IC-DLC: Differentiable Logic Circuits for Hardware-Friendly Image Compression

Anonymous submission

Abstract

Neural image codecs achieve higher compression ratios than
traditional hand-crafted methods such as PNG or JPEG-XL,
but often incur substantial computational overhead, limit-
ing their deployment on energy-constrained devices such as
smartphones, cameras, and drones. We propose Image Com-
pression with Differentiable Logic Circuits (IC-DLC), a
hardware-aware codec where we train lookup tables to com-
bine the flexibility of neural networks with the efficiency
of Boolean operations. Experiments on grayscale benchmark
datasets show that IC-DLC outperforms traditional codecs in
compression efficiency while allowing substantial reductions
in energy consumption and latency. These results demonstrate
that learned compression can be hardware-friendly, offering
a promising direction for low-power image compression on
edge devices.

1 Introduction

Learned image compression has demonstrated superior
compression ratios compared to traditional hand-crafted
codecs by optimizing the compression objective in an end-
to-end manner on datasets of images, predicting per-pixel
distributions, and leveraging data-driven structure to min-
imize storage requirements (Ballé, Laparra, and Simon-
celli 2016). However, high compression performance often
comes at a cost. Large neural networks perform many unnec-
essary operations, resulting in increased latency and energy
consumption. This is particularly problematic for edge de-
vices such as smartphones, cameras, or drones, which have
limited battery, weaker processors, and stricter thermal con-
straints than desktop or cloud hardware.

Traditional codecs such as PNG (Boutell et al. 2003),
WebP (Google Inc. 2021), or JPEG-XL (Alakuijala et al.
2019) remain fast and energy-efficient. They achieve this
through hand-designed algorithms optimized for simplicity
and speed, often supported by dedicated hardware units that
accelerate key operations. However, these methods lack the
adaptability of learned models, which limits their compres-
sion performance compared to modern learned approaches.

This trade-off motivates the search for methods that have
the efficiency of traditional codecs with the compression
ratio of learned codecs. To this end, we focus on train-
able architectures operating closer to hardware, enabling
direct deployment on edge devices for low-latency, low-

power operation. Differentiable Logic Circuits (DLCs) of-
fer a natural solution. By training lookup tables or logic
circuits, DLCs combine the flexibility of neural networks
with hardware-friendly computation that is fast yet remains
energy-efficient. They can be optimized end-to-end using
gradient-based methods for task-specific objectives, yet re-
main directly deployable on devices such as FPGAs.

Leveraging DLCs, we propose Image Compression
with Differentiable Logic Circuits (IC-DLC), a neural
codec that predicts per-pixel probability distributions in a
hardware-aware manner. Replacing conventional floating-
point networks with trainable lookup tables and logic gates,
IC-DLC achieves high compression efficiency while main-
taining low-latency, low-power inference, making it particu-
larly suitable for energy-constrained devices.

We show that IC-DLC achieves higher compression ra-
tio, processing speed, and energy efficiency than traditional
codecs on EMNIST (Cohen et al. 2017) images. These re-
sults demonstrate that differentiable logic offers a promising
path toward trainable, hardware-friendly image compres-
sion, particularly for energy-constrained devices, and lay the
foundation for future extensions to more complex natural
images.

2 Related Work

Classical image compression algorithms rely on hand-
crafted pipelines that exploit simple statistical properties
of natural images. Early formats such as JPEG (Wallace
1991) and PNG (Boutell et al. 2003) achieve compression
through linear transforms, quantization, and entropy coding.
Lightweight formats such as QOI (Szablewski 2021) omit
entropy coding and use simple predictors, enabling fast,
low-cost lossless compression. Modern successors such as
WebP (Google Inc. 2021) and JPEG-XL (Alakuijala et al.
2019) introduce advanced predictors and context-adaptive
entropy models, improving compression ratios while main-
taining low latency and energy efficiency. Many devices
have been designed to accelerate traditional codecs such as
JPEG through dedicated hardware. However, hand-crafted
codecs rely on heuristic algorithms and, without data-driven
learning, can only approach optimal compression.

