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Abstract

This work studies the problem of panoptic symbol spotting, which is to spot
and parse both countable object instances (windows, doors, tables, etc.) and
uncountable stuff (wall, railing, etc.) from computer-aided design (CAD)
drawings. Existing methods typically involve either rasterizing the vector
graphics into images and using image-based methods for symbol spotting,
or directly building graphs and using graph neural networks for symbol
recognition. In this paper, we take a different approach, which treats graphic
primitives as a set of 2D points that are locally connected and use point
cloud segmentation methods to tackle it. Specifically, we utilize a point
transformer to extract the primitive features and append a mask2former-like
spotting head to predict the final output. To better use the local connection
information of primitives and enhance their discriminability, we further
propose the attention with connection module (ACM) and contrastive
connection learning scheme (CCL). Finally, we propose a KNN interpolation
mechanism for the mask attention module of the spotting head to better
handle primitive mask downsampling, which is primitive-level in contrast
to pixel-level for the image. Our approach, named SymPoint, is simple
yet effective, outperforming recent state-of-the-art method GAT-CADNet
by an absolute increase of 9.6% PQ and 10.4% RQ on the FloorPlanCAD
dataset. The source code and models will be available at https://github.
com/nicehuster/SymPoint.

1 Introduction

Vector graphics (VG), renowned for their ability to be scaled arbitrarily without succumbing
to issues like blurring or aliasing of details, have become a staple in industrial designs. This
includes their prevalent use in graphic designs(Reddy et al., 2021), 2D interfaces(Carlier
et al., 2020), and Computer-aided design (CAD)(Fan et al., 2021). Specifically, CAD
drawings, consisting of geometric primitives(e.g., arc, circle, polyline, etc.), have established
themselves as the preferred data representation method in the realms of interior design,
indoor construction, and property development, promoting a higher standard of precision
and innovation in these fields.
Symbol spotting (Rezvanifar et al., 2019; 2020; Fan et al., 2021; 2022; Zheng et al., 2022) refers
to spotting and recognizing symbols from CAD drawings, which serves as a foundational
task for reviewing the error of design drawing and 3D building information modeling
(BIM). Spotting each symbol, a grouping of graphical primitives, within a CAD drawing
poses a significant challenge due to the existence of obstacles such as occlusion, clustering,
variations in appearances, and a significant imbalance in the distribution of different categories.
Traditional symbol spotting usually deals with instance symbols representing countable things
(Rezvanifar et al., 2019), like table, sofa, and bed. Fan et al. (2021) further extend it to
panoptic symbol spotting which performs both the spotting of countable instances (e.g., a
single door, a window, a table, etc.) and the recognition of uncountable stuff (e.g., wall,
railing, etc.).
Typical approaches (Fan et al., 2021; 2022) addressing the panoptic symbol spotting task
involve first converting CAD drawings to raster graphics(RG) and then processing it with
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powerful image-based detection or segmentation methods (Ren et al., 2015; Sun et al., 2019).
Another line of previous works (Jiang et al., 2021; Zheng et al., 2022; Yang et al., 2023)
abandons the raster procedure and directly processes vector graphics for recognition with
graph convolutions networks. Instead of rastering CAD drawings to images or modeling the
graphical primitives with GCN/GAT, which can be computationally expensive, especially for
large CAD graphs, we propose a new paradigm that has the potential to shed novel insight
rather than merely delivering incremental advancements in performance.
Upon analyzing the data characteristics of CAD drawings, we can find that CAD drawing has
three main properties: 1). irregularity and disorderliness. Unlike regular pixel arrays in raster
graphics/images, CAD drawing consists of geometric primitives(e.g., arc, circle, polyline,
etc.) without specific order. 2). local interaction among graphical primitives. Each graphical
primitive is not isolated but locally connected with neighboring primitives, forming a symbol.
3). invariance under transformations. Each symbol is invariant to certain transformations.
For example, rotating and translating symbols do not modify the symbol’s category. These
properties are almost identical to point clouds. Hence, we treat CAD drawing as sets of
points (graphical primitives) and utilize methodologies from point cloud analysis (Qi et al.,
2017a;b; Zhao et al., 2021) for symbol spotting.
In this work, we first consider each graphic primitive as an 8-dimensional data point
with the information of position and primitive’s properties (type, length, etc.). We then
utilize methodologies from point cloud analysis for graphic primitive representation learning.
Different from point clouds, these graphical primitives are locally connected. We therefore
propose contrastive connectivity learning mechanism to utilize those local connections. Finally,
we borrow the idea of Mask2Former(Cheng et al., 2021; 2022) and construct a masked-
attention transformer decoder to perform the panoptic symbol spotting task. Besides, rather
than using bilinear interpolation for mask attention downsampling as in (Cheng et al., 2022),
which could cause information loss due to the sparsity of graphical primitives, we propose
KNN interpolation, which fuses the nearest neighboring primitives, for mask attention
downsampling. We conduct extensive experiments on the FloorPlanCAD dataset and our
SymPoint achieves 83.3% PQ and 91.1% RQ under the panoptic symbol spotting setting,
which outperforms the recent state-of-the-art method GAT-CADNet (Zheng et al., 2022)
with a large margin.

