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Abstract

Clustering is a widely deployed unsupervised
learning tool. Model-based clustering is a flexi-
ble framework to tackle data heterogeneity when
the clusters have different shapes. Likelihood-
based inference for mixture distributions often
involves non-convex and high-dimensional objec-
tive functions, imposing difficult computational
and statistical challenges. The classic expectation-
maximization (EM) algorithm is a computation-
ally thrifty iterative method that maximizes a sur-
rogate function minorizing the log-likelihood of
observed data in each iteration, which however
suffers from bad local maxima even in the special
case of the standard Gaussian mixture model with
common isotropic covariance matrices. On the
other hand, recent studies reveal that the unique
global solution of a semidefinite programming
(SDP) relaxed K-means achieves the information-
theoretically sharp threshold for perfectly recover-
ing the cluster labels under the standard Gaussian
mixture model. In this paper, we extend the SDP
approach to a general setting by integrating cluster
labels as model parameters and propose an itera-
tive likelihood adjusted SDP (iLA-SDP) method
that directly maximizes the exact observed like-
lihood in the presence of data heterogeneity. By
lifting the cluster assignment to group-specific
membership matrices, iLA-SDP avoids centroids
estimation – a key feature that allows exact recov-
ery under well-separateness of centroids without
being trapped by their adversarial configurations.
Thus iLA-SDP is less sensitive than EM to initial-
ization and more stable on high-dimensional data.
Our numeric experiments demonstrate that iLA-
SDP can achieve lower mis-clustering errors over
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several widely used clustering methods including
K-means, SDP and EM algorithms.

1. Introduction
Clustering analysis has been widely studied and regularly
used in machine learning and its applications in network
science (Girvan & Newman, 2002), computer vision (Shi &
Malik, 2000; Joulin et al., 2010), manifold learning (Chen
& Yang, 2021a) and bioinformatics (Karim et al., 2020).
Perhaps by far the most popular clustering method is the K-
means (MacQueen, 1967) partially because there are compu-
tationally convenient algorithms such as Lloyd’s algorithm
and K-means++ for heuristic approximation (Lloyd, 1982;
Arthur & Vassilvitskii, 2007). Mathematically, K-means
aims to find the optimal partition of data to minimize the
total within-cluster squared Euclidean distances, which is
equivalent to the maximum profile likelihood estimator un-
der the standard Gaussian mixture model (GMM) with com-
mon isotropic covariance matrices (Chen & Yang, 2021b).
Nevertheless, real data usually exhibit various degrees of
heterogeneous features such as the cluster shapes may vary
from component to component, which renders K-means as
a sub-optimal clustering method.

Another popular clustering method is the classic expectation-
maximization (EM) algorithm, which is a computationally
thrifty method based on the idea of data augmentation to
iteratively optimize the non-convex observed data likeli-
hood (Dempster et al., 1977). Theoretical investigations
reveal that the EM algorithm suffers from bad local max-
ima even in the one-dimensional standard GMM with well-
separated cluster centers (Jin et al., 2016). Thus practically
even when applied in highly favorable separation-to-noise
ratio settings, careful initialization, often through multiple
random initializations or a warm-start by another heuristic
method such as hierarchical clustering (Fraley & Raftery,
2002), is the key for the EM algorithm to find the correct
cluster labels and model parameters. With a reasonable ini-
tial start, the EM algorithm has been shown to achieve good
statistical properties (Balakrishnan et al., 2017; Wu & Zhou,
2019).

In this paper, we consider the likelihood-based inference to
tackle the problem of recovering cluster labels in the pres-
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ence of data heterogeneity. Our motivation stems from the
recent progress in understanding the computational and sta-
tistical limits for convex relaxation methods of the K-means
clustering. Since K-means is a worst-case NP-hard prob-
lem (Aloise et al., 2009), various heuristic approximation
algorithms such as Lloyd’s algorithm (Lloyd, 1982; Lu &
Zhou, 2016), and computationally tractable relaxations such
as spectral clustering (Meila & Shi, 2001; Ng et al., 2001;
Vempala & Wang, 2004; Achlioptas & McSherry, 2005; von
Luxburg, 2007; von Luxburg et al., 2008) and semidefinite
programs (SDP) (Peng & Wei, 2007; Mixon et al., 2016; Li
et al., 2017; Fei & Chen, 2018; Chen & Yang, 2021a; Royer,
2017; Giraud & Verzelen, 2018; Bunea et al., 2016; Zhuang
et al., 2022a), have been proposed in literature. Among
the existing solutions, the SDP approach is particularly at-
tractive in that it attains information-theoretically optimal
threshold on centroid separations for exact recovery of clus-
ter labels (Chen & Yang, 2021b).

Our contributions. We extend the SDP approach to a
general setting with heterogeneous features by integrating
cluster labels as model parameters (together with other
component-specific parameters) and propose an iterative
likelihood adjusted SDP (iLA-SDP) method that directly
maximizes the exact observed data likelihood. Our idea is to
tailor the strength of SDP relaxation of the K-means cluster-
ing method in the isotropic covariance case for likelihood-
awareness inference. On one hand, iLA-SDP has a similar
flavor as the EM algorithm by maximizing the likelihood
function of the observed data. On the other hand, differ-
ent from the EM framework, iLA-SDP treats the cluster
labels as unknown parameters while profiles out the cluster
centers (i.e., centroids), which brings several statistical and
algorithmic advantages.

First in the arguably simplest one-dimensional GMM setting,
EM is known to fail in certain configurations of centroids
even when they are well-separated (Jin et al., 2016). In other
words, EM is sensitive to initialization and model configura-
tion. The main reason is due to the effort for estimating the
cluster centers during the EM iterations. In iLA-SDP, cluster
centers are regarded as nuisance parameters and profiled out
to obtain a likelihood function in component-specific param-
eters including only the cluster covariance matrices. Thus
iLA-SDP is more stable and performs empirically better
than EM.

Second, cluster labels in EM are latent variables that are es-
timated by their posterior probabilities and the observed log-
likelihood for component parameters and mixing weights
are optimized through minorizing functions during itera-
tions. In iLA-SDP, cluster labels are regarded as parameters
optimized through the likelihood function jointly in the la-
bels and covariance matrices. Thus iLA-SDP is a more
direct approach than EM for taming the non-convexity in

the observed log-likelihood objective and we prove that it
perfectly recovers the true clustering structure if the clusters
are well-separated under a lower bound without concerning
the configurations of centroids.

The rest of the paper is organized as follows. In Section 2,
we review some background on partition-based formulation
for model-based clustering. In Section 3, we introduce the
likelihood adjusted SDP for recovering the true partition
structure and discuss its connection to the EM algorithm. In
Section 4, we compare the performance of several widely
used clustering methods on two real datasets.

2. Model-based clustering: a partition
formulation

We consider the model-based clustering problem. Suppose
the data points X1, . . . , Xn ∈ Rp are independent random
variables sampled from K-component Gaussian mixture
model (GMM). Specifically, let G∗

1, . . . , G
∗
K be the true

partition of the index set [n] := {1, . . . , n} such that if
i ∈ G∗

k, then
Xi = µk + ϵi, (1)

where µk ∈ Rp is the center of the k-th cluster and ϵi is
an i.i.d. random noise term following the common distri-
bution N(0,Σk). Here we focus on the most general and
realistic scenario where the within-cluster covariance ma-
trices Σ1, . . . ,ΣK are heterogeneous. In our formulation
of the GMM, the true partition (G∗

k)
K
k=1 is treated as a un-

known parameter in model (21), along with the component-
wise parameters (µk,Σk)

K
k=1. With this parameterization

(Gk, µk,Σk)
K
k=1, the log-likelihood function for observing

the data X = {X1, . . . , Xn} is given by

ℓ
(
(Gk, µk,Σk)

K
k=1 | X

)
= −

∑K
k=1

|Gk|
2 log(2π|Σk|) −

1
2

∑K
k=1

∑
i∈Gk

(Xi − µk)
TΣ−1

k (Xi − µk),

where |Gk| is the cardinality of Gk and |Σk| is the deter-
minant of matrix Σk. Since we are primarily interested
in recovering the clustering labels (or equivalently the as-
signment matrix, cf. Section 3.1 below) in the presence of
cluster heterogeneity, we can first profile out the nuisance
parameters µk in closed form and the resulting objective
function as a profile log-likelihood for the remaining param-
eters (after dropping constants) is given by

ℓ
(
(Gk,Σk)

K
k=1 | X

)
= −

K∑
k=1

|Gk| log(|Σk|)

−
K∑

k=1

∑
i∈Gk

∥Xi∥2Σ−1
k

+

K∑
k=1

1

|Gk|
∑

i,j∈Gk

⟨Xi, Xj⟩Σ−1
k
,

(2)

where ⟨v, u⟩Σ := vTΣu and ∥u∥2Σ := ⟨u, u⟩Σ for any
u, v ∈ Rp and Σ ≻ 0. This leads us to a combinatorial
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optimization problem for the profile log-likelihood function
of the following form:

max

{
ℓ
(
(Gk,Σk)

K
k=1 | X

)
:

K⊔
k=1

Gk = [n], Σk ≻ 0

}
,

(3)
where the disjoint union

⊔K
k=1 Gk = [n] means that⋃K

k=1 Gk = [n] and Gj ∩ Gk = ∅ if j ̸= k. Note that the
constrained optimization problem in (3) in the special case
Σ1 = · · · = Σk = σ2Idp reduces to the K-means clustering
method, which is known to be worst-case NP-hard (Das-
gupta, 2007; Mahajan et al., 2009). To overcome such com-
putational difficulty, semidefinite program (SDP) relaxation
is a tractable solution that achieves information-theoretically
optimal exact recovery under the standard GMM with identi-
cal and isotropic covariance matrices (Chen & Yang, 2021a).
Nevertheless, all existing formulations of various SDP re-
laxations of the standard GMM critically depend on the
assumption that Σ1 = · · · = Σk = σ2Idp with a known
noise variance parameter σ2 (Fei & Chen, 2018; Li et al.,
2017; Peng & Wei, 2007; Chen & Yang, 2021a). This moti-
vates us to seek alternative SDP formulations adjusting the
(full) information coming from the likelihood function for
the observed data X.