Learned image compression replaces hand-crafted trans-
forms with trainable neural networks optimized end-to-end
for rate—distortion performance (Ballé, Laparra, and Simon-

Header Resolution Resolution Resolution
(C,H, W) Module Module Module
lI)itIStrlelgrrll N = Em II " E == N EEEE B EER] |} H E EEE BN ® ER E BN EE E B EER AN EE R = II L)
Resolution Module Iy
"% | Upsampling Autoregressive A - Entropy
Model g Model o Decoding

Figure 1: Overview of the decoding architecture. Top: the image is upsampled L = 2 times, with each higher-resolution level
decoded conditioned on the lower-resolution one. Bottom: at each resolution, an upsampling model (UPS) and an autoregressive
model (ARM), both implemented as NeuraLUT networks, produce predictions used for entropy decoding. The UPS model
outputs point estimates for the upsampled pixels (conditioned on the lower-resolution reconstruction), which serve as priors
for pixels that are not yet decoded. The ARM predicts per-pixel, Laplace parameters conditioned on the local, already-decoded
context; when a pixel is not yet decoded, the ARM uses the UPS point estimate as its prior. Decoding proceeds from the coarsest

to the finest resolution; encoding follows the reverse order.

celli 2016; Mentzer et al. 2020b; He et al. 2022). While most
research focuses on lossy compression, neural approaches
have also been applied to lossless or near-lossless settings
by modeling the full pixel distribution and compressing it
using entropy coding (Mentzer et al. 2020a; Cao, Wu, and
Krihenbiihl 2020). Autoregressive models are commonly
used to predict the distribution of image data. Raster-based
architectures, such as PixelCNN (Van den Oord et al. 2016),
sequentially predict pixels. Hierarchical codecs, like SReC
(Cao, Wu, and Krihenbiihl 2020), capture dependencies
across latent levels in a structured residual framework.

Overfitted codecs, such as Cool-Chic (Ladune et al. 2023)
and C3 (Kim et al. 2024), are designed to lower the decod-
ing cost learned codecs while preserving their high com-
pression performance. They encode by overfitting an en-
tire network to the image and decode via inference. FN-
LIC (Zhang, Chen, and Liu 2025) extends this approach as
a lossless codec. Despite fast decoding, encoding remains
computationally expensive, requiring substantial per-image
optimization and limiting the methods’ use in scenarios de-
manding efficient encoding. Although recent work has re-
duced encoding time from over ten minutes on a GPU to a
few seconds on a CPU (Blard et al. 2024; Borrell-Tatché
et al. 2025), these methods still achieve worse compres-
sion ratio than traditional codecs. A key limitation is that
these methods rely on neural networks using floating-point
computation, which are energy-intensive and involve re-
dundant operations, restricting their applicability in energy-
constrained environments.

Differentiable Logic Circuits (DLCs) provide a frame-
work to learn from data while remaining hardware- and
energy-efficient. They follow MLP-like structural principles
but replace continuous arithmetic with differentiable logic or
lookup operations. During training, a continuous “soft” ap-

proximation is used, which is discretized after convergence
to produce a deployable “hard” circuit. Multiple frameworks
have been proposed demonstrating different design choices
and capabilities (Petersen et al. 2022; Riittgers et al. 2025;
Bacellar et al. 2025). For instance, NeuraLUT (Andronic
and Constantinides 2024) uses a neural network to imple-
ment the soft approximation of the lookup table, improving
scalability and expressiveness. DLCs have been applied to
tasks such as image classification (Petersen et al. 2024) and
natural language processing (Biihrer et al. 2025), illustrat-
ing their versatility. Despite remaining challenges in train-
ing and scalability (Yousefi et al. 2025), DLCs have been
shown to achieve lower latency and energy efficiency than
MLPs and CNNs while maintaining comparable accuracy
(Petersen et al. 2022; Bacellar et al. 2025), highlighting their
potential for hardware-oriented neural compression.