2 Related Work

Vector Graphics Recognition Vector graphics are widely used in 2D CAD designs,
urban designs, graphic designs, and circuit designs, to facilitate resolution-free precision
geometric modeling. Considering their wide applications and great importance, many works
are devoted to recognition tasks on vector graphics. Jiang et al. (2021) explores vectorized
object detection and achieves a superior accuracy to detection methods (Bochkovskiy et al.,
2020; Lin et al., 2017) working on raster graphics while enjoying faster inference time and
less training parameters. Shi et al. (2022) propose a unified vector graphics recognition
framework that leverages the merits of both vector graphics and raster graphics.
Panoptic Symbol Spotting Traditional symbol spotting usually deals with instance
symbols representing countable things (Rezvanifar et al., 2019), like table, sofa, and bed.
Following the idea in (Kirillov et al., 2019), Fan et al. (2021) extended the definition by
recognizing semantic of uncountable stuff, and named it panoptic symbol spotting. Therefore,
all components in a CAD drawing are covered in one task altogether. For example, the
wall represented by a group of parallel lines was properly handled by (Fan et al., 2021),
which however was treated as background by (Jiang et al., 2021; Shi et al., 2022; Nguyen
et al., 2009) in Vector graphics recognition. Meanwhile, the first large-scale real-world
FloorPlanCAD dataset in the form of vector graphics was published by (Fan et al., 2021).
Fan et al. (2022) propose CADTransformer, which modifies existing vision transformer (ViT)
backbones for the panoptic symbol spotting task. Zheng et al. (2022) propose GAT-CADNet,
which formulates the instance symbol spotting task as a subgraph detection problem and
solves it by predicting the adjacency matrix.
Point Cloud Segmentation Point cloud segmentation aims to map the points into
multiple homogeneous groups. Unlike 2D images, which are characterized by regularly
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(a) primitive position. (b) primitive feature.

Figure 1: Illustration of constructing point-based representation.

arranged dense pixels, point clouds are constituted of unordered and irregular point sets.
This makes the direct application of image processing methods to point cloud segmentation
an impracticable approach. However, in recent years, the integration of neural networks
has significantly enhanced the effectiveness of point cloud segmentation across a range of
applications, including semantic segmentation (Qi et al., 2017a;a; Zhao et al., 2021), instance
segmentation (Ngo et al., 2023; Schult et al., 2023) and panoptic segmentation (Zhou et al.,
2021; Li et al., 2022; Hong et al., 2021; Xiao et al., 2023), etc.

3 Method

Our methods forgo the raster image or GCN in favor of a point-based representation for
graphical primitives. Compared to image-based representations, it reduces the complexity
of models due to the sparsity of primitive CAD drawings. In this section, we first describe
how to form the point-based representation using the graphical primitives of CAD drawings.
Then we illustrate a baseline framework for panoptic symbol spotting. Finally, we thoroughly
explain three key techniques, attention with local connection, contrastive connection learning,
and KNN interpolation, to adapt this baseline framework to better handle CAD data.

3.1 From Symbol to Points

Given vector graphics represented by a set of graphical primitives {pk}, we treat it as a
collection of points {pk | (xk, fk)}, and each point contains both primitive position {xk} and
primitive feature {fk} information; hence, the points set could be unordered and disorganized.
Primitive position. Given a graphical primitive, the coordinates of the starting point and
the ending point are (x1, y1) and (x1, y2), respectively. The primitive position xk ∈ R2 is
defined as :

xk = [(x1 + x2)/2, (y1 + y2)/2] , (1)
We take its center as the primitive position for a closed graphical primitive(circle, ellipse).
as shown in Fig. 1a.
Primitive feature. We define the primitive features fk ∈ R6 as:

fk = [αk, lk, onehot(tk)] , (2)
where αk is the clockwise angle from the x positive axis to xk, and lk represents the distance
between v1 and v2 for linear primitives, as shown in Fig. 1b. For circular primitives like
circles and ellipses, lk is defined as the circumference. We encode the primitive type tk(line,
arc, circle, or ellipse) into a one-hot vector to make up the missing information of segment
approximations.

3.2 Panoptic Symbol Spotting via Point-based Representation

The baseline framework primarily comprises two components: the backbone and the symbol
spotting head. The backbone converts raw points into points features, while the symbol
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Figure 2: The overview of our method. After transfering CAD drawings to primitive points,
we use a backbone to extract multi-resolution features Fr and append a symbol spotting head
to spot and recognize symbols. During this process, we propose attention with connection
module(ACM), which utilizes primitive connection information when performing self-attention
in the first stage of backone. Subsequently, we propose contrastive connection learning(CCL)
to enhance the discriminability between connected primitive features. Finally, we propose
KNN interpolation for attention mask downsampling(AMD) to effetively downsample the
high-resolution attention masks.

spotting head predicts the symbol mask through learnable queries (Cheng et al., 2021; 2022).
Fig. 2 illustrates the the whole framework.