3. Likelihood adjusted SDP for clustering
heterogeneous data

In this section, we introduce the likelihood adjusted
SDP (LA-SDP) for recovering the true partition structure
G∗

1, . . . , G
∗
K by applying convex relaxation to the profile

log-likelihood function (3).

3.1. Oracle LA-SDP under known covariance matrices

In this subsection, we consider the oracle case where the co-
variance matrices Σ1, . . . ,ΣK are known. Let us start with
a well-studied SDP relaxation formulation (Peng & Wei,
2007) for approximating the combinatorial optimization
problem of maximizing the profile log-likelihood function
under the isotropic setting with known Σ1 = . . . = ΣK =
σ2Idp, which is known (Chen & Yang, 2021b) to attain
the information-theoretically optimal threshold on centroid
separations for exact recovery of cluster labels. Note that
there is a one-to-one correspondence between any given
partition (Gk)

K
k=1 of [n] and a binary assignment matrix

H = (hik) ∈ {0, 1}n×K (up to cluster labels permutation)
such that hik = 1 if i ∈ Gk and hik = 0 otherwise for
i ∈ [n] and k ∈ [K]. Because each row of H contains
exactly one non-zero entry, the recovery of the true clus-
tering structure (or its associated assignment matrix) by
maximizing the profile log-likelihood function (after drop-
ping constants) can be re-expressed as a (non-convex) mixed

integer program:

max
H

⟨A,HBH⊤⟩ =
K∑

k=1

1

|Gk|
∑

i,j∈Gk

⟨Xi, Xj⟩,

subject to H ∈ {0, 1}n×K and H1K = 1n,

(4)

where A = X⊤X is the n × n similarity matrix, 1n de-
notes the n-dimensional vector of all ones, and B is the
K × K diagonal matrix whose k-th diagonal component
is |Gk|−1 =

(∑n
i=1 hik

)−1
. Here, we have used the key

identity
∑K

k=1 wk

∑
i,j∈Gk

aij = ⟨A,HBH⊤⟩ that holds
for any diagonal matrix B = diag(w1, . . . , wK) and sim-
ilarity matrix A = (aij)

n
i,j=1. Relaxing the above mixed

integer program (4) by lifting the assignment matrix H into
Z = HBH⊤, we arrive at its SDP relaxation as

Ẑ = arg max
Z∈Rn×n

⟨A,Z⟩,

subject to Z ⪰ 0, tr(Z) = K, Z1n = 1n, Z ⩾ 0,
(5)

where Z ⩾ 0 means each entry Zij ⩾ 0 and Z ⪰ 0 means
the matrix Z is symmetric and positive semi-definite. This
SDP formulation relaxes the integer constraint on H into
two linear constraints tr(Z) = K and Z ⩾ 0 that are
satisfied by any Z = HBHT as H ranges over feasible
solutions of problem (4).

Now let us consider the general heterogeneous setting with
(possibly) different and non-isotropic covariance matrices
Σ1, . . . ,ΣK , and extend the SDP relaxation to this setting.
Two technical difficulties arise by examining the previous ar-
gument. First, the first two terms in the profile log-likelihood
function (3) are no longer independent of the assignment ma-
trix, and is therefore not negligible. In particular, they also
provide partial information about the cluster labels when
the covariance matrices are different: ∥Xi∥2Σ−1

k

in the sec-
ond term quantifies how well Xi aligns with the covariance
matrix Σk encoding second-order information of the k-th
cluster; while the first term plays the role of balancing the
cluster sizes and favors assigning more points to clusters
with smaller shapes (since density is expected to be high).
Second, the similarity ⟨Xi, Xj⟩Σ−1

k
within cluster Gk in

the third term now depends on k, making the key identity∑K
k=1 wk

∑
i,j∈Gk

aij = ⟨A,HBH⊤⟩ for connecting the
profile log-likelihood function with the objective function
of the mixed integer program (4) no longer applicable.

To solve the two aforementioned difficulties, we propose to
augment the single variable Z in the SDP relaxation (5) to K
variables (Zk)

K
k=1, where Zk can be interpreted as the lifting

of the k-th column Hk of the assignment matrix H via Zk =
1

|Gk|HkH
⊤
k , |Gk| =

∑n
i=1 hik = H⊤

k 1n, that encodes the
cluster membership associated with the k-th cluster. More
specifically, by extending the key identity in the isotropic set-
ting to

∑K
k=1 wk

∑
i,j∈Gk

a
(k)
ij =

∑K
k=1⟨A(k), HkwkH

⊤
k ⟩
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for any weight vector w = (wk)
K
k=1 and K similarity matri-

ces
(
Ak = (a

(k)
ij )ni,j=1

)K
k=1

, we can analogously express the
maximizing profile log-likelihood problem as the following
(non-convex) mixed integer program:

max
H

K∑
k=1

⟨A(k), HkwkH
⊤
k ⟩,

subject to Hk ∈ {0, 1}n×1 and
K∑

k=1

Hk = 1n,

(6)

where wk = |Gk|−1 =
(∑n

i=1 hik

)−1
, and the k-th cluster-

specific similarity matrix A(k) :=

− log(|Σk|)1n1
T
n − 1

2

[
vk1

T
n + 1nv

T
k

]
+XTΣ−1

k X, (7)

where vk := diag(XTΣ−1
k X), diag(A) stands for the col-

umn vector composed of all diagonal entries of a matrix
A. Now by lifting Hk into Zk = HkwkH

⊤
k , we arrive at

the following SDP relaxation for the profile log-likelihood
objective function (2):

(
Ẑ1, . . . , ẐK

)
= argmax

Z1,...ZK∈Rn×n

K∑
k=1

⟨Ak, Zk⟩,

subject to
K∑

k=1

tr(Zk) = K,
( K∑
k=1

Zk

)
1n = 1n,

Zk ⪰ 0, Zk ⩾ 0, ∀ k ∈ [K],

(8)

which relaxes the integer constraint on H =
(H1, H2, · · · , Hk) into (K + 1) linear constraints∑K

k=1 tr(Zk) = K and Zk ⩾ 0 for k ∈ [K] that are
satisfied by any Zk = HkwkH

⊤
k as H ranges over feasible

solutions of problem (6).

Since solving (8) requires the knowledge of the true co-
variance matrix for each component, we call the solu-
tion (Ẑk)

K
k=1 as the oracle likelihood adjusted SDP (LA-

SDP) for estimating the cluster membership matrix of data
points. In the special case of isotropic covariance matrices
Σ1 = · · · = ΣK = σ2Idp, Proposition 1 below shows that
LA-SDP reduces to become equivalent to the previous SDP
formulation (5).
Proposition 1 (SDP relaxation for K-means is a special
case of LA-SDP). Suppose Σk = σ2Idp for all k ∈ [K].
Let Ẑ be the solution to (5) that achieves maximum M1 and
Ẑk, k = 1, . . . ,K, be the solution to (5) with maximum M2.
Then M1 = M2. And Ẑ =

∑K
k=1 Ẑk, if Ẑ is unique in (5).

Note that the SDP relaxed K-means in (5) is originally pro-
posed in (Peng & Wei, 2007) and has been extensively stud-
ied in literature. In particular, it achieves the information-
theoretical limit for exact recovery under the standard

Z1 Z2

Z3 Z4

Z = Z1 + Z2 + Z3 + Z4

Overall membershipEigenvectors of Z

LA-SDP output

G1

G2

G3

G4

Rounding

Figure 1. LA-SDP membership matrices to cluster labels via spec-
tral rounding.

GMM (Chen & Yang, 2021a) and it is robust against outliers
and adversarial attack (Fei & Chen, 2018). In the case of
exact recovery where Ẑ = Z∗ and Z∗ is the true cluster
membership matrix such that Z∗

ij = |G∗
k|−1 if i, j ∈ G∗

k

and Z∗
ij = 0 otherwise, then we can easily recover the true

partition structure G∗
1, . . . , G

∗
K or its associated assignment

matrix from the block diagonal matrix Ẑ. Thus it is an in-
teresting theoretical question of when the partition structure
induced by Ẑ =

∑K
k=1 Ẑk from the LA-SDP (see Figure 1

for an illustration) can achieve exact recovery. Theorem 2
below gives a lower bound of the separation signal-to-noise
ratio for achieving exact recovery in the presence of data
heterogeneity.

