Under review as a conference paper at ICLR 2026

RILE: REINFORCED IMITATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Acquiring complex behaviors is essential for artificially intelligent agents, yet
learning these behaviors in high-dimensional settings, like robotics, poses a signif-
icant challenge due to the vast search space. There are three main approaches that
address this challenge: 1. Reinforcement learning (RL) defines a reward function,
which requires extensive manual effort, 2. Inverse reinforcement learning (IRL)
uncovers reward functions from expert demonstrations but relies on a computa-
tionally expensive iterative process, and 3. Imitation learning (IL) directly com-
pares an agent’s actions with expert demonstrations; however, in high-dimensional
environments, such binary comparisons often offer insufficient feedback for ef-
fective learning. To address the limitations of existing methods, we introduce
RILe (Reinforced Imitation Learning), a framework that learns a dense reward
function efficiently and achieves strong performance in high-dimensional tasks.
Building on prior methods, RILe combines the granular reward function learn-
ing of IRL and computational efficiency of IL. Specifically, RILe introduces a
novel trainer—student framework: the trainer distills an adaptive reward function,
and the student uses this reward signal to imitate expert behaviors. Uniquely, the
trainer is a reinforcement learning agent that learns a policy for generating re-
wards. The trainer is trained to select optimal reward signals by distilling signals
from a discriminator that judges the student’s proximity to expert behavior. We
evaluate RILe on general reinforcement learning benchmarks and robotic locomo-
tion tasks, where RILe achieves state-of-the-art performance.

1 INTRODUCTION

Learning complex behaviors is critical for the advancement of artificially intelligent agents in many
fields such as robotics. Over the years, reinforcement learning (RL) has emerged as a powerful
framework for teaching agents to perform sophisticated tasks, yet it often requires extensive manual
reward function design. This is both time-consuming and error-prone. There are two broad classes of
methods that address the reward engineering problem: inverse reinforcement learning and imitation
learning.

First, Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000} Ziebart et al.l |2008) infers the
reward function from expert demonstrations, reducing the burden of manual reward engineering.
Although IRL yields a reward function capable of providing nuanced feedback at different stages
of learning, the iterative process of learning such a reward function is computationally expensive
(Zheng et al 2022)), especially in high-dimensional environments with a large state-action space.
To address this inefficiency, Adversarial Inverse Reinforcement Learning (AIRL) learns the reward
function within a binary classifier (discriminator), which is trained to distinguish expert data from
those produced by the learning agent. However, the learned reward function in AIRL is optimized
as a component of a binary classifier, constraining it to serve the primary objective of classification
rather than being optimized to provide the most effective guidance for the learning agent.

Second, Imitation learning (IL) bypasses explicit reward design by directly comparing learned be-
haviors to expert demonstrations. Traditional IL approaches such as Behavioral Cloning (BC) (Bain
& Sammut, [1995) match learned actions with expert demonstrations directly, requiring a substan-
tial amount of expert data in high-dimensional tasks. Adversarial Imitation Learning (AIL), such
as GAIL (Ho & Ermonl 2016)), employs a binary classifier (discriminator) that distinguishes expert
data from those produced by the learning agent, and uses it as the reward function. Using the direct
output of this classifier as a reward signal provides limited information. This sparse signal indicates

Under review as a conference paper at ICLR 2026

whether a behavior is expert-like or not, but often fails to provide a useful guidance when the agent’s
behavior is far from the expert demonstrations, a common scenario in high-dimensional tasks where
most behaviors are simply classified as non-expert.

Real-life learning scenarios suggest a different approach that does not rely on a judge to guide the
learning process: think of parents and children, or a pet owner and their dog. The teacher also re-
fines how they teach as the student progresses. Each success or failure in the student’s understanding
shapes the teacher’s approach: lessons learned from suboptimal student behaviors ultimately yield
better trainers, which, in turn, guide the student more effectively and result in better students. While
Adpversarial Imitation Learning (AIL) updates a policy and a discriminator simultaneously, their rela-
tionship is fundamentally adversarial. The discriminator’s objective is to minimize its classification
error, an objective that is better achieved when the student agent produces easily distinguishable,
non-expert behaviors. Therefore, the discriminator’s objective is fundamentally misaligned with
that of a teacher: it is rewarded for identifying failure, not for creating a path to success.

Inspired by these insights, we propose Reinforced Imitation Learning (RILe). RILe combines the
reward learning benefits of IRL with the computational efficiency of AIL (Fig.[I}(d)). RILe is a
novel trainer-student system that is composed of:

» Student Agent: Learns a policy to imitate expert demonstrations using reinforcement
learning.

* Trainer Agent: Simultaneously learns a reward function using reinforcement learning,
leveraging an adversarial discriminator for continuous feedback on student performance.

RILe’s trainer continuously updates the reward function in tandem with the student’s policy updates,
whereas IRL refines its reward function only after training a policy to convergence on the current
reward function. Specifically, the trainer queries a discriminator to measure how expert-like the
student’s behavior is, then optimizes the reward function based on that feedback, without waiting
for the policy to converge. Similar to IRL, RILe offers nuanced reward learning, while avoiding
IRL’s heavy computational loop. Our contributions are two-fold:

1. Efficient Reward-Function Learning via RL: We introduce a reinforcement-learning-
based approach for training a reward function simultaneously with the policy. This avoids
IRL’s repeated policy re-training and learns the reward function efficiently.

2. Dynamic Reward Customization: RILe offers context-sensitive guidance that adapts to
the student’s evolving skill level, because the trainer agent updates the reward function as
student evolves. This dynamic reward shaping is valuable in high-dimensional tasks, where
the learning agent requires different forms of rewards in different stages of the training.

We evaluate RILe in comparison to state-of-the-art methods in AIL, IRL, and AIRL: GCL (Finn
et al., 2016), REIRL (Boularias et al., 2011), GAIL (Ho & Ermon), 2016) AIRL (Fu et al.l 2018),
GAIfO (Torabi et al., 2018b), BCO (Torabi et al., [2018a)), IQ-Learn (Garg et al., 2021) and DRAIL
(Lai et al., [2024). Our experiments span six studies: (1) Comparing different trainer-discriminator
relationships in RILe, (2) Empirically analyzing how RILe’s reward-learning differs from baselines,
(3) Comparing the computational cost of RILe with baselines, (4) Assessing RILe’s performance in
both low- and high-dimensional continuous-control problems, and (5) Analyzing the effect of using a
more advanced discriminator in RILe. Our results show RILe achieves state-of-the-art performance,
particularly in high-dimensional environments.

2 RELATED WORK

We review research on learning from expert demonstrations, focusing on Imitation Learning (IL)
and Inverse Reinforcement Learning (IRL), the conceptual foundations of RILe.

Imitation Learning Early work in IL introduced Behavioral Cloning (BC) (Bain & Sammut,
1995)), which frames policy learning as a supervised problem where the agent’s actions are directly
matched to expert demonstrations. DAgger (Ross et al.| 2011)) refines BC by aggregating data over
multiple iterations to mitigate compounding errors. GAIL (Ho & Ermon,|2016) employs adversarial
training: a discriminator learns to distinguish expert trajectories from the agent’s, and takes the role
of the reward function for the generator (agent). BCO (Torabi et al.,|2018a) extends BC, and GAIfO
(Torabi et al.| 2018b)) extends GAIL, both to handle state-only observation scenarios. DQfD (Hester

Under review as a conference paper at ICLR 2026

et al., 2018)) introduces a two-stage approach with pre-training, while ValueDice (Kostrikov et al.,
2020) employs a distribution-matching objective. More recently, DRAIL (Lai et al.,[2024) leverages
a diffusion-based discriminator to enhance learning efficiency.