3 Method

Following other learned compression methods, we perform
lossless image compression by predicting per-pixel proba-
bility distributions and encoding them into a bitstream with
Asymmetric Numeral Systems (ANS) (Duda 2013). This en-
sures likely pixels use fewer bits and unlikely ones more,
producing a compact, lossless representation. Encoding and
decoding are exact inverses using ANS.

3.1 Hierarchical Compression Framework

To capture image structure across scales, each image is de-
composed into L + 1 resolution levels for hierarchical en-
coding and decoding (see Figure 1), similar to the approach
used in SReC (Cao, Wu, and Krihenbiihl 2020). Given an
image x € {0,...,255}*WxC yith height H, width W,
and C channels, we iteratively apply 2 x 2 average pooling

to halve the spatial resolution at each level:
0 = avgpoolZ(z(Zfl)), {=1,...,L,

with 2(9) = z being the original image. After pooling, pixel
values at each level are rounded to integers.

Decoding begins at the coarsest resolution, which is first
reconstructed to provide an initial image approximation.
Finer levels are then decoded in two stages: upsampling fol-
lowed by autoregressive refinement, capturing both global
and local dependencies. In contrast, SReC performs these
two operations in a single stage.

Upsampling Model (UPS) The UPS predicts the upsam-
pled image (¥ independently of the bitstream. For each
pixel in the lower-resolution image (**1), it simultaneously
predicts a 2 x 2 block of pixels, conditioned only on a local
neighborhood of size K x K. This design efficiently prop-
agates coarse structural information to higher resolutions.
The network is implemented as a Differentiable Logic Cir-
cuit (DLC), and it is trained using a mean squared error loss.

Autoregressive Model (ARM) The ARM refines the up-
sampled image by predicting per-pixel Laplace distribution
parameters i and o. For pixels that have already been de-
coded, the ARM conditions on the local X x K context
within the current resolution level. For pixels not yet de-
coded, it relies on the upsampled predictions #(*) as a prior.
The ARM predicts individual Laplace parameters for all C'
channels in parallel, allowing efficient multi-channel model-
ing. At the coarsest level (¢ = L), no upsampling is required,
and decoding starts from an empty initialization. The ARM
is also implemented as a DLC network.

Following (Ladune et al. 2023), the ARM works in a sim-
ilar way and predicts per-pixel Laplace parameters (u, o).
These continuous distributions are converted into probabili-
ties over integer pixel values by integrating the Laplace den-
sity over each pixel’s quantization interval (e.g., from £ —0.5
to x + 0.5). The expected number of bits required to encode
a pixel is then estimated as the negative log-probability of
the true pixel value under this discrete distribution. This pro-
vides a differentiable proxy for the actual bitrate and serves
as the training objective to improve compression efficiency.

3.2 Differentiable Logic Circuits (DLCs)

DLCs replace dense matrix multiplications with lightweight,
trainable lookup tables, reducing computational overhead
compared to standard MLPs. Inputs are binarized using
thermometer encoding with 255 levels: for a pixel value
v € [0, 255], each level generates a binary indicator specify-
ing whether v exceeds the corresponding threshold, allowing
DLCs to process continuous intensities via lookup tables.
For the learnable nodes, we use NeuraLUT (Andronic and
Constantinides 2024), which replaces the static lookup table
with a small neural network during training. The last layer of
this network uses a sigmoid to constrain outputs to [0, 1]. To
help the network learn binary outputs, we add logistic noise
before the sigmoid, controlled by a temperature parameter
Thode, Which is annealed during training. When converting

Table 1: Actual coded bits per pixel for different datasets.
Our DLC-based method (IC-DLC) outperforms the best
traditional method (JPEG-XL) on the training distribution
(EMNIST) while remaining fast and energy-efficient. IC-
MLP is shown in gray for reference; the MLP-based learned
image compression method achieves better compression but
is orders of magnitude slower.

in-distribution (EMNIST) out-of-distribution
all letters digits KMNIST FMNIST
QOI 6.14 6.02 6.20 7.56 8.50
PNG 4.18 4.13 4.16 4.45 5.18
WebP 334 331 3.34 3.56 4.62
JPEG-XL 3.20 3.18 3.23 3.66 4.29
IC-DLC 274 2.78 2.71 4.16 6.27
IC-MLP 234 234 230 | 3.67 6.04

the network into a lookup table, all 26 = 64 input combina-
tions (for 6 binary inputs) are tested and stored, so inference
reduces to a simple lookup.

