT/RCT as an empirical robustness benchmark in Appendix D.2, which shows that our PTT and
RCT are not limited to our RSCP+ scheme.

5 EXPERIMENTS

In this section, we evaluate our methods in Secs. 3 and 4. Experiments are conducted on CIFAR10,
CIFAR100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) and target coverage is set
to 1 − α = 0.9. We choose perturbation magnitude ϵ = 0.125 on CIFAR10 and CIFAR100 and
ϵ = 0.25 on ImageNet.

Evaluation metrics and baseline. We present the average size of prediction sets C+
ϵ (x) as a key

metric, since the robustness is guaranteed by our theoretical results for RSCP+(Corollary 2). For the
baseline, we choose the vanilla method from Gendler et al. (2021), where HPS and APS are directly
applied as the base score without any modifications.

Model. We choose ResNet-110 (He et al., 2016) for CIFAR10 and CIFAR100 and ResNet-50 (He
et al., 2016) for ImageNet. The pre-trained weights are from Cohen et al. (2019) for CIFAR10 and
ImageNet and from Gendler et al. (2021) for CIFAR100.

Hyperparameters. In RSCP+, we choose β = 0.001 and the number of Monte Carlo examples
NMC = 256. For PTT, we choose b = 0.9 and T = 1/400 and we discuss this choice in Appendix B.4.
The size of holdout set |Dholdout| = 500. We discuss more experimental details in Appendix D.

5.1 RESULTS AND DISCUSSION

Tab. 1 and Tab. 2 compare the average size of prediction sets on all three datasets with our
RSCP+ benchmark. Specifically, the first row shows the baseline method using base scores in
Gendler et al. (2021) directly equipped with our RSCP+. Note that the baseline method gives trivial
prediction sets (the prediction set size = total number of class, which is totally uninformative) due
to its conservativeness. Our methods successfully address this problem and provide a meaningful
prediction set with robustness guarantee.
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Base score HPS APS
Method / Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100
Baseline (Gendler et al., 2021) 10 100 10 100
PTT (Ours) 2.294 26.06 2.685 21.96
PTT+RCT (Ours) 2.294 18.30 2.824 20.01
Improvement over baseline: PTT 4.36× 3.84× 3.72× 4.55×
Improvement over baseline: PTT + RCT 4.36× 5.46× 3.54× 5.00×

Table 1: Average prediction set (C+
ϵ (x)) size of RSCP+ on CIFAR10 and CIFAR100. For

CIFAR10 and CIFAR100, ϵ = 0.125 and σ = 0.25. Following Gendler et al. (2021), we take
Nsplit = 50 random splits between calibration set and test set and present the average results (Same
for Tab. 2). We could see that the baseline method only gives trivial predictions containing the whole
label set, while with PTT or PTT + RCT we can give informative and compact predictions.

Method / Base score HPS APS
Baseline (Gendler et al., 2021) 1000 1000
PTT (Ours) 1000 94.66
PTT + Bernstein (Ours) 59.12 70.87
Improvement over baseline: PTT - 10.6×
Improvement over baseline: PTT + Bernstein 16.9× 14.1×

Table 2: Average prediction set (C+
ϵ (x)) size of RSCP+ on ImageNet. For ImageNet, ϵ = 0.25

and σ = 0.5. The ImageNet dataset is more challenging and our PTT only works for APS score,
but we find by applying the improvement with Empirical Bernstein’s bound (denoted as "PTT +
Bernstein") we discussed in Appendix A.3.3, we could largely reduce the size of prediction sets.

NMC 256 512 1024 2048 4096
Average size of prediction sets C+

ϵ (x) 2.294 2.094 1.954 1.867 1.816

Table 3: Average size vs. Number of Monte Carlo samples NMC . The experiment is conducted on
CIFAR10 dataset with PTT method. The base score is HPS. It could be seen that by increasing the
number of Monte Carlo examples, we could further improve the efficiency of RSCP+, at the cost of
higher computational expense.

Why the baseline gives trivial results under RSCP+? The key reason is conservativeness. RSCP is
conservative compared to vanilla conformal prediction, and the challenging task of giving guaranteed
robustness makes the situation worse. The result is that: without the boost of our PTT and RCT
methods, the predictor is so conservative that it gives the whole label set to guarantee robustness,
which is not the goal of users. This again justifies the necessity of our methods.

Impact of number of Monte Carlo samples NMC. In Tab. 3, we study how the number of Monte
Carlo samples (NMC) influences the average size. It could be observed that the average size decreases
as more Monte Carlo samples are taken. This is expected as more Monte Carlo samples reduce the
error and provide a tighter bound in Eqs. (13) and (14). Therefore, a trade-off between prediction set
size and computation cost needs to be considered in practice, since increasing NMC also significantly
boosts the computation requirement.

6 CONCLUSION

This paper studies how to generate prediction sets that are robust to adversarial attacks. We point
out that the previous method RSCP (Gendler et al., 2021) has two major limitations: flawed ro-
bustness certification and low efficiency. We propose a new theoretically sound framework called
RSCP+ which resolves the flaw in RSCP and provides a provable guarantee. We also propose a
training-free and scalable method (PTT) and robust conformal training method (RCT) to significantly
boost the efficiency of RSCP. We have conducted extensive experiments and the empirical results
support our theoretical analysis. Experiments show that the baseline gives trivial prediction sets (all
class labels), while our methods are able to provide meaningful prediction sets that boost the efficiency
of the baseline by up to 4.36× on CIFAR10, 5.46× on CIFAR100, and 16.9× on ImageNet.
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REPRODUCIBILITY STATEMENT

We provide the training details of RCT, hyperparameters, and other details of our experiments in
Appendix D. The code of our experiments will be released to the public upon acceptance.
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