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Abstract
Self-attention and masked self-attention are at the
heart of Transformers’ outstanding success. Still,
our mathematical understanding of attention, in
particular of its Lipschitz properties – which are
key when it comes to analyzing robustness and
expressive power – is incomplete. We provide a
detailed study of the Lipschitz constant of self-
attention in several practical scenarios, discussing
the impact of the sequence length n and layer nor-
malization on the local Lipschitz constant of both
unmasked and masked self-attention. In particular,
we show that for inputs of length n in any com-
pact set, the Lipschitz constant of self-attention
is bounded by

√
n up to a constant factor and

that this bound is tight for reasonable sequence
lengths. When the sequence length n is too large
for the previous bound to be tight, which we refer
to as the mean-field regime, we provide an upper
bound and a matching lower bound which are in-
dependent of n. Our mean-field framework for
masked self-attention is novel and of independent
interest. Our experiments on pretrained and ran-
domly initialized BERT and GPT-2 support our
theoretical findings.

1. Introduction
Introduced by Vaswani et al. (2017), Transformers and their
multi-head attention mechanism (Bahdanau et al., 2014)
have significantly changed the machine learning landscape
in just a few years, by becoming state-of-art models on
a wide variety of tasks, from natural language processing
(Brown et al., 2020; Radford et al., 2019; Wolf et al., 2019)
to computer vision (Dosovitskiy et al., 2020; Zhao et al.,
2020; Zhai et al., 2022; Lee et al., 2019). Despite this great
empirical success, however, little is known from a theoreti-
cal perspective about the smoothness of Transformer archi-
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tectures, particularly of self-attention, their main building
block. We tackle this problem by focusing on the Lipschitz
properties of self-attention, especially on its local Lipschitz
constant, which controls how fast the output can change
with respect to the input in the neighborhood of each point
of the domain.

Studying the Lipschitz continuity of neural networks is
particularly relevant for various questions (Rosca et al.,
2020). It provides guarantees of adversarial robustness,
in an attack-agnostic way (Szegedy et al., 2013; Cisse et al.,
2017; Tsuzuku et al., 2018; Anil et al., 2019; Weng et al.,
2018). Identifying inputs with a high local Lipschitz con-
stant and understanding which local perturbations trigger
the biggest change in the output also allows for robustifying
the network, for example using adversarial training (Good-
fellow et al., 2014; Miyato et al., 2015; Moosavi-Dezfooli
et al., 2016; Kurakin et al., 2016). The Lipschitz constant is
also involved in generalization bounds (Sokolić et al., 2017;
Neyshabur et al., 2017; Bartlett et al., 2017; von Luxburg &
Bousquet, 2004). From a different perspective, Lipschitz-
constrained neural networks can be used to estimate Wasser-
stein distances (Peyré et al., 2019), enhance expressivity
and improve the performance of deep models (Miyato et al.,
2018; Dasoulas et al., 2021), and build invertible neural net-
works (Behrmann et al., 2019; Chen et al., 2019). Finally,
bounding the Lipschitz constant of a neural network is an
important step in the study of the associated neural ODE
(Chen et al., 2018), in particular of its well-posedness (Lu
et al., 2019; Geshkovski et al., 2023a;b).

Lipschitz continuity of feed-forward neural networks (FFNs)
has been extensively studied and remains a hard problem.
Estimating numerically the Lipschitz constant of a FFN is
indeed NP-hard (Virmaux & Scaman, 2018), and theoretical
bounds appear to be much larger than the actual Lipschitz
constant (Virmaux & Scaman, 2018; Fazlyab et al., 2019;
Latorre et al., 2020). The main theoretical difficulty here is
to handle the composition of several layers more accurately
than just bounding it by the product of spectral norms of
weight matrices, as done by Szegedy et al. (2013). Still,
taken independently, each linear map or activation function
has a known tight Lipschitz constant. This is not the case
for Transformers: the self-attention map has an involved
non-linear structure, which makes the estimation of its local
Lipschitz constant challenging and brings into play com-
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pletely different approaches than for FFNs (Kim et al., 2021;
Vuckovic et al., 2021).

1.1. Contributions

We make the following contributions.

• We derive a bound on the local Lipschitz constant of self-
attention, which takes the form C

√
n with n the sequence

length of inputs and C a constant factor that depends on
the parameters of self-attention and on an upper bound R
on the magnitude of tokens (Theorem 3.3). We show that
our bound is tight in n for reasonable (i.e. not too large)
sequence lengths (Proposition 3.4). Moreover, in most
Transformer architectures, the magnitude R only depends
on the parameters of the network because of normalization
layers (Subsection 2.3).

• We identify a large radius regime that is easier to ana-
lyze theoretically, with n fixed and R very large. In this
regime and except for a measure-zero set of pathological
configurations, we show that the local Lipschitz constant
of self-attention is bounded by C

√
n with C a constant

that does not depend on R anymore (Theorem 3.7).
• We also study the mean-field regime, where self-attention

is modeled as a map on probability measures, which cor-
responds to the limit n → +∞. In this framework, we
show that the upper bound obtained by Geshkovski et al.
(2023a), which is of the form CR2eCR

2

, cannot be sig-
nificantly improved (Proposition 3.6), by finding a R-
indexed family of two-Dirac probability measures sup-
ported in the closed ball BR of center 0 and of radius
R whose local Lipschitz constant grows like C′

2 R
2eC

′R2

with C ′ ≥ C/16.
• We are the first to study the Lipschitz constant of masked

self-attention. We introduce a novel mean-field frame-
work for masked self-attention, where the order of points
in input measures is encoded in a supplementary coordi-
nate, and show both in the general regime, the large radius
regime and the mean-field regime that similar bounds hold
for masked self-attention as for unmasked self-attention
(Section 4).

• We compute numerically the local Lipschitz constant of
unmasked and masked self-attention in a BERT model and
a GPT-2 model, where inputs are text extracts, and observe
a growth rate of n1/4 up to a constant factor, with n the
sequence length. Then, with the same networks, we build
adversarial data in the input space of self-attention whose
Lipschitz constant grows like

√
n, which evidentiates the

tightness of our bounds (Section 5).

1.2. Related Work

Robustness and local Lipschitz constant estimation.
Neural networks are vulnerable to adversarial attacks
(Szegedy et al., 2013), and most of the methods proposed

to measure and increase their robustness focus on specific
attacks (Goodfellow et al., 2014; Papernot et al., 2016). It
turns out, however, that such methods can be defeated by
well-chosen unseen attacks (Carlini & Wagner, 2017). Mea-
sures of robustness that are agnostic to attack methods have
therefore been proposed, often relying on the notion of Lips-
chitz constant of networks (Szegedy et al., 2013; Leino et al.,
2021; Tsuzuku et al., 2018). As robustness lower bounds
that rely on the (global) Lipschitz constant tend to be too
loose, tighter constraints have been proposed involving the
local Lipschitz constant (Hein & Andriushchenko, 2017;
Weng et al., 2018). The problem of evaluating the local
Lipschitz constant of deep networks is now at the heart of
several recent articles (Tsuzuku et al., 2018; Leino et al.,
2021), in particular for Transformers (Kim et al., 2021;
Vuckovic et al., 2020; Geshkovski et al., 2023a; Catellier
et al., 2023). From a more practical viewpoint, several
Lipschitz-constrained variants of the Transformer architec-
ture have been proposed, to increase robustness and reliabil-
ity (Jia et al., 2023; Gupta & Verma, 2023; Ye et al., 2023;
Qi et al., 2023).

Neural networks acting on measures. De Bie et al.
(2019) and Pevny & Kovarik (2019) are the first to de-
fine neural networks whose inputs are probability measures,
followed by several other articles (Vuckovic et al., 2020;
Zweig & Bruna, 2021; Sander et al., 2022; Geshkovski et al.,
2023a). Modeling neural networks as maps on probability
measures has multiple applications, such as studying Wasser-
stein regularity (Vuckovic et al., 2020; Geshkovski et al.,
2023a), proving generalization bounds (Zweig & Bruna,
2021) and doing a mean-field limit analysis of the dynam-
ics of particles as they go through the network (Geshkovski
et al., 2023a). The mean-field approach is particularly suited
to the case of Encoder-only Transformers (Devlin et al.,
2018), as the self-attention map is permutation equivariant,
i.e., ignores the order of vectors in its input. This property
can be leveraged to model any infinitely deep Encoder as a
partial differential equation (PDE) on the space of measures
(Sander et al., 2022), following the principle of neural ODEs
(Chen et al., 2018). Analyzing this PDE then provides in-
formation about the dynamics of tokens as they go through
the Transformer, showing for instance the emergence of
clusters (Geshkovski et al., 2023a;b). In contrast, masked
self-attention, which is crucial in Decoder-only (Liu et al.,
2018) and Encoder-Decoder (Vaswani et al., 2017) architec-
tures, is not permutation equivariant, so cannot be cast as
naturally into a mean-field framework.

Regularity of self-attention and its variants. Kim et al.
(2021) show that the self-attention map is not globally Lip-
schitz continuous by deriving a lower bound on its Lips-
chitz constant restricted to BnR. Their lower bound grows
quadratically with R. To gain regularity, they define a new
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self-attention map, called L2 self-attention, which is glob-
ally Lipschitz continuous on the set of inputs of length n,
for all n ≥ 1. Dasoulas et al. (2021) enforce the Lips-
chitz continuity of self-attention modules by normalizing
the attention scores with a well-chosen normalization func-
tion. Geshkovski et al. (2023a) and Vuckovic et al. (2020)
prove a mean-field upper bound on the Lipschitz constant
of self-attention on BR, by viewing self-attention as a map
acting on probability measures. Their upper bound grows
more than exponentially with R so that the quadratic lower
bound and the exponential upper bound put together pro-
vide a very loose estimation of the Lipschitz constant of
self-attention on compact sets. Finally, Sander et al. (2022)
propose a modification of the attention kernel that builds
on the Sinkhorn-Knopp algorithm, and provide empirical
evidence of the better properties of this new choice of kernel
with respect to the classical one.

