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Abstract

Automated hyper-parameter tuning for unsupervised learning, including inverse
problems, remains a long-standing open problem due to the lack of validation data.
In this work, we design an automatic tuning criterion for inverse problems and
formulate it as a bilevel optimization task. We demonstrate the efficiency of our
tuning scheme on various inverse problems and different test and out-of-distribution
image samples at no expense of performance drops.

1 Introduction
Inverse problems using generative models aim to reconstruct a signal x∗ via a noisy or lossy
observation y = Ax∗ + ϵ with the assumption that x comes from a generative model G, i.e.,
x = G(z) for some latent code z. A is a known forward operator and ϵ represents noise. The
problem is reduced to denoising when A is an identity matrix, and is reduced to a compressed
sensing [5, 7], inpainting [18], or super-resolution problem [12] when A maps the signal to a lower
dimensional observation. Existing works on solving inverse problems often design the objective by

ẑ = argmin
z

Lrecon(G(z),y) + βLreg(z), x̂ = G(ẑ), (1)

where Lrecon is a reconstruction error between the observation y and a recovered signal G(z) [4, 16]
and Lreg(z) multiplied by hyper-parameter β regularizes z via incorporating prior information of its
latent distribution. This loss function is subject to different noise models [1, 19, 17].

The success of this model largely depends on a correct choice of hyper-parameter β. Specifying
appropriate candidates of β can be difficult since they are subject to tasks, data, and the noise
model, especially when the data are out of the distribution of G. More generally, (automated)
hyper-parameter tuning for unsupervised learning problems, including inverse problems, is a long
standing open problem due to the lack of labeled data for validation. This motivates us to investigate
automated hyper-parameter tuning for inverse problems.

Our contribution. We propose an automated hyper-parameter tuning scheme for inverse problems
through a formulation of a model-based bilevel optimization objective. We empirically demonstrate
the performance on different tasks of inverse problems and show a significant convenience and
efficiency of our approach compared to hand-tuned grid search.

2 Related work
Inverse problems using generative models have impressive performance on applications of com-
puted tomography [20], MRI [21], and computer vision tasks [4], to name a few. Recent work uses
GANs/VAEs or even untrained models to enforce the generative prior [4, 11, 16]. More recent work
investigates flow-based models [1, 19] where the explicit probabilistic models formulate the problem
as MAP inference and are able to solve structured and complex noise models.

Automated hyper-parameter tuning is essential to improve the efficiency, performance, and
reproducibility for general machine learning problems [15, 8]. Common strategies on hyper-parameter
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tuning include grid search [2], random search [3], evolutionary optimization [14] and population-
based training [9]. Model-based tuning scheme requires a surrogate model of the validation loss as a
function of the hyper-parameters. Our algorithm stems from Bayesian optimization, an example of
model-based tuning scheme [15, 2].

3 Methodology
Preliminary. Suppose x∗ 2 Rd and y 2 Rm (m � d). We try to reconstruct x∗ by x̂ and ẑ such
that G(ẑ) = x̂ and focus on a normalizing flow model G : Rd ! Rd. Since G is invertible, change
of variables formula allows us to compute prior density pG(x) for each x given a known distribution
of z. One can find x̂ by maximum a posteriori (MAP) inference [1, 19]:

x̂ argmax
x
fL�(x;y) := log p(y j x) + β log pG(x)g. (2)

Due to the lack of validation data, it is hard to find a criterion to guide the update of β which,
consequently, is often selected by grid search. We design bilevel optimization objectives to choose β
by making the recoveries of the task sample y comparable to prior samples.

3.1 An automated tuning criterion and bilevel optimization

We seek a criterion to update β using information of prior samples fx̃g on which G is trained, as if fx̃g
are used for validation. For a task sample y let x̂MLE = argmaxx log p(y j x), namely the solution
to (2) with β = 0 and ẑMLE = G−1(x̂MLE). x̂MLE (ẑMLE) is introduced as an intermedium between
the unknown ground truth x∗ (z∗) and x̂ (ẑ) of (2) and facilitates borrowing information from fx̃g.
Given a prior sample x̃, we evaluated ỹ = Ax̃ + ϵ, z̃ = G−1(x̃), x̃MLE = argmaxx log p(ỹ j x)
and z̃MLE = G−1(x̃MLE). Let Q1 denote the (empirical) distribution of PSNR(x̃, x̃MLE)1 of all fx̃g.
If y has been well recovered as x̂ by G, the distribution of PSNR(x̂, x̂MLE) should be similar to Q1.
Moreover, appropriate regularization should be imposed on the latent code ẑ so that a norm of ẑ
should be similar to the norm of z̃. Utilizing z̃MLE, we define Q2 to be the (empirical) conditional
distribution of kz̃k given kz̃MLEk, where k � k denotes ℓ2 norm. If x̂ = G(ẑ) is a good recovery, the
conditional distribution of kẑk given kẑMLEk should be similar to Q2. In other words, low values of
the density Q1(PSNR(x̂, x̂MLE)) and/or the density Q2(kẑk j kẑMLEk) implies that x̂ is not a good
recovery of y and thus better choice of β can be achieved. Hereby, we solve the inverse problem with
automated updates of β by bilevel optimization:

max
�:�≥0

R(β, x̂), s.t., x̂ = argmax
x

L�(x;y), (3)

whereR(β, x̂) := αQ1(PSNR(x̂, x̂MLE)) + (1� α)Q2(kẑk j kẑMLEk) and α 2 [0, 1] balances the
impacts of the two densities. Using the bilevel optimization algorithm shortly proposed in Section 3.2,
we found the recovery is not sensitive to the choice of α. Parallel work [6] also presented the general
principle of formulating hyperparameter-tuning in inverse problem as bilevel optimization.