For each distinct pair (k, l) ∈ [K], let D(k,l) :=∑p
i=1(λi−log(1+λi))

pmaxi |λi| characterize the closeness between Σk

and Σl, where λ1, . . . , λp enumerate all eigenvalues of
(Σ

1/2
l Σ−1

k Σ
1/2
l − Idp). If λi = 0, ∀i ∈ [p], we let

D(k,l) = 0. Let ∆2 := mink ̸=l ∥Σ−1/2
k (µk−µl)∥2 denote a

covariance adjusted centroid separation, nk := |G∗
k| the size

of true cluster G∗
k, m = mink ̸=l

2nknl

nk+nl
the least pairwise

harmonic mean over cluster sizes, n = mink nk the min-
imal cluster size, and M := maxk ̸=l ∥Σ1/2

l Σ−1
k Σ

1/2
l ∥op

(matrix operator norm).
Theorem 2 (Exact recovery for LA-SDP). Suppose there
exist constants δ > 0, β ∈ (0, 1) and η ∈ (0, 1) such that

log n ⩾ max

{
(1− β)2

β2
,

(1− β)(1− η)K2

β2 max{(M − 1)2, 1}

}
C1n

m
,

δ ⩽
β2

(1− β)2
C2M

1/2

K
, m ⩾

4(1 + δ)2

δ2
.

Then the LA-SDP achieves exact recovery, or Ẑ = Z∗, with
probability at least 1− C7K

3n−δ if

∆2 ⩾ (E1 + E2) log n, min
k ̸=l

D(k,l) ⩾ C3(1 +
log n

p
+

p

n
),

(9)
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where concrete expressions of E1 and E2 (depending on
δ, β, η) are provided in Appendix A.5, and C1, . . . , C7 are
universal constants.

In general, the upper bound condition on n/m requires the
cluster sizes tend to be balanced in which case n/m = K.
Our definition of the centroid separation ∆ extends the
separation-to-noise ratio (SNR) for the exact recovery under
the isotropic covariance setting (Chen & Yang, 2021a) to
the heterogeneous setting by taking into account the cluster
shapes (i.e. second order information). From (19), we see
that our theoretical centroid separation lower bound consists
of two parts E1 and E2: E1 reduced to the information-
theoretically optimal threshold when M = 1, corresponding
to same covariance matrices; E2 tends to vanish for small
M close to one and satisfying M = 1 + o(1/

√
n log n) or

remains as an extra term for large M . From our numerical
results summarized in Figure 2, we can observe that our
defined centroid separation ∆ indeed captures the accuracy
of cluster label recovery using LA-SDP—the mis-clustering
error curves display almost identical patterns under different
settings of the GMM. In comparison, the performance of
the (original) SDP (5) and the K-means clustering method
designed for the isotropic case become significantly worse
as the condition number of the cluster covariance matrices
increases. Here the mis-clustering error is defined as the
ratio of mis-clustered data points to the total number of
data points, which is minimized over all permutations of
the cluster labels. More details about implementation and
model setups are provided in Appendix A.2.

3.2. Iterative LA-SDP under unknown covariance
matrices: an alternating maximization algorithm

Since the oracle LA-SDP relies on the knowledge of co-
variance matrices Σ1, . . . ,ΣK , we propose a simple and
practical data-driven algorithm for approximating LA-SDP
when these covariance matrices are unknown. The idea is
to alternate between the SDP relaxation given a current es-
timate of the component covariance matrices and updating
covariance matrices according to the maximum (penalized)
likelihood given the new membership estimate. The next
lemma gives a closed-form formula for updating covari-
ance matrices given a current estimate of the assignments
Z1, . . . , ZK based on their (unconstrained) MLEs on the
observed data.

Lemma 3 (Updating formula for covariance matrices un-
der alternating maximization). For any feasible matrices
Z1, . . . , ZK satisfying the constraints of (8), the closed-
form solution of the optimization problem

Σ̂1, . . . , Σ̂K = arg max
Σ1,...ΣK⪰0

K∑
k=1

⟨Ak, Zk⟩ (10)
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Figure 2. Mis-clustering error (with shaded error bars) vs centroid
separation ∆ under different conditional numbers of cluster covari-
ance matrices Σ1 = Σ2 = · · · = ΣK (M = 1). The top (bottom)
plot corresponds to a moderate (large) condition number of the
common covariance matrix. Here, KM refers to K-means method;
SDP refers to the original SDP (5).

should be Σ̂k :=

1

1T
nZk1n

n∑
i,j=1

[
1

2
(XiX

T
i +XjX

T
j )−XiX

T
j

]
Zk,ij ,

(11)
∀k ∈ [K], where recall that A(k) := A(k)(Σk) is the Σk-
dependent similarity matrix defined in (7).

Based on the lemma, we propose an iterative LA-SDP
(iLA-SDP) by alternating maximization of the profile log-
likelihood (3) for estimating the lifted cluster membership
matrices (Zk)

K
k=1 from LA-SDP (8) and the component co-

variance matrices (Σk)
K
k=1, as summarized in Algorithm 1.

The convergence of iLA-SDP for objective values can be
directly implied from 8 and Lemma 3, where we summarize
it as the theorem below.
Theorem 4 (Monotonic maximization of iLA-SDP). The
alternate updating rule of the assignments Z

(s)
1 , . . . , Z

(s)
K

and covariance matrices Σ(s)
1 , . . . ,Σ

(s)
K in Algorithm 1 will

monotonically maximize the observed data log-likelihood
over the iteration s = 0, 1, 2, . . . , S.
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Remark 5. This theorem guarantees that the objective values
are non-increasing over the iterations. However, obtaining
an explicit theoretical convergence rate for iLA-SDP can be
a challenging task.

To understand the closed form solution of the covariance
matrices in Lemma 3, we we first consider that in the special
case where the lifted membership matrix Zk is of rank one,
which holds for true lifted cluster membership matrices
(Z∗

k)
K
k=1, the covariance matrices produced by iLA-SDP can

be interpreted as within-cluster sample covariance matrices
under soft clustering.
Proposition 6 (Covariance estimation in iLA-SDP via soft
clustering). If rank(Zk) = 1, then there exists weights
(wk,1, . . . , wk,n) such that these Σ̂k in Lemma 3 can be
written as

Σ̂k :=
1

nk

n∑
i=1

wk,i(Xi − µ̂k)(Xi − µ̂k)
⊤, (12)

where µ̂k := 1
nk

∑n
i=1 wk,iXi and nk =

∑n
i=1 wk,i.

It is further noted from the proof of Proposition 6 that when
Zk has rank one, the weights wk,1, . . . , wk,n are propor-
tional to the leading non-zero eigenvector of Zk. Thus the al-
ternating maximization step (18) for updating the covariance
matrices in iLA-SDP can be interpreted as a soft clustering
technique that resembles the EM algorithm. Specifically, the
E-step estimates the (hard) cluster label Yi ∈ {0, 1}K asso-
ciated with Xi by the posterior probabilities τik := p(Yik |
Xi, θ̂

(t)) where θ̂(t) = (π̂
(t)
k , µ̂

(t)
k , Σ̂

(t)
k )Kk=1 denotes the esti-

mated GMM parameters at the t-th iteration in the EM. Then
the M-step updates the parameters via π̂

(t+1)
k = m

(t)
k /n

with m
(t)
k =

∑n
i=1 τ

(t)
ik , µ̂

(t+1)
k = 1

m
(t)
k

∑n
i=1 τ

(t)
ik Xi,

Σ̂
(t+1)
k =

1

m
(t)
k

n∑
i=1

τ
(t)
ik (Xi − µ̂

(t+1)
k )(Xi − µ̂

(t+1)
k )⊤.

(13)

Note that (18) and (13) represent different weighting
schemes in the soft clustering rule for obtaining an esti-
mate for the cluster labels. In iLA-SDP, the weight wk,i

for Xi belonging to component k is determined by the SDP
in (8). Once the weights are calculated, remaining parame-
ter updates in both iLA-SDP and EM boil down to simple
averages with effective component sample sizes nk and mk,
respectively. In Section 3.3 to follow, we provide deeper
comparison between iLA-SDP and EM.
Remark 7. In Appendix A.1, we further propose two vari-
ations of iLA-SDP that can handle high-dimensional and
large-size data with better computational and statistical effi-
ciency. For high-dimensional data, we apply Fisher’s LDA
with an initial estimate of the cluster labels to find an optimal
feature subspace that increases the SNR for better cluster-
ing, and for large-size data we can use BM-like methods

or combine the subsampling idea with iLA-SDP to reduce
computational cost (Zhuang et al., 2022b).