Connections between inputs and nodes are learned via a
softmax over the learnable connection weights, with a tem-
perature parameter Tonnections annealed during training to en-
courage harder selections. For evaluation, the final connec-
tions are fixed using an argmax over the learned weights.

The network’s final output is the average of the last layer
binary outputs, producing a float in [0,1]. For y, this is
scaled to [0, 255], while ¢ is transformed via a log inverse-
sigmoid to expand its range.

4 Experiment Setup

The compression model is trained on the EMNIST ByClass
dataset (Cohen et al. 2017), which contains grayscale images
of digits as well as lowercase and uppercase letters. Evalu-
ation is performed on the EMNIST test set and additionally
on KMNIST (Clanuwat et al. 2018) and Fashion-MNIST
(FMNIST) (Xiao, Rasul, and Vollgraf 2017) to assess gen-
eralization beyond the training distribution. Both the ARM
and UPS networks consist of two layers with 1,024 lookup
tables each. Training is carried out on 128,000 samples. Fur-
ther details on the dataset and hyperparameters are provided
in Appendix A.

5 Results Analysis

Table 1 shows coded bits per pixel for different methods
across datasets. Our method, IC-DLC, outperforms tradi-
tional codecs on EMNIST, which matches the training distri-
bution, surpassing even the best traditional method, JPEG-
XL. The model is particularly effective on simpler digits,
while letters are slightly harder to compress. On out-of-
distribution data, the performance advantage decreases. On
KMNIST, containing Korean characters, the model gener-
alizes reasonably well, while on FMNIST, with more com-
plex grayscale items, the bpp increases. This reflects the rel-
atively narrow training distribution, suggesting that expand-
ing the training set to cover more diverse images is a promis-
ing direction for future research.

10 -
g
3} 0
: 2
a 51 B
a
£
Ll
level 0 level 1 level 2 level 1 level 2

BmicmeplRicDLC ‘ ’ [l 0 Bicubic I M 1c-DLC ‘

Figure 2: Comparison of theoretical bits per pixel (bpp-
theoretical) across resolution levels (left) and root mean
squared error (RMSE) of upsampling (right) on the EM-
NIST test set. The left plot shows that most bits are con-
centrated in the highest resolution, while the right plot high-
lights the superior accuracy of the learned upsampling.

The multi-resolution design concentrates most informa-
tion in the finest level, with coarser levels providing global
context (Figure 2 left). Each finer level has four times more
pixels, so most bits are naturally allocated to the highest
resolution. This structure allows the ARM and UPS to ef-
ficiently model both local and global dependencies, improv-
ing compression without increasing computational cost.

Learned upsampling is crucial: the UPS network reduces
reconstruction error compared to bicubic interpolation (Fig-
ure 2 right), capturing subtle structural details that standard
upsampling misses. This improvement in prediction accu-
racy translates into lower bpp.

Overall, these results demonstrate that Differentiable
Logic Circuits (DLCs) can be effectively applied to image
compression. They achieve strong compression performance
comparable to larger learned models (Table 1), while re-
maining fast and energy-efficient (Table 2). This addresses a
significant limitation of traditional learned codecs, which of-
ten require substantial computation and are orders of magni-
tude slower. By combining upsampling with autoregressive
refinement, DLC-based compression provides a practical so-
lution for real-time and resource-constrained applications.