Backbone. We choose Point Transformer (Zhao et al., 2021) with a symmetrical encoder
and decoder as our backbone for feature extraction due to its good generalization capability
in panoptic symbol spotting. The backbone takes primitive points as input, and performs
vector attention between each point and its adjacent points to explore local relationships.
Given a point pi and its adjacent points M(pi), we project them into query feature qi, key
feature kj and value feature vj , and obtain the vector attention as follows:

wij = ω(γ(qi, kj)), fattn
i =

∑
pj∈M(pi)

Softmax(Wi)j ⊙ vj , (3)

where γ serves as a relational function, such as subtraction. ω is a learnable weight encoding
that calculates the attention vectors. ⊙ is Hadamard product.

Symbol Spotting Head. We follow Mask2Former (Cheng et al., 2022) to use hierarchical
multi-resolution primitive features Fr ∈ RNr×D from the decoder of backbone as the input to
the symbol spotting predition head, where Nr is the number of feature tokens in resolution
r and D is the feature dimension. This head consists of L layers of masked attention
modules which progressively upscales low-resolution features from the backbone to produce
high-resolution per-pixel embeddings for mask prediction. There are two key components in
the masked attention module: query updating and mask predicting. For each layer l, query
updating involves interacting with different resolution primitive features Fr to update query
features. This process can be formulated as,

Xl = softmax(Al−1 + QlK
T
l )Vl + Xl−1, (4)

where Xl ∈ RO×D is the query features. O is the number of query features. Ql = fQ(Xl−1),
Kl = fK(Fr) and Vl = fV (Fr) are query, key and value features projected by MLP layers.
Al−1 is the attention mask, which is computed by,

Al−1(v) =
{

0 if Ml−1(v) > 0.5,
−∞ otherwise.

(5)

where v is the position of feature point and Ml−1 is the mask predicted from mask predicting
part. Note that we need to downsample the high-resolution attention mask to adopt the
query updating on low-resolution features. In practice, we utilize four coarse-level primitive
features from the decoder of backbone and perform query updating from coarse to fine.
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(a) Construct connections. (b) Attend to connections.
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Figure 3: (a) Set of primitives and its connection, primitives are disintegrated for clarity. (b)
Locally connected primitives are considered in the attention layers. (c) Locally connected
primitives do not always belong to the same category.

During mask predicting process, we obtain the object mask Ml ∈ RO×N0 and its corresponding
category Yl ∈ RO×C by projecting the query features using two MLP layers fY and fM ,
where C is the category number and N0 is the number of points. The process is as follows:

Yl = fY (Xl), Ml = fM (Xl)F T
0 , (6)

The outputs of final layer, YL and ML, are the predicted results.

3.3 Attention with Connection Module

The simple and unified framework rewards excellent generalization ability by offering a fresh
perspective of CAD drawing, a set of points. It can obtain competitive results compared
to previous methods. However, it ignores the widespread presence of primitive connections
in CAD drawings. It is precisely because of these connections that scattered, unrelated
graphical elements come together to form symbols with special semantics. In order to utilize
these connections between each primitive, we propose Attention with Connection Module
(ACM), the details are shown below.
It is considered that these two graphical primitives(pi, pj) are interconnected if the minimum
distance dij between the endpoints (vi, vj) of two graphical primitives (pi, pj) is below a
certain threshold ϵ, where:

dij = minvi∈pi,vj∈pj
∥vi − vj∥ < ϵ. (7)

To keep the complexity low, at most K connections are allowed for every graphical primitive
by random dropping. Fig. 3a demonstrates the connection construction around the wall
symbol, the gray line is the connection between two primitives. In practice, we set ϵ to 1.0px.
The attention mechanism in (Zhao et al., 2021) directly performs local attention between
each point and its adjacent points to explore the relationship. The original attention
mechanism interacts only with neighboring points within a spherical region, as shown in
Fig. 3b. Our ACM additionally introduces the interaction with locally connected primitive
points during attention (pink points), essentially enlarging the radius of the spherical region.
Note that we experimentally found that crudely increasing the radius of the spherical region
without considering the local connections of primitive points does not result in performance
improvement. This may be explained by that enlarging the receptive field also introduces
additional noise at the same time. Specifically, we extend the adjacent points set M(pi) in
Eq. (3) to A(pi) = M(pi) ∪ C(pi), where C(pi) = {pj |dij < ϵ}, yielding,

fattn
i =

∑
pj∈A(pi)

Softmax(Wi)j ⊙ vj , (8)

In practice, since we cannot directly obtain the connection relationships of the points in
the intermediate layers of the backbone, we integrate this module into the first stage of the
backbone to replace the original local attention, as shown in Fig. 2.