1.3. Notations

The Euclidean norm on Rd is denoted | · |. For
any vector w ∈ Rn, we denote softmax(w) :=(
exp(wi)/

∑d
j=1 exp(wj)

)
1≤i≤n

the Softmax operator,

and diag(w) the diagonal matrix such that diag(w)ii = wi.
For any function g : E → F and any subset X ⊂ E , the re-
striction of g to X is denoted g|X . The closed ball centered
at 0 and of radius R > 0 is denoted BR. For φ,ψ : R→ R
and a ∈ R ∪ {+∞} we write φ(x) ∼x→a ψ(x) if
φ(x)/ψ(x) is well-defined for x close enough to a, and
φ(x)/ψ(x)→x→a 1.

2. Standard and Mean-Field Self-Attention
2.1. Unmasked Self-Attention

Unmasked self-attention, usually just called self-attention,
is central in the architecture of Transformer’s Encoders
(Vaswani et al., 2017), which are nowadays widely used for
computer vision tasks (Dosovitskiy et al., 2020). It maps
sequences of n vectors to sequences of n vectors, for any
integer n.

Definition 2.1 (Single-head self-attention). Let k, d ∈ N.
Let Q,K, V ∈ Rk×d be three matrices. For any integer
n ∈ N and any vectors x1, . . . , xn ∈ Rd, self-attention with
parameters (Q,K, V ) maps the sequence (x1, . . . , xn) ∈
(Rd)n to

f(x1, . . . , xn) :=
(
V
∑n
j=1Pijxj

)
1≤i≤n

∈ (Rk)n,

with Pi := softmax
(
(x⊤i Q

⊤Kxj/
√
k)1≤j≤n

)
.

To alleviate notations, we will denote A := K⊤Q/
√
k ∈

Rd×d in what follows. In Encoders, several self-attention

heads are usually combined to obtain multi-head self-
attention.
Definition 2.2 (Multi-head self-attention). Let d ∈ N and
H a divisor of d. For 1 ≤ h ≤ H , let Q(h),K(h), V (h) ∈
Rk×d with k := d/H , and W (h) ∈ Rd×k. Multihead self-
attention with parameters (Q(h),K(h), V (h),W (h))1≤h≤H
maps any sequence (x1, . . . , xn) ∈ (Rd)n to

fMH(x1, . . . , xn) :=

H∑
h=1

W (h)f (h)(x1, . . . , xn) ∈ (Rd)n,

where f (h) denotes single-head self-attention with parame-
ters (Q(h),K(h), V (h)).

When n is very large, it can be convenient to model self-
attention as a map between probability measures (Sander
et al., 2022; Geshkovski et al., 2023a). Indeed, the
self-attention map f is permutation equivariant, which
means that for all permutations σ of the set {1, . . . , n}
and all inputs X = (x1, . . . , xn) ∈ (Rd)n, it holds
that f(xσ(1), . . . , xσ(n)) = (f(X)σ(1), . . . , f(X)σ(n)). In-
formally, this means that self-attention is blind to the
order of vectors so that it naturally induces a map be-
tween empirical measures, by replacing ordered sequences
X = (x1, . . . , xn) with their associated empirical measure
m(X) := 1

n

∑n
i=1 δxi

, which does not encode the order of
points anymore. To extend self-attention to more general
probability measures, following Sander et al. (2022), let us
introduce the notion of pushforward.
Definition 2.3 (Santambrogio (2015)). For a probability
measure µ on Rd and a measurable map φ : Rd → Rd,
the pushforward of µ by φ, denoted φ♯µ, is the probability
measure given by (φ♯µ) (B) := µ(φ−1(B)) for any Borel
set B ⊂ Rd, where φ−1(B) := {x ∈ Rd : φ(x) ∈ B}.

Intuitively, φ♯µ is obtained by transporting each element of
mass µ(dx) from x to φ(x). We are now ready to define
mean-field self-attention.
Definition 2.4 (Mean-field self-attention). Let Q,K, V ∈
Rk×d, and denote A := K⊤Q/

√
k. Mean-field self-

attention with parameters (A, V ) is defined as

F : µ ∈ Pc(Rd) 7→ (Γµ)♯ µ

with Γµ : x ∈ Rd 7→
∫
exp

(
x⊤A⊤y

)
V y dµ(y)∫

exp (x⊤A⊤y) dµ(y)
.

Mean-field self-attention F generalizes discrete self-
attention f in the sense that for any input X ∈ (Rd)n,
we have F (m(X)) = m(f(X)) (see Appendix B.1).

2.2. Masked Self-Attention

In Decoder-only architectures, typically used for text gen-
eration (Liu et al., 2018; OpenAI, 2023), unmasked self-
attention is replaced by masked self-attention.
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Definition 2.5 (Masked self-attention). Let Q,K, V ∈
Rk×d, and A := K⊤Q/

√
k. For any integer n ∈

N and any vectors x1, . . . , xn ∈ Rd, residual masked
self-attention with parameters (A, V ) maps the sequence
X = (x1, . . . , xn) ∈ (Rd)n to (fm(X)1, . . . , f

m(X)n) ∈
(Rd)n, where

fm(X)i := f(x1, . . . , xi)i

with f unmasked self-attention (see Definition 2.1).

Masked self-attention processes inputs sequentially, so it
is not permutation equivariant and the map fm does not
directly induce a map on empirical measures as for un-
masked self-attention. To overcome this limitation and
still give meaning to masked self-attention when the se-
quence length goes to infinity, we introduce the following
novel mean-field framework. Instead of viewing inputs
(x1, . . . , xn) ∈ (Rd)n as empirical measures 1

n

∑n
i=1 δxi

,
we add a coordinate si ∈ [0, 1] to each xi, to encode its
position in the sequence. We then define mean-field masked
self-attention as a map between probability measures on the
product space [0, 1]× Rd.

Definition 2.6 (Mean-field masked self-attention). For any
probability measure µ̄ ∈ Pc([0, 1] × Rd), denote µ the
second marginal of µ̄, i.e. µ(A) :=

∫ 1

s=0

∫
x∈A dµ̄(s, x)

for all Borel sets A ⊂ Rd. We define mean-field masked
self-attention on Pc([0, 1]× Rd) as

Fm : µ̄ 7→ (Γµ̄)♯ µ̄ where

Γµ̄(s, x) :=

(
s,

∫
[0,1]×Rd exp(x

⊤A⊤y)V y1τ≤sdµ̄(τ, y)∫
[0,1]×Rd exp(x⊤A⊤y)1τ≤sdµ̄(τ, y)

)
.

This generalizes Definition 2.5 in the following sense: given
any increasing sequence 0 ≤ s1 < · · · < sn ≤ 1, de-
noting ord the transformation ord: X = (x1, . . . , xn) ∈
(Rd)n 7→ 1

n

∑n
i=1 δ(si,xi) ∈ Pc([0, 1] × Rd), we have

Fm(ord(X)) = ord(fm(X)) for all X ∈ (Rd)n.

Beyond the mean-field analysis of Lipschitz continuity of
masked self-attention, the map Fm can be used in future
work to model Decoders as partial differential equations on
probability measures and study the dynamics of tokens as
they go through the network, as Geshkovski et al. (2023a;b)
do for Encoders.1

2.3. Normalization

Normalization is a key part of the Transformer architec-
ture. The most common choice of normalization is Layer-
Norm (Ba et al., 2016), which has two learnable parameters

1However, to do so one should rather set the first coordinate of
Γµ̄(s, x) to 0 instead of s so that the residual map (Id + Γµ̄)♯µ̄
preserves the first marginal.

γ, β ∈ Rd. It acts on each input of the sequence individually
with the formula norm(x) = γ ⊙ x−mean(x)

std(x) + β, where

mean(x) := 1
d

∑d
j=1 xj and std(x) := ( 1d

∑d
j=1(xj −

mean(x))2)1/2 are two scalars that depend on x. Each
vector of the output of LayerNorm is on an ellipsis S of
center β and of covariance diag(γ)2d. Another popular
and simpler normalization is RMSNorm (Zhang & Sen-
nrich, 2019), which has one learnable parameter γ ∈ Rd
and acts on each input of the sequence individually with
the formula norm(x) = γ ⊙ x

|x|

√
d. RMSNorm is used

in recent large language (Jiang et al., 2023; Touvron et al.,
2023) and vision (Dehghani et al., 2023) models. Each
vector of the output of RMSNorm is on an ellipsis S cen-
tered at 0 and of covariance diag(γ)2d. There are two
ways to place the normalization layers in the transformer.
The original transformer uses post-normalization: normal-
ization is applied after each residual connection. Letting
X = (x1, . . . , xn), the output of residual attention is there-
fore norm(X+f(X)). However, pre-normalization (Xiong
et al., 2020), where normalization is applied before the at-
tention layer: X + f(norm(X)), is now more widespread.
Although the two formulations are not equivalent, the input
of self-attention f is normalized in both cases — by defini-
tion for pre-normalization, and because the previous layer
was normalized for post-normalization. Hence, in practice,
the input of self-attention is not any sequence in (Rd)n, but
a sequence in BnR for R depending only on the parameters
of norm.

