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Abstract

It has been observed that the global minimum of neural networks is connected by
curves on which train and test loss is almost constant. This phenomenon, often
referred to as mode connectivity, has inspired various applications such as model
ensembling and fine-tuning. Despite empirical evidence, a theoretical explanation
is still lacking. We explore the connectedness of minimum through a new approach,
parameter space symmetry. By relating topology of symmetry groups to topology
of minima, we provide the number of connected components of full-rank linear
networks. In particular, we show that skip connections reduce the number of
connected components. We then prove mode connectivity up to permutation for
linear networks. We also provide explicit expressions for connecting curves in
minimum induced by symmetry.

1 Introduction

Among recent studies on the loss landscape, a particularly interesting discovery is mode connectivity
[5, 10], which refers to the phenomenon that distinct minima found by stochastic gradient descent
(SGD) can be connected by continuous paths through the high-dimensional parameter space of neural
networks. Mode connectivity has implications on other phenomena in deep learning such as the
lottery ticket hypothesis [8] and loss landscape and training trajectory analysis [11]. Additionally,
mode connectivity has inspired applications in diverse fields, including model ensembling [10, 2, 3],
model averaging [15, 30], pruning [8], improving adversarial robustness [34], and fine-tuning for
altering prediction mechanism [20].

Discrete symmetry, especially permutation, is well-known to be related to mode connectivity. In
particular, the neural network output is invariant to permuting the neurons [13]. [6] conjectures that
all minima found by SGD are linearly connected up to permutation. Various algorithms have since
been developed to find the optimal permutation for linear mode connectivity [1]. However, compared
to discrete symmetry, the role of continuous symmetry remains less studied. Continuous symmetry
groups with continuous actions define positive dimensional connected spaces in the minimum [32].
We explore the connectedness of minimum through continuous symmetries in the parameter space.

We reveal the role of symmetry in the connectivity of minimum by relating properties of topological
groups to their orbits and the minimum. Our results show that both continuous and discrete symmetry
are important and useful in understanding the origin and failure cases of mode connectivity. Our work
highlights a new approach towards understanding the topology of the minimum and complements
previous theories on mode connectivity [31, 9, 23, 24, 18, 27, 25].
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2 Connectedness of minima

2.1 Linear network with invertible weights

Let Param be the space of parameters. Consider the multi-layer loss function L : Param → R,
L : Param → R, (W1, ...,Wl) 7→ ||Y −Wl...W1X||22. (1)

where X,Y ∈ Rh×h are the input and output of the network. In this subsection, we assume that
both X,Y have rank h, and Param = (Rh×h)l. Then L has a GLh(R)l−1 symmetry, which acts
on Param by g · (W1, ...,Wl) = (g1W1, g2W2g

−1
1 , ..., gl−1Wl−1g

−1
l−2,Wlg

−1
l−1), for (g1, ..., gl−1) ∈

GLh(R)l−1.

Let L−1(c) = {θ ∈ Param : L(θ) = c} be a level set of L. Since ∥ · ∥2 ≥ 0 and L−1(0) ̸= ∅, the
minimum value of L is 0. By relating the topology of GL(R) and L−1(0), we have the following
observations on the structure of the minimum of L.
Proposition 2.1. There is a homeomorphism between L−1(0) and (GLh)

l−1.

Since (GLh)
l−1 has 2l−1 connected components and homeomorphism preserves topological proper-

ties, L−1(0) also has 2l−1 connected components.
Corollary 2.2. The minimum of L has 2l−1 connected components.

2.2 ResNet with 1D weights

The topological properties of the minimum depend on the architecture. As an example of this
dependency, we show that adding a skip connection changes the number of connected components of
the minimum.

Consider a residual network W3(W2W1X + εX) and loss function
L(W3,W2,W1) = ||Y −W3(W2W1X + εX)||2, (2)

where (W1,W2,W3) ∈ Param = Rn×n ×Rn×n ×Rn×n, ε ∈ R, and data X ∈ Rn×n, Y ∈ Rn×n.
The following proposition states that for a three-layer residual network with weight matrices of
dimension 1× 1, the number of components of the minimum is smaller than that of a linear network
without the skip connection.
Proposition 2.3. Let n = 1. Assume that X,Y ̸= 0. When ε = 0, the minimum of L has 4 connected
components. When ε ̸= 0, the minimum of L has 3 connected components.