3.4 Contrastive Connection Learning.

Although the information of primitive connection are considered when calculating attention
of the encoder transformer, locally connected primitives may not belong to the same instance,
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in other words, noisy connections could be introduced while take primitive connections into
consideration, as shown in Fig. 3c. Therefore, in order to more effectively utilize connection
information with category consistency, we follow the widely used InfoNCE loss (Oord et al.,
2018) and its generalization (Frosst et al., 2019; Gutmann & Hyvärinen, 2010) to define
the contrastive learning objective on the final output feature of backbone. We encourage
learned representations more similar to its connected points from the same category and
more distinguished from other connected points from different categories. Additionally, we
also take neighbor points M(pi) into consideration, yielding,

LCCL = − log
∑

pj∈A(pi)∧lj=li
exp(−d(fi, fj)/τ)∑

pk∈A(pi) exp(−d(fi, fk)/τ) (9)

where fi is the backbone feature of pi, d(·, ·) is a distance measurement, τ is the temperature
in contrastive learning. we set the τ = 1 by default.

3.5 KNN Interpolation

During the process of query updating in symbol spotting head Eq. (4) & Eq. (5), we need to
convert high-resolution mask predictions to low-resolution for attention masks computation
as shown in Fig. 2 (AMD on the right). Mask2Former (Cheng et al., 2022) employs the
bilinear interpolation on the pixel-level mask for downsampling. However, the masks of CAD
drawings are primitive-level, making it infeasible to directly apply the bilinear interpolation
on them. To this end, we propose the KNN interpolation for downsampling the attention
masks by fusing the nearest neighbor points. A straightforward operation is max pooling or
average pooling. We instead utilize distance-based interpolation. For simplicity, we omit
layer index l in A,

Ar(pj) =
∑

pj∈K(pi) A0(pj)/d(pi, pj)∑
pj∈K(pi) 1/d(pi, pj) (10)

where, A0 and Ar are the full-resolution attention mask and the r-resolution attention mask
repectively. d(·, ·) is a distance measurement. K(pi) is the set of K nearest neighbors, In
practice, we set K = 4r in our experiments.

3.6 Training and Inference

Throughout the training phase, we adopt bipartite matching and set prediction loss to assign
ground truth to predictions with the smallest matching cost. The full loss function L can
be formulated as L = λBCELBCE + λdiceLdice + λclsLcls + λCCLLCCL, while LBCE is the
binary cross-entropy loss (over the foreground and background of that mask), Ldice is the
Dice loss (Deng et al., 2018), Lcls is the default multi-class cross-entropy loss to supervise the
queries classification, LCCL is contrastive connection loss. In our experiments, we empirically
set λBCE : λdice : λcls : λCCL = 5 : 5 : 2 : 8. For inference, we simply use argmax to
determine the final panoptic results.

4 Experiments

In this section, we present the experimental setting and benchmark results on the public CAD
drawing dataset FloorPlanCAD (Fan et al., 2021). Following previous works (Fan et al., 2021;
Zheng et al., 2022; Fan et al., 2022), we also compare our method with typical image-based
instance detection (Ren et al., 2015; Redmon & Farhadi, 2018; Tian et al., 2019; Zhang et al.,
2022). Besides, we also compare with point cloud semantic segmentation methods (Zhao
et al., 2021), Extensive ablation studies are conducted to validate the effectiveness of the
proposed techniques. In addition, we have also validated the generalizability of our method
on other datasets beyond floorplanCAD, with detailed results available in the Appendix A.

4.1 Experimental Setting

Dataset and Metrics. FloorPlanCAD dataset has 11,602 CAD drawings of various floor
plans with segment-grained panoptic annotation and covering 30 things and 5 stuff classes.

6



Published as a conference paper at ICLR 2024

Methods PanCADNet CADTransformer GAT-CADNet PointT‡ SymPoint
(Fan et al., 2021) (Fan et al., 2022) (Zheng et al., 2022) (Zhao et al., 2021) (ours)

F1 80.6 82.2 85.0 83.2 86.8
wF1 79.8 80.1 82.3 80.7 85.5

Table 1: Semantic Symbol Spotting comparison results with previous works. ‡: backbone with
double channels. wF1: length-weighted F1.

Method Backbone AP50 AP75 mAP #Params Speed
FasterRCNN (Ren et al., 2015) R101 60.2 51.0 45.2 61M 59ms
YOLOv3 (Redmon & Farhadi, 2018) DarkNet53 63.9 45.2 41.3 62M 11ms
FCOS (Tian et al., 2019) R101 62.4 49.1 45.3 51M 57ms
DINO (Zhang et al., 2022) R50 64.0 54.9 47.5 47M 42ms
SymPoint (ours) PointT‡ 66.3 55.7 52.8 35M 66ms

Table 2: Instance Symbol Spotting comparison results with image-based detection methods.