Algorithm 1 The iterative likelihood adjusted SDP (iLA-
SDP) algorithm

1: Input: Data matrix X ∈ Rp×n containing n points.
Initialization of assignments G(0)

1 , . . . , G
(0)
K or covari-

ance matrices Σ
(0)
1 , . . . ,Σ

(0)
K . The stopping criterion

parameters ϵ, S.
2: (Assignments to covariance matrices) If we have

the initialization of assignments, let Σ
(0)
k :=

|G(0)
k |

−1∑
i∈G

(0)
k

(Xi − X̄k)(Xi − X̄k)
T to be the

sample covariance of each cluster k ∈ [K], where

X̄k := |G(0)
k |

−1∑
i∈G

(0)
k

Xi.

3: for s = 1, . . . , S do
4: (Adjusted-SDP) Solve the Adjusted-SDP in (8)

using X and Σ
(s−1)
1 , . . . ,Σ

(s−1)
K to get solution

Z
(s)
1 , . . . , Z

(s)
K .

5: Compute the sum Z̃(s) :=
∑K

k=1 Z
(s)
k and the rela-

tive norm r(s) := ∥Z̃(s)− Z̃(s−1)∥F /∥Z̃(s−1)∥F for
s ⩾ 2. We will break the loop if r(s) < ϵ .

6: (Assignments to covariance matrices) Use formula in
Lemma 3 to get covariance matrices Σ(s)

1 , . . . ,Σ
(s)
K

from Z
(s)
1 , . . . , Z

(s)
K .

7: end for
8: Perform the spectral decomposition of Z̃(S) and take

the top K eigenvectors (û1, . . . , ûK).
9: Run K-means clustering on (û1, . . . , ûK) and extract

the cluster labels Ĝ1, . . . , ĜK as a partition estimate
for [n].

10: Output: A partition estimate Ĝ1, . . . , ĜK for [n].

3.3. Connections between iLA-SDP and EM algorithms

It is interesting to observe that our proposed iLA-SDP al-
gorithm is closely connected to the classic EM algorithm,
which approximates the maximum likelihood estimation
(MLE) of the observed data in statistical models with la-
tent variables (Dempster et al., 1977). The key idea of EM
algorithm in the model-based clustering context is data aug-
mentation where the latent variables represent the cluster
labels. More specifically, for each data point Xi ∈ Rp, we
associate with an unobserved one-hot encoded cluster label
Yi := {Yi1, . . . , YiK} ∈ {0, 1}K . Then the EM algorithm
aims to iteratively maximize the expected log-likelihood of
the complete data (Xi, Yi)

n
i=1 given by θ(t+1) :=

argmax
θ

{
Q(θ | θ(t)) := EY∼q(·|X,θ(t))[ℓc(θ | X,Y)]

}
,

(14)
where θ = ((πk, µk,Σk)

K
k=1) contains parameters in the

GMM, (πk)
K
k=1 are the weight parameters such that πk ⩾ 0

6
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and
∑K

k=1 πk = 1, and the complete log-likelihood function
is

ℓc(θ | X,Y) := p(X,Y | θ) = −1

2

n∑
i=1

K∑
k=1

Yik·[
log(2π|Σk|)− (Xi − µk)

⊤Σ−1
k (Xi − µk)

]
.

Alternatively, the EM algorithm (14) can be interpreted as
minorize-maximization (MM) that maximizes a best lower
bound for the log-likelihood of the observed data

ℓ(θ | X) := log p(X | θ) = log
∑
Y

p(X,Y | θ)

⩾
∑
Y

q(Y | X) log
p(X,Y | θ)
q(Y | X)

=: L(q, θ)

for any posterior distribution q(Y |X). Under this per-
spective, the EM algorithm can be expressed as an al-
ternating maximization algorithm on L(q, θ) between E-
step q(t+1) = argmaxq L(q, θ(t)) and M-step θ(t+1) =

argmaxθ L(q(t+1), θ). Thus, give any q(Y |X), the
M-step maximizes the expected complete log-likelihood
as a surrogate function that minorizes ℓ(θ |X) because
L(q, θ) = EY∼q(· |X)[ℓc(θ |X,Y)]−H(q(Y |X)) where
H(q) denotes the relative entropy of distribution q, while
given the current parameter estimate θ(t), the E-step is max-
imized at q(t+1)(Y |X) = p(Y |X, θ(t)) because

ℓ(θ(t) | X) ⩾ L(p(Y | X, θ(t)), θ(t))

=
∑
Y

p(Y | X, θ(t)) log p(X | θ(t)) = ℓ(θ(t) | X),

where the first inequality is actually an equality at
p(Y |X, θ(t)). Even though the EM and iLA-SDP are both
alternating maximization algorithms aiming to solve the
MLE for the observed data log-likelihood and both can be
viewed as soft clustering methods (cf. Proposition 6), there
are several important differences we would like to highlight.

First, cluster labels are (random) latent variables and they
are estimated via posterior probabilities in the EM algo-
rithm, while the labels are treated as unknown parameters
in iLA-SDP that are estimated via direct maximization of
the observed data likelihood.

Second, the EM algorithm is a special case of the
minorization-maximization (MM) algorithm (Hunter &
Lange, 2000) by iteratively performing the coordinate ascent
on the expected complete data log-likelihood as a minorizing
surrogate function, while our iLA-SDP is exact in the sense
that it directly optimizes the observed data log-likelihood
via a convex relaxation formulation. Thus iLA-SDP is a
more direct approach than EM for tackling the non-convex
observed log-likelihood objective and it is principled to per-
fectly recover the true clustering structure if the clusters are
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Figure 3. Mis-clustering error (with shaded error bars) vs γ (cap-
tures the signal strength of GMM) and α (perturbation percentage
of initialization). mEM (SDP) refers to the reduced version of
EM (LA-SDP) where we consider covariance matrices as fixed
and equal to identity. The first plot compares the performance of
mEM and SDP when separation is large with random initialization;
the second plot compares all methods when we enlarge the per-
turbation percentage α applied to the random initialization from
hierarchical clustering (HC).

well-separated under an SNR lower bound in Theorem 2. As
in the EM algorithm, iLA-SDP monotonically maximizes
the observed data log-likelihood over iterations, where we
can get both theoretically from Theorem 4 and empirically;
cf. Figure 7 in Appendix.

Third, the EM algorithm in each iteration must estimate the
cluster center parameters (µk)

K
k=1, while our iLA-SDP pro-

files out the effect of centroid estimation and leverages only
pairwise Mahalanobis distances between data to accommo-
date the heterogeneity of cluster shapes. Partly because the
error in estimating the centroids propagates to other param-
eters, EM is more sensitive to initialization with inaccurate
labels and the centroid configurations even in the standard
GMM (Jin et al., 2016), and iLA-SDP behaves better than
EM, an observation we empirically verify in our simulation

7



Likelihood Adjusted SDP for Clustering Heterogeneous Data

experiments; cf. Figure 3 for comparison between iLA-SPD
and EM algorithms.

Failure of EM vs SDP. The failure of EM for random
initialization (Jin et al., 2016) in the special case that co-
variance matrices equal to identity matrix and it assumes
equal weights. Both covariance matrices and weights are
known. In this case, EM algorithm would be reduced to the
version that the weights and the mean update interactively.
Meanwhile, LA-SDP would be reduced to SDP. The ran-
dom initialization indicates that we pick any data point as
initialization of the centers uniformly. Following the same
setting from the construction of the pitfall, we choose one
dimension GMM with three clusters such that the distance
between two of the centers is much smaller than others.
More concisely, we let n = 300, K = 3, p = 1, µ1 =
γ, µ2 = −γ, µ3 = 10 · γ. The results can be observed
from the first plot in Figure 3 with 300 replicates, where
we denote the reduced version of EM as mEM. From the
first plot we can observe that LA-SDP with isotropic known
covariance matrices, which reduces to the K-means SDP
in (5), performs stable and achieves exact recovery when
the separation is large. However, EM fails with random
initialization in this adversarial centroids configuration.

Perturbation of initialization assignments. To see how
the performance of EM and LA-SDP will change when per-
turbing the initialization, we set HC as initialization and pro-
portion α (α ∈ [0, 1]) of the initialization labels will be per-
turbed. The diagonal of the covariance matrices are placed
at a simplex of Rp that are not identical to the corresponding
centers. i.e. µk = λ · ek, Σk = L · diag(ek+1), ∀l ∈ [K],
where eK+1 = e1. This guarantees the symmetry of the
construction. We set L = 10, p = 4, K = 4 and the
distance between centers d = 8. Each time we draw the
n = 200 data from the GMM and run HC as initialization.
Then we randomly assign α proportion of the labels from
HC to any cluster uniformly. The results of the simulation
for the second plot in Figure 3 are obtained through 300
total replicates, where we can see that LA-SDP is fairly
stable with perturbation of initialization if the separation is
large while EM can go worse as the perturbation percent-
age of initialization α approaches 1, i.e., all the labels are
selected randomly. In other words, EM is more sensitive
to initialization and LA-SDP is more stable if the signal is
strong. More discussions about iLA-SDP can be found in
Appendix A.3.

4. Real-data applications
In this section, we test the performance of iLA-SDP against
several widely used clustering methods on three real datasets.
The first one is handwriting digits dataset MNIST, the sec-
ond one is CIFAR-10 image dataset and the last one is
Landsat dataset from the UCI machine learning repository.