Despite these advances, IL methods face challenges in high-dimensional environments (Peng et al.,
2018} (Garg et al., |2021), where the use of near-binary comparisons does not provide sufficient
granular guidance.

Inverse Reinforcement Learning Inverse Reinforcement Learning (IRL), introduced by [Ng &
Russell| (2000), aims to uncover the expert’s intrinsic reward function from demonstrations. IRL
proceeds iteratively: it first trains a policy (the learning agent’s decision-making mechanism) using
the current reward function, observes how well the agent’s behavior aligns with the expert’s, and
then refines the reward function to better guide the policy toward expert-like behaviors. Repeating
this process eventually yields a reward function capable of providing nuanced feedback at different
stages of learning, but the iterative process renders IRL computationally expensive. Major devel-
opments include Apprenticeship Learning (Abbeel & Ng|, 2004), Maximum Entropy IRL (Ziebart
et al.}2008), and adversarial variants like AIRL (Fu et al., 2018)). IQ-Learn (Garg et al., 2021) refor-
mulates IRL by integrating the inverse reward learning process into Q-learning for better scalability.
More recent work focuses on unstructured data (Chen et al.l 2021) and cross-embodiment transfer
(Zakka et al., [2022).

Nonetheless, IRL methods struggle with computational inefficiency and limited scalability (Arora
& Doshil 2021)), particularly in high-dimensional tasks where repeated iterations of policy learning
and reward refinement become costly.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A standard Markov Decision Process (MDP) is defined by (S, A, R, T, K,~). S is the state space
consisting of all possible environment states s, and A is action space containing all possible environ-
ment actions a. R = R(s,a) : S x A — Risthereward function. T' = {P(-|s, a)} is the transition
dynamics where P(-|s, a) is an unknown state transition probability function. K (s) is the initial state
distribution, i.e., so ~ K (s) and ~y is the discount factor. The policy m = 7(als) defines a probabil-
ity distribution over actions for each state. In this work, we consider ~y-discounted infinite horizon
settings. Following Ho & Ermon| (2016)), expectation with respect to the policy m € II refers to
the expectation when actions are sampled from 7(s): Ex[R(s,a)] £ Ex[> o, 7' R(st, at)], where
o is sampled from an initial state distribution K(s), a; is given by 7 (-|s;) and s;11 is determined
by the unknown transition model as P(|s¢, a;). The unknown reward function R(s, a) generates a
reward given a state-action pair (s, a). We consider a setting where R = R(s, a) is parameterized
by 0 as Ry(s,a) € R (Finn et al.| [2016).

Our work considers an imitation learning problem from expert trajectories, consisting of states s and
actions a. The set of expert trajectories 7 are sampled from an expert policy 7g, and we assume
that we have access to m expert trajectories.

3.2 REINFORCEMENT LEARNING (RL)

Reinforcement learning seeks an optimal policy, 7* that maximizes the discounted cumulative re-
ward from the reward function R = R(s,a) (Fig. (a)). In this work, we incorporate entropy
regularization using the v-discounted entropy function H(w) = E,[—log 7(a|s)] (Ho & Ermon),
2016; |Bloem & Bambos| [2014). The RL problem with a parameterized reward function and entropy
regularization is defined as

RL(Ry(s,a)) = n* = argmaxE,[Ry(s,a)] + H (7). (1)
3.3 INVERSE REINFORCEMENT LEARNING (IRL)

Given sample trajectories 7g from an optimal expert policy mg, inverse reinforcement learning
aims to recover a reward function Rj(s,a) that maximally rewards the expert’s behavior (Fig.

Under review as a conference paper at ICLR 2026

Environment Environment

. i,

OTraining s
Reward

Function Expert Data /

Student Environment s Environment

b

Expert Data 4 ExpertData
K D K

(c) GAIL & AIRL (terms in green) (d) RILe

Figure 1: Overview of the related works. (a) Reinforcement Learning (RL): learning a policy
that maximizes hand-defined reward function; (b) Inverse RL (IRL): learning a reward function
from expert data. IRL has two stages: 1. train a policy on the current reward function, and 2.
update the reward function by comparing the converged policy with data. This loop is repeated
multiple times; (C) GAIL & AIRL: using discriminator as a reward function. The discriminator
is trained to distinguish agent-generated data from expert data, and the policy is trained to fool
the discriminator. AIRL introduces a specific structure (terms in green) to disentangle the learned
reward from environment dynamics. (D) RILe: learns a reward function simultaneously with the
policy. The trainer agent learns to generate rewards for the student agent which learns the policy.

(b)). Formally, IRL seeks a reward function, R}(s,a), satisfying: E,[> 72 v Rj(se, ar)] >
Er[> ooV Ry (st,ar) + H(m)] V. Optimizing this reward function with reinforcement learning
yields a policy that replicates expert behavior: RL(Rj(s,a)) = 7*. Since only the trajectories are
observed, expectations over 7 are estimated from samples in 7g. Incorporating entropy regulariza-
tion H (), maximum causal entropy inverse reinforcement learning (Ziebart et al., 2008)) is defined
as

IRL(7g) = ;r(g m)ae)]; (ESMETE [Ro(s,a)] — max (E;[Ro(s,a)] + H(ﬂ'))) . 2)

3.4 ADVERSARIAL IMITATION LEARNING (AIL) AND ADVERSARIAL INVERSE
REINFORCEMENT LEARNING (AIRL)

Imitation Learning (IL) aims to directly approximate the expert policy from given expert trajectory
samples 7. It can be formulated as IL(7g) = argmin, E(s o)~ [L(7(:]5), a)], where L is a loss
function, that captures the difference between policy and expert data.

GAIL (Ho & Ermonl [2016)) introduces an adversarial imitation learning setting by quantifying the
difference between the agent and the expert with a discriminator Dy (s, a), parameterized by ¢ (Fig.
(c)). The discriminator distinguishes between between expert-generated state-action pairs (s, a) €
7g and non-expert ones (s,a) ¢ 7p. The goal of GAIL is to find the optimal policy that fools
the discriminator. The optimization is formulated as a zero-sum game between the discriminator
Dy(s,a) and the policy 7

m;n mgXIEW[log Dy(s,a)] +E- [log (1 — Dy(s,a))] — AH(m). (3)

Consequently, the reward function that is maximized by the policy is defined as R(s,a) =
—log (Dy(s,a)).

Under review as a conference paper at ICLR 2026

Environment
_a

Student
< o
| [}
L
™
a® a 7

o0

Figure 2: Reinforced Imitation Learning (RILe). The framework consists of a student, trainer,
and discriminator. (1-2) The student 7g interacts with the environment. (3) The student’s state-
action pair (s°, a®) becomes the trainer’s observation. (4) The trainer’s policy 77 outputs an action
a”, which serves as the student’s reward (r° = a”). (5-6) The discriminator receives both student
and expert data. (7) The discriminator then provides a reward to the trainer based on the similarity
between the student and expert data.