Following (Fan et al., 2021; Zheng et al., 2022; Fan et al., 2022), we use the panoptic quality
(PQ) defined on vector graphics as our main metric to evaluate the performance of panoptic
symbol spotting. By denoting a graphical primitive e = (l, z) with a semantic label l and
an instance index z, PQ is defined as the multiplication of segmentation quality (SQ) and
recognition quality (RQ), which is formulated as

PQ = RQ × SQ (11)

= |TP |
|TP | + 1

2 |FP | + 1
2 |FN |

×
∑

(sp,sg)∈T P IoU(sp, sg)
|TP |

(12)

=
∑

(sp,sg)∈T P IoU(sp, sg)
|TP | + 1

2 |FP | + 1
2 |FN |

. (13)

where, sp = (lp, zp) is the predicted symbol, sg = (lg, zg) is the ground truth symbol. |TP |,
|FP |, |FN | indicate true positive, false positive and false negative respectively. A certain
predicted symbol is considered as matched if it finds a ground truth symbol, with lp = lg
and IoU(sp, sg) > 0.5, where the IoU is computed by:

IoU(sp, sg) =
Σei∈sp∩sg log(1 + L(ei))
Σej∈sp∪sg

log(1 + L(ej)) . (14)

Implementation Details. We implement SymPoint with Pytorch. We use PointT (Zhao
et al., 2021) with double channels as the backbone and stack L = 3 layers for the symbol
spotting head. For data augmentation, we adopt rotation, flip, scale, shift, and cutmix
augmentation. We choose AdamW (Loshchilov & Hutter, 2017) as the optimizer with a
default weight decay of 0.001, the initial learning rate is 0.0001, and we train the model for
1000 epochs with a batch size of 2 per GPU on 8 NVIDIA A100 GPUs.

4.2 Benchmark Results

Semantic symbol spotting. We compare our methods with point cloud segmentation
methods (Zhao et al., 2021), and symbol spotting methods (Fan et al., 2021; 2022; Zheng
et al., 2022). The main test results are summarized in Tab. 1, Our algorithm surpasses all
previous methods in the task of semantic symbol spotting. More importantly, compared to
GAT-CADNet (Zheng et al., 2022), we achieves an absolute improvement of 1.8% F1. and
3.2% wF1 respectively. For the PointT‡, we use our proposed point-based representation in
Section 3.1 to convert the CAD drawing to a collection of points as input. It is worth noting
that PointT‡ has already achieved comparable results to GAT-CADNet (Zheng et al., 2022),
which demonstrates the effectiveness of the proposed point-based representation for CAD
symbol spotting.
Instance Symbol Spotting. We compare our method with various image detection
methods, including FasterRCNN (Ren et al., 2015), YOLOv3 (Redmon & Farhadi, 2018),
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Method Data Format PQ SQ RQ #Params Speed
PanCADNet (Fan et al., 2021) VG + RG 55.3 83.8 66.0 >42M >1.2s
CADTransformer (Fan et al., 2022) VG + RG 68.9 88.3 73.3 >65M >1.2s
GAT-CADNet (Zheng et al., 2022) VG 73.7 91.4 80.7 - -
PointT‡Cluster(Zhao et al., 2021) VG 49.8 85.6 58.2 31M 80ms
SymPoint(ours, 300epoch) VG 79.6 89.4 89.0 35M 66ms
SymPoint(ours, 500epoch) VG 81.9 90.6 90.4 35M 66ms
SymPoint(ours, 1000epoch) VG 83.3 91.4 91.1 35M 66ms

Table 3: Panoptic Symbol Spotting comparisons results with previous works. VG: vector
graphics, RG: raster graphics.

Baseline ACM CCL KInter PQ RQ SQ

✓ 73.1 83.3 87.7
✓ ✓ 72.6 82.9 87.6
✓ ✓ 73.5 83.9 87.6
✓ ✓ ✓ 74.3 85.8 86.6
✓ ✓ ✓ ✓ 77.3 87.1 88.7

(a) Ablation studies of different techniques

DSampling method PQ RQ SQ

linear 74.3 85.8 86.6
knn avepool 75.9 85.9 88.4
knn maxpool 77.0 86.7 88.8

knn interp 77.3 87.1 88.7
(b) Ablation studies of mask downsampling

BS SW L O D PQ RQ SQ IoU #Params

1x ✓ 3 300 128 67.1 78.7 85.2 62.8 9M
1.5x ✓ 3 300 128 73.3 84.0 87.3 65.6 19M

ablation setting 2x ✓ 3 300 128 77.3 87.1 88.7 68.3 32M
2x ✓ 3 500 128 77.9 87.6 88.9 68.8 32M

final setting 2x ✓ 3 500 256 79.6 89.0 89.4 69.1 35M
2x 3 500 256 79.1 88.4 89.5 68.8 42M
2x ✓ 6 500 256 79.0 88.1 89.6 68.5 35M

(c) Ablation studies on architecture design. BS: Backbone size. SW: share weights. L: layer number
of spotting head. O: query number. D: feature dimension. ✓ in the share weights column means
whether share weights for head layers.