It is also worth noticing that for RMSNorm, the parameter
γ can be absorbed in the parameters θ := (Q,K, V ) of
self-attention:

fθ ◦ norm(x1, . . . , xn) = fθ′

(
x1
|x1|

, . . . ,
xn
|xn|

)
with θ′ := (Qdiag(λ),Kdiag(λ), V diag(λ)). In other
words, RMSNorm followed by self-attention is equivalent
to a projection on the unit sphere followed by self-attention
with different parameters. This provides a simple way to
bound the Lipschitz constant of the composition fθ ◦ norm,
by directly applying our bounds on the Lipschitz constant
of fθ′ for R = 1.

3. Tight Bounds on the Lipschitz Constant of
Self-Attention

3.1. Lipschitz Constants and Self-Attention

Lipschitz constants provide a natural way of controlling the
regularity of a function. Their definition depends on the
structure that is chosen for the input and output spaces.

Euclidean framework. Let d, n ∈ N and f : (Rd)n →
(Rd)n. We equip the input and output spaces of f with the
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Frobenius norm

∥X∥F := (
∑n
i=1|xi|2)1/2

for any sequence of vectors X = (x1, . . . , xn), and assume
that f is differentiable. The local Lipschitz constant of f at
an input X = (x1, . . . , xn) is defined as

LipXf := ∥DXf∥2 ,

where DXf is the differential of the function f , and ∥·∥2
denotes the operator norm induced by ∥·∥F . We can also
define, for any subset X ⊂ (Rd)n, the Lipschitz constant of
f on X , as

Lip
(
f|X
)
:= sup

X,Y ∈X
X ̸=Y

∥f(X)− f(Y )∥F
∥X − Y ∥F

.

The local Lipschitz constant tells us how fast the output of f
can vary locally, while the Lipschitz constant on f controls
how fast the output of f can vary on the whole set X . We
have the following connection between the two.
Lemma 3.1 (Federer (2014)). Let X be an open and con-
nected subset of (Rd)n. Then

Lip(f|X ) = sup
X∈X

∥DXf∥2 .

Mean-field framework. Let d ∈ N and denote Pc(Rd)
the set of compactly supported probability measures on Rd.
We equip this set with the 2-Wasserstein distance, defined
as

W2(µ, ν) :=
(

inf
π∈Π(µ,ν)

∫
|x− y|2dπ(x, y)

)1/2
for µ, ν ∈ Pc(Rd), where Π(µ, ν) is the set of couplings
between µ and ν, i.e. of probability measures π ∈ P(Rd ×
Rd) such that

∫
π(·, y)dy = µ and

∫
π(x, ·)dx = ν (see

for example Santambrogio (2015) for more details on the
subject). Consider a map F : Pc(Rd) → Pc(Rd). For any
subset X ⊂ Pc(Rd), the Lipschitz constant of F on X is
defined as

Lip(FX ) := sup
µ,ν∈X

µ̸=ν

W2(F (µ), F (ν))

W2(µ, ν)
.

A notion of local Lipschitz constant can also be defined in
the mean-field framework. We defer it to Appendix B.2 as
it only appears in some of our proofs.

Measuring the regularity of self-attention in Wasserstein
distance is the natural generalization to the mean-field case
of the Euclidean regularity in the case of a finite sequence
length. Indeed, when f is self-attention and F is its mean-
field generalization, we can connect the two frameworks as
follows (see Appendix B.3).
Lemma 3.2. Let R > 0. We have

Lip∥·∥F (f|Bn
R
) ≤ LipW2(F|P(BR)).

3.2. Lipschitz Bounds for Self-Attention in Different
Regimes

General upper bound. Kim et al. (2021) show that self-
attention is not globally Lipschitz continuous. Let us
therefore restrict to sequences (x1, . . . , xn) ∈ BnR, where
BR ⊂ Rd is the closed ball centered at 0 and of radius R.
We have the following general bound (see Appendix C.2).
Theorem 3.3. Let Q,K, V ∈ Rk×d and A := K⊤Q/

√
k.

Let R > 0 and n ∈ N. Unmasked self-attention f with
parameters (A, V ) is Lipschitz continuous on BnR, with

Lip
(
f|Bn

R

)
≤
√
3 ∥V ∥2

(
∥A∥22R

4(4n+ 1) + n
)1/2

.

Theorem 3.3 shows that when tokens are restricted to the
compact set BR, the Lipschitz constant of self-attention
grows at most like

√
n with the sequence length n, up to a

constant factor. On the other side, the growth rate
√
n in

Theorem 3.3 is tight as long as n is not too large, a statement
made rigorous by the following result (see Appendix C.4).
Proposition 3.4. Let Q,K ∈ Rk×d and V := Id. Let
A := K⊤Q/

√
k. Denote f unmasked self-attention with

parameters (A, V ). Let γ1 ≥ · · · ≥ γδ be the real
eigenvalues of A. Then, for any R > 0, and denoting
γ := max(−γδ, γ1/8), it holds

Lip(f|Bn
R
) ≥ 1

1 + (n− 1)e−2R2γ

√
n− 1.

Proposition 3.4 shows that for any radius R > 0, the se-
quence of Lipschitz constants (Lipf|Bn

R
)n∈N grows faster

than
√
n up to a constant factor in a certain range of se-

quence lengths n. For example, if n ≤ 1 + e2R
2γ , then

Lip(f|Bn
R
) ≥
√
n− 1

2
,

and we check that for real data and pretrained GPT-2 and
BERT, the factor R2γ is of the order of 102 to 103 (see
Appendix C.5) so that the inequality n ≤ 1 + e2R

2γ is
always satisfied in practice. Note that Proposition 3.4 gives
a worst-case lower bound: there are inputs with a large
sequence length and a small local Lipschitz constant, such
as X := (x, . . . , x) ∈ (Rd)n for any x ∈ Rd and n, which
satisfies ∥DXf∥2 = 1.

Mean-field regime. What happens when the sequence
length n is extremely large? As explained above, the bound
provided by Theorem 3.3 becomes too loose – it even goes
to +∞ when n→ +∞ with fixed R and r. For very large
sequence lengths, this bound can be refined by leveraging
the mean-field framework, as follows.
Theorem 3.5. Let R > 0 and A, V ∈ Rk×d. The mean-
field self-attention map F with parameters (A, V ) is W2-
Lipschitz continuous on the set P(BR), and its Lipschitz
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constant is bounded by

LipW2(F|P(BR
)) ≤ ∥V ∥2 (1 + 3 ∥A∥2R

2)e2∥A∥2R
2

.

Theorem 3.5 follows from computations made by
Geshkovski et al. (2023a). We state it to draw a full picture
of the regularity of self-attention on compact sets. Let us
highlight the following connection between Theorem 3.5
and Theorem 3.3. For any radius R > 0, sequence length
n ∈ N and input X ∈ BnR, it holds, according to Lemma
3.2 and Theorem 3.5:

∥DXf∥2 ≤ ∥V ∥2 (1 + 3 ∥A∥2R
2)e2∥A∥2R

2

. (1)

On the other hand, Theorem 3.3 tells us that

∥DXf∥2 ≤
√
3 ∥V ∥2

(
∥A∥22R

4(4n+ 1) + n
)1/2

.

When n is relatively small, Theorem 3.3 is more relevant
than Equation (1), and vice versa for n very large. In the
following Proposition, we identify an edge regime where
both bounds have a similar growth in R, which corresponds
to n ∼R→+∞ ecR

2

for some constant factor c > 0. In this
edge regime, the bound of Theorem 3.3 appears to be tight
both in n and R, and the bound of Theorem 3.5 is almost
tight in R up to a constant factor in the exponential.
Proposition 3.6. Let R > 0. Assume that k = d and V =
Id, and denote γ1 ≥ · · · ≥ γδ the real eigenvalues of A. Let
γ := max(−γδ, γ1/8). Then, if n ∼R→+∞ exp(2γR2),
there exists a function θ : [0,+∞) → [0,+∞) such that
θ(R)→R→+∞ 1 and:

Lip(f|Bn
R
) ≥ θ(R)γ

2
R2eγR

2

.

One sees that the dependency in R of the lower bound in
Proposition 3.6 is catastrophic. Fortunately, in practical
cases, n is significantly smaller than e2γR

2

, and the mean-
field regime bound is over-pessimistic: one should rather
use Theorem 3.3. It is also interesting to note that config-
urations that lead to the explosion of the right-hand side
in Proposition 3.6 are made of two extremely unbalanced
clusters, one with 1 vector, and the other with the other n−1
vectors of the sequence (see Appendix C.6).

Large radius regime. Let us now analyze a third regime:
the large radius regime, whereR goes to infinity with a fixed
n. This complements the mean-field analysis, where R is
fixed and n goes to infinity. Let n ∈ N be a fixed sequence
length. We show, drawing inspiration from Kim et al. (2021),
that there exist configurations with n particles supported in
BR whose local Lipschitz constant grows like R2 up to
constant factors (see Appendix C.7). However, if we rule
out a measure-zero set of pathological configurations, we
get in the large radius regime that the Lipschitz constant
grows at most like

√
n up to a constant factor.

Theorem 3.7. Let A ∈ Rd×d and V ∈ Rk×d two non-
zero matrices. Denote EA ⊂B(0, 1)n the set of sequences
(x1, . . . , xn) such that for all i ∈ {1, . . . , n}, the maximum
max1≤j≤n x

⊤
i A

⊤xj is reached at a unique index j, denoted
mi. The complement of EA inB(0, 1)n has zero Lebesgue
measure. Moreover, for any X ∈ EA, there exists a function
θ : [0,+∞)→ [0,+∞) such that θ(R) converges exponen-
tially fast to 1 when R→ +∞ and

∥DRXf∥2 ≤ θ(R) ∥V ∥2
√
n.

The proof of this result is interesting, as it provides a bet-
ter understanding of the Jacobian of self-attention in this
limiting regime.