3.2 PSNR and norm matching based hyper-parameter tuning

It is computationally intractable to find densities of Q1 and Q2. A potential solution is to learn
the Kullback–Leibler divergence of the distribution of PSNR(x̂, x̂MLE) (kẑk given kẑMLEk) from
Q1 (Q2) [13]. However, this results in a tri-level optimization problem whose convergence can
questionable. Circumventing such difficulties, we propose a PSNR And NOrm Matching (PANOM)
based zeroth order optimization method. In particular, we match the median PSNR for the task
samples to the median of Q1, and match the mean ℓ2 norms of latent codes for the task samples to
the mean of Q2. Concretely, define

γ1 :=
1

N

NX
n=1

1(PSNR(x̂, x̂MLE) > PSNR(x̃n, x̃MLE
n ))� 0.5, γ2 := kẑk/h(kẑMLEk)� 1, (4)

where 1(�) is the indicator function. h(�) is a linear function of kẑMLEk that estimates the ground
true kz∗k and has been trained with a mean squared error loss on fkz̃MLEk, kz̃kg. More complex
functional forms of h also apply. γ1 (γ2) measures the deviance of the median PSNA (mean ℓ2 norm
of latent code) between the task and prior samples and is calculated and used in each update of β.
Implementation of PANOM is shown in Algorithm 1. Signed squares of γ1 and γ2 as in ∆ amplifies

1 Peak signal-to-noise ratio (PSNR) quantifies the degrees of similarity between two signals, like images.
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Algorithm 1 PANOM based automated hyper-parameter tuning for inverse problems
Input: data y, prior Q1, Q2, h, and G, βinit, learning rate η, and maximum number of iterations T .
Initialize ẑ = 0, β = βinit; estimate ẑMLE(x̂MLE) with maximum T

3 steps.
while iteration number not reaching T do

Inner-loop steps: update ẑ by K steps of gradient ascent of log p(y j G(z)) + β log pG(G(z))
Outer-loop step: update β with learning rate η by

β  β � (1 + η∆), where ∆ = αsign(γ1)γ
2
1 + (1� α)sign(γ2)γ

2
2

end while

the learning rate η of β when γ1 and γ2 are large. The updates of β push PSNR(xn, x̂
MLE
n ) towards

the empirical median of Q1 and kẑk towards to the mean of Q2 and thus facilitate better recoveries.
4 Experiment
We evaluate our method on denoising and noisy compressed sensing (NCS) tasks by comparing with
the best results (measured by PSNR(x̂,x∗)2) from Grid Search as baselines. We report qualitative
and quantitative results on both test examples from CelebA-HQ faces and out-of-distribution (OOD)
examples. The efficiency of our method is revealed by numbers of searching grids required to achieve
comparable performances to PANOM.

Tasks. Let ϵ be an imposed noise. For denoising task we study additive Gaussian case y =
x+ ϵ, ϵ � N (0, 0.01I), and non-additive Poisson case y = ϵ/γ, ϵ � Poisson(γx) where γ = 50.
For NCS task we use y = Ax+ ϵ where A 2 Rm×d is a random Gaussian measurement matrix for
m = 2500 � 0.3d, and ϵ is a Gaussian noise satisfied E[ϵ] = 0,

p
E[kϵk2

2] = 0.1 followed [4].

Implementation details. In PANOM we initialize β = 0.1 throughout experiments; empirically we
find that the initial value is often of little importance. We further use learning rate η = 0.5 and try
α 2 [0.5, 0, 1]. In Grid Search, based on hyper-parameter choices from [19], we search over [0.05, 2]
with 5, 10, 15 grids on denoising tasks; for NCS task, Whang et al. 2020 [19] use β = 100, which
leaves us a huge space to search over. So we run a two-stage Grid Search: first we choose the best
two candidates βlow < βupper from [0.1, 1, 10, 100, 200, 500]. Then we search over [βlow, βupper] with
5, 10, 15 grids, and the total grid numbers are 9, 14, 19. By using the same maximum number of
iterations T , these grid numbers are proportional to the ratios of computation costs.

Results. Figure 1 is a subset of recovered examples on test and OOD images on denoising Gaussian
noise task, and more examples with different α and grid numbers on the three tasks are given in
Appendix B. Qualitatively, PANOM is able to keep more facial and other details (like the wall in
column 2, and hair band in column 5) without adding unnatural textures as Grid Search did when
recovering faces for both human (column 2 to 4) and fictional characters (column 7).