The detailed settings can be found in Appendix A.4. As
we know, the time complexity of solving SDP (iLA-SDP)
is of order O(n3.5). To resolve that issue, in practice, we
used Burer Monteiro approach (BM method) to bring down
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Figure 4. Boxplots of mis-clustering error (with means) for differ-
ent methods. The top (middle) plot summarizes the results for the
MNIST dataset (CIFAR-10 dataset). The bottom plot summarizes
the results for the Landsat satellite dataset.
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the time and space complexity to nearly O(n) with enough
accuracy; cf. Figure 8 in Appendix A.2. Specifically, we
adapted the BM formulation for the SDP (Sahin et al., 2022)
to suit our LA-SDP (8) setting, i.e.,

(
Û1, . . . , ÛK

)
= argmax

U1,...UK∈Rn×s

K∑
k=1

⟨Ak, UkU
T
k ⟩,

subject to ∥U∥2 = K, UUT1n = 1n, U ⩾ 0,

U = [U1| . . . |UK ] ∈ Rn×r, r = sK ⩾ K. (15)

The details of the algorithm are beyond the scope of this
topic and will be elaborated in our following works.

Handwriting digits dataset. First let us look at the per-
formances of our methods for a handwriting digits dataset
MNIST. We used PCA to extract features from the training
set and reduce the dimension for the test set to q = 40.
The given test set contains 10000 samples with K = 10
clusters. We choose three clusters with n roughly equal
3000 and perform clustering algorithms for total 10 repli-
cates. Case 1, case 2 and case 3 correspond to choosing
digits ”0”, ”2” and ”3”; digits ”3”, ”4” and ”6” and digits
”3”, ”4” and ”8” respectively. HC is used as initialization
for EM, KM and iLA-SDP. The comparison of those four
methods can be found on the top in Figure 4, where we can
observe that iLA-SDP and EM in this case have comparable
behaviors. They both achieve better performance than KM
and SDP. The results of SC (spectral clustering) have not
been included in this plot as SC failed with mis-clustering
error larger that 0.5 for this situation. Over the experiments
we found the comparable behaviors for EM and iLA-SDP,
this is reasonable since their goals are both minimizing the
log-likelihood function. When the signal is strong, both
methods outperform KM and SDP that only consider fixed
covariance matrices as we suspected.

CIFAR-10 dataset. Next we perform all methods for
CIFAR-10 dataset. This dataset consist of 60000 32×32×3
colored images with 10 clusters. We used Inception v3
model and default settings to finally extract 2048 features,
after which we used PCA to further reduce the dimension
for the test set to q = 20. The given test set contains 10000
samples with K = 10 clusters. We simply choose two
clusters of them with sample size n = 2000. The results
are shown in the second plot of Figure 4 with 10 replicates.
Case 1 (case 2) corresponds to choosing ”dog” and ”ship”
(”automobile” and ”horse”) respectively. The results of spec-
tral clustering failed in this situation. Similar to previous
experiment, we can see that iLA-SDP and EM both achieve
relatively good performance comparing to KM and SDP
under those circumstances.

Landsat satellite dataset. This database was generated
from landsat Multi-Spectral Scanner image data. The test
set includes 2000 satellite images, 6 different clusters with

36 attributes (36 = 4 spectral bands × 9 pixels in neighbour-
hood). Every attribute is an integer from 0 to 255 indicating
the color for certain pixel. We performed 5 methods on the
transformed dataset with total 10 replicates. For each at-
tribute, we scale its range to [0, 1] and then take the function
f(x) = log(1/x− 1) entry-wise to transform the range to
R+. Then, we run Algorithm 3 on the transformed dataset
X̃ to get the results for LA-SDP with q = K = 6. We
ensure the randomness only comes from initialization (and
the rounding procedure) to see how initialization affects the
performance of different methods. From the results we can
see that our method LA-SDP performs the best for all four
methods. The initialization for KM, iLA-SDP and EM is
hierarchical clustering. Especially, if we attack the initializa-
tion by setting K = 7 (originally K = 6) in HC, iLA-SDP
performed stable while EM failed. Because there are both
biases of the estimations of group means and covariance
matrices for EM while iLA-SDP only uses the group co-
variance matrices information as its initialization. So when
the information of initialization, especially for the group
means, got jeopardized, KM and EM will be affected easily
while iLA-SDP should be stable relatively. We can observe
that the mis-clustering error for SDP has larger variance
(outliers) in this case, this is because the final assignments
are obtained from rounding process. The results from SDP
are far from exact recovery, so the rounding process may
induce more variants.

5. Discussion
One limitation of iLA-SDP is its reliance on the assumption
that all covariance matrices of clusters are non-singular —
if any of the true covariance matrices happens to be singular,
the method becomes inapplicable. In such cases, additional
adjustments such as projecting the data into suitable lower-
dimensional subspaces would be necessary. There are other
clustering methods that are less sensitive to the initialization
such as power K-means (Xu & Lange, 2019). However,
objective function of this method does not take the second-
order information and thus we expect it would be inferior
comparing to EM or iLA-SDP if heterogeneity is present in
data. In summary, iLA-SDP combines the strengths of both
SDP (robustness to initialization and against outliers / adver-
sarial attack) and EM (flexibility to estimate cluster-specific
covariance matrices). By leveraging the Burer-Monteiro
approach (Burer & Monteiro, 2003), the per-iteration com-
putational complexity of iLA-SDP is similar to that of EM,
both scaling at O(n).
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A. Appendix
Sample complexity bound. To verify the sample complexity bound for LA-SDP in Theorem 2 (O(log(n))) is tight,
we will change n and adjust the squared distance between clusters by multiplying log(n). More precisely, we let d =
λ
√
log(n), λ > 0. The diagonal of the covariance matrices are placed at a simplex of Rp that are not identical to the

corresponding centers. i.e. µk = λ · ek, Σk = L · diag(ek+1), ∀l ∈ [K], where eK+1 = e1. This guarantees the symmetry
of the construction. We set L = 10, p = 4, K = 4. Each time we draw the n = 120/240/480 data from the GMM. The
results of the simulation for the second plot in Figure 5 are obtained through 20 total replicates, where we can observe the
same pattern across different settings for n. This shows that the order log(n) for separation bound in Theorem 2 should be
tight.
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Figure 5. Mis-clustering error (with shaded error bars for the left plot) vs λ for LA-SDP for different n.

Related works. Under the Gaussian mixture model (GMM) with isotropic noise, K-means clustering is equivalent to the
maximum likelihood estimator (MLE) for cluster labels, which is known to be worst-case NP-hard (Aloise et al., 2009).
Fast approximation algorithms to solve the K-means such as Lloyd’s algorithm (Lloyd, 1982; Lu & Zhou, 2016) and
spectral clustering (Meila & Shi, 2001; Ng et al., 2001; Vempala & Wang, 2004; Achlioptas & McSherry, 2005; von
Luxburg, 2007; von Luxburg et al., 2008) provably yield consistent recovery when different groups are well separated.
Recently, semi-definite programming (SDP) relaxations (Peng & Wei, 2007; Mixon et al., 2016; Li et al., 2017; Fei & Chen,
2018; Chen & Yang, 2021a; Royer, 2017; Giraud & Verzelen, 2018; Bunea et al., 2016) have emerged as an important
approach for clustering due to its superior empirical performance (Peng & Wei, 2007), robustness against outliers and
adversarial attack (Fei & Chen, 2018), and attainment of the information-theoretic limit (Chen & Yang, 2021b). Despite
having polynomial time complexity, the SDP relaxed K-means has notoriously poor scalability to large (or even moderate)
datasets for instance by interior point methods (Alizadeh, 1995; Jiang et al., 2020), as the typical runtime complexity of an
interior point algorithm for solving the SDP is at least O(n3.5), where n is the sample size.

A.1. Enhanced iLA-SDPs for high-dimensional and large-size data

In this section, we propose two variations of iLA-SDP that can handle high-dimensional and large-size data with better
computational and statistical efficiency.

High dimensional data. If the number attributes of the data are large, it would be hard to approximate the true covariance
matrices since there are O(p2) many unknown parameters. Thus, we propose two dimension reduction procedures that
based on hierarchical clustering, Fisher’s LDA and F-test. The detailed algorithm have been shown in Algorithm 2 and
Algorithm 3. To reduce the dimension, we proposed two procedure.

1. If the number of clusters K is small and the difference between centers are sparse, we shall use HC as a benchmark
method for feature selection and assume the group means according to HC as ground true. Specifically, for i-th attribute,
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we calculate the F-statistics and its p-value based on the H0 that all group means w.r.t. i-th attribute are the same. At last,
each attribute would likely to be selected if the p-value Pi for i-th attribute is significantly small among p-values for all
attributes.

2. First we use the hierarchical clustering to get the clustering results for all possible input cluster number K̃ ∈ [p]. If we
assume all the clusters have identical covariance matrices, then we may use the assignments from HC to estimate the
within-cluster covariance W̃ (with group means µ̃l) and get the signal-to-noise ratio ∆(K̃) := mink ̸=l ∥W̃−1/2(µ̃k−µ̃l)∥.
Here, HC serves as a benchmark method for data initial processing. We will then choose the largest K̃ within target range
such that the signal-to-noise ratio ∆(K̃) is maximized. Then it will lead to the new dataset with dimension q = K̃ − 1
after running Fisher’s LDA on the assignments from HC with clusters number equals K̃. Finally we perform Algorithm 1
on the new dataset and extract the cluster labels.