Proof. The sequences (x1, . . . , xn) ∈ (Rd)n that are not in
EA are such that either there exists an index i ∈ {1, . . . , n}
for which Axi = 0, or the xi are not distinct. Both cases
are measure-zero situations, as A ̸= 0. Now let X ∈ EA.
For all perturbations ϵ := (ϵ1, . . . , ϵn) ∈ (Rd)n and all
i ∈ {1, . . . , n}, we have (see Appendix C.1)

(DRXf)(ϵ)i = V R2
n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
i A

⊤ϵj

+ V

n∑
j=1

Pijϵj + V R2
n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
j Aϵi,

with Pij := eR
2x⊤

i A
⊤xj/

∑n
k=1 e

R2x⊤
i A

⊤xk . By definition
of mi, we have Pij →R→+∞ 1j=mi

, and the conver-
gence is exponentially fast, so R2Pij has the same limit
as Pij . As a consequence, in the large radius regime,
the Jacobian of self-attention has a much simpler form:
(DRXf)(ϵ)i →R→+∞ V

∑n
j=1 Pijϵj , and the operator

norm of the limit is bounded by ∥V ∥2
√
n. Moreover, when

V = Id for example, this bound is reached up to a constant
factor if there exists an index j such that j = mi for a
constant fraction of the indices i, i.e. if a token grasps the
attention of a constant fraction of all tokens.

In practice, the large radius regime on general configurations
(i.e. that belong to the set EA) provides an oversimplified
model for self-attention. Indeed, in this regime, attention
matrices are 1-sparse row-wise, i.e. have exactly one non-
zero coefficient – equal to 1, on each row i ∈ {1, . . . , n},
which corresponds to the index mi. If we look at real data,
attention matrices indeed tend to have sparse rows, but with
more than one non-zero coefficient on each row (Vaswani
et al., 2017; Vyas et al., 2020; Likhosherstov et al., 2021)
– which is expected, otherwise the representation given by
self-attention would be too rough. Still, Theorem 3.7 gives
some nice intuition about the growth rate of

√
n obtained in

Theorem 3.3 and observed in practice (see Figure 1 in the
experiments).
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Multi-head self-attention. Bounding the Lipschitz con-
stant of single-head self-attention provides the following
bound on the Lipschitz constant of multi-head self-attention.
Lemma 3.8 (Kim et al. (2021)). Let R > 0. With the
notations of Definition 2.2, it holds

Lip(fMH
|Bn

R
) ≤

H∑
h=1

∥W (h)∥2 Lip(f (h)|Bn
R
).

In the whole paper, we focus on single-head self-attention
and avoid tackling the possibly tedious dependencies be-
tween the matrices W (1)V (1), . . . ,W (H)V (H). Deriving
a finer estimation of the Lipschitz constant of multi-head
attention than what Lemma 3.8 gives us is left for future
work.

4. Tight Bounds on the Lipschitz Constant of
Masked Self-Attention

4.1. Measuring Distances With Conditional Optimal
Transport

To study the Lipschitz properties of masked self-attention
as defined in Definition 2.5, the Euclidean framework
introduced in Section 3.1 still applies. In contrast, the
Wasserstein framework used for mean-field unmasked
self-attention is not suited to measuring the regularity of
mean-field masked self-attention. Indeed, in the stan-
dard case, the distance between the outputs fm(X) and
fm(Y ) for two inputs X,Y ∈ (Rd)n is measured
by (

∑n
i=1|f(x1, . . . , xi)i − f(y1, . . . , yi)i|2)1/2 so that

i-th coordinates are compared to each other, separately
for each index i. On the contrary, when looking at
W2(F

m(µ̄), Fm(ν̄)), the optimal transport plan may trans-
port mass from a point (s, x) to a point (s′, y) with s ̸= s′,
which contradicts the sequential nature of masked self-
attention. It is therefore natural to introduce the following
distance on Pc([0, 1]× Rd), which comes from the theory
of conditional optimal transport (Hosseini et al., 2023).
Definition 4.1. Let µ̄ and ν̄ be two probability measures
in Pc([0, 1] × Rd), and p ≥ 1. If µ̄ and ν̄ have the same
marginal with respect to s, i.e.∫ s2

s1

∫
Rd

dµ̄(s, x) =

∫ s2

s1

∫
Rd

dν̄(s, x)

for all 0 ≤ s1 < s2 ≤ 1, denote θ this marginal dis-
tribution, and write with the disintegration theorem (Bo-
gachev & Ruas, 2007) dµ̄(τ, x) =: dθ(τ)dµτ (x) and
dν̄(τ, x) =: dθ(τ)dντ (x). The measures µτ and ντ can
be seen intuitively as the restriction of µ and ν to the mass
located at position τ , rescaled to obtain probability mea-
sures. We then measure the distance between µ̄ and ν̄ with

dp(µ̄, ν̄) :=

(∫ 1

0

Wp(µ
τ , ντ )pdθ(τ)

)1/p

.

If µ̄ and ν̄ do not have the same first marginal, we set
dp(µ̄, ν̄) := +∞.

Considering dp(µ̄, ν̄) amounts to minimizing the transport
cost between µ̄ and ν̄ under the constraint that points must
keep the first coordinate constant along their trajectory.
Equivalently, allowed transport plans must be the identity
on the first marginal.

As for unmasked self-attention, we have the following con-
nection between the Euclidean framework and the mean-
field framework for residual masked self-attention.

Lemma 4.2. Let R > 0. We have

Lip∥·∥F (fm|Bn
R
) ≤ Lipd2(Fm|P([0,1]×BR)).

We do not detail the proof, which follows the same steps as
for Lemma 3.2.

4.2. Lipschitz Bounds for Masked Self-Attention in
Different Regimes

General upper bound. We show in Appendix D.1 that
the bound provided by Theorem 3.3 still holds for masked
self-attention.

Theorem 4.3. Let Q,K, V ∈ Rk×d and A := K⊤Q/
√
k.

Let R > 0 and n ∈ N. Masked self-attention fm with
parameters (A, V ) is Lipschitz continuous on the set BnR,
and

Lip
(
fm|Bn

R

)
≤
√
3 ∥V ∥2

(
∥A∥22R

4(n+ 1) + n
)1/2

.

Mean-field regime. Let us now bound from above the dp
Lipschitz constant of mean-field masked self-attention.

Theorem 4.4. Let R > 0 and p ≥ 1. The mean-field
masked self-attention map Fm is Lipschitz continuous on
the space of measures supported in [0, 1] × BR, with a
Lipschitz constant upper-bounded by

∥V ∥2 (1 + 3 ∥A∥2R
2)e2∥A∥2R

2

.

Note that in Theorem 4.4, we consider that two measures
µ̄ and ν̄ with different first marginals induce an infinite
Lipschitz ratio dp(F

m(µ̄), Fm(ν̄))/dp(µ̄, ν̄). The proof
can be found in Appendix D.2.

Large radius regime. We have a similar result as for
unmasked attention in the large radius regime. Except for
a measure-zero set of pathological configurations, when R
is sufficiently large, the local Lipschitz constant of fm at
the input RX does not depend on R anymore and grows at
most like

√
n up to a constant factor.
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Theorem 4.5. Let A ∈ Rd×d and V ∈ Rk×d two non-
zero matrices, and denote fm the masked self-attention map
with parameters (A, V ). Denote EmA ⊂ B(0, 1)n the set
of sequences (x1, . . . , xn) such that for all i ∈ {1, . . . , n},
the maximum max1≤j≤i x

⊤
i A

⊤xj is reached at a unique
index j, denoted mi. The complement of EmA inB(0, 1)n

has zero Lebesgue measure. Moreover, for any X ∈ EA,
there exists a function θ : [0,+∞) → [0,+∞) such that
θ(R) converges exponentially fast to 1 when R→ +∞ and

∥DRXf
m∥2 ≤ θ(R) ∥V ∥2

√
n.

5. Experiments
The bound stated in Theorem 3.3 corresponds to a worst-
case scenario. In practice, does it reflect the evolution of
the Lipschitz constant of a self-attention layer of a Trans-
former on real data? We perform numerical experiments on
BERT (Devlin et al., 2018), using the pretrained Hugging-
face model ’bert-base-uncased’ first as an Encoder and then
in its Decoder version, and on GPT-2 (Radford et al., 2019)
both pretrained and randomly initialized. Both models have
12 multi-head attention layers, and 12 attention heads per
layer, with an embedding dimension d = 768. We perform
two different experiments, first with real data, and then with
synthetic adversarial data.

5.1. Experiments With Real Data

We take our data from two test datasets, Alice in Won-
derland from the NLTK corpus Gutenberg (Bird et al.,
2009), and AG NEWS from the PyTorch package torch-
text (Zhang et al., 2015). The aim is, for various multi-head
self-attention layers fmodel of BERT and GPT-2, and for a
batch of inputs of varying length taken from the two datasets
mentioned above, to get a scatter plot of the local Lipschitz
constant of fmodel at each input (x1, . . . , xn) as a function
of the sequence length n.

Construction of the datasets. Given some raw text from
Alice in Wonderland or AG NEWS, we first tokenize it
and then split the resulting sequence of tokens into sub-
sequences with a fixed sequence length. For each even
integer n in {2, . . . , 100}, we build 10 sequences with n to-
kens, so that none of the constructed sequences (s1, . . . , sn)
overlap. Then, for each input sequence (s1, . . . , sn), we
do a forward pass of the model, and get with a forward
hook the intermediate activations just before the atten-
tion layer of interest fmodel. This gives us a batch of se-
quences (x1, . . . , xn) ∈ (Rd)n that are fed to fmodel when
(s1, . . . , sn) goes through the model. Note that except for
the inputs of the first attention layer, all the xi are the result
of normalization with LayerNorm, and therefore belong to
an ellipsis, which depends on the parameters of LayerNorm.