The ε = 0 case follows from Corollary 2.2. For the ε ̸= 0 case, the proof decomposes the minimum of
L into two sets S1 and S0, corresponding to the minima without the skip connection and an extra set
of solutions because of the skip connection. S1 is homeomorphic to GL1×GL1 and has 4 connected
components. S0 is a line and has 1 connected component. Two components of S1 are connected to
S0, while the other two components of S1 are not. Therefore, S0 connects two components of S1. As
a result, the minimum of L has 3 connected components. Full proof can be found in Appendix C.3.

Figure 1 visualizes the minimum without and with the skip connection. This result reveals the effect
of skip connection on the connectedness of minimum, which may lead to a new explanation of the
effectiveness of ResNets [12] and DenseNets [14]. We leave the connection between the topology of
minimum and the optimization and generalization property of neural networks to future work.

3 Mode connectivity

From the examples in the previous section, the connectedness of the minimum is related to the
symmetry of the loss function under certain conditions. In this section, we explore applications of
this insight in explaining mode connectivity.

3.1 Mode connectivity up to permutation

For the family of linear neural networks defined in Section 2.1, we show that permutation allows us
to connect points in the minimum that are not connected without permutation. Our results support the
empirical observation that neuron alignment by permutation improves mode connectivity [29].
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Figure 1: Minimum of (a) 3-layer linear net ||Y −W3W2W1X||2 and (b) 3-layer linear net with a
residual connection ||Y −W3(W2W1X +X)||2, where X = 1, Y = 1, and W1,W2,W3 ∈ R.

Consider again the linear network (1) with full rank weights. When l = 2, the minimum of L has 2
connected components. Any g ∈ GL that is not on the identity component can take a point on one
connected component of the minimum to the other.

Lemma 3.1. Consider two points (W1,W2), (W
′
1,W

′
2) ∈ L−1(0) that are not connected in L−1(0).

For any g ∈ GL(h) such that det(g) < 0, g · (W1,W2) and (W ′
1,W

′
2) are connected in L−1(0).

When the hidden dimension h ≥ 2, there exists a permutation g such that det(g) > 0, and a
permutation g such that det(g) < 0. Therefore, all points on the minimum of L are connected up to
permutation.

Proposition 3.2. Assume that h ≥ 2. For all (W1, ...,Wl), (W
′
1, ...,W

′
l ) ∈ L−1(0), these exists a

list of permutation matrices P1, ..., Pl−1 such that (W1P1, P
−1
1 W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl)

and (W ′
1, ...,W

′
l ) are connected in L−1(0).

3.2 Failure case of linear mode connectivity

0
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Figure 2: Interpolation between 2 min-
ima of loss function ||Y − W2W1X||2
with 1 dimensional weights. Loss on the
interpolation can be unbounded.

In addition to helping show the connectedness of min-
imum, symmetry relates the set of points in minimum
to groups and provides a way to find all points in the
minimum. As an application, we show that linear mode
connectivity fails to hold in multi-layer regressions. The
following proposition says that in two-layer full-rank lin-
ear networks, the error barrier in the linear interpolation
between two solutions can be arbitrarily large.

Proposition 3.3. Consider the setting in Section 2.1. For
any k > 0, there exist (W1,W2), (W

′
1,W

′
2) ∈ L−1(0)

that belong to the same connected component of L−1(0)
and 0 < α < 1, such that L((1 − α)W1 + αW ′

1, (1 −
α)W2 + αW ′

2) > k.

The result holds when there is a homogeneous activation
(σ(cz) = cασ(z)). However, when α ̸= 1, the proof
needs a different choice of m. Figure 2 visualizes the
two points on the minimum of a two-layer network with
weights of dimension 1 × 1 and the linear interpolation
between them. One possible reason why linear mode
connectivity is observed in practice is that only a small
part of the minima is reachable by SGD due to implicit
bias [21].
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4 Curves on minimum from group actions

The minima of overparametrized ReLU networks consist of affine subspaces [28]. With activations
that are not piecewise linear, the minimum may be curved. As a result, the paths connecting two
points in the minimum may not be linear. Previously, these paths are discovered empirically by
finding parametric curves on which the expected loss is minimized [10]. An alternative and principled
way to find curves on the minima is to use parameter space symmetry.