AIRL (Fu et al.,[2018)) extends AIL aiming to recover a reward function decoupled from environment
dynamics (Fig. [I}(c)). AIRL structures the discriminator as:

eXp(f¢>(8, a, S/))
exp(f¢(s, a, 51)) + W(a‘s) 7

where fy(s,a,s") = ry(s,a) +YVy(s") — Vu(s). Here, 74(s,a) represents the learned reward
function that is decoupled from the environment dynamics, and yVy(s") — Vi (s) is the discrimina-
tor based shaping term. The AIRL optimization problem is formulated equivalently to GAIL (see
Eqn. [3). Therefore, the reward function (s, a) is learned through minimizing the cross-entropy
loss inherent in this adversarial setup, and its optimization is therefore constrained by the primary
objective of classification.

D¢ﬂb (5’ a, S/) = €]

4 RILE: REINFORCED IMITATION LEARNING

We propose Reinforced Imitation Learning (RILe) to jointly learn a reward function and a pol-
icy that emulates expert-like behavior within a single learning process. RILe introduces a novel
trainer—student dynamic, as illustrated in Figure Q

In RILe, the student agent learns an action policy by interacting with the environment, while the
trainer agent learns a reward function that effectively guides the student toward expert-like behavior.
Both agents are trained simultaneously via reinforcement learning, with assistance from an adver-
sarial discriminator. Specifically, the trainer queries the discriminator, which judges how expert-like
the student’s behavior is, and then learns a reward function based on that feedback on-the-fly. Un-
like traditional AIL, where the discriminator is directly employed as the reward function, RILe
introduces a trainer agent to learn a more adaptive reward function that provides context-sensitive
feedback, while avoiding IRL’s iterative computational expense.

The trainer agent plays the key role in RILe. Trained via RL, it learns a policy for generating
rewards by maximizing the cumulative rewards it receives from the discriminator. This approach
equips RILe with two key advantages: (1) On-the-fly Reward Function Learning via RL: The
reward function is learned continuously with RL, enabling the trainer to efficiently explore different
reward options and learn an effective reward function, and (2) Context-sensitive Guidance: The
trainer continuously adjusts its reward outputs in response to the student’s evolving policy, providing
tailored feedback at different stages of training (see Appendix [D]for more discussion).

In the remainder of this section, we define the components of RILe and explain how they jointly
learn from expert demonstrations.

Student Agent The student agent learns a policy mg within a standard MDP framework. Instead
of using a handcrafted reward, the student is guided by the trainer’s policy, mr. At each step, the

Under review as a conference paper at ICLR 2026

trainer’s policy outputs a scalar action, a” ~ 77((s%,a®)), which directly serves as the student’s
reward: 7° = a”. The student’s objective is to maximize the expected rewards generated by the
trainer:

HTlraXE(sS,as)Nﬂs [ﬂ-T ((ssv aS))} + OZH(TFs). @)

Discriminator The discriminator, parameterized by ¢, differentiates between expert-generated
state-action pairs, (s, a) ~ 7g, and pairs from the student, (s,a) ~ mg. Its objective is the standard
binary cross-entropy loss from AIL:

mgx E(S;Q)NTE [log(D¢(s, CL))] =+ E(s,a)~7rs [lOg(l - D¢>(S7 CL))} (6)

As established by GAIL (Ho & Ermon, [2016), this objective effectively trains the discriminator to
identify expert-like behavior.

Trainer Agent The trainer agent learns a policy, 77, that outputs reward signals for the student.
The trainer observes the student’s current state-action pair s” = (s°, a®) and outputs a scalar action
al € [—1, 1], which becomes the student’s reward, 5. The trainer is, in turn, rewarded based on
how well its action a” matches the discriminator’s evaluation of the student’s behavior, D(sT):

RT — ¢~ lv(Dy(sT))—a”| (7)

where v(z) = 2z — 1 scales the discriminator’s output, making it symmetric around zero. We
use exponential function since it is bounded and saturates for large deviations, which avoids over-
penalizing outliers. The trainer’s RL objective drives it to learn a policy that maximizes long-term
outcomes, rather than myopically mimicking the discriminator at each step. Formally, the trainer’s
objective is to maximize its expected cumulative reward:

max B o)ms e PP 1 aH (). ()

aT ~TT
RILe RILe optimizes these three components, student, trainer, and discriminator, simultaneously.
While both g and 7 can be trained with any single-agent RL algorithm, we use Soft Actor-Critic
(SAC) (Haarnoja et al.,|2018])) for both policies in our implementation.

Training these components jointly introduces stability challenges inherent to multi-agent and adver-
sarial systems. To ensure stable learning, we employ strategies such as periodically freezing the
trainer’s policy, which allows the student to learn from a temporarily stationary reward function.
These practical techniques are important for stability and are detailed in Appendix [B]

The complete optimization problem involves finding the optimal policies 7% and 7. The student
agent aims to recover the optimal policy 7§:

oo
//TZ' = arg maX]E(sS,aS)Nﬂ's [Z ’yt[ﬂ_T ((va ats)) + O‘H(,/TS(|StS))] : 9
s t=0
Simultaneously, the trainer aims to recover 77

mp = argmax B r Zwt [e_‘U(D¢(SfT))_“tT| + aH (mr(-|st]| - (10)

~Tg
r (I,TN‘ITT t=0

5 EXPERIMENTS

We evaluate RILe across five studies: (1) analysis of different trainer reward functions, (2) an em-
pirical analysis of the learned reward landscapes of RILe and baselines, (3) a comparison of compu-
tational cost against AIL and IRL, (4) a benchmark on continuous control tasks, and (5) an analysis
of the impact of using an advanced discriminator. Further experiments, including noise robustness
tests, are in Appendix [A] Experimental details are provided in the Appendix |C} and hyperparameter
selections are discussed in the Appendix |G|

Baselines We compare RILe with nine baseline methods: Behavioral cloning (BC (Bain & Sammut,
1995; Ross & Bagnell, 2010), BCO (Torabi et al., |2018a))), adversarial imitation learning (GAIL (Ho
& Ermon, 2016), GAIfO (Torabi et al.| [2018b) and DRAIL (Lai et al., |2024)), adversarial inverse
reinforcement learning (AIRL (Fu et al., [2018)), and inverse reinforcement learning (GCL (Finn
et al.,[2016), REIRL (Boularias et al., [2011)), IQ-Learn (Garg et al., 2021)).

Under review as a conference paper at ICLR 2026

(c) AIRL

Figure 4: Reward Function Comparison. Evolution of reward functions during training for (a)
RILe, (b) GAIL, and (c) AIRL in a maze environment. Columns show reward landscapes at 25%,
50%, 75%, and 100% of training completion. The expert’s trajectory is shown in black, and the
student’s trajectory from the previous epoch is in white. Color gradients represent reward values.

5.1 TRAINER-DISCRIMINATOR RELATION

We investigate how the interaction between
the trainer agent and the discriminator af-
fects RILe’s performance by comparing dif-
ferent trainer reward functions. Each reward
function defines a different relationship be-
tween the trainer’s action a” and the dis-
criminator’s output Dy(s?). We consider
following reward functions: (a) Difference
(RT = —[u(Dg(s")) — a”|). (b) Expo-
nential Difference (default in RILe): RT =
e~lv@s(s")=a"l " (¢) Multiplication (RT =
v(Dg(sT))aT)), (d) Naive (RT = Dy(sT))),
(e) Exponential Naive (BT = ¢1~P#(s"))) and
(H Sigmoid (RT = Dy(sT)o(aT)), where

v(r) =2z —lando(z) = 1+é_m.