6 Discussion
6.1 Energy Usage and Latency

We estimate the energy usage and latency of PNG and our
proposed method. Table 2 summarizes the estimated energy
consumption and latency per pixel. Even under conserva-
tive assumptions, compared to PNG, our method is roughly
100 times more energy-efficient for encoding and 10 times
for decoding compared. Both encoding and decoding re-
main below 5ns per pixel, making them competitive in la-
tency as well. These values are derived from literature-based
estimates and analytical extrapolations, as detailed in Ap-
pendix C, rather than from direct hardware measurements.
Thus, they should be interpreted as indicative of expected
efficiency rather than empirical measurements.

Table 2: Estimated energy consumption and latency per
pixel for PNG and our method. Our approach drastically re-
duces both energy and latency, achieving near-instant encod-
ing and decoding with minimal power, while PNG is orders
of magnitude more expensive.

Method Energy [nJ/pixel] | Latency [ns/pixel]
Encode Decode | Encode Decode

PNG 322.58 39.19 44.99 5.17

Our Method ~4 ~4 <5 <5

6.2 Potential Applications

The high computational cost of neural codecs has limited
their industrial adoption, despite superior compression per-
formance. IC-DLC addresses this by providing a hardware-
aware, low-power alternative, making learned compression
practical for energy- and latency-constrained applications.

Edge devices, such as smartphones, tablets, cameras, and
drones, frequently perform image and video compression
tasks. While decoding latency must meet real-time require-
ments, energy consumption and efficiency directly impact
battery life, thermal performance, and device usability. By
replacing floating-point networks with differentiable logic
circuits, IC-DLC reduces computation, enabling high com-
pression ratios with low-latency, low-power operation.

This efficiency makes IC-DLC particularly suitable for
edge devices. Its low computational footprint also enables
integration of learned compression in large-scale industrial
systems without the prohibitive energy and hardware costs
of traditional neural codecs, providing a practical path to
high-performance, hardware-friendly image compression.

6.3 Future Work

While our method has been demonstrated on grayscale
datasets, it remains to be tested on RGB images with nat-
ural image distributions to evaluate its performance on more
complex, real-world data. Additionally, compiling the net-
work and deploying it on an FPGA board will be essential to
measure practical efficiency, including throughput, latency,
and energy consumption in a hardware setting.

7 Conclusion

We have presented a compression framework that leverages
multi-resolution priors, staged upsampling, and autoregres-
sive refinement, implemented with Differentiable Logic Cir-
cuits (DLCs). Our approach achieves high compression per-
formance on small, grayscale image datasets while remain-
ing fast and energy-efficient, highlighting the potential of
lightweight, trainable logic for learned compression.

Although this study focuses on relatively simple toy
datasets, the observed benefits of DLCs in balancing perfor-
mance and efficiency provide strong motivation to explore
their application to larger and more complex image distribu-
tions. This work thus serves as a stepping stone toward prac-
tical, fast, and low-energy learned compression methods for
a wider range of images.

References

Alakuijala, J.; Sneyers, J.; Szabadka, Z.; et al. 2019. JPEG
XL Next-Generation Image Compression Architecture and
Coding Tools. In Applications of Digital Image Processing
XLII. SPIE.

Andronic, M.; and Constantinides, G. A. 2024. NeuraLUT:
Hiding Neural Network Density in Boolean Synthesizable
Functions. ArXiv:2403.00849.

Bacellar, A. T. L.; Susskind, Z.; Jr, M. B.; John, E.; John,
L. K.; Lima, P. M. V;; and Franca, F. M. G. 2025. Differen-
tiable Weightless Neural Networks. ArXiv:2410.11112.

Ballé, J.; Laparra, V.; and Simoncelli, E. P. 2016. End-
to-end optimized image compression. arXiv preprint
arXiv:1611.01704.

Blard, T.; Ladune, T.; Philippe, P.; Clare, G.; Jiang, X.; and
Déforges, O. 2024. Overtfitted image coding at reduced com-
plexity. In 2024 32nd European Signal Processing Confer-
ence (EUSIPCO), 927-931. IEEE.