Suppose the loss function L : Param → R admits a G symmetry. Consider the following curve for a
point w ∈ Param and M ∈ Lie(G):

γM : R× Param → Param,

γM (t,w) = exp (tM) ·w. (3)
Since exp (tM) ∈ G and the action of G preserves the value of L, every point on γM is in the same
L level set as w. This provides a way to find a curve of constant loss between two points that are in
the same orbit. Concretely, given two points w1 and w2 = g ·w1, let γ be the following curve:

γ : [0, 1]×G× Param → Param,

γ(t, g,w) = exp (t log(g)) ·w. (4)
Note that γ(0, g,w1) = w1, γ(1, g,w1) = w2, and L(γ(t, g,w1)) = L(w1) = L(w2) for all
t ∈ [0, 1]. Hence, γ is a curve that connects the points w1 and w2, and every point on γ has the same
loss value as L(w1) = L(w2).

For a group G, the curve γ is defined when the map · : G × Param → Param is continuous and
id ·w = w for all w ∈ Param, even if it is not a group action or does not preserve loss. However,
when · does not preserve loss, the loss can change on γ. Consider our two-layer network and the
following map:

· : GL(h,R)× Param → Param

g · (U, V ) = (Uσ(V X)σ(gV X)†, gV ). (5)
When σ is the identity function, · preserves the loss value, and γ defines a curve on the minimum.
In general, the map (5) does not preserve loss when batch size k is larger than hidden dimension h.
However, the maximum change of loss on γ can be bounded as follows. Let U ′, V ′ = g · (U, V ). We
have

∥Uσ(V X)− U ′σ(V ′X)∥ = ∥Uσ(V X)
(
I − σ(gV X)†σ(gV X)

)
∥ ≤ ∥Uσ(V X)∥. (6)

The last steps follows from the fact that σ(gV X)†σ(gV X) is a projection.

5 Discussion

In this work, we study topological properties of the loss level sets by relating their topology to the
topology of symmetry groups. We derive the number of connected components of full-rank multi-
layer networks with and without skip connections, and prove mode connectivity up to permutation
for full-rank linear regressions. Using symmetry in the parameter space, we construct an explicit
expression for curves that connect two points in the same orbit.

While symmetry appears to be a useful tool for studying the loss landscape, our current results rely on
the existence of a homeomorphism between symmetry groups and the minimum. A future direction is
to explore the possibility of removing this assumption. Another interesting direction is to investigate
additional links between different architecture choices, such as normalization, and connectedness of
the minimum. On the application side, the impact of these results can benefit from further study on
the connection between the topology of minimum and generalization ability of neural networks.

The connectedness results obtained from symmetry raise a number of interesting questions related
to mode connectivity. For example, it would be interesting to understand when and why there is no
significant change in loss on the linear interpolation between two minima. One possible explanation
is that there always exists a γ defined in the way above that is close to the line formed by the linear
interpolation. Another possible reason is that the dimension of minimum is usually high, and a
significant part of the linear interpolation is within the minimum with high probability. Moreover, it
has been observed that the train and test accuracy are both near constant on the paths that connect
different SGD solutions [10]. If these paths correspond to a group action, this implies that the action’s
dependence on data is weak.
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Appendix

A Related Work

Mode connectivity [10] and [5] discover empirically that the global minimum of neural networks
are connected by curves on which train and test loss is almost constant. It is then observed that SGD
solutions are linearly connected if they are trained from pre-trained weights [22] or share a short
period of training at the beginning [8]. Additionally, neuron alignment by permutation improves
mode connectivity [29]. Then, [6] conjecture that all minima found by SGD are linearly connected
up to permutation. Following the conjecture, [1] develop algorithms that finds the optimal alignment
for linear mode connectivity, and [16] further reduce the barrier by rescaling the preactivations of
interpolated networks. A few papers propose theoretical explanation of linear mode connectivity
using different tools. [35] shows that the feature maps of each layer are also linearly connected and
identify conditions that guarantees linear connectivity. [31] seeks to explain linear mode connectivity
through finding a convex hull defined by SGD trajectory endpoints. [7] uses optimal transport theory
to prove that wide two-layer neural networks trained using SGD are linearly connected with high
probability. It is worth noting that linear mode connectivity does not always hold outside of computer
vision. Language models that are not linearly connected have different generalization strategies [17].
[20] further show that the lack of linear connectivity indicates that the two models rely on different
attributes to make predictions.