6000
5000
= 4000
j=
@
E 3000 = Difference
~ === Difference Exp.
2000 == Multiplication
=== Naive
1000 == Naive Exp.
— Sigmoid
0
0.25 0.50 0.75 1.00 1.25 1.50
Steps 1e6

Figure 3: Trainer-Discriminator Relation:
Comparison of different trainer reward functions,
each defining a different relationship between the
trainer’s action and the discriminator’s output.

Figure[3|presents reward curves in MuJoCo Humanoid-v2 environment. While the exponential naive
reward offers the fastest convergence, the exponential difference reward offers the best performance.
Therefore, we use exponential difference reward as the default reward function in RILe.

5.2 REWARD FUNCTION EVALUATION

To evaluate how RILe’s reward-learning strategy differs from AI(R)L baselines, we compare them
empirically by visualizing the learned reward functions in a maze environment. In this environment,
the agent must navigate from a fixed start to a goal while avoiding static obstacles; we use a single

expert demonstration.

Under review as a conference paper at ICLR 2026

Table 1: Performance in Continuous Control Tasks. Scores are averaged over test seeds.
(a) MuJoCo Benchmark (b) LocoMujoco Benchmark

RILe GAIL AIRL IQ BCO GAIfO

Atlas 870.6 792.7 300.5 309 21.0 8342

Humanoid 5928 5709 5623 5258 % Talos 842.5 4423 102.1 45 119 7100
2 UnitreeHl 966.2 950.2 568.1 8.8 34.8 526.8

Walker2d 4506 4906 4823 5133 Humanoid 831.3 181.4 80.1 4.5 3.5 706.5

Hopper 3573 3361 3014 3504 » Atlas 850.8 669.3 256.4 36.8 20.3 810.1
£ Talos 220.1 186.3 1342 105 103 212.5
HalfCheetah 5205 4173 3991 4820 © UnitreeH1 788.3 634.6 130.5 14.4 21.1 6045

RILe GAIL AIRL IQ

Figure [4] shows how the learned reward function evolves during training. For RILe, we plot the
reward function learned by the trainer; for GAIL and AIRL, we visualize the discriminator outputs.

RILe’s reward function dynamically adapts to the student’s current policy, providing context-
sensitive guidance that eventually leads the student closer to the expert trajectory. By contrast,
GAIL and AIRL’s reward functions remain relatively static.

5.3 COMPUTATIONAL COST AND PERFORMANCE TRADE-OFFS

We compare RILe’s computational cost with Adversarial Imitation Learning (AIL) (GAIL (Ho &
Ermonl 2016))) and Inverse Reinforcement Learning (IRL) (GCL (Finn et al.l |2016) and REIRL
(Boularias et al.,2011))). The evaluation is performed on four continuous control tasks from MuJoCo
Playground (Zakka et al.,[2025). As gradient steps aggregated over all components are a hardware-
agnostic proxy for wall-clock time, we use this metric for a fair comparison of computational cost.

600 - RiLe 600 - RiLe 1000 - e 1000 - nuie

e Gl ot A oat
k=] - GCL = - GCL k=] - GCL - - GCL
5500 _ meme 5500 _ qeme 5 800 _ reme 5 800 _ pem
H z H z
400 Gaoo & 00 8 600
© 300 @ 300))
g 3 B 400 g 400
_%200 .2200 g é"

—_— . .
100 _/,v" =100 & 200 & 200
0 , 0 _ (0 - 0 —— -
106 107 10® 10° 10' 10" 106 10 10% 10° 10 10 108 107 10% 10° 10' 10" 10° 107 10%® 10° 10'° 10"
Gradient Steps Gradient Steps Gradient Steps Gradient Steps
(a) FishSwim (b) SwimmerSwimmer6 (c) WalkerStand (d) HumanoidStand

Figure 5: Comparison of Computational Cost: Evaluation of the computational cost versus per-
formance for RILe, GAIL, GCL, and REIRL across four MuJoCo Playground tasks.

Figure [5] plots evaluation rewards against gradient steps. While GAIL is highly efficient, its peak
performance is limited, particularly in the complex HumanoidStand task. Conversely, IRL methods
achieve higher rewards but require orders of magnitude more gradient steps to do so. RILe suc-
cessfully bridges this gap, achieving the high performance characteristic of IRL while maintaining
sample efficiency closer to that of AIL.

5.4 PERFORMANCE IN CONTINUOUS CONTROL TASKS

We evaluate RILe’s performance on two sets of continuous control benchmarks. First, we use a
standard benchmark of MuJoCo tasks (Todorov et al., [2012; Brockman et al., 2016), where the
agent learns from a small set of clean state-action expert trajectories. As shown in Table [Ta] RILe
achieves the highest final reward in three of the four environments, while IQ-Learn performs best
on Walker2d. 1Q-Learn’s direct, value-based formulation may offer stability advantages on lower-
dimensional tasks like Walker2d, whereas RILe’s adaptive reward mechanism appears to provide a
greater benefit in high-dimensional settings like Humanoid.

Second, we test RILe on a more challenging high-dimensional robotic locomotion benchmark that
uses noisy, state-only motion-capture data (Al-Hafez et al.,[2023)). Table@] shows that RILe obtains
the highest score across all seven tasks, which span different robotic embodiments and objectives.

Under review as a conference paper at ICLR 2026

The performance across both benchmarks highlights RILe’s effectiveness in learning from expert
data in high-dimensional domains, with both clean state-action data and more challenging noisy,
state-only observations data.

5.5 IMPACT OF ADVANCED DISCRIMINATORS

The quality of the discriminator is critical for adversarial imitation learning. To analyze how differ-
ent discriminators affect methods, we replace the standard discriminators of RILe and GAIL with
the more advanced diffusion-based model from DRAIL |Lai et al.[(2024).

We analyze the impact on reward dynamics using three metrics, which are formally defined in Ap-
pendix Q (1) Reward Function Distribution Change (RFDC) to measure the overall volatility of
the reward function, (2) Fixed-State RFDC (FS-RFDC) to measure reward volatility on a fixed set
of expert data, and (3) Correlation between Performance and Reward (CPR) to measure how well
reward improvements align with gains in student performance.

As shown in Figure [6] the DRAIL discriminator reduces the volatility of the reward function for
both methods (lower RFDC and FS-RFDC), but RILe’s reward function remains more adaptive.
Furthermore, both RILe and DRAIL-RILe exhibits a positive CPR, indicating its adaptive rewards
are well-aligned with student performance gains. In contrast, GAIL-based methods eventually de-
velop a negative correlation, suggesting their more static reward signals become misaligned with the
student’s progress as it improves .