Borrell-Tatché, P.; Aczel, T.; Ladune, T.; and Watten-
hofer, R. 2025. HyperCool: Reducing Encoding Cost in
Overfitted Codecs with Hypernetworks. arXiv preprint
arXiv:2509.18748.

Boutell, T.; et al. 2003. PNG (Portable Network Graphics)
Specification, Version 1.2. https://www.w3.org/TR/PNG/.
W3C Recommendation.

Biihrer, S.; Plesner, A.; Aczel, T.; and Wattenhofer, R.
2025. Recurrent Deep Differentiable Logic Gate Networks.
ArXiv:2508.06097.

Cao, S.; Wu, C.-Y.; and Krihenbiihl, P. 2020. Loss-
less Image Compression through Super-Resolution.
ArXiv:2004.02872 [eess].

Clanuwat, T.; Bui, A.; Lim, Y.; Tran, K.; Shimoda, A.;
Niwa, K.; Yamasaki, T.; and Aihara, K. 2018. Deep
learning for classical Japanese literature. arXiv preprint
arXiv:1812.01718.

Cohen, G.; Afshar, S.; Tapson, J.; and van Schaik, A. 2017.
EMNIST: an extension of MNIST to handwritten letters. In
2017 International Joint Conference on Neural Networks
(IJCNN), 2921-2926. IEEE.

De Magistris, G.; Rametta, C.; Capizzi, G.; Napoli, C.; et al.
2021. Fpga implementation of a parallel dds for wide-
band applications. In CEUR Workshop Proceedings, volume
3092, 12-16. CEUR-WS.

Duda, J. 2013. Asymmetric numeral systems: entropy cod-
ing combining speed of huffman coding with compression
rate of arithmetic coding. arXiv preprint arXiv:1311.2540.

Google Inc. 2021. WebP Lossless Bitstream Speci-
fication. https://developers.google.com/speed/webp/docs/
webp_lossless_bitstream_specification. Accessed: 2025-10-
29.

He, D.; Yang, Z.; Yu, H.; Xu, T.; Luo, J.; Chen, Y.; Gao, C.;
Shi, X.; Qin, H.; and Wang, Y. 2022. Po-elic: Perception-
oriented efficient learned image coding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1764-1769.

Kim, H.; Bauer, M.; Theis, L.; Schwarz, J. R.; and Dupont,
E. 2024. C3: High-performance and low-complexity neural
compression from a single image or video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 9347-9358.

Ladune, T.; Philippe, P.; Henry, F; Clare, G.; and Leguay, T.
2023. Cool-chic: Coordinate-based low complexity hierar-
chical image codec. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 13515-13522.
Mentzer, F.; Agustsson, E.; Tschannen, M.; Timofte, R.; and
Gool, L. V. 2020a. Practical Full Resolution Learned Loss-
less Image Compression. ArXiv:1811.12817 [eess].
Mentzer, F.; Toderici, G. D.; Tschannen, M.; and Agusts-
son, E. 2020b. High-fidelity generative image compres-
sion. Advances in neural information processing systems,
33: 11913-11924.

Petersen, F.; Borgelt, C.; Kuehne, H.; and Deussen, O. 2022.
Deep Differentiable Logic Gate Networks. In Advances in
Neural Information Processing Systems 35 (NeurIPS 2022).
Petersen, F.; Kuehne, H.; Borgelt, C.; Welzel, J.; and Ermon,
S.2024. Convolutional differentiable logic gate networks. In
Globerson, A.; Mackey, L.; Belgrave, D.; Fan, A.; Paquet,
U.; Tomczak, J.; and Zhang, C., eds., Advances in neural in-
formation processing systems, volume 37, 121185-121203.
Curran Associates, Inc.