Theory on connectedness of minimum Several work explores the theoretical explanation of
mode connectivity by studying the connectedness of sub-level sets. [9] shows that the minimum
is connected for 2-layer linear network without regularization, and for deeper linear networks with
L2 regularization. Futhermore, they show that the minimum of a two-layer ReLU network is
asymptotically connected, that is, there exists a path connecting any two solutions with bounded
error. [23] proves that the sublevel sets are connected in pyramidal networks with piecewise linear
activation functions and first hidden layer wider than 2N , where N is the number of training data).
The width requirement is later improved to N +1 [24]. [18] prove the existence of a piece-wise linear
path between two solutions for ReLU networks, if they are both dropout stable, or both noise stable
and sufficiently overparametrized. [27] generalizes this proof to show that wider neural networks are
more connected, following the observation that SGD solutions for wider neural network are more
dropout stable. [25] gives a new upper bound of the loss barrier between solutions using the loss of
sparse subnetworks that are optimized, which is a milder condition than dropout stability.

Symmetry in the loss landscape Discrete symmetries have inspired a line of work on loss landscape
topology. [4] shows that permutations of a given layer are connected within a loss level set. Through
examining the permutation symmetries, [28] characterize the geometry of the global minima manifold
for networks without other symmetries and show that adding one neuron to each layer in a minimal
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network connects the permutation equivalent global minima. By removing permutation and rescaling
symmetries, [26] study the geometry of minima in the functional space. [32] finds a set of nonlinear
continuous symmetries that partially parametrizes the minimum. [33] uses symmetry induced curves
to approximate the curvature of the minimum.

B Background

In this section, we review mathematical concepts used in the paper and list some useful results on the
number of connected components of topological spaces. We refer readers to [19] for a more detailed
introduction to this topic.

B.1 Connected components

Consider two topological spaces X and Y . A map f : X → Y is continuous if for every open subset
U ⊆ Y , its preimage f−1(U) is open in X . If X and Y are metric spaces with metrics dX and dY
respectively, this is equivalent to the delta-epsilon definition. That is, f is continuous if at every
x ∈ X , for any ϵ > 0 there exists δ > 0 such that dX(x, y) < δ implies dY (f(x), f(y)) < ϵ for all
y ∈ Y .

A topological space is connected if it cannot be expressed as the union of two disjoint, nonempty,
open subsets. A topological space X is path connected if for every p, q ∈ X , there is a continuous
map f : [0, 1] → X such that f(0) = p and f(1) = q. Path connectedness implies connectedness,
but the converse is not true [19]. [23] studies the path connectedness of sublevel sets of loss functions.

The following theorem is the main intuition of this paper and will appear frequently in proofs.

Theorem B.1 (Theorem 4.7 in [19]). Let X,Y be topological spaces and let f : X → Y be a
continuous map. If X is connected, then f(X) is connected.

A map f is a homeomorphism from X to Y if f is bijective and both f and f−1 are continuous. X
and Y are homeomorphic if such a map exists. A (connected) component of a topological space X is
a maximal nonempty connected subset of X . The components of X form a partition of X . The next
two corollaries of Theorem B.1 show that connectedness and the number of connected components
are topological properties. That is, they are preserved under homeomorphisms.

Corollary B.2. Let f : X → Y be a homeomorphism from X to Y , and let U ⊆ X be a subset of X
with the subspace topology. Then U is connected if and only if f(U) ⊆ Y is connected.

Proof. By the definition of homeomorphism, f and f−1 are continuous. From Theorem B.1, if U ∈
X is connected, then f(U) ∈ Y is connected. Similarly, if f(U) is connected, then f−1(f(U)) = U
is connected.