.21 5 X
o 0.20 0.15 0.05 1. e = R
a @ 1000 [l DRAIL-RILe
0.15 0.00 =3 GAIL

[DRAIL-GAIL

S
o

-0.05 =

e

=)

o
o

L1 Distance
7l
°
a
°
°
Pearson Correlation
o
Reward

-0.10 o}

Wasserstein Distanc

0.00 0.2 0.4 0.6 0.8 1.0 0.00 0.2 0.4 0.6 0.8 1.0 -0.15 02 04 06 08 1.0 900
Steps le6 Steps le6 Steps le6 RILe GAIL
(a) RFDC (b) FS-RFDC (c) CPR (d) Performance

Figure 6: Impact of an Advanced Discriminator Plots (a-c) show reward dynamics. Plot (d)
compares final performance. RILe effectively leverages the advanced discriminator to improve per-
formance.

The difference in reward dynamics appears impact final task performance (Figure [6d). With the ad-
vanced discriminator, RILe’s performance improves, whereas GAIL’s performance remains stable.

6 DISCUSSION

Our experiments demonstrate that RILe is a compelling and effective alternative to established im-
itation learning methods. RILe’s effectiveness stems from its adaptive reward shaping: the trainer
agent provides a dynamic, context-sensitive learning signal, which leads to strong performance in
high-dimensional control tasks and is visualized in the maze environment, where the reward land-
scape adapts to the student’s progress. This dynamic guidance is critical in high-dimensional settings
where a static signal can be uninformative.

The dynamic, two-level learning framework of RILe introduces a trade-off between adaptivity and
stability. While practical solutions like freezing the trainer agent offer stability, they prevent contin-
uous co-adaptation with the student. RILe also inherits challenges from its adversarial component,
such as potential discriminator overfitting. These limitations point toward several promising research
directions. To address the stability-adaptivity trade-off, techniques from cooperative multi-agent re-
inforcement learning could be explored. Another promising direction is to reduce the reliance on a
discriminator by designing trainers that provide more structured forms of guidance, such as learned
value estimates or uncertainty-aware signals, moving beyond a single scalar reward.

In conclusion, RILe frames imitation learning as a simultaneous process of learning a policy and
learning how to teach it. This approach is more computationally efficient than traditional IRL and
provides more adaptive feedback than AIL. By reframing the reward generator from a static judge
to an adaptive coach, our work opens new possibilities for creating more intelligent and responsive
learning agents.

Under review as a conference paper at ICLR 2026

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive
imitation learning benchmark for locomotion. In 6th Robot Learning Workshop, NeurIPS, 2023.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103-129, 1995.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse rein-
forcement learning. 53rd IEEE Conference on Decision and Control, pp. 4911-4916, 2014. URL
https://api.semanticscholar.org/CorpusID:14981371.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pp. 182-189. IMLR Workshop and Conference Proceedings, 2011.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. In Robotics: Science and Systems, 2021.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49-58. PMLR,
2016.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Ig-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028-4039, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, lan Osband, et al. Deep g-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.

Chun-Mao Lai, Hsiang-Chun Wang, Ping-Chun Hsieh, Yu-Chiang Frank Wang, Min-Hung
Chen, and Shao-Hua Sun. Diffusion-reward adversarial imitation learning. arXiv preprint
arXiv:2405.16194, 2024.

10

https://api.semanticscholar.org/CorpusID:14981371
http://github.com/google/brax
http://github.com/google/brax

Under review as a conference paper at ICLR 2026

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, pp. 663—-670, 2000.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1-14, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661-668. JMLR
Workshop and Conference Proceedings, 2010.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627-635. JMLR Workshop and Conference
Proceedings, 2011.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning
from noisy demonstrations. In International Conference on Artificial Intelligence and Statistics,
pp- 298-306. PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
1IEEE, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 4950-4957, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imi-
tation learning from imperfect demonstration. In International Conference on Machine Learning,
pp- 6818-6827. PMLR, 2019.

Yiqing Xu, Wei Gao, and David Hsu. Receding horizon inverse reinforcement learning. Advances
in Neural Information Processing Systems, 35:27880-27892, 2022.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta
Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot
Learning, pp. 537-546. PMLR, 2022.

Kevin Zakka, Baruch Tabanpour, Qiayuan Liao, Mustafa Haiderbhai, Samuel Holt, Jing Yuan Luo,
Arthur Allshire, Erik Frey, Koushil Sreenath, Lueder A. Kahrs, Carlo Sferrazza, Yuval Tassa, and
Pieter Abbeel. Mujoco playground: An open-source framework for gpu-accelerated robot learn-
ing and sim-to-real transfer., 2025. URL https://github.com/google—deepmind/
mujoco_playground.

Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor W Tsang, and Fang Chen. Imitation learning:
Progress, taxonomies and challenges. IEEE Transactions on Neural Networks and Learning Sys-
tems, pp. 1-16, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 8, pp. 1433-1438. Chicago, IL, USA, 2008.

11

https://github.com/google-deepmind/mujoco_playground
https://github.com/google-deepmind/mujoco_playground

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS

A.1 ROBUSTNESS TO NOISE AND COVARIATE SHIFT

We evaluate RILe’s robustness to noisy expert demonstrations and environmental covariate shift.
First, to evaluate the noise robustness of RILe In the MuJoCo Humanoid-v2 environment, we inject
a zero-mean Gaussian noise (varying) into either expert actions or states. We use GAIL (Ho &
Ermonl [2016), AIRL (Fu et al. |2018)), RIL-Co (Tangkaratt et al., 2021), and IC-GAIL (Wu et al.,
2019) as baselines. Table [2| shows that RILe consistently outperforms baselines across all noise
levels. Notably, it maintains high performance even under heavy noise (X = 0.5).

Table 2: Robustness to different noise levels in the expert demon- ~ Table 3: Robustness to co-
strations. variate shifts.
RILe GAIL AIRL RIL-Co IC-GAIL RILe AIRL
No Noise X =0 5928 5709 5623 576 610 No Noise 5928 5623
Action > =10.2 5280 5275 4869 491 601 Mild
> =0.5 5154 902 4589 493 568 > =0.2 5201 5005
State > =0.2 5350 5147 4898 505 590 High
> =0.5 5205 917 4780 501 591 ¥ =05 5196 4967

Second, inspired by Xu et al.| (2022), we evaluate the stability of the reward functions learned by
RILe and AIRL. First, we train both models in a clean environment. Then, we freeze the learned
reward functions and train new student agents in environments where Gaussian noise is injected into
their actions (covariate shift). Table [3]shows that the reward function learned by RILe demonstrates
superior robustness to covariate shift, maintaining high performance even under increased noise
levels.

B TRAINING STRATEGIES

The introduction of the trainer agent into the AIL framework introduces instabilities that can hinder
the learning process. To address these challenges, we employ three strategies.

Freezing the Trainer Agent Midway: We hypothesize that continuing to train the trainer agent
throughout the entire process leads to overfitting on minor fluctuations in the student’s behavior.
This overfitting causes the trainer to assign inappropriate negative rewards, which diverts the student
away from expert behavior, especially since the student agent may fail to interpret these subtle
nuances correctly in the later stages of training. To prevent this, we freeze the trainer agent (and the
discriminator) once its critic network within the actor-critic framework converges during the training
process.

Utilizing a Smaller Buffer for the Trainer Agent: We employ distinct replay buffer sizes for the
student and trainer agents. We use larger buffer for the student compared to the trainer, as detailed
in our hyperparameter configurations (see Appendix [G). This strategy ensures the trainer primarily
learns from the student’s recent interactions, allowing it to adapt its reward function more rapidly to
the evolving student policy instead of optimizing based on potentially outdated historical data. This
increased responsiveness provides more relevant, timely feedback to the student, which we found
empirically contributes to more stable and effective co-adaptation within the RILe framework across
different tasks.