Table 4: Ablation Stuides on different techniques, attention mask downsampling, and
architecture desgin.

FCOS (Tian et al., 2019), and recent DINO (Zhang et al., 2022). For a fair comparison, we
post-process the predicted mask to produce a bounding box for metric computation. The
main comparison results are listed in Tab. 2. Although our framework is not trained to
output a bounding box, it still achieves the best results.

Panoptic Symbol Spotting. To verify the effectiveness of the symbol spotting head, we
also design a variant method without this head, named PointT‡Cluster, which predicts an
offset vector per graphic entity to gather the instance entities around a common instance
centroid and performs class-wise clustering (e.g. meanshift (Cheng, 1995)) to get instance
labels as in CADTransformer (Fan et al., 2022). The final results are listed in Tab. 3. Our
SymPoint trained with 300epoch outperforms both PointT‡Cluster and the recent SOTA
method GAT-CADNet(Zheng et al., 2022) substantially, demonstrate the effectiveness of
the proposed method. Our method also benefits from longer training and achieves further
performance improvement. What’s more, our method runs much faster during the inference
phase than previous methods. For image-based methods, it takes approximately 1.2s to
render a vector graphic into an image while our method does not need this process. The
qualitative results are shown in Fig. 4.

4.3 Ablation Studies

In this section, we carry out a series of comprehensive ablation studies to clearly illustrate
the potency and intricate details of the SymPoint framework. All ablations are conducted
under 300 epoch training.
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(a) GT (b) SymPoint (c) CADTransformer

Figure 4: Qualitative comparison of panoptic symbol spotting results with CADTransformer.
Primitives belonging to different classes are represented in distinct colors. The colormap for
each category can be referenced in Fig. 8.

Effects of Techniques. We conduct various controlled experiments to verify different
techniques that improve the performance of SymPoint in Tab. 4a. Here the baseline means
the method described in Sec. 3.2. When we only introduce ACM (Attention with Connection
Module), the performance drops a bit due to the noisy connections. But when we combine
it with CCL (Contrastive Connection Learning), the performance improves to 74.3 of PQ.
Note that applying CCL alone could only improve the performance marginally. Furthermore,
KNN Interpolation boosts the performance significantly, reaching 77.3 of PQ.

KNN Interpolation. In Tab. 4b, we ablate different ways of downsampling attention
mask: 1) linear interpolation, 2) KNN average pooling, 3) KNN max pooling, 4) KNN
interpolation. KNN average pooling and KNN max pooling means using the averaged value
or max value of the K nearest neighboring points as output instead of the one defined in
Eq. (10). We can see that the proposed KNN interpolation achieves the best performance.

Architecture Design. We analyze the effect of varying model architecture design, like
channel number of backbone and whether share weights for the L layers of symbol spotting
head. As shown in Tab. 4c, we can see that enlarging the backbone, the query number and
the feature channels of the symbol spotting head could further improve the performance.
Sharing weights for spotting head not only saves model parameters but also achieves better
performance compared with the one that does not share weights.

5 Conclusion and Future Work

This work introduces a novel perspective for panoptic symbol spotting. We treat CAD
drawings as sets of points and utilize methodologies from point cloud analysis for symbol
spotting. Our method SymPoint is simple yet effective and outperforms previous works. One
limitation is that our method needs a long training epoch to get promising performance.
Thus accelerating model convergence is an important direction for future work.
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(a) Loss curve. (b) PQ curve.

Figure 5: Convergence curves with/without the ACM Module on SESYD-floorplans.

A Appendix

Due to space constraints in the paper,additional techniques analysis, additional quantitative
results, qualitative results, and other dataset results can be found in the supplementary
materials.

A.1 Additional Techniques Analysis

Effects of Attention with Connection Module. We conduct additional experiments
in SESYD-floorplans dataset that is smaller than floorplanCAD. ACM can significantly
promote performance and accelerate model convergence. We present the convergence curves
without/with ACM in Fig. 5.

Explanation and Visualization of KNN interpolation Technique. While bilinear
interpolation, as utilized in Mask2Former, is tailored for regular data, such as image, but it
is unsuitable for irregular sparse primitive points. Here, we provided some visualizations
of point masks for KNN interpolation and bilinear interpolation as shown in Fig. 6. Note
that these point masks are soft masks (ranging from 0 to 1) predicted by intermediate
layers. After downsampling the point mask to 4x and 16x, we can clearly find that KNN
interpolation well preserves the original mask information, while bilinear interpolation causes
a significant information loss, which could harm the final performance.