Computation of the local Lipschitz constants. The
local Lipschitz constant of fmodel at an input sequence
X = (x1, . . . , xn) is equal to

∥∥DXf
model

∥∥
2
. As DXf

model,
which we denote JX to alleviate notations, is of shape
nd × nd with d = 768, we do not compute it explicitly
but use a power method on the matrix J⊤

XJX by alternating
Jacobian-vector products and vector-Jacobian products (see
Appendix E.1). The power method converges to the largest
eigenvalue of J⊤

XJX , which is equal to ∥JX∥22.

5.2. Experiments With Adversarial Data

Adversarial data. To check numerically the tightness in
n of the bound provided by Theorem 3.3, we build adver-
sarial data in the input space of each self-attention layer
fmodel. More precisely, for each sequence length n, and
for a radius R > 0 to be discussed later, we look for an
input X ∈ BnR where fmodel has a large (ideally maximal)
local Lipschitz constant. Unfortunately, performing a gra-
dient ascent on the local Lipschitz constant fmodel gives
poor results, as the optimization landscape is highly non-
convex. We, therefore, build X as follows, using the heuris-
tics provided by Proposition 3.6. For h ∈ {1, . . . , 12},
denote A(h) := K(h)⊤Q(h)/

√
k, with the notations of Def-

inition 2.2 applied to the multi-head self-attention layer
fmodel. Choose any head h, and denote γ1 (resp. γδ) the
largest (resp. the smallest) real eigenvalue of A, and u1
(resp. uδ) an associated unit eigenvector. If γ1 ≥ −8γδ,
define X = (x1, . . . , xn) with x1 := Ru1 and x2 = · · · =
xn := R/2u1. If γ1 < −8γδ, define X = (x1, . . . , xn)
with x1 := Ruδ and x2 = · · · = xn := −Ruδ. This way
of defining adversarial inputs does not exactly maximize
the local Lipschitz constant for each choice of n and R, but
leads, for R large enough, to a growth rate of

√
n for the

local Lipschitz constant of fmodel (see Figure 1), which is
exactly what we need to recover tightness.

Influence of the scaling factor. In Figure 1, the scaling
factor R is equal to 15.5 and 21.5 for the first two columns,
which corresponds to an approximation of the mean radius
of real data used with the same models in the first row. In
other words, our adversarial data for the first two models
have tokens with a magnitude similar to tokens obtained
with real data. In contrast, for the third column, correspond-
ing to GPT-2 randomly initialized, we take R = 100, which
is much larger than the magnitude of tokens generated with
real data (which is 27.7). Indeed, we observed that smaller
scaling factors induce a growth rate that is slower than n1/2.
Studying this aspect more in-depth is an interesting perspec-
tive for future work.

5.3. Discussion

Figure 1 gives the following insights.
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Figure 1. Scatter plots of the local Lipschitz constant of self-attention (column 1) and masked self-attention (columns 2 and 3) on text
data (upper row) and adversarial data (lower row) as a function of the sequence length n. In the upper row, the color encodes the mean
radius of inputs X = (x1, . . . , xn), defined as R :=

√
1/n

∑n
i=1|xi|2. Lighter points have a smaller mean radius. The first two columns

correspond to two different pretrained BERT models: an Encoder-only and a Decoder-only, on the same dataset Alice in Wonderland,
respectively for attention layers 0 and 6. The third column is obtained with the masked self-attention layer 6 of GPT-2 randomly initialized,
on the dataset AG NEWS. We see that the Lipschitz constant of self-attention on real data grows approximately like n1/4 with the
sequence length n and that the growth rate is

√
n for adversarial data, which shows the tightness of Theorems 3.3, 3.7, 4.3 and 4.5.

• The Lipschitz constant of self-attention on real data grows
significantly with the sequence length, in all considered
cases, independently of the dataset, the depth of the at-
tention layer, and of whether self-attention is masked or
not. The observed growth rate is close to n1/4, which is
smaller than the worst-case rate

√
n.

• The Lipschitz constant of self-attention on our adversarial
data grows like

√
n, which is the worst-case rate according

to Theorem 3.3. This evidentiates tightness of the bound
with respect to the sequence length.

Let us make a few remarks. First, the architecture of BERT
adds biases to the traditional formula for self-attention. This
does not affect too much the theoretical analysis (see Ap-
pendix E.3). Second, the same experiments as in Figure
1 performed with GPT-2 pre-trained (Radford et al., 2019)
lead to a different behavior of the Lipschitz constant. In
particular, the growth rate of the Lipschitz constant can be
faster than

√
n, which seems to come from a correlation

between the sequence length of inputs and the magnitude of
their tokens after going through LayerNorm (see Appendix
E.2). Finally, our results point out the difficulty of designing
Lispchitz-constrained self-attention layers independently
of the sequence length. Indeed, dividing a self-attention
layer by the mean-field bound of Theorem 3.5 to enforce
its 1-Lipschitz continuity would induce a dramatic loss of
expressive power on smaller sequence lengths. However,

when the sequence length is fixed – for example with Vision
Transformers (Dosovitskiy et al., 2020), dividing the output
of the self-attention layer by the bound in Theorem 3.3 is a
promising option.

Conclusion
In this thorough study of the Lipschitz constant of self-
attention, we have identified sharp bounds in different
regimes, the most relevant from a practical viewpoint being
the general bounds stated in Theorems 3.3 and 4.3. Our
theoretical and numerical analyses show that the Lipschitz
constant of self-attention grows with the sequence length,
the worst-case rate being

√
n, and the rate on real data be-

ing at least n1/4, and possibly larger for learned positional
encoding. This insight is new and represents an obstruc-
tion to designing robust Transformers without modifying
the architecture or fixing the sequence length of inputs,
which opens interesting avenues for future work. We have
also introduced a novel mean-field framework for masked
self-attention, which overcomes the lack of permutation
equivariance and paves the way for a study of neural PDEs
on Decoders, as Sander et al. (2022) and Geshkovski et al.
(2023a;b) do for Encoders.

9



How Smooth Is Attention?

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Peyré, G., Cuturi, M., et al. Computational optimal trans-
port: With applications to data science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Qi, X., Wang, J., Chen, Y., Shi, Y., and Zhang, L. Lips-
former: Introducing lipschitz continuity to vision trans-
formers. arXiv preprint arXiv:2304.09856, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rosca, M., Weber, T., Gretton, A., and Mohamed, S. A case
for new neural network smoothness constraints. PMLR,
2020.

Sander, M. E., Ablin, P., Blondel, M., and Peyré, G. Sink-
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A. Optimal Transport Toolbox
This section gathers some useful definitions and lemmas from optimal transport. In what follows, X is a Borel subset of Rd.

A.1. Pushforward, Wasserstein Distance

Let us start with the notion of pushforward.
Definition A.1 (Pushforward). Set µ a probability measure on X and φ : X → X a measurable function. The pushforward
of µ by φ, denoted φ♯µ, is the probability measure given by

(φ♯µ) (B) = µ(φ−1(B))

for any Borel set B ⊂ X , where φ−1(B) := {x ∈ Rd : φ(x) ∈ B}.

The pushforward measure φ♯µ can be seen as the result of a transportation of the mass of µ by φ. Intuitively, φ♯µ is obtained
by transporting each element of mass µ(dx) from x to φ(x).

Another crucial tool is the notion of Wasserstein distance.
Definition A.2 (Wasserstein space, Wasserstein distance). Let p ≥ 1. Denote

Pp(X ) := {µ ∈ P(X ) :
∫
X
|x|pdµ(x) <∞}

the p-Wasserstein space. Then, the p-Wasserstein distance between two probability measures µ, ν ∈ Pp(X ) is defined as

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
|x− y|pdπ(x, y)

)1/p

with Π(µ, ν) the set of all couplings between µ and ν, i.e. of all probability measures π ∈ P(X × X ) such that∫
π(·, y)dy = µ and

∫
π(x, ·)dx = ν.

Wasserstein distances have the following nice property, which is a direct consequence of Jensen inequality.
Lemma A.3. For every p ≥ 1, it holds

W1 ≤Wp.

The distance W1 has also a simple dual formulation.
Lemma A.4 (W1 duality formula). The distance W1 can be rewritten with the so-called duality formula: for all µ, ν ∈
P1(X ), it holds

W1(µ, ν) = sup
Lip(φ)≤1

∫
φd(µ− ν), (2)

where the supremum is taken over all functions φ : X → R with a Lipschitz constant bounded by one.

The following result is useful to bound the Wasserstein distance between two probability measures that are pushed forward
by the same map.
Lemma A.5. Let p ≥ 1. Consider a measurable function φ : X → X , and probability measures µ, ν ∈ Pp(X ) such that
φ♯µ ∈ Pp(X ) and φ♯ν ∈ Pp(X ). Then, it holds

Wp(φ♯µ, φ♯ν) ≤ Lip(φ)Wp(µ, ν).

Proof. We have

Wp(φ♯µ, φ♯ν)
p = inf

π′∈Π(φ♯µ,φ♯ν)

∫
∥x− y∥p dπ′(x, y)

≤ inf
π∈Π(µ,ν)

∫
∥φ(x)− φ(y)∥p dπ(x, y)

≤ Lip(φ)p inf
π∈Π(µ,ν)

∫
∥x− y∥p dπ(x, y)

= Lip(φ)pWp(µ, ν)
p,
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where the first inequality derives from the fact that every π ∈ Π(µ, ν) induces a coupling π′ ∈ Π(φ♯µ, φ♯ν) by setting

π′(B1 ×B2) := π(φ−1(B1)× φ−1(B2))

for all Borel sets B1, B2 ⊂ X , and that with this choice of π′ it holds∫
∥x− y∥p dπ′(x, y) =

∫
∥φ(x)− φ(y)∥p dπ(x, y).