Corollary B.3. Let X be a topological space that has N components. Let Y be a topological space
homeomorphic to X . Then Y has N components.

Proof. Let C1, ..., CN be the components of X . Let f be a homeomorphism from X to Y . Since f
is bijective and C1, ..., CN is a partition of X , f(C1), ..., f(CN ) is a partition of Y . From Theorem
B.1, since C1, ..., CN are all connected, so are f(C1), ..., f(CN ).

Lastly, we need to show that f(C1), ..., f(CN ) are maximally connected. Suppose there exists a
set U ⊆ Y , such that U ̸⊆ f(Ci) and f(Ci) ∪ U is connected for some i. Then by Theorem B.1,
f−1(f(Ci) ∪ U) ⊃ Ci is connected in X . This contradicts the fact that Ci is a maximal component
in X . Therefore, f(C1), ..., f(CN ) are maximally connected.

Since f(C1), ..., f(CN ) partitions Y and are maximally connected, Y has N components.

Another consequence of Theorem B.1 is the following upper bound on the number of components of
the image of a continuous map.

Proposition B.4. Let f : X → Y be a continuous map. The number of components of the image
f(X) ⊆ Y is at most the number of components of X .
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Proof. Let C1, ..., CN be the components of X . Since Ci is continuous and the action is continuous,
according to Theorem B.1, f(Ci) is continuous for all i ∈ {1, ..., N}. Additionally, since

⋃N
i=1 Ci =

X , we have
⋃N

i=1 f(Ci) = f(X). Therefore, there is a surjective map from {f(C1), ..., f(CN )} to
the set of components of f(X), which implies that f(X) has at most N components.

Let X1, ..., Xn be topological spaces. The product space is their Cartesian product X1 × ...×Xn

endowed with the product topology. Denote π0(X) as the set of connected components of a space X .
The following proposition provides a way to count the components of a product space.
Proposition B.5. Consider n topological spaces X1, ..., Xn. Then |π0(X1 × ... × Xn)| =∏n

i=0 |π0(Xi)|.

Proof. When n = 1, the number of components of the product space is |π0(X1)|.
For the n > 1 case, since X1 × ... × Xn = (X1 × ... × Xn−1) × Xn, it suffices to show that
|π0(A × B)| = |π0(A)||π0(B)| for any topological spaces A and B. Let f : π0(A) × π0(B) →
π0(A×B) be the map that assigns C ∈ π0(A)× π0(B) to the element in π0(A×B) that contains
C. Then f is surjective because π0(A) × π0(B) forms a partition of A × B. To prove that f is
injective, suppose that f(C1) = f(C2) for C1, C2 ∈ π0(A) × π0(B). Consider the projection
πA : A × B → A. Since πA is continuous and C1, C2 belong to the same component of A × B,
πA(C1) and πA(C2) belong to the same component of A. Similarly, πB(C1) and πB(C2) belong to
the same component of B under the projection πB : A×B → B. Since all components of A and B
are maximally connected, we have C1 = C2, which implies that f is injective. Since f is a bijection
from π0(A)× π0(B) to π0(A×B), |π0(A×B)| = |π0(A)||π0(B)|.

B.2 Groups

A group is a set G together with a law of composition, that satisfies (ab)c = a(bc) ∀a, b, c ∈ G, ∃1
such that 1a = a1 = a ∀a ∈ G, and ∀a ∈ G, ∃b such that ab = ba = 1. An action of a group G on a
set S is a map · : G× S → S, that satisfies id · s = s for all s ∈ S and (gg′) · s = g · (g′ · s) for all
g, g′ in G and all s in S. The orbit of s ∈ S is the set O(s) = {s′ ∈ S | s′ = gs for some g in G}.

A topological group is a group G endowed with a topology such that multiplication and inverse
are both continuous. A recurring example is the general linear group GLn(R), with the subspace
topology obtained from Rn2

. GLn(R) has two connected components, which correspond to the
preimages of the positive and negative reals under the determinant map.

The product of groups G1, ..., Gn is a group denoted by G1 × ...×Gn. The elements in G1 × ...×
Gn is the product set of G1, ..., Gn. The group structure is defined by identity (1, ..., 1), inverse
(g1, ..., gn)

−1 = (g−1
1 , ..., g−1

n ), and multiplication rule (g1, ..., gn)(g
′
1, ..., g

′
n) = (g1g

′
1, ..., gng

′
n).