A.2 Additional Quantitative Evaluations

We present a detailed evaluation of panoptic quality(PQ), segmentation quality(SQ), and
recognition quality(RQ) in Tab. 5. Here, we provide the class-wise evaluations of different
variants of our methods.

A.3 Additional Datasets

To demonstrate the generality of our SymPoint, we conducted experiments on other datasets
beyond floorplanCAD.

Private Dataset. We have also collected a dataset of floorplan CAD drawings with 14,700
from our partners. We’ve meticulously annotated the dataset at the primitive level. Due
to privacy concerns, this dataset is currently not publicly available. we randomly selected
10,200 as the training set and the remaining 4,500 as the test set. We conduct ablation
studies of the proposed three techniques on this dataset, and the results are shown in Tab. 6.
Different from the main paper, we also utilize the color information during constructing
the connections, i.e., locally connected primitives with the same color are considered as
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Class A B C D E
PQ RQ SQ PQ RQ SQ PQ RQ SQ PQ RQ SQ PQ RQ SQ

single door 83.2 90.8 91.6 82.9 90.7 91.4 83.3 90.9 91.6 86.6 93.0 93.1 91.7 96.0 95.5
double door 86.8 93.8 92.5 85.8 93.4 91.9 86.5 93.5 92.5 88.5 95.3 92.9 91.5 96.6 94.7
sliding door 87.5 94.0 93.1 87.6 94.6 92.5 88.6 94.4 93.8 90.4 96.4 93.7 94.8 97.7 97.0
folding door 39.3 46.8 84.0 48.5 58.2 83.3 44.7 55.2 80.9 56.4 61.5 91.6 73.8 87.0 84.8

revolving door 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
rolling door 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

window 64.5 77.1 83.6 67.2 80.7 83.2 69.6 83.0 83.8 73.0 85.8 85.0 78.9 90.4 87.3
bay window 6.8 10.7 63.8 3.4 5.3 63.4 4.6 7.4 62.0 11.4 16.9 67.8 35.4 42.3 83.6

blind window 73.3 86.9 84.4 69.8 87.2 80.1 70.6 86.3 81.8 74.0 89.7 82.5 80.6 92.1 87.5
opening symbol 16.3 24.5 66.5 30.1 40.1 75.1 11.3 17.0 66.7 20.7 29.9 69.2 33.1 40.9 80.7

sofa 69.4 78.1 88.9 67.4 79.0 85.3 70.4 79.4 88.7 74.0 83.5 88.6 83.9 88.8 94.5
bed 74.7 89.3 83.6 70.5 85.9 82.1 73.4 87.9 83.5 73.2 87.4 83.7 86.1 95.9 89.8
chair 69.6 76.4 91.1 74.0 81.5 90.7 68.5 76.5 89.6 75.9 82.7 91.7 82.7 88.9 93.1
table 55.4 66.1 83.7 53.3 64.4 82.8 49.3 59.9 82.4 60.2 70.2 85.7 70.9 79.1 89.6

TV cabinet 72.7 87.1 83.5 65.5 82.8 79.2 72.6 88.1 82.4 80.1 92.9 86.3 90.1 97.0 92.9
Wardrobe 78.3 93.3 83.9 79.8 94.8 84.1 80.3 94.7 84.8 83.0 95.4 87.0 87.7 96.4 90.9

cabinet 59.1 69.7 84.8 63.6 75.9 83.7 63.2 75.3 83.9 67.5 80.5 83.9 73.8 86.2 85.6
gas stove 96.4 98.8 97.6 95.2 98.9 96.3 97.1 98.9 98.2 97.5 99.3 98.2 97.6 98.9 98.7

sink 80.1 89.7 89.3 81.5 91.2 89.3 81.9 91.0 89.9 83.3 91.8 90.8 86.1 92.9 92.7
refrigerator 75.9 91.2 83.2 73.9 90.7 81.5 75.1 91.4 82.2 79.4 94.0 84.5 87.8 95.7 91.8

airconditioner 68.6 75.9 90.4 67.8 77.7 87.3 66.7 75.3 88.6 73.7 80.1 92.0 80.5 84.4 95.4
bath 57.2 75.0 76.3 54.0 71.1 75.9 60.7 77.7 78.1 64.6 81.7 79.1 73.2 85.0 86.1

bath tub 62.7 78.8 79.6 57.4 78.3 73.2 61.6 80.3 76.7 65.0 82.3 79.0 76.1 91.4 83.2
washing machine 74.0 86.3 85.8 73.4 88.8 82.6 78.1 90.3 86.5 78.2 90.7 86.2 86.7 93.8 92.5

urinal 89.2 93.5 95.5 90.0 95.0 94.7 89.5 94.3 94.9 91.4 96.0 95.2 93.8 96.7 96.9
squat toilet 88.8 95.7 92.7 90.2 96.6 93.4 89.6 96.0 93.4 90.4 96.8 93.3 93.6 97.5 96.1