Increasing the Student Agent’s Exploration: We increase the exploration rate of the student agent
compared to standard AIL methods. We implement an epsilon-greedy strategy within the actor-critic
framework, allowing the student to occasionally take random actions. This increased exploration
enables the student to visit a wider range of state-action pairs. Consequently, the trainer agent
receives diverse input, helping it learn a more effective reward function. This diversity is crucial
for the trainer to observe the outcomes of various actions and to guide the student more effectively
toward expert behavior.

12

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL SETTINGS

C.1 TRAINER-DISCRIMINATOR RELATION

We use single expert trajectory and train RILe with different trainer reward functions in Humanoid-
v2 environment. We show the reward curve in averaged across three evaluation seeds different from
the training seeds.

C.2 REWARD FUNCTION EVALUATION

We use single expert demonstration in this experiment, and use PPO (Schulman et al.| [2017) as the
learning agent for all methods. For RILe, we plot the reward function learned by the trainer. For
GAIL, we visualize the discriminator output, and for AIRL, the reward term under the discriminator.

The 2D axes in the maze environment (Fig. 4) represent the state space s” = (s°, a®) of the trainer
agent. To visualize the reward R(ST), for each student state s°, we calculate reward for a fixed set of
actions: A = {(vg,vy) @ vz vy € {—1, —0.5, 0, 0.5, 1}}. For each s (for each x,y coordinate
in the maze), we compute reward outputs for 25 actions, resulting in 5x5 slice of the reward surface.
This provides a landscape of the rewards the agent could expect to receive across the maze. Every
episode is initialized at the same starting point, and the training completion percentage refers to the
fraction of total training steps completed.

C.3 COMPUTATIONAL COST AND PERFORMANCE TRADE-OFFS

We train each method in MuJoCo playground, using 100 expert trajectories. Experts are trained
using SAC, following Brax configurations provided in (Zakka et al., 2025} [Freeman et al.| [2021).
We use the same configurations while training RILe, GAIL, GCL and REIRL, and train each method
for 50 million steps. We plot reward curves averaged across 10 evaluation seeds, which are different
from the training seeds.

C.4 PERFORMANCE IN CONTINUOUS CONTROL TASKS

For MuJoCo, each method is trained using 25 expert trajectories provided in the IQ-Learn paper
Garg et al.| (2021). We use SAC as the learning agent for all methods for a fair comparison. We
evaluate methods with 3 different seeds and report the mean of the results.

For LocoMujoco, we use all the motion capture data provided in (Al-Hafez et al., 2023)) for training
all the methods. We use SAC as the learning agent for all methods for a fair comparison. We evaluate
methods across 10 different seeds, and report the average score achieved. We use different random
seeds from those in training, introducing new random variations that affect the environment’s dy-
namics during state transitions.

C.5 IMPACT OF ADVANCED DISCRIMINATORS

In this experiment, we select the student agent’s hyperparameters to be identical to those used in
GAIL, ensuring that the only difference between the agents is the reward function. Therefore, we
use the best hyperparameters identified for GAIL, applied to both GAIL and RILe, from our hyper-
parameter sweeps presented in Appendix

RFDC: We calculate the Wasserstein distance between reward distributions over consecutive
10,000-step training intervals, denoted as times ¢ and ¢ 4 10, 000. This metric quantifies how much
the overall reward distribution shifts over time. Changes in reward distributions depend both on
the reward function and the student policy updates. Since we use the same student agent with the
same hyperparameters, higher RFDC values still indicate that the reward function is adapting more
dynamically in response to the student’s learning progress.

FS-RFDC: We compute the mean absolute deviation of rewards between consecutive 10,000-step
training intervals for a fixed set of states derived from expert data. As the fixed set, we use all the
states in the expert data. Since the states used for calculating rewards are fixed, changes in this

13

Under review as a conference paper at ICLR 2026

value purely depend on the reward function updates. This metric assesses how the reward values for
specific states change over time.

CPR: We evaluate how changes in the reward function correlate with improvements in student
performance. We store rewards from both the learned reward function and the environment-defined
rewards in separate buffers. In other words, we collect samples from two reward functions: the
learned reward function and the environment-defined reward function. The environment rewards
consider the agent’s velocity and stability. Every 10,000 steps, we calculate the Pearson correlation
between these rewards and empty the buffers. This metric evaluates whether increases in the learned
rewards relate to performance enhancements.

D DiscuUSSION ON RILE

D.1 MOTIVATION FOR THE TRAINER AGENT

The fundamental limitation of adversarial learning approaches lies in the nature of their objective
functions. The reward signal in AIL is a direct byproduct of a myopic, binary classification objective
aimed at instantaneously separating expert and student data. The optimal discriminator converges to
a quasistatic function of the expert and policy densities, D*(s,a) = pg(s,a)/(pe(s,a)+p=s(s,a))
(Goodfellow et al., 2014). A reward derived statically from this function is also myopic, tends
to saturate once the discriminator becomes confident, providing coarse, binary-like feedback that
is often insufficient for guiding an agent through complex, high-dimensional tasks. In contrast,
RILe’s trainer is a fully separate reinforcement learning agent whose objective is to maximize a
long-horizon, discounted sum of future discriminator rewards (Eq.[I0). The trainer learns a reward-
generating policy, not just a static function of the discriminator. This allows it to provide a seemingly
suboptimal reward at the current step if its value function, ()7, predicts this will lead to higher
discriminator scores in the long run.

The RL-based architecture also allows the trainer to explore reward strategies. Because the trainer
77 is an RL agent, its reward-giving action a” is not tied to the discriminator’s instantaneous judg-
ment. It is incentivized to explore different actions (i.e., different reward values for the student) for
the same state, a process encouraged by an entropy regularization term, H (77), in its objective.
This allows the trainer to gradually learn to steer the student into states that yield higher long-term
rewards, even if the discriminator’s immediate reward is low. The result is a dynamically changing
reward landscape that emphasize different subgoals as the student improves, a curriculum effect that
a static transformation of Dy fails to replicate.

RILe establishes a two-level learning dynamic rather than a fully adversarial setting. The student
works to maximize the rewards provided by the trainer, while the trainer learns to provide rewards
that effectively guide the student toward expert-like behavior. Their goals are aligned: for the student
to successfully imitate the expert and fool the discriminator. This student-trainer pair then operates
within a broader adversarial game, leveraging the feedback from the discriminator which remains in
a competitive relationship with the student’s generated trajectories.

D.2 JUSTIFICATION OF THE TRAINER AGENT

The reward policy 7 learned by the RILe trainer agent is fundamentally distinct from any static
transformation g(D,) of the discriminator’s output, except in the degenerate case where the trainer’s
learning objective is myopic (i.e., its discount factor yr = 0).

Myopic Reward: We consider a reward r(sy, a;) is myopic if it depends only on the current dis-
criminator output D (s, a;) and not on any future transitions or on the policy’s evolution.