Large-size data. As we know that the time complexity for solving SDP is as high as O(n3.5). We used the BM methods in
practice. The details will be fully argued in following workds. One might also use subsampling methods to bring down the
time cost while maintain the superior behavior for LA-SDP (Zhuang et al., 2022b). The proposed algorithm is shown in
Algorithm 4.

Algorithm 2 Likelihood adjusted SDP based iterative algorithm with unknown covariance matrices Σ1, . . . ,ΣK for large p.
1: Input:Data matrix X ∈ Rp×n containing n points. Cluster numbers K. The stopping criterion parameters p0, ϵ and S.

α ∈ [0, 1], C > 0.

2: Run hierarchical clustering with data X , clusters number K and extract the cluster labels G
(0)
1 , . . . , G

(0)
K as prior

assignments for [n]. Suppose the assignments have true centers µ(0)
k , k ∈ [K].

3: for i = 1, . . . , p do
4: Calculate the p-value Pi of the F-test Fi under H0: µ(0)

1,i = · · · = µ
(0)
K,i, where µ(0)

k,i corresponds to the i-th component

of µ(0)
i .

5: end for
6: Keep p0 attributes with p0 smallest p-values Pi.
7: if there is no clear cutoff between Pi’s, i.e. maxi∈[p] Pi/mini∈[p] Pi < C, then
8: we further keep other p− p0 attributes with probability α > 0.
9: end if

10: Get dimension reduced data X̃ .
11: Run Algorithm 1 on X̃ with initialization obtained from K clusters of HC and stopping criterion parameters ϵ and S.

Then extract the cluster labels Ĝ1, . . . , ĜK as a partition estimate for [n].
12: Output:A partition estimate Ĝ1, . . . , ĜK for [n].

Algorithm 3 Likelihood adjusted SDP based iterative algorithm with unknown covariance matrices Σ1, . . . ,ΣK for large p.

1: Input:Data matrix X ∈ Rp×n containing n points. Cluster numbers K, the reduction dimension K̃ ∈ [K, p]. The
stopping criterion parameters ϵ and S.

2: Select a bench mark clustering method (HC) as a way to provide a prior assignments.
3: Choose the reduction dimension K̃ ∈ [K, p]. Run hierarchical clustering with data X , clusters number K̃ and extract

the cluster labels G(K̃)
1 , . . . , G

(K̃)

K̃
as prior assignments for [n].

4: Perform the Fisher’s LDA with data X , assignments G(K̃)
1 , . . . , G

(K̃)

K̃
and get the transformed data X̃ ∈ Rq×n with

q = K̃ − 1.
5: Run Algorithm 1 on X̃ with initialization obtained from K clusters of HC and stopping criterion parameters ϵ and S.

Then extract the cluster labels Ĝ1, . . . , ĜK as a partition estimate for [n].
6: Output:A partition estimate Ĝ1, . . . , ĜK for [n].

A.2. Experiment results

In this section, we provide more details of the settings and post the results for simulation experiments. For all the dimension
reduction procedures used in the simulation experiments, we perform step 1-7 in Algorithm 2 followed by Algorithm 3 with
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Algorithm 4 Sketch and lift: Likelihood adjusted SDP based iterative algorithm with unknown covariance matrices
Σ1, . . . ,ΣK for large n.

1: Input:Data matrix X ∈ Rp×n containing n points. Cluster numbers K. The stopping criterion parameters P , ϵ and S.
Sampling weights (w1, . . . , wn) with w1 = · · · = wn = γ ∈ (0, 1) being the subsampling factor.

2: (Sketch) Independent sample an index subset T ⊂ [n] via Ber(wi) and store the subsampled data matrix V = (Xi)i∈T .
3: Run subroutine Algorithm 1 with input V to get a partition estimate R̂1, . . . , R̂K for T .
4: Compute the centroids X̄k = |R̂k|−1

∑
j∈R̂k

Xj and within-group sample covariance matrices Σ̂k =

|R̂k|−1
∑

j∈R̂k
(Xj − X̄k)(Xj − X̄k)

T for k ∈ [K].
5: (Lift) For each i ∈ [n] \ T , assign i ∈ Ĝk if
6: log |Σ̂k|+ ∥Σ̂−1/2

k (Xi − X̄k)∥2 < log |Σ̂l|+ ∥Σ̂−1/2
l (Xi − X̄l)∥2, ∀l ̸= k, l ∈ [K]. And randomly assign i to any

K clusters if such k doesn’t exist.
7: Output:A partition estimate Ĝ1, . . . , ĜK for [n].

input parameters α = 0.7, C = 1010, p0 = 2K, p1 = 15 ϵ = 10−2, S = 50. The initialization we use is hierarchical
clustering from mclust package in R. Here we test our algorithm on Gaussian mixture models and real datasets. We compared
our algorithm LA-SDP (HC as initialization) with HC, EM algorithm (HC as initialization), K-means (HC as initialization)
and original SDP.

Improvements of LA-SDP over SDP. Recall in Theorem 2, we define the signal-to-noise ratio as ∆2 :=

mink ̸=l ∥Σ−1/2
k (µk − µl)∥2. To verify the validity of the definition and compare LA-SDP and SDP, we change

the conditional number for covariance matrices Σ1, . . . ,ΣK . Here we choose n = 200, p = 4, K = 4. Recall
M := maxk ̸=l ∥Σ1/2

l Σ−1
k Σ

1/2
l ∥op, we choose all the covariance matrices to be the same such that M is fixed. The

covariance matrices are set to be identity matrix except that the first entry at the diagonal are set to be L+ 1, which refers
to the condition number of matrices. We consider two cases where L = 10, 100. Now denote ek ∈ Rp as the vector
with k-th entry as 1, and 0 otherwise. The centers of clusters µ1, . . . , µK are placed on vertices of a regular simplex, i.e.,
µk = λ

√
1 + (1 + L)−1ek, k ∈ [K]. This ensures that for any L, ∆ = λ, ∀λ. From Figures 2 we can observe that the

signal-to-noise ratio we defined is reasonable. On the other hand, the performance of SDP becomes worse as condition
number of the group covariance matrices grows since the assumption of isotropy group covariance matrices for SDP is
violated and same reason for K-means.

Impact of dimension reduction. Here we want to see the performance of LA-SDP after dimension reduction. The
covariance matrices of GMM are drawn independently following Σk := UkΛkU

T
k , ∀k ∈ [K]. Here Uk is a random

orthogonal matrix, Λk is a diagonal matrix with entries drawn from Z = 1 + βZ · 1(Z > 0), where Z is standard Gaussian
distribution, β > 0 controls the condition number of Σk. Here we choose n = 200, p = 20, K = 4, β = 5. The
covariance matrices are fixed once chosen and we perform Algorithm 1 on the dataset directly to get the results of LA-SDP
for each replicates. For dimension reduction, we follow the procedure of dimension reduction introduced in Algorithm 2
and Algorithm 3 in Appendix A.1 and get the transformed dataset X̃ with lower dimension. Then the results of pLA-SDP is
obtained from running Algorithm 1 with HC as initialization on X̃ . The results in Figure 6 shows that after reduction of
dimension in our procedure, the performance of LA-SDP becomes significantly better when the separation is large. This is
because in our setting, the difference between centers d(k,l) := µk − µl, is sparse for all distinct pairs. And after performing
the F-test on the covariates, the noisy terms get eliminated which results in better performance.

Empirical evidence for ADMM of LA-SDP. Here we provide examples based on previous experiment settings where we
set the distance between centers d = 1/3/5/10. and try to see how the log-likelihood function of given data changes as the
iteration proceeds. From Figure 7 in Appendix we can see that our algorithm guarantees that the log-likelihood function
of given data increases over iteration empirically. What is more, by our construction we can show that the log-likelihood
function will increase after each step of ADMM for LA-SDP theoretically.

Computational complexity of iLA-SDP (based on Burer Monteiro approach). Our BM formulation of LA-SDP has
been expressed as (15). We have plotted the log-scale of time cost versus sample complexity for various methods with 10
replicates, based on the first experiment’s setting. Our algorithm, iLA-SDP based on BM (i.e., iLA-SDP(BM) in the figure),
exhibits nearly linear time complexity. Here, iLA-SDP refers to the original method for solving SDP, where the time cost
grows with order O(n3.5). Figure 8 reveals that the iLA-SDP(BM) curve tends to be parallel to that of K-means, indicating
its nearly linear time complexity. It is noticeable that iLA-SDP(BM) has a relatively large and constant initialization
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complexity, which dominates the time cost when is relatively small. The iterative method of BM, which involves optimizing
multiple parameters and selecting a low rank representation (we choose), may also contribute to this constant initialization
cost. Nonetheless, our algorithm demonstrates superior performance over the original iLA-SDP, which has a super linear
time complexity.