toilet 86.5 94.4 91.6 88.4 96.0 92.1 88.8 96.4 92.1 90.0 96.0 93.7 92.9 97.2 95.6
stairs 61.3 77.8 78.8 60.9 77.9 78.1 61.4 79.1 77.6 64.9 82.1 79.1 72.5 85.3 85.0

elevator 79.8 89.6 89.0 75.8 89.1 85.2 76.4 87.9 86.9 81.5 91.3 89.2 88.8 94.4 94.1
escalator 33.9 48.1 70.6 35.4 49.6 71.4 33.6 50.0 67.2 51.4 68.5 75.0 60.6 75.6 80.2

row chairs 85.1 90.8 93.8 80.2 86.6 92.7 84.6 90.6 93.3 83.9 89.9 93.4 84.3 89.2 94.5
parking spot 65.8 80.2 82.1 65.3 81.4 80.2 68.9 85.7 80.4 70.4 84.5 83.3 73.4 86.7 84.7

wall 35.7 55.5 64.4 31.7 51.1 62.2 41.6 64.6 64.4 38.5 59.4 64.9 53.5 77.5 69.0
curtain wall 30.1 41.6 72.3 34.4 46.2 74.4 31.5 44.2 71.2 33.8 46.1 73.3 44.2 60.2 73.5

railing 20.7 29.0 71.4 16.1 23.2 69.5 28.1 37.7 74.5 29.7 40.9 72.5 53.0 66.3 80.0
total 73.1 83.3 87.7 72.7 82.9 87.6 74.3 85.8 86.6 77.3 87.1 88.7 83.3 91.1 91.4

Table 5: Quantitative results for panoptic symbol spotting of each class. In the test split,
some classes have a limited number of instances, resulting in zeros and notably low values in the results.
A: Baseline. B: Baseline+ACM. C: Baseline+ACM+CCL. D: Baseline+ACM+CCL+KInter. E:
Final setting + long training epoch.

Baseline ACM CCL KInter PQ RQ SQ

✓ ✓ 62.1 75.3 82.4
✓ ✓ ✓ 64.9 76.1 85.3
✓ ✓ ✓ ✓ 66.7 77.3 86.4
✓ ✓ ✓ 62.5 74.3 84.1

Table 6: Ablation Stuides on different techniques in private dataset.

valid connections. We do not use color information in the floorCAD dataset because their
color information is not consistent for the same category while ours is consistent. It can
be seen that applying ACM does not lead to a decline in performance. In fact, there’s an
approximate 3% improvement in the PQ.

Vector Graphics Recognition Dataset. Similar to (Jiang et al., 2021; Shi et al., 2022),
we evaluate our method on SESYD, a public dataset comprising various types of vector
graphic documents. This database is equipped with object detection ground truth. For
our experiments, we specifically focused on the floorplans and diagrams collections. The
results are presented in Tab. 7 We achieved results on par with YOLaT(Jiang et al., 2021)
and RendNet(Shi et al., 2022), which are specifically tailored for detection tasks. The
aforementioned results further underscore the robust generalizability of our method. Some
comparison visualized results with YOLaT are shown in Fig. 7.

14



Published as a conference paper at ICLR 2024

Methods AP50 AP75 mAP

Yolov4 93.04 87.48 79.59
YOLaT 98.83 94.65 90.59
RendNet 98.70 98.25 91.37
SymPoint 96.79 95.63 91.01

(a) Performance comparison on floorplans.

Methods AP50 AP75 mAP

Yolov4 88.71 84.65 76.28
YOLaT 96.63 94.89 89.67
RendNet - - -
SymPoint 97.0 94.51 90.26

(b) Performance comparison on diagrams.

Table 7: Performance comparison on floorplans and diagrams.

A.4 Additional Qualitative Evaluations

The results of additional cases are visually represented in this section, you can zoom in on
each picture to capture more details, primitives belonging to different classes are represented
in distinct colors. The color representations for each category can be referenced in Fig. 8.
Some visualized results are shown in Fig. 9, Fig. 10 and Fig. 11 .
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(a) prediction

(b) bilinear interp (down 4x)

(c) bilinear interp (down 16x)

(d) original point mask

(e) KNN interp (down 4x)

(f) KNN interp (down 16x)

Figure 6: KNN interp vs bilinear interp.
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Figure 7: Qualitative comparison on floorplans and diagrams with YOLaT. The left column
displays YOLaT’s results, while the right column showcases ours.
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Figure 8: A visualized color map is provided for each class along with its corresponding
super-class.
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(a) GT (b) SymPoint

Figure 9: Results of SymPoint on FloorPlanCAD.
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(a) GT (b) SymPoint

Figure 10: Results of SymPoint on FloorPlanCAD.
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(a) GT (b) SymPoint

Figure 11: Results of SymPoint on FloorPlanCAD.
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