Rasoulinezhad, S.; Zhou, H.; Wang, L.; and Leong, P. H.
2019. PIR-DSP: An FPGA DSP block architecture for
multi-precision deep neural networks. In 2019 IEEE 27th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), 35-44. IEEE.
Riittgers, L.; Aczel, T.; Plesner, A.; and Wattenhofer,
R. 2025. Light Differentiable Logic Gate Networks.
ArXiv:2510.03250.

Szablewski, D. 2021. The “Quite OK Image Format” (QOI):
Fast, Lossless Image Compression in O(n) Time. https:/
qoiformat.org/. Accessed: 2025-10-30.

Van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Vinyals,
O.; Graves, A.; et al. 2016. Conditional image generation
with pixelenn decoders. Advances in neural information
processing systems, 29.

Wallace, G. K. 1991. The JPEG Still Picture Compression
Standard. Technical Report 4, Communications of the ACM.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.

Yousefi, S.; Plesner, A.; Aczel, T.; and Wattenhofer, R. 2025.
Mind the Gap: Removing the Discretization Gap in Differ-
entiable Logic Gate Networks. ArXiv:2506.07500 [cs].

Zhang, Z.; Chen, Z.; and Liu, S. 2025. Fitted Neural Loss-
less Image Compression. In Proceedings of the Computer
Vision and Pattern Recognition Conference, 23249-23258.

A Experiment Setup Detailed
A.1 Datasets

The compression model is trained on the training split of
EMNIST ByClass, which includes grayscale images of dig-

its as well as lowercase and uppercase letters. Evaluation is
performed on the EMNIST test set and on two additional
datasets: KMNIST and Fashion-MNIST.

KMNIST contains grayscale images of handwritten Ko-
rean characters. Although it shares the same structure and
resolution as EMNIST, the symbol set differs, making it an
out-of-distribution dataset that is still relatively close in na-
ture. In contrast, Fashion-MNIST consists of grayscale im-
ages of clothing items. These images exhibit much higher
visual complexity, with curved and textured regions rather
than simple line strokes, representing a significantly differ-
ent data distribution.

A.2 Baselines

We compare our approach against several traditional loss-
less compression methods: QOI, PNG, WebP, and JPEG-
XL. QOI (Quite OK Image) is a simple and fast lossless im-
age codec optimized for minimal computational overhead.
PNG is a classic, widely adopted format that uses DEFLATE
compression with Huffman coding. WebP and JPEG-XL are
more modern formats that employ advanced prediction and
entropy coding schemes, achieving higher compression effi-
ciency at the cost of complexity.

We additionally evaluate SREC, a learned super-
resolution-based compression method that relies on a large
convolutional network. Finally, we include a variant of our
method where the discrete lookup components (DLCs) are
replaced with MLP layers of comparable parameter count, to
examine how representational capacity affects compression
efficiency. These learned baselines are considerably slower
and not optimized for low-latency or energy-efficient opera-
tion.

A.3 Training Details

Both the ARM and UPS networks consist of two layers with
1024 lookup tables each. They are trained on 128,000 sam-
ples drawn from the EMNIST training set.

The following summarizes the main hyperparameters
used for training the ARM and UPS networks. During train-
ing, data augmentation was applied using random horizontal
flips and random rotations of 0°, 90°, 180°, or 270°.

* Networks: ARM and UPS, 2 layers of 1024 lookup ta-
bles each

¢ Kernel size: 5 for both ARM and UPS
¢ Upsampling levels: 2

* Learning rate: 0.01

* Batch size: 16

¢ Training iterations: 8,000

* Connection temperature 7¢onnections: 1 — 0.0001, expo-
nential decay by factor 10 every 2,000 iterations

* Node temperature 7,09.: 10 — 1, exponential decay by
factor 10 every 2,000 iterations

» Total samples seen: 128,000

B Compression Difficulty of EMNIST
Images

Figure 3 illustrates examples from the EMNIST ByClass
test set, highlighting the variation in compression difficulty
across images. Some images are easier to encode due to
their simple and regular structure; for example, the letter T is
straight and uniform, which allows the model to predict per-
pixel distributions with high confidence. In contrast, other
images are more challenging to compress, such as the num-
ber 8 or characters with irregular or complex shapes. These
images contain intricate details or unusual patterns, making
accurate probability estimation harder and requiring more
bits to represent losslessly.