In frameworks like GAIL or a hypothetical variant, the reward given to the student is a fixed, or
static, transformation, g(D¢), of the discriminator’s output:

Tg(styat) :9(D¢(5t,at)) (11)

By definition, this reward signal is myopic. The key characteristic is that its value depends only
on the instantaneous output of the discriminator and is independent of future consequences and
environment dynamics.

14

Under review as a conference paper at ICLR 2026

In contrast, RILe’s student reward is the action of the trainer agent:
T
rs(se, ar) = ay (12)

where al ~ 77 (-|sT). The trainer is a full reinforcement learning agent, and the trainer’s policy 77
is optimized to maximize its own long-horizon objective:

mh = argmax Er_, Z%}(RtT + aH(ﬂT(.|stT))) . (13)
T

af mmp Lt=0
where the crucial element is the discount factor v > 0.

The core of difference lies in the definition of the trainer’s action-value function, Q7 (sT7 aT), which
the policy 7} maximizes. According to the Bellman equation, Q7. is defined recursively:

Q;(S?7ag) = RtT + ,YTE82“+1NP('IS?,GZ) [VT*(SZ;I)} (14)

The key distinction lies in the second term:

’YTE[V;(Sz;l)] = ’yTEsf_HNT(»\sf,af)7af+1~7rs(-|sf+1)[V'l:k(sz:rl)] (15)

This term represents the discounted value of all future states and inextricably links the trainer’s
current action to its long-term consequences. The distribution of the next trainer state, stTH, isa
function of the environment’s dynamics, 7', and the student’s current policy, mg. Consequently,
the optimal trainer action a;” = arg max,r Q7 (s{ ,a{) has far richer dependencies than a static
function:

a;" = f(Dy(sesar),vr, Ty ms)

Because the trainer’s reward signal is dependent on its discount factor 7, environment dynamics 7',
and the student’s policy g, it cannot be reduced to a static transformation g(D,), which lacks these
dependencies. The trainer learns a strategic, forward-looking teaching policy rather than executing
a reactive, myopic mapping.

The only scenario where this distinction vanishes is the degenerate case where v = 0. If the
trainer is myopic, the future-looking term in Equation [T4] disappears. The objective collapses to
maximizing the immediate reward R}, making the trainer’s action a deterministic function of Dy
and thus functionally equivalent to a static transformation.

Finally, the trainer’s objective is also optimized with an entropy regularization term, a.H (7), which
forces the policy to be stochastic. A policy that outputs a distribution over rewards cannot be equiv-
alent to a deterministic function like g(Dy), providing a second, independent reason for their non-
equivalence.

Let g : [0,1] — [—1,1] be any deterministic function. There exists an MDP, student policy 7g,
and corresponding discriminator D, for which the optimal trainer action a¥.(s, a) differs between
two contexts despite Dy (s, a) being identical. Hence no static reward (r,(s,a) = g(Dg(s,a))) can
match the long-horizon shaping of 77..

We construct a simple 1-step MDP. Let the state space be S = {so, s1, $2}, where sg is the initial
state and s1, So are terminal states. From s, the student takes action ag. The expert demonstration
is the trajectory 7p = (S0, ag, S2), establishing so as the desirable outcome. We assume the dis-
criminator’s output for the initial state-action pair as Dy (so, @9) = dp. Within the RILe framework,
trajectories ending in the expert state so yield higher long-term cumulative rewards for the trainer
than those ending in s;. We thus define the trainer’s terminal state values as Vi (s1) = Vi, and
Vr(s2) = Vhigh, where Viign, > Viow.

The trainer’s action ar at (sp, ap) becomes the student’s reward, which influences the student’s
policy and thus the state transition probabilities. We model the probability of reaching the desirable
state s as a function of ar using the sigmoid function o(z) = (1 + e~%)~L, such that P(s’ =
sa|so,ar) = o(Bar). The parameter S models the student’s responsiveness. We analyze two
contexts representing different student learning stages. In Context C (Eager Student), the student
responds positively to reward, so we set 5 = k for some k& > 0. In Context C’ (Naive Student), the
student responds perversely to reward because of heavy exploration, so we set 5 = —k.

15

Under review as a conference paper at ICLR 2026

The trainer chooses ar at sy to maximize its Q-value, which is the sum of the immediate reward and
the discounted expected future value:

Qr(s0,ar) = e~ 1vdo)=arl o, [P(s2]ar)Vhigh + (1 — P(sz2|ar))View]

where v(dg) = 2dg — 1. In Context C, Po(szlar) = o(kar). To maximize Qr, the trainer is
incentivized to choose a high ar, as this maximizes both the immediate and expected future reward
terms. In Context C’, P (s2lar) = o(—kar). Here, the trainer faces a trade-off: a high ar
maximizes the immediate reward but minimizes the future reward. To maximize the total Q-value,
the trainer must choose a low ar to steer the student to sp. Since the optimal action a7 differs
between contexts for the same input dj, no static function g(dy) can replicate this behavior.

16

Under review as a conference paper at ICLR 2026

E EXTENDED LOCOMUJOCO RESULTS

We present LocoMujoco results for the validation setting and test setting, with standard errors, in
Table] and 3] respectively.

Table 4: Validation results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO Expert
8954 918.6 356.0 32.1 28.7 831.6

Atlas 195 133 468 44 44 41 1000

Tl 8847 6755 1034 72 199 TISS oo
g 2008 +8 4105 422 +2 +4 +16
s 980.7 965.1 7162 125 43.7 586.6

UnitreeH1 7100 oy 1994 46 +84 +102 1000
9703 2162 782 68 83 3457

Humanoid 01 y1e g 47 4q a3q 1000
880.7 9742 2719 395 427 3062

_ Atlas 44 480 430 48 49 49 1000
2 503.3 3385 741 117 8.1 4445

§ Talos 172 448 48 43 +1 49 1000
. 850.6 637.4 140.9 123 30.2 503.6

UnitreeHI o' 499 491 42 45 455 1000
Table 5: Test results on seven LocoMujoco tasks.

RlLe GAIL AIRL IQ BCO GAIfO Expert
870.6 792.7 3005 30.9 21.0 803.1

Atlas 113 +£105 474 +10 43 4es 1000

Tl 8425 4423 1021 45 119 6872 .
g 408 +24 476 417 43 +1 +44
s 966.2 950.2 568.1 8.8 348 5268

UniteeH1 00 Wy 1956 43 +10 472 1000
8313 1814 801 45 35 2921

Humanoid /oo 4oy 419 49 49 195 1000
850.8 669.3 2564 36.8 203 402.9

_ Atlas 162 455 447 414 41 439 1000
2 9220.1 186.3 134.2 105 103 2125

§ Talos 188 498 418 43 42 432 1000

Uniteepy 7883 6346 1305 144 211 5045 oo

+71 +45 £22 £2 £6 +30

F EXTENDED MUJOCO RESULTS

We present MuJoCo results for the test setting, with standard errors, in Table @

Table 6: Test results on four MuJoCo tasks with standard errors.

RILe GAIL AIRL IQLearn
Humanoid-v2 5928 £ 188 5709 £63 5623 £252 5258 £ 161
Walker2d-v2 4506 + 253 4906 £ 159 4823 £221 5133 £33
Hopper-v2 3573 £153 3361 £51 3014+£190 3504 + 63
HalfCheetah-v2 5205 + 31 4173 £94 3991 £ 126 4820 £ 123

17

Under review as a conference paper at ICLR 2026

G HYPERPARAMETERS

We present hyperparameters in Table[7] We use SAC[Haarnoja et al.|(2018) as the RL architecture for
both the student and trainer agents for RILe by default. For DRAIL, we replaced the discriminators
with the implementation provided by DRAIL and adopted their hyperparameters for the HandRotate
task.