Let us now bound the Wasserstein distance between two different pushforwards of the same probability measure.
Lemma A.6. Let p ≥ 1. Consider two measurable functions φ,ψ : X → X , and a probability measure µ ∈ Pp(X ) such
that φ♯µ ∈ Pp(X ) and ψ♯µ ∈ Pp(X ). Then, it holds

Wp(φ♯µ, ψ♯µ) ≤ ∥φ− ψ∥Lp(µ) .

Proof. Recall that

Wp(φ♯µ, ψ♯µ)
p = inf

π′∈Π(φ♯µ,ψ♯µ)

∫
∥x− y∥p dπ′(x, y).

Now consider the following coupling between φ♯µ and ψ♯µ, defined by the relation

π′(B × C) := µ(φ−1(B) ∩ ψ−1(C))

for every Borel sets B,C ⊂ X . In other words, we set dπ′(y, z) :=
∫
φ−1(y)∩ψ−1(z)

dµ, and dπ′(y, z) = 0 if φ−1(y) ∩
ψ−1(z) = ∅. With this definition of π′, we have

Wp(φ♯µ, ψ♯µ)
p ≤

∫
∥x− y∥p dπ′(x, y) =

∫
∥φ(x)− ψ(x)∥p dµ(x).

A.2. Geodesics

The notion of a geodesic is useful for the following section of the Appendix.
Definition A.7 (Geodesic). Let (E , dE) be a metric space. A curve γ : [0, 1] → E is called a geodesic if there exists a
constant v ≥ 0 such that for all t1, t2 ∈ [0, 1] we have

dE(γ(t1), γ(t2)) = v|t2 − t1|.

We say that the space E is geodesic if for any x, y ∈ E , there exists a geodesic between x and y.

One important example of geodesic space is the 2-Wasserstein space P2(Rd).
Lemma A.8 (Santambrogio (2015)). The space P2(Rd) is a geodesic space.

B. Local Lipschitz Constant in the Mean-Field Setting
B.1. Mean-Field Self-Attention Generalizes Self-Attention

For any input X ∈ (Rd)n, we have F (m(X)) = m(f(X)). Indeed, we can rewrite f as

f(X) = (ΓX(x1), . . . ,ΓX(xn)), (3)

with

ΓX : x 7→

∑n
i=1 exp

(
1√
k
x⊤Q⊤Kxi

)
V xi∑n

i=1 exp
(

1√
k
x⊤Q⊤Kxi

) .

Seeing the ratio of sums as a ratio of integrals against the empirical measure m(X), and Equation (3) as a pushforward
leads precisely to the formula of mean-field self-attention.
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B.2. Local Lipschitz Constant in a General Metric Framework

The local Lipschitz constant can be defined for any function between two metric spaces, as follows.
Definition B.1 (Local Lipschitz constant). Let φ : E → F be a map between two metric spaces. We define the local
Lipschitz constant of φ at point x ∈ E as

Lipx(φ) := lim
ε→0+

Lipφ|B(x,ε).

The limit exists, as Lipφ|B(x,ε) decreases with ε.

Definition B.1 is interesting, as it captures more information than the global Lipschitz constant. More precisely, we have the
following connection between the two notions.
Lemma B.2. Let φ : E → F be a map between two metric spaces. We have

Lip(φ) ≥ sup
x∈E

Lipx(φ).

Assume moreover that the space E admits geodesics, which is the case for Rd and P2(Rd) equipped with W2 (see A). Then,
this inequality becomes an equality.

B.3. Proof of Lemma 3.2

Let us prove the following slightly stronger result.
Lemma B.3. Let p ≥ 1. For any matrix X ∈ Rn×d, we have

Lip
∥·∥F,p

X (f) = Lip
Wp

m(X)(F|Mn(Rd)) ≤ Lip
Wp

m(X)(F ).

Proof. Set X ∈ Rn×d. One can choose ε1 > 0 small enough (for example ε1 < minxi ̸=xj
∥xi − xj∥ /2) to have

∥X − Y ∥F,p ≤ ε1 ⇒ ∥X − Y ∥F,p =Wp(m(X),m(Y )).

Indeed, if
∥X − Y ∥F,p ≤ ε1 < min

xi ̸=xj

∥xi − xj∥ /2,

then for all i ∈ {1, . . . , n}, we have ∥xi − yi∥ ≤ ε1, and thus xi is the nearest neighbor (or one of the nearest neighbors) of
yi among the xj . Similarly, one can choose ε2 > 0 small enough to have

∥f(X)− f(Y )∥F,p ≤ ε2 ⇒ ∥f(X)− f(Y )∥F,p =Wp(m(f(X)),m(f(Y ))).

Then, we can set ε ≤ ε1 small enough to have

∥X − Y ∥F,p ≤ ε⇒ ∥f(X)− f(Y )∥F,p ≤ ε2,

and it holds, for all η ≤ ε and all Y such that ∥X − Y ∥F,p ≤ η, that

∥X − Y ∥F,p =Wp(m(X),m(Y ))

and
∥f(X)− f(Y )∥F,p =Wp(m(f(X)),m(f(Y ))).

Now for all η ≤ ε, we have

Lip∥·∥F,pf|B∥·∥F,p
(X,η) = sup

Y ∈B∥·∥F,p
(X,η)

∥f(X)− f(Y )∥F,p
∥X − Y ∥F,p

= sup
Y ∈B∥·∥F,p

(X,η)

Wp(m(f(X)),m(f(Y )))

Wp(m(X),m(Y ))

= sup
Y ∈B∥·∥F,p

(X,η)

Wp(F (m(X)), F (m(Y )))

Wp(m(X),m(Y ))
,

by definition of ε and F . We conclude the proof by noticing that:
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• Y ∈ B∥·∥F,p
(X, η) implies m(Y ) ∈ BWp

(m(X), η), which shows that Lip∥·∥F,pf|B∥·∥F,p
(X,η) ≤ LipWpF|Mn(Rd),

• µ ∈ BWp
(m(X), η) with µ ∈Mn(Rd) implies the existence of Y ∈ Rn×d such that µ = m(Y ) and ∥X − Y ∥F,p =

Wp(m(X),m(Y )), so that Y ∈ B∥·∥F,p
(X, η). Indeed, take Y such that µn = m(Y ) and then permute its coordinates

so that xi becomes the nearest neighbor (or one of the nearest neighbors) of yi. This shows the reverse inequality and
concludes the proof.

C. Proofs of Section 3
We have the following useful Lemma.

Lemma C.1. Let µ be a probability measure supported inB(x0, R) ⊂ Rd, with any x0 ∈ Rd and R > 0. Then, denoting
Varµ := E[(Z − EZ)(Z − EZ)⊤] with Z a random variable distributed according to µ, we have

∥Varµ∥2 ≤ R
2,

with equality when µ = 1
2 (δx0+x + δx0−x) for any x ∈ Rd such that |x| = R.

Proof. Let us assume without loss of generality that x0 = 0. It is straightforward to check that if µ = 1
2 (δx + δ−x) then

∥Varµ∥2 = R2. To show that this is the maximal value the variance can take, we use the triangle inequality:∥∥E[(Z − EZ)(Z − EZ)⊤]
∥∥
2
≤ E

∥∥(Z − EZ)(Z − EZ)⊤
∥∥
2

= E[|Z − EZ|2]
= E[|Z|2]− |EZ|2.

Now let us pick any x ∈ BR \ B(0, r). We have E(Z − x)⊤(Z + x) ≤ 0, as the angle between the vectors Z − x and
Z + x is at least π/2 for Z in B(0, R). By expanding this relationship we get

E[|Z|2]− |x|2 ≤ 0,

which yields the result.

C.1. The Jacobian of Self-Attention

Lemma C.2. Let X = (x1, . . . , xn) ∈ (Rd)n. For all perturbations ϵ := (ϵ1, . . . , ϵn) ∈ (Rd)n and all i ∈ {1, . . . , n}, we
have

(DXf)(ϵ)i = V

n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
i A

⊤ϵj + V

n∑
j=1

Pijϵj + V

n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
j Aϵi,

with Pij := ex
⊤
i A

⊤xj/
∑n
k=1 e

x⊤
i A

⊤xk .

C.2. Proof of Theorem 3.3

Let X ∈ BnR and ϵ := (ϵ1, . . . , ϵn) ∈ (Rd)n such that ∥ϵ∥F = 1. According to Lemma C.2, for all i ∈ {1, . . . , n} we have

(DXf)(ϵ)i = V

n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
i A

⊤ϵj + V

n∑
j=1

Pijϵj + V

n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
j Aϵi,

with Pij := ex
⊤
i A

⊤xj/
∑n
k=1 e

x⊤
i A

⊤xk . The triangle inequality gives

|(DXf)(ϵ)i| ≤ ∥V ∥2

∥A∥2R
∣∣∣∣∣∣
n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)ϵj

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
j=1

Pijϵj

∣∣∣∣∣∣+ ∥A∥2
∥∥∥Var(i)∥∥∥

2
|ϵi|


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where Var(i) :=
∑n
j=1 Pij(xj −

∑n
k=1 Pikxk)x

⊤
j is the variance of the probability measure

∑n
j=1 Pijδxj

. Lemma C.1

gives us that
∥∥∥Var(i)∥∥∥

2
≤ R2. We can also apply Cauchy-Schwarz inequality to get

∣∣∣∣∣∣
n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)ϵj

∣∣∣∣∣∣ ≤
 n∑
j=1

Pij

∣∣∣∣∣xj −
n∑
k=1

Pikxk

∣∣∣∣∣
2
1/2 n∑

j=1

Pij |ϵj |2
1/2

.