C Energy and Latency Estimation Details

We estimate the energy usage of PNG and our method by
combining direct measurements and literature-based extrap-
olations. For PNG, we measure the per-pixel energy con-
sumption by timing the encoding and decoding operations
and recording the corresponding increase in CPU power rel-
ative to idle. For our method, we do not have access to an
FPGA implementation, so we base our estimates on reported
measurements from related works. Specifically, we use pub-
lished energy figures for small LUT-based neural networks
of comparable size and assume similar energy characteris-
tics for our model.

C.1 PNG

For PNG, we encode 1024 x 1024 grayscale images. We
measure the average CPU power increase relative to idle and
the time required to encode and decode a single pixel. Im-
ages are stored in RAM to avoid I/O overhead. Multiplying
the measured power by the time per pixel yields the energy
per pixel. Encoding takes 44.99ns and decoding 5.17 ns.
CPU power usage is 5.21 J/s when idle, 12.38 J/s during en-
coding, and 12.79J/s during decoding. The additional en-
ergy per pixel is 322.58 nJ for encoding and 39.19nJ for
decoding. This configuration favors PNG, since idle power
is excluded and I/O latency is eliminated, allowing efficient
bulk processing.

C.2 Our Method

DWN (Bacellar et al. 2025) measures 2.5 nJ of energy con-
sumption in a Xilinx Zynq Z-7045 FGPA for inferencing
a 2.1k-LUT network. Our network is smaller (1024 LUTSs),
but we conservatively assume the same energy per inference.
For level 0, the network is executed 28 x 28 times; for level 1,
2 x 14 x 14 times; and for level 2, 2 x 7 x 7 times. Normal-
izing by pixel yields

282 +2.14% + 2. 72

282

meaning the network runs on average 1.625 times per pixel.
This results in approximately 4.06 nJ per pixel for both en-
coding and decoding, which have roughly equal cost.

The asymmetric numerical system can be realized effi-
ciently in hardware. tANS (table-based Asymmetric Nu-
meral System) requires no DSPs, since it performs only ta-
ble lookups for encoding and decoding. Even if we choose

= 1.625,

Figure 3: Examples from the EMNIST ByClass test set illustrating compression difficulty. Left: images that are easy to encode,
such as the letter I, which are straight and simple. Right: images that are hard to encode, such as the number 8 and other
characters with unusual or complex shapes.

to use rANS (range-based ANS), the computation remains
lightweight and can be implemented with only a few DSPs
per symbol.

In rANS, each symbol s with probability P[s] and cu-
mulative frequency C|[s] updates an internal integer state .
The normalization factor F' defines the range of valid states.
During encoding, the current state is divided by the symbol
probability to obtain the quotient and remainder:

Pls]

The next state is then computed as

q= V’J r = 2 mod Pls].

' =qF +C[s] +r.

Decoding performs the inverse operations. From the en-
coded state z’, the decoder first computes

m = 2’ mod F,

then identifies the symbol s such that C[s] < m < C[s+1].
Finally, it reconstructs the previous state as

x/

x = PJs] {FJ + (2’ mod F) — Cs].

Both encoding and decoding involve only integer oper-
ations per symbol, mostly additions, multiplications, and
modulo, with a single integer division per symbol. Assuming
an energy cost of approximately 0.1 nJ per operation (Ra-
soulinezhad et al. 2019; De Magistris et al. 2021), the total
energy expenditure is negligible compared to LUT network
inference.

Timing estimation depends on the FPGA layout. Neu-
raLUT (Andronic and Constantinides 2024) reports a 3 ns
latency for a small 4000-LUT network. Upsampling could
be performed in parallel, but even with sequential upsam-
pling, both encoding and decoding remain below 5 ns, mak-
ing them faster than PNG encoding and comparable in de-
coding latency.