Summarized in Table 1 are PSNR values on the three tasks. Overall, PANOM has comparable
performance to Grid Search on all scenarios, and slightly outperforms Grid Search on two denoising
tasks. These results implies the high efficiency of our method. Specifically, for grid search with fixed
β it quires T = 1200 to converge. Searching over 5 grids requires 6000 total steps, 12, 000 steps for
10 grids, and 18000 steps for 15 grids. In stark contrast, PANOM only requires 1600 steps to achieve
the equal or better performance.

Figure 2 demonstrates the convergences of our method on OOD examples by trajectory plots of β
on the three tasks. Optimal values determined by Grid Search are marked by dotted horizontal lines.
Typically, PANOM has converged within 600 steps on denoising tasks and within 2000 steps for
the harder NCS task. Moreover, the overlap between β tuned by the two algorithms justifies the
effectiveness of PANOM in tuning β.

Finally, we examine the effects of α. Since α balances the two matching with the same goal that
recoveries are similar to priors, tuning α is less crucial than tuning β which controls a tradeoff
between details and smoothness. Empirically, different α often had noncritical impacts as shown by
PSNR values in Table 1) and the recovered images in Figure 1. This advantage is demonstrated by
Figure 2 as varying values of α does not result in poor performance.

2Note that PSNR(x̂;x∗) is not attainable in practice and requires manual selection on the optimal �.
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Figure 1: Result of denoising Gaussian noise on CelebA-HQ faces and out-of-distribution images.
For grid search we show recovered images achieving the highest PSNR(x̂,x). Full version can be
found in appendix B.

Table 1: Averages and standard errors of recovered PSNR(x̂,x) on test and OOD examples, best
results are in bold. Numbers 9, 14, 19 in parentheses in #(grids) are total grid numbers on NCS task.
Computational cost of Grid Search is 3

4#(grids) times of our method.

Task Noise Examples Ours, α = Grid Search, #(grids) =

.5 0 1 5(9) 10(14) 15(19)

Denoise
Gaussian Test set 29.8� 0.1 30.1 ± 0.1 29.0� 0.1 28.1� 0.1 29.9� 0.1 29.8� 0.1

OOD 29.0 ± 0.5 27.6� 0.5 28.5� 0.4 26.5� 0.4 28.9� 0.4 28.7� 0.5

Poisson Test set 30.6� 0.3 31.0 ± 0.2 29.8� 0.3 29.5� 0.2 30.7� 0.1 30.8� 0.2
OOD 29.1� 0.6 29.0� 0.6 29.2 ± 0.6 27.2� 0.6 28.8� 0.6 28.5� 0.6

NCS Gaussian Test set 32.2� 0.2 33.9� 0.2 29.7� 0.2 34.2� 0.2 34.3� 0.2 34.9 ± 0.3
OOD 31.6� 1.1 31.9� 1.0 30.9� 1.1 32.3 ± 0.9 32.1� 1.0 32.2� 0.9

5 Conclusion
In this work, we propose PANOM, an automated hyper-parameter tuning strategy for inverse problems.
Our method shows comparable recovery performance with manual grid search, but requires no human
guidance and is much more efficient and convenient. We also conjecture that the proposed bilevel
optimization starting from small β will facilitate the optimization procedure, and we leave the
theoretical understanding to future studies.
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0.1

0.2

0.3

0.4

0.5

0.6

V
al

ue
of
�

.

Denoising Gaussian noise

0 200 400 600 800 1000 1200
Iteration numbers of ẑ.
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Figure 2: Trajectories of β from different tasks on OOD examples. Grid Search dotted lines are best
choices we found; numbers 9, 14, 19 in parentheses are total grid numbers on NCS task.
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A More implementation details
We provide more details about our implementations here. We use Adam optimizer [10] in all
experiments.

• Learning rate: on denoising and NCS tasks with Gaussian noise, we use learning rate 0.05;
on denoising Poisson noise task we use learning rate 0.1

• Maximum iteration number T : on two denoising tasks we use T = 1200; on NCS task we
use T = 2000

Further, Algorithm 1 is a simplified version of PANOM and only highlights the key steps. To improve
numeric stability, in practice we apply following tweaks:

• annealing of K: we started with K = 20 at the beginning of training, and reduced K by
one every 20 updates of ẑ, until it reached a pre-specified minimum threshold 5

• smoothing γ1(γ2) over K steps: we took simple average of K numbers of γ1(γ2) between
two consecutive β update steps before computing ∆

• smoothing over mini-batch samples: when recovering a mini-batch of images in parallel,
we used the same β for all images, and to determine the new β, we took average of ∆ from
current mini-batch samples

• decaying η: we updated η  0.999η after each update of β
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B More examples on denoising and NCS task
Here we show more results of examples of denoising and NCS tasks.
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Figure 3: Result of denoising Gaussian noise on CelebA-HQ faces and out-of-distribution images.
For grid search we show recovered images achieving the highest PSNR(x̂,x)

.
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Figure 4: Result of denoising Poisson noise on CelebA-HQ faces and out-of-distribution images. For
grid search we show recovered images achieving the highest PSNR(x̂,x∗)
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