Our experiments revealed that RILe is more sensitive to the hyperparameters of the discriminator
compared to other methods. Specifically, increasing the discriminator’s capacity or training speed,
by using a larger network architecture or increasing the number of updates per iteration, adversely
affects RILe’s performance. A powerful discriminator tends to overfit quickly to the expert data,
resulting in high confidence when distinguishing between expert and student behaviors. This poses
challenges for the trainer agent, as the discriminator’s feedback becomes less informative.

H COMPUTE RESOURCES

For the training of RILe and baselines, following computational sources are employed:

e AMD EPYC 7742 64-Core Processor
¢ 1 x Nvidia A100 GPU
* 32GB Memory

18

Under review as a conference paper at ICLR 2026

- 100°0 “10°0 ‘T°0 ‘S0 ‘1
- 16070
- €000 ‘10°0 ‘S0°0
- G-91 “G-9¢ ‘P91 ‘p-3¢
- $6'0°L6°0 '66°0

PIOYSAIY], 9231
Kdonug

() e,

qrey] Surures|

(L) 103108, JUNODSI

- - - quel, ‘T uonoun UOTIRATIOY vw.
¢ o
- - - (odS5? 2 297] wonN)
- - - 9ST ‘T¢ 9ZIS yojeq
- - - 997 ‘GoT ‘P8EIT T618 9ZIS Iojng
1°6°0°T0°T°0°S0°0 1°6°0°T0 1°6°0°T0 [1°60°T0 Adonuyg
T0°10°0 T0°10°0 0100 70100 Apaaig-uorisdg
€000 ‘T0°0 ‘S0°0 S00°0 ‘T0°0 ‘S0°0 S00°0 ‘T0°0 ‘SO0 S00°0 ‘10°0 ‘S0°0 (4) nef,
G-9 ‘G-9¢ ‘P91 ‘P=d€ G-9[‘G-9¢ ‘Y9 ‘p-d¢ G-9] ‘G-9¢ Y9 ‘p-dE G-9[‘G-9¢ ‘p-9] ‘p-9¢ 91ey SUTUIed] @
$6°0 ‘L6'0 ‘66°0 $6°0 ‘L6'0 ‘66°0 S6°0 °L6°0 ‘66°0 S6'0°L6'0 ‘660 (L) 10308 JUNOISI m.
quep, ‘N1 quel, ‘N1 quel, ‘N1 Juel, ‘)73 uonoung uoneAndy 2
[Da9sT ©DA9s7] [Da9st ©DA9s7] [Da9st ©DA9s7] [Da9st ©DA9s7] SIOMPN
9ST ‘¢ 98T ‘¢ 9ST ‘¢ 9ST ‘T¢ 9ZIS yoreq
991 ‘G 991 ‘G 991 ‘G 931 ‘G691 9ZI§ Iajjng
- G-9 ‘S-3€ ‘P91 ‘p9¢ G-9[‘§-d€ ‘Yo p-9¢ G-9] ‘G- ‘P9 ‘p-9¢ 91ey SuruIed]
- 160 160 160 Kyreusd yusrpern
[Davy9 Ddp9l [Davr9 Ddar9l [Davr9 Ddar9l =
- [Dd96¢ *D495¢] [Dd96T 249571 [Dd96T *D495¢] JIoOMISN z
[DdzIS “DdTIs] [DATIS “DATIS] [DdTIS “DdTIs] m
- GoI ‘P8EIT ‘618 GoI ‘P8EIT ‘618 GoI ‘P8EIT “T618 9ZIS Ioyng m.
- 8CI ‘¥9 TE 8CI V9 TE 8CI V9 ‘T€ 9ZIS yoreq M
- 8°TT 8°TT 8 ‘CT punoy 1od sarepdn
wedT-0O1 TIIV TV I spuweredRdiyg

sjuowLadxg prouewny pue 090mjAj0007T 10J s1ojowerediodA 1sog pue sdoamg 1ojowrerediadAH :/ 9[qeL

19

Under review as a conference paper at ICLR 2026

I

ALGORITHM

Algorithm 1 RILe Training Process

1:

AR A

10:
11:

12:
13:

14:
15:
16:

Initialize student policy mg and trainer policy w7 with random weights, and the discriminator D

with random weights.
Initialize an empty replay buffer B
for each iteration do
Sample trajectory 75 using current student policy 7g
Store Tg in replay buffer B
for each transition (s, a) in 75 do
Calculate student reward R® using trainer policy:

RS<—7TT

Update 75 using policy gradient with reward R
end for
Sample a batch of transitions from B
Train discriminator D to classify student and expert transitions

max E..log(D(s,a))] + Erg[log(l — D(s,a))]

for each transition (s, a) in 75 do
Calculate trainer reward R” using discriminator:

RT — e—|v(D(s,a))—aT|

Update 77 using policy gradient with reward R”
end for
end for

(16)

a7

(18)

20

Under review as a conference paper at ICLR 2026

Algorithm 2 RILe Training Process with Off-policy RL

1: Initialize student policy 7g, trainer policy 77, and the discriminator D with random weights.
2: Initialize an empty replay buffers Bp, Bg, Br with different sizes
3: for each iteration do

4 Sample trajectory s using current student policy mg

5: Store Tg in replay buffers Bp, Bs, Br

6: Sample a batch of transitions, bg from Bg

7: for each transition (s, a) in bs do

8 Calculate student reward R® using trainer policy:

RS — T

9: Update mg using calculated rewards
10: end for
11: Sample a batch of transitions bp from Bp
12: Train discriminator D to classify student and expert transitions

max E:.log(D(s,a))] + Exy[log(l — D(s,a))]
13: Sample a batch of transitions, by from By
14: for each transition (s, a) in by do
15: Calculate trainer reward R” using discriminator:
RT o ¢~ lv(D(s,a))—aT|

16: Update 7 using calculated rewards
17: end for
18: end for

19)

(20)

2n

21

	Introduction
	Related Work
	Background
	Markov Decision Process
	Reinforcement Learning (RL)
	Inverse Reinforcement Learning (IRL)
	Adversarial Imitation Learning (AIL) and Adversarial Inverse Reinforcement Learning (AIRL)

	RILe: Reinforced Imitation Learning
	Experiments
	Trainer-Discriminator Relation
	Reward Function Evaluation
	Computational Cost and Performance Trade-offs
	Performance in Continuous Control Tasks
	Impact of Advanced Discriminators

	Discussion
	Additional Experiments
	Robustness to Noise and Covariate Shift

	Training Strategies
	Experimental Settings
	Trainer-Discriminator Relation
	Reward Function Evaluation
	Computational Cost and Performance Trade-offs
	Performance in Continuous Control Tasks
	Impact of Advanced Discriminators

	Discussion on RILe
	Motivation for the Trainer Agent
	Justification of the Trainer Agent

	Extended LocoMujoco Results
	Extended MuJoCo Results
	Hyperparameters
	Compute Resources
	Algorithm