The proof of Lemma C.1 allows us to bound

n∑
j=1

Pij

∣∣∣∣∣xj −
n∑
k=1

Pikxk

∣∣∣∣∣
2

≤ R2.

Collecting terms, we get

|(DXf)(ϵ)i| ≤ ∥V ∥2

∥A∥2R2

 n∑
j=1

Pij |ϵj |2
1/2

+

∣∣∣∣∣∣
n∑
j=1

Pijϵj

∣∣∣∣∣∣+ ∥A∥2R2|ϵi|

 .

Then, using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for any a, b, c ∈ R, we obtain

n∑
i=1

|(DXf)(ϵ)i|2 ≤ 3 ∥V ∥22
(
∥A∥22R

4(n+ 1) + n
)
,

where we have used that with the triangle inequality and Cauchy-Schwarz inequality∣∣∣∣∣∣
n∑
j=1

Pijϵj

∣∣∣∣∣∣
2

≤

 n∑
j=1

Pij |ϵj |

2

≤
n∑
j=1

P 2
ij ∥ϵ∥

2
F ≤ 1

as ∥ϵ∥2F = 1 and
∑n
j=1 P

2
ij ≤

∑n
j=1 Pij = 1, and that

n∑
j=1

Pij |ϵj |2 ≤
n∑
j=1

|ϵj |2 = 1.

The proof above allows us to recover the following tighter bound but with maybe less natural assumptions on the tokens.

Theorem C.3. Let Q,K, V ∈ Rk×d and A := K⊤Q/
√
k. Denote f unmasked self-attention with parameters (A, V ). Let

X ∈ (Rd)n and ρ, r > 0 such that

(i) max1≤i,j≤n|xi − xj | ≤ r,

(ii) max1≤i≤n|Axi| ≤ ρ.

Then, the local Lipschitz constant of f at X is bounded by

∥DXf∥2 ≤
√
3 ∥V ∥2

(
(ρ2r2 + 1)n+ ρ2r2

)1/2
.

Moreover, in practical Transformers architectures, inputs X of self-attention can be written as norm(X̃) for some X̃ ∈
(Rd)n, where norm stands for LayerNorm of RMSNorm (see Subsection 2.3). In both cases, all inputs are on an ellipsis
whose shape depends on the parameters of LayerNorm or RMSNorm, so that there is a choice of parameters (r, ρ) such that
for all X̃ ∈ (Rd)n, the input X = norm(X̃) satisfies assumptions (i) and (ii) in Theorem C.3.
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C.3. Weighted Self-Attention

In the whole subsection, Σn := {a ∈ [0, 1]n :
∑n
i=1 ai = 1} is the simplex.

In view of proving Propositions 3.4 and 3.6, let us introduce a framework for self-attention that extends the Euclidean
framework, where the local Lipschitz constant is given by the operator norm of the differential, to probability measures with
a finite number of diracs. We call this framework weighted self-attention.

Definition C.4 (Weighted self-attention). For any vector a ∈ Σn, denote Pa(Rd) := {
∑n
i=1 aiδxi

: x1, . . . , xn ∈ Rd}. We
define the Euclidean version of the restriction of self-attention with parameters (A, V ) to Pa(Rd) in the following way:

fa : (x1, . . . , xn) ∈ (Rd)n 7→

V n∑
j=1

P aijxj


1≤i≤n

∈ (Rk)n

with P ai := softmaxa
(
(x⊤i A

⊤xj)1≤j≤n
)
, where softmaxa(w1, . . . , wn) :=

(
aie

wi∑
j aje

wj

)
1≤i≤n

. The function fa is called

weighted self-attention associated to the coefficients a.

Definition C.4 is designed so that for any sequence X ∈ (Rd)n, it holds

F (ma(X)) = ma(fa(X)),

with ma(X) :=
∑n
i=1 aiδXi

. Weighted self-attention provides a representation that is very convenient to study both
theoretically and numerically the local Lipschitz constant of self-attention at measures that have a finite number of Diracs
but with weights such that they require a massive sequence length to be approximated well by an empirical measure. This is
for example the case of measures of the form e−2R2

δR + (1− e−2R2

)δ−R, which are at stake in the proof of Proposition
3.6. To study the Lipschitz continuity of fa, we equip the space (Rd)n with the norm

∥X∥a :=

(
n∑
i=1

ai|xi|2
)1/2

,

so that we have the following connection with the local Lipschitz constant of mean-field self-attention in the Wasserstein 2
sense.

Lemma C.5. Let X ∈ (Rd)n be an input sequence, and a ∈ Σn a vector of coefficients. Then, we have

LipW2

ma(X)F|Pa(Rd) = ∥Da
Xfa∥2,a ,

where Da is the Jacobian in the space ((Rd)n, ∥·∥a) and ∥·∥2,a is the corresponding operator norm.2

This is a nice property, as it provides an optimized way to compute numerically the local Lipschitz constant of fa, just as for
Euclidean self-attention. Lemma C.5 can be proven with the same steps as for Lemma 3.2. Moreover, the differential of fa
has the following expression.

Lemma C.6. Let X = (x1, . . . , xn) ∈ (Rd)n. For all perturbations ϵ := (ϵ1, . . . , ϵn) ∈ (Rd)n and all i ∈ {1, . . . , n}, we
have

(Da
Xfa)(ϵ)i = V

n∑
j=1

P aij(xj −
n∑
k=1

P aikxk)x
⊤
i A

⊤ϵj + V

n∑
j=1

P aijϵj + V

n∑
j=1

P aij(xj −
n∑
k=1

P aikxk)x
⊤
j Aϵi,

with P aij := aje
x⊤
i A

⊤xj/
∑n
k=1 ake

x⊤
i A

⊤xk .

C.4. Proof of Proposition 3.4

Proposition 3.4 follows from the following Lemma.

Lemma C.7. Let γ be a real eigenvalue of A and u ∈ Rd an associated unit eigenvector.

2As we are in finite dimension, all norms are equivalent so the linear operator Da is just the usual notion of differential.

18



How Smooth Is Attention?

1. If γ ≥ 0, denote X := (u, u2 , . . . ,
u
2 ) ∈ (Rd)n. Then, for any scaling factor R > 0, it holds

∥DRXf∥2 ≥
1

1 + (n− 1)e−R2γ/4

√
n− 1.

2. If γ < 0, denote X := (u,−u, . . . ,−u) ∈ (Rd)n. Then, for any scaling factor R > 0, it holds

∥DRXf∥2 ≥
1

1 + (n− 1)e−2R2|γ|

√
n− 1.

Proof. Let us start with the case γ < 0. Let X̃ := (u,−u). Using weighted self-attention fa introduced in Subsection C.3,
and a := (1/n, 1− 1/n), we have for any ε ∈ Rd and 1 ≤ i ≤ n that

DRX̃fa(ε)i =

n∑
j=1

P aijεj +

n∑
j=1

P aijxj(xj −
n∑
k=1

P aikxk)
⊤Aεi +

n∑
j=1

P aij(xj −
n∑
k=1

P aikxk)x
⊤
i A

⊤εj .

Setting ε1 := −u and ε2 := 0, we get

DRX̃fa(ε)2 = P a21(1 + 2P a22R
2|γ|) ≥ P a21.

Moreover
P a21 =

1

1 + (n− 1)e−2R2|γ| ,

so that
∥DRXf∥2 ≥ ∥DRX̃fa∥2,a ≥ P

a
21

√
n− 1,

which proves the result. When γ ≥ 0, the same method applies with ε1 = u and ε2 = 0. Denoting X̃ := (u, u/2) and
a := (1/n, 1− 1/n) one obtains

∥DRXf∥2 ≥ ∥DRX̃fa∥2 ≥ P
a
21

√
n− 1

and
P a21 =

1

1 + (n− 1)e−R2γ/4
,

which proves the result.

C.5. About the scaling factor in Proposition 3.4

Let us investigate numerically the scaling factor 2R2γ that appears in Proposition 3.4. With the model BERT pretrained,
and with a batch of five text extracts from the dataset Alice in Wonderland, we plot γ(h)R2 for each layer 0 ≤ ℓ ≤ 11 and
for h ∈ {0, 5, 10}, where γ(h) is the parameter γ defined in Proposition 3.4 associated to the A(h) the weight matrix of head
h, and R is the mean magnitude of tokens as they enter the attention block of layer ℓ, defined as R :

√
1/n

∑n
i=1|xi|2. We

obtain Figure 2.

C.6. Proof of Proposition 3.6

Let us prove the following result, which implies Proposition 3.6.

Proposition C.8. Let R > 0. Assume that k = d and V = Id, and denote γ1 ≥ · · · ≥ γν the real eigenvalues of A. Then,
the following claims hold.

1. If γ1 ≥ −8γν , denoting C := γ1
8 , there exists a function θ : [0,+∞)→ [0,+∞) such that θ(R)→R→+∞ 1 and:

LipW2(F|P(BR)) ≥ θ(R)
C

2
R2eCR

2

.

Moreover, the right-hand side is equivalent to the Lipschitz constant of mean-field self-attention at the probability
measure e−2CR2

δRu1 + (1− e−2CR2

)δ(R/2)u1
.
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Figure 2. Plot of the scaling factor 2R2γ across layers of BERT pretrained for three different heads and 5 text extracts of Alice in
Wonderland (50 tokens for each extract).

2. If γ1 < −8γν , denoting C ′ := |γν |, there exists a function θ : [0,+∞)→ [0,+∞) such that θ(R)→R→+∞ 1 and:

LipW2(F|P(BR)) ≥ θ(R)
C ′

2
R2eC

′R2

.

Moreover, the right-hand side is equivalent to the Lipschitz constant of mean-field self-attention at the probability
measure e−2C′R2

δRuν + (1− e−2C′R2

)δ−Ruν .