The space complexity of iLA-SDP (solved using BM) is of order O(n), which is comparable to EM and KM. The space
complexity of iLA-SDP comprises two parts: solving the SDP using BM, which has a space complexity of O(n) , and solving
the covariance matrices using the assignment matrices. The assignment matrices (Rn×n) have low-rank representations
(Rn×r), resulting in a space complexity of O(n) as well.
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Figure 6. Mis-clustering error (with shaded error bars for the left plot) vs center distance D for LA-SDP before and after dimension
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A.3. More discussions about iLA-SDP

iLA-SDP is motivated by a more realistic scenario where clusters have heterogeneous or unknown covariance matrices. If
the data structure is well-captured by simpler models such as SDP with isotropic or diagonal covariance matrices, then we
can tailor the iLA-SDP covariance matrix updating procedure by incorporating this information (e.g., adding a penalty term
on off-diagonal entries in high-dimensional cases).

On the other hand, EM algorithm is known to be sensitive to initialization (in particular when the initialization uncertainty
is large). As a result, we prefer to use iLA-SDP over EM because it is more stable in the face of large fluctuations in
initialization, as demonstrated in Figure 3 and Figure 4. However, iLA-SDP may not be significantly better than the original
SDP in cases where the data is high-dimensional and heterogeneous, as high-dimensional covariance matrix estimation
is often inaccurate. This issue also affects the EM algorithm. To mitigate this problem, one can use PCA to perform
dimension reduction, which projects the data onto several leading eigenspaces that capture most of the data variation.
This pre-processing step enables us to extract the heterogeneous covariance matrix structure and improve the clustering
performance.

Furthermore, our experiment Failure of EM vs SDP. in Section 3.3 shows the superior performance of LA-SDP in a scenario
where two clusters are located close to each other, while the third cluster is far away from them. This situation is common in
practical cases involving more than three clusters, where some clusters may share common structures and are therefore
relatively close together, and some other clusters are far away. In such cases, we expect LA-SDP to perform better than the
EM algorithm, as our method can handle these configurations with hierarchical structures.

A.4. Real data application

For the handwriting digits dataset and CIFAR-10 dataset, we get the training set and test set directly from the original
source and then applied dimension reduction on the training sets to get the low dimension representations. After that, we
applied different methods on the test sets. To add randomness to the initialization, we randomly select a subset of the
initialization for each repetition with (1−α) proportion, where we choose α = 0.05. Similar for the landsat satellite dataset,
the training and test sets are obtained from UCI machine learning repository and we ensure the randomness only comes
from the initialization for KM, iLA-SDP and EM.
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A.5. Proof of the theorems and propositions

In this section, we provide the proofs for the Proposition 1, Proposition 6 and a sketch proof of Theorem 2. The proof of the
main theorem follows the track from the paper solving the exact recovery for original SDP (Chen & Yang, 2021b) and we
will show the main differences in our proof.

First, we provide explicit expressions of some constants appearing in Theorem 2 below:

E1 =
4(1 + 2δ)M5/2

(1− β)2η2

(
M +

√
M2 +

(1− β)2

(1 + δ)

p

m log n
+ C4Rn

)

with

Rn =
(1− β)2

(1 + δ) log n

(√
p log n

n
+

log n

n

)
,

and

E2 =
C5(M − 1)3M2

(1− β)(1− η)

(
p

log n
+ 1

)
+

C6K
2(1− β)

β

·min

{
1

β(M − 1)2
n

m

(
1 +

log p

log n

)
p

log n
,
(M − 1)M2

β

(√
p3

log n
+
√
p log n

)
n√
m

}
.

(16)

A.5.1. PROOF OF PROPOSITION 1

Proposition 1 (SDP relaxation for K-means is a special case of LA-SDP). Suppose Σk = σ2Idp for all k ∈ [K]. Let Ẑ
be the solution to (5) that achieves maximum M1 and Ẑk, k = 1, . . . ,K, be the solution to (5) with maximum M2. Then
M1 = M2. And Ẑ =

∑K
k=1 Ẑk, if Ẑ is unique in (5).

Proof of Proposition 1 If Σk = σ2Idp, ∀k ∈ [K]. Then from (7) we have

Ak ≡ 1

2

[
diag(XTX)1T

n + 1ndiag(XTX)T
]
+XTX, ∀k ∈ [K].

This implies that (8) can be written as

Ẑ1, . . . , ẐK = arg max
Z1,...ZK∈Rn×n

〈
XTX,

( K∑
k=1

Zk

)〉
subject to Zk ⪰ 0, tr

( K∑
k=1

Zk

)
= K,

( K∑
k=1

Zk

)
1n = 1n, Zk ⩾ 0, ∀ k ∈ [K],

(17)

Since
〈

diag(XTX)1T
n ,
(∑K

k=1 Zk

)〉
= tr(XTX), which is a constant in the optimization problem (17). Now suppose Ẑ

is a solution to (5) that achieves maximum M1 and Ẑk, k = 1, . . . ,K, is the solution to (17) that achieves maximum M2,
then we have 〈

XTX,
( K∑
k=1

Zk

)〉
⩽ M1,

〈
XTX,

( K∑
k=1

Z̃k

)〉
⩽ M2,

where Z̃1 := Ẑ, Z̃2 = · · · = Z̃K = 0. In other words, M1 = M2, which finishes the proof. If Ẑ is unique in (5), then we
have Ẑ =

∑K
k=1 Ẑk since both of them achieve the maximum in (5). ■
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A.5.2. PROOF OF PROPOSITION 6

Proposition 6 (iLA-SDP is a soft clustering method). If rank(Zk) = 1, then there exists weights (wk,1, . . . , wk,n) such
that Σ̂k in Lemma 3 can be written as

Σ̂k :=
1

nk

n∑
i=1

wk,i(Xi − µ̂k)(Xi − µ̂k)
⊤ with µ̂k :=

1

nk

n∑
i=1

wk,iXi, (18)

where nk =
∑n

i=1 wk,i.

Proof of Proposition 6 If Zk is rank 1, then there exists a ∈ Rn such that Zk = aaT . Let wk := aT1 · a, then we have

Zk =
wkw

T
k

wT
k 1

,

i.e., Zk,ij =
wk,iwk,j∑n

i=1 wk,i
. Finally, by plugging in the expression of Zk,ij with wk,i we can get the target expression for Σ̂k. ■

A.5.3. SKETCH PROOF OF THEOREM 2

Theorem 2 (Exact recovery for LA-SDP). Suppose there exist constants δ > 0 and β ∈ (0, 1) such that

log n ⩾ max

{
(1− β)2

β2
,

(1− β)(1− η)K2

β2 max{(M − 1)2, 1}

}
C1n

m
, δ ⩽

β2

(1− β)2
C2M

1/2

K
, m ⩾

4(1 + δ)2

δ2
.

If
∆2 ⩾ (E1 + E2) log n, and min

k ̸=l
D(k,l) ⩾ C3(1 + log n/p+ p/n), (19)

where

E1 =
4(1 + 2δ)M5/2

(1− β)2η2

(
M +

√
M2 +

(1− β)2

(1 + δ)

p

m log n
+ C4Rn

)
with

Rn =
(1− β)2

(1 + δ) log n

(√
p log n

n
+

log n

n

)
,

and

E2 =
C5(M − 1)3M2

(1− β)(1− η)

(
p

log n
+ 1

)
+

C6K
2(1− β)

β

·min

{
1

β(M − 1)2
n

m

(
1 +

log p

log n

)
p

log n
,
(M − 1)M2

β

(√
p3

log n
+
√
p log n

)
n√
m

}
;

(20)

then the LA-SDP achieves exact recovery, or Ẑ = Z∗, with probability at least 1− C7K
3n−δ for some universal constants

C1, . . . , C7.

Sketch of the proof. Recall that we let G∗
1, . . . , G

∗
K be the true partition of the index set [n] := {1, . . . , n} such that if

i ∈ G∗
k, then

Xi = µk + ϵi, (21)

where µk ∈ Rp is the true center of the k-th cluster G∗
k (Gk for simplicity) and ϵi is an i.i.d. random Gaussian noise

N(0,Σk). First we can write down the dual problem:

min
λ∈R,α∈Rn,
Bk∈Rn×n

λK + αT1n, subject to Bk ⩾ 0, λIdn +
1

2
(α1T

n + 1nα
T )−Ak −Bk ⪰ 0, ∀k ∈ [K].

Denote Z∗
k := 1

|Gk|1Gk
1T
Gk

, ∀k ∈ [K] then it can be shown that the sufficient conditions for the solution of SDP to be
Zk = Z∗

k , ∀k ∈ [K] are
Bk ⩾ 0; (C1)
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Wk := λIdn +
1

2
(α1T

n + 1nα
T )−Ak −Bk ⪰ 0; (C2)

tr(WkZ
∗
k) = 0; (C3)

tr(BkZ
∗
k) = 0. (C4)

It can be verified that if we can find symmetric Bk such that

Bk,GkGk
= 0;

[Bk,GlGk
1Gk

]i = −nk + nl

2nl
· λ

+
nk

2
[(∥Σ−1/2

k (X̄k −Xi)∥2 + log |Σk|)− (∥Σ−1/2
l (X̄l −Xi)∥2 + log |Σl|)];

[Bk,GlGl
1Gl

]j = [Al,GlGl
1Gl

]j − [Ak,GlGl
1Gl

]j ;

[Bk,Gl′Gl
1Gl

]j = [Bl,Gl′Gl
1Gl

]j + [Al,Gl′Gl
1Gl

]j − [Ak,Gl′Gl
1Gl

]j ,

for any triple pairs (k, l, l′) that are mutually distinct and i ∈ Gk, j ∈ Gl. Then (C3) and (C4) hold. In fact, the target
matrices can be defined through

B#
k,Gl′Gl

:=
Bk,Gl′Gl

1Gl
1T
Gl′

Bk,Gl′Gl

1T
Gl′

Bk,Gl′Gl
1Gl

, (22)

for any k ∈ [K], (l′, l) ̸= (k, k). Furthermore, the construction of Bk shows that Bk1Gl
= 0, ∀(k, l) pairs.