Proof. Let us detail the proof in the second case only, as the first case is very similar. According to Lemma C.6 with V = Id,
for any X = (x1, x2) ∈ (Rd)2 and a = (a1, a2) ∈ Σ2, for any ϵ2 ∈ Rd, denoting ϵ := (0, ϵ2) ∈ (Rd)2 we have

Da
Xfa(ϵ)1 = (P a12Id + 2P a11P

a
12x2x

⊤
1 A

⊤)ϵ2.

Let u1, . . . , uν a family of unit eigenvectors of A, associated to the eigenvalues γ1 ≥ · · · ≥ γν . Let R > 0. Set
a2 := e−2|γν |R2

, so that a1 = 1− e−2|γν |R2

, and choose x1 := Ruν and x2 := −Ruν . Then

∥Da
Xfa(ϵ)∥a ≥

√
a1|P a12(Id + 2P a11R

2|γν |uνu⊤ν )ϵ2|. (4)

Now let us notice that

P a12 =
a2e

|γν |R2

a1e−|γν |R2 + a2e|γν |R
2 =

e−|γν |R2

(1− e−2|γν |R2)e−|γν |R2 + e−|γν |R2 →R→+∞
1

2
,

and
P a11 = 1− P a12 →R→+∞

1

2
as well. Going back to Equation (4) and setting ϵ2 := uν , we get

∥Da
Xfa(ϵ)∥a ≳

1

2
(1 +R2|γν |)|uν | ≳

1

2
R2|γν |,

where f(R) ≳ g(R) means that there exists a function θ : R → R+ such that θ(R) →R→+∞ 1 and f(R) ≥ θ(R)g(R).
Finally, we get

∥Da
Xfa(ϵ)∥a
∥ϵ∥a

≳
1

2
|γν |R2a1

−1/2 =
1

2
|γν |R2e|γν |R

2

,

which proves the result as ∥Da
Xfa∥2,a = supϵ∈(Rd)2\{0}

∥Da
Xfa(ϵ)∥a

∥ϵ∥a
.
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Figure 3. Linear growth of the square root of the Lipschitz constant of self-attention in the configuration XR(n).

C.7. An Example of Quadratic Growth with the Radius

For simplicity, assume that A = Id and V = Id. Let X = (0, x2 . . . , xn) ∈ BnR. Kim et al. (2021) show that, as all norms
are equivalent in finite dimension, the local Lipschitz constant of f at X grows like the empirical variance of X . Taking
x2 = · · · = xj = Re1 and xj+1 = · · · = xn = −Re1 with e1 = (1, 0, . . . , 0) ∈ Rd and j such that |2j − 1− n| ≤ 1 and
denoting XR the resulting configuration, we obtain that the empirical variance of XR grows like R2 up to a constant factor
that is close to 1.

This behavior can be easily checked numerically (see Figure 3).

D. Proofs of Section 4
We have the following formula for the Jacobian of masked self-attention.
Lemma D.1. Let X = (x1, . . . , xn) ∈ (Rd)n. For all perturbations ϵ := (ϵ1, . . . , ϵn) ∈ (Rd)n and all i ∈ {1, . . . , n}, we
have

(DXf
m)(ϵ)i = V

i∑
j=1

Pij(xj −
i∑

k=1

Pikxk)x
⊤
i A

⊤ϵj + V

i∑
j=1

Pijϵj + V

i∑
j=1

Pij(xj −
i∑

k=1

Pikxk)x
⊤
j Aϵi,

with Pij := ex
⊤
i A

⊤xj/
∑i
k=1 e

x⊤
i A

⊤xk .

D.1. Proofs of Theorem 4.3 and Theorem 4.5

In view of Theorem D.1, following the same steps as in the proof of Theorem 3.3 leads to Theorem 4.3. Likewise, the proof
of Theorem 4.5 is the same as for Theorem 3.7.

D.2. Proof of Theorem 4.4

Let µ̄ and ν̄ be two distinct measures in P([0, 1] × BR). Assume that µ̄ and ν̄ have the same first marginal, denoted θ
(otherwise, we consider that they are associated with an infinite Lipschitz ratio). We have

dp(F
m(µ̄), Fm(ν̄)) ≤ dp((Γµ̄)♯µ̄, (Γµ̄)♯ν̄) + dp((Γµ̄)♯ν̄, (Γν̄)♯ν̄)

≤
(∫ 1

0

Wp

(
(Γsµ̄)♯µ

s, (Γsµ̄)♯ν
s
)p)1/p

+

(∫ 1

0

Wp

(
Γsµ̄)♯ν

s, (Γsν̄)♯ν
s
))1/p

,
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where we denote

Γsµ̄(x) :=

∫
V yG(x, y)1τ≤sdµ̄(τ, y)∫
G(x, y)1τ≤sdµ̄(τ, y)

.

Using Lemma A.5, we get
Wp

(
(Γsµ̄)♯µ

s, (Γsµ̄)♯ν
s
)
≤ Lip(Γsµ̄)Wp(µ

s, νs)

where the Lipschitz constant is taken on BR. A similar computation as for traditional self-attention shows that for all
0 ≤ s ≤ 1 and x ∈ BR we have

∥DxΓ
s∥2 ≤ ∥V ∥2 ∥A∥2R

2,

so that
Lip(Γsµ̄) ≤ ∥V ∥2 ∥A∥2R

2.

To bound the second term in the previous inequality, we use Lemma A.6, to get

Wp

(
(Γsµ̄)♯ν

s, (Γsν̄)♯ν
s
)
≤
∥∥Γsµ̄ − Γsν̄

∥∥
L∞(BR)

.

Again, a similar computation as for traditional self-attention shows that∥∥Γsµ̄ − Γsν̄
∥∥
L∞(BR)

≤ ∥V ∥2 (2 ∥A∥2R
2)e2∥A∥2R

2

Wp(µ
s, νs),

which concludes the proof.

E. Experiments
E.1. Power Iteration

Let X ∈ (Rd)n. To compute numerically ∥DXf∥2, we pick an initialisation

u0 ∼ ⊗n×dN (0, 1) ∈ Rn×d

u0 ← u0/ ∥u0∥F

and then repeat the following steps until convergence:

vk = (DXf)
⊤(DXf)uk

µk = v⊤k uk

uk+1 =
vk

∥vk+1∥F
where vk is computed by doing successively a Jacobian-vector product and a vector-Jacobian product. It is well known (Sra
et al., 2012) that with this method, µk converges to ∥DXf∥2.

E.2. GPT-2

We do the same experiments as in Section 5 on GPT-2 pretrained (Radford et al., 2019). We see in Figure 4 that the behavior
is different than what we observe in Figure 1. This is explained by the fact that the magnitude of tokens depends on the
sequence length for pretrained GPT-2, due to the learned positional encoding (see Figures 5 and 6). Therefore, the bound of
Theorem 3.3 still holds but the growth rate can be faster than

√
n.

E.3. Self-attention with biases

Some Transformer architectures such as BERT (Devlin et al., 2018) add biases (bQ, bK , bV ) ∈ Rk in the formula of
self-attention:

f b : (x1, . . . , xn) 7→
(
V
∑n
j=1Pijxj + bV

)
1≤i≤n

∈ (Rk)n, (5)

with Pi := softmax
(
(Qxi + bQ)

⊤(Kxj + bK))1≤j≤n
)
,

where we absorbed the factor 1/
√
k in Q,K, bQ and bK to alleviate notations.
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Figure 4. Scatter plots of the local Lipschitz constant of masked self-attention for GPT-2 pretrained as a function of the sequence length,
on the dataset Alice in Wonderland. The first column corresponds to masked self-attention layer 0, and the second column to layer 6.
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Figure 5. Norm of the positional embeddings of GPT-2 pre-
trained, ordered by position. The very first tokens are asso-
ciated to positional embeddings of much larger magnitude,
which makes n and R dependent from the very beginning of
the architecture.
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Figure 6. Scatter plot of the average magnitude of tokens R :=√
1/n

∑n
i=1|xi|2 as a function of the sequence length, for

the same dataset as in Figure 4, right column.
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Remark E.1. Note that bK has no influence on the value of f b:

softmax
(
(Qxi + bQ)

⊤(Kxj + bK))1≤j≤n
)
= softmax

(
(Qxi + bQ)

⊤Kxj)1≤j≤n
)
,

as bK in only involved in terms that are independent of j.

How do biases in self-attention affect the bound in Theorem 3.3? We start by computing the Jacobian of self-attention with
biases.

Lemma E.2. Let X = (x1, . . . , xn) ∈ (Rd)n. Let f b be a self-attention module with biases, defined as in Equation (5).
For all perturbations ϵ := (ϵ1, . . . , ϵn) ∈ (Rd)n and all i ∈ {1, . . . , n}, we have

(DXf
b)(ϵ)i = V

n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)(Qxi + bQ)
⊤Kϵj + V

n∑
j=1

Pijϵj + V

n∑
j=1

Pij(xj −
n∑
k=1

Pikxk)x
⊤
j Aϵi,

with Pij := e(Qxi+bQ)⊤(Kxj+bK)/
∑n
k=1 e

(Qxi+bQ)⊤(Kxk+bK).

The same steps as in the proof of Theorem 3.3 lead to the following bound.

Theorem E.3. Let Q,K, V ∈ Rk×d and A := K⊤Q/
√
k. Let R > 0 and n ∈ N. Unmasked self-attention with biases f b

with parameters (A, V ), defined in Equation (5), is Lipschitz continuous on the set BnR, with

Lip
(
f|Bn

R

)
≤
√
3 ∥V ∥2

(
∥A∥22R

4 + n
(
∥K∥2 (∥Q∥2R+ |bQ|)2R2 + 1

))1/2
.
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