The following two lemma gives the sufficient conditions for (C1).
Lemma 8 (Separation bound on the covariance matrices). Let λ1, . . . , λp correspond to the eigenvalues of
(Σ

1/2
l Σ−1

k Σ
1/2
l − Idp) and define D(k,l) :=

∑p
i=1(λi−log(1+λi))

pmaxi |λi| . If there exists constant C such that

min
k ̸=l

D(k,l) ⩾ C(1 + log n/p+ p/n),

then
P
(
[Al,GlGl

1Gl
]j − [Ak,GlGl

1Gl
]j ⩾ 0, for all (k, l) ∈ [K]2 and j ∈ Gl

)
⩾ 1− CK2/n.

Lemma 9 (Separation bound on the centers). Let δ > 0, β ∈ (0, 1), η ∈ (0, 1). If we have

∆2 ⩾
4(1 + δ)M2

(1− β)2η2

M3/2 +

√
M3 +

(1− β)2M

(1 + δ)

p+ 2
√

p log(nK) + 4 log(nK)

m log n

 log n,

and

∆2 ⩾
M2(M − 1)2

(1− β)2(1− η)2
·(

1 +
2(1− β)(1− η)

M
[3 logM + 4M(M − 1)(p+ 2

√
p log(nK) + 4 log(nK))]

)
,

then

P
(
∥Σ−1/2

l (X̄l −Xj)∥2 + log |Σl|)− (∥Σ−1/2
l′ (X̄l′ −Xj)∥2 + log |Σl′ |)

− 2

nl

∣∣[Al,Gl′Gl
1Gl

]j − [Ak,Gl′Gl
1Gl

]j
∣∣ ⩾ β

M
∥Σ−1/2

l (µl − µl′)∥2 + (n−1
l + n−1

l′ )p− rk,l,l′ ,

for all triple (k, l, l′) ∈ [K]3 with (k, l, l′) ̸= (k, k, k) and j ∈ Gl′

)
⩽

CK3

nδ
,
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where

rk,l,l′ = 4

√
log(nK)

nl
∥Σ−1/2

l (µl − µl′)∥+ 2(n−1
l + n−1

l′ )
√

2p log(nK) + 4n−1
l′ log(nK).

for some large constant C.

The proof of Lemma 9 follows the similar steps from the original paper (Chen & Yang, 2021b). The two lemmas imply that
(C1) can hold with high probability if the separation condition in the assumption holds. The remaining part is to verify the
(C2).

Denote Γ = span{1Gk
: k ∈ [K]}⊥ be the othogonal complement of the linear space spanned by 1Gk

, k ∈ [K]. Note that
Wk1Gl

= 0, ∀(k, l) ∈ [K]2, we only need to check for v ∈ Γ,

vTWkv ≥ 0, ∀k ∈ [K].

Note that vT1Gk
= 0, we have

vTWkv = λ∥v∥2 − Sk(v)− Tk(v),

where Sk(v) := vTAkv = vTXTΣ−1
k Xv, and Tk(v) = vTBv. By concentration bound we can get

P(Sk(v) ⩽ MK(
√
n+

√
p+

√
2 log n), for all k ∈ [K]) ⩾ 1− K

n
.

For Tk(v), first we define
V

(1)
k,ll′ := ⟨Σ1/2

l′ Σ−1
l (µl′ − µl),

∑
j∈Gl′

vjϵj⟩;

V
(2)
k,ll′ := ⟨ϵ̄l′ − Σ

1/2
l′ Σ

−1/2
l ϵ̄l,

∑
j∈Gl′

vjϵj⟩;

V
(3)
k,ll′ :=

1

2

∑
j∈Gl′

ϵTj Σ
1/2
l′ (Σ−1

l − Σ−1
l′ )Σ

1/2
l′ ϵjvj ;

V
(4)
k,ll′ :=

1

nl

∑
j∈Gl′

([Al,Gl′Gl
1Gl

]j − [Ak,Gl′Gl
1Gl

]j)vj · 1(l ̸= l′).

Then we can write Tk(v) as

Tk(v) :=
∑
l ̸=l′

nlnl′

1T
nBk1n

(T
(1)
k,ll′ + T

(2)
k,ll′ + T

(3)
k,ll′ + T

(4)
k,ll′ + T

(5)
k,ll′),

where
T

(1)
k,ll′ := V

(1)
k,ll′ · V

(1)
k,l′l;

T
(2)
k,ll′ := V

(2)
k,ll′ · V

(2)
k,l′l;

T
(3)
k,ll′ := V

(1)
k,ll′ · V

(2)
k,l′l + V

(2)
k,ll′ · V

(1)
k,l′l;

T
(4)
k,ll′ := (V

(3)
k,ll′ + V

(4)
k,ll′) · (V

(1)
k,l′l + V

(2)
k,l′l) + (V

(1)
k,ll′ + V

(2)
k,ll′) · (V

(3)
k,l′l + V

(4)
k,l′l);

T
(5)
k,ll′ := (V

(3)
k,ll′ + V

(4)
k,ll′) · (V

(3)
k,l′l + V

(4)
k,l′l).

Now we choose λ = p+ β
4Mm∆2, which implies that

1T
nBk1n ⩾

nlnl′

8

β

M
max{∥Σ−1/2

l′ (µl − µl′)∥2, ∥Σ−1/2
l (µl − µl′)∥2}.

From concentration bounds for Gaussians we have for all triple (k, l, l′) ∈ [K]3 such that (k, l, l′) ̸= (k, k, k),∣∣∣∣∣∣
∑
l ̸=l′

nlnl′

1T
nBk1n

T
(1)
k,ll′

∣∣∣∣∣∣ ⩽ CM2

β
· (n+

√
2nK log n+ 2K log n)∥v∥2;
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∑
l ̸=l′

nlnl′

1T
nBk1n

T
(2)
k,ll′

∣∣∣∣∣∣ ⩽ CM3

1− β
· (δ
√
mp log n+

√
mp log7 n/n)∥v∥2;

∣∣∣∣∣∣
∑
l ̸=l′

nlnl′

1T
nBk1n

T
(5)
k,ll′

∣∣∣∣∣∣ ⩽ CK2

β
· ( 1− β

(M − 1)2M
(p+ pM log p/ log n) +M(M − 1))n∥v∥2,

Or ∣∣∣∣∣∣
∑
l ̸=l′

nlnl′

1T
nBk1n

T
(5)
k,ll′

∣∣∣∣∣∣ ⩽ CK2M(1− β)(M − 1)

β
· (

√
p3m

log n
+
√
pm log n)n∥v∥2,

with probability ⩾ 1− CK3/nδ for some constant C.

Note that by assumption we have ∆2 ⩾ C(M−1)3M2

(1−β)(1−η) (p+log n)+ CM3

(1−β)

√
(1 + δ)p log n/m and the fact that the remaining

terms of Tk,ll′ can be bounded by the above inequalities up to multiplied by some constant, we can directly verify that (C2)
is true under our assumptions. ■

Lemma 8 (Separation bound on the covariance matrices). Let λ1, . . . , λp correspond to the eigenvalues of
(Σ

1/2
l Σ−1

k Σ
1/2
l − Idp) and define D(k,l) :=

∑p
i=1(λi−log(1+λi))

pmaxi |λi| . If there exists constant C such that

min
k ̸=l

D(k,l) ⩾ C(1 + log n/p+ p/n),

then
P
(
[Al,GlGl

1Gl
]j − [Ak,GlGl

1Gl
]j ≥ 0, for all (k, l) ∈ [K]2 and j ∈ Gl

)
⩾ 1− CK2/n.

Sketch of the proof. Let T := [Al,GlGl
1Gl

]j − [Ak,GlGl
1Gl

]j , B := Σ
1/2
l Σ−1

k Σ
1/2
l − Idp then by definition we have

T = −
p∑

i=1

log(λi + 1) +

p∑
i=1

λi

+
1

2
⟨B, ϵjϵ

T
j − Idp⟩

− 1

2
⟨B,

1

nl

∑
t∈Gl

ϵtϵ
T
j + ϵj

( 1

nl

∑
t∈Gl

ϵt

)T
⟩

+
1

2
⟨B,

1

nl

∑
t∈Gl

ϵtϵ
T
t − Idp⟩,

where the last three terms can be bounded by concentration bounds for Gaussians. ■
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