B.3 Relating connectedness of groups, orbits, and level sets

From Theorem B.1, continuous maps preserve connectedness. Through continuous actions, we study
the connectedness of orbits and level sets by relating them to the connectedness of more familiar
objects such as the general linear group.

In the main text, we focus on the case of bijective actions. Here we only assume the action to be
continuous and try to bound the number of components of the orbits. As an immediate consequence
of Proposition B.4, an orbit cannot have more components than the group.
Corollary B.6. Assume that the action of a group G on S is continuous. Then the number of
connected components of orbit O(s) is smaller than or equal to the number of connected components
of G, for all s in S.

Proof. An orbit O(s) is the image of the group action, which we assume to be continuous. The result
follows from Proposition B.4.

Let X be a topological space and L : X → R a continuous function on X . A topological group G is
said to be a symmetry group of L if L(g · x) = L(x) for all g ∈ G and x ∈ X . In this case, the action
can be defined on a level set of L, L−1(c) with a c ∈ R, as G× L−1(c) → L−1(c). If the minimum

9



of L consists of a single orbit, Corollary B.6 extends immediately to the number of components of
the minimum.
Corollary B.7. Let L be a function with a symmetry group G. If the minimum of L consists of a
single G-orbit, then the number of connected components of the minimum is smaller or equal to the
number of connected components of G.

Generally, symmetry groups do not act transitively on a level set L−1(c) ∈ Param. In this case, the
connectedness of the orbits does not directly inform the connectedness of the level set.
Proposition B.8.

(a) There exists a space X , a group G, and an action of G, such that each orbit for the action of G is
connected and X is not connected.

(b) There exists a space X , a group G, and an action of G, such that each orbit for the action of G is
disconnected and X is connected.

Proof. For part (a), consider a subspace of R2, X = X1 ∪X2 where X1 = {(x, y) : x = 0, y > 0}
and X2 = {(x, y) : x = 1, y > 0}. The space X is not connected. Let G be the multiplicative group
of positive real numbers and act on X by multiplication on the second coordinate. Then there are two
orbits, X1 and X2, which are both connected.

For part (b), consider the space X = R2 \ {0}. Then X is connected. Let G be the multiplicative
group of real numbers, which acts on X by multiplication on both coordinates. That is, g · (x1, x2) =
(gx, gx2),∀(x1, x2) ∈ X,∀g ∈ G. The orbit of any point (x1, x2) ∈ X is not connected.

Nevertheless, since the set of orbits partitions the space, we can use the following bound on the
number of components of the space.
Proposition B.9. Let X be a topological space and let X =

∐
i Xi be a partition of X into disjoint

subspaces. Then |π0(X)| ≤
∑

i |π0(Xi)|.

Proof. Let S = {A ⊆ X : ∃i, A is a component of Xi} be the union of the components of the
subspaces. Then S is a partition of X , and every element in S is connected. Therefore, there is
a surjective map from S to π0(X), defined by mapping each s ∈ S to the element of π0(X) that
includes s. This implies that |π0(X)| ≤ |S| =

∑n
i=1 |π0(Xi)|.

Consider a topological space X and a group G that acts on X . Let O = {O1, ..., On} be the set of
orbits. By Proposition B.9, the number of components of the orbits give the following upper bound
on the number of components of the space: |π0(X)| ≤

∑n
i=1 |π0(Oi)|.

C Missing Proofs

C.1 Proof of Proposition 2.1

Proof. Recall that W1, ...,Wn, X, Y are matrices in Rh×h, and X,Y are both full rank. Consider
the map

f : (GLh)
l−1 → L−1(0), (g1, ..., gl−1) 7→ (g1X

−1, g2, ..., gl−1, Y

l−1∏
i

g−1
i ). (7)

The inverse f−1 : (W1, ...,Wl) 7→ (W1X,W2,W3, ...,Wl−1) is well defined, because X ,
W1,W2,W3, ...,Wl−1 are all full-rank. Since both f and f−1 are continuous, f is a homeomorphism
between (GLh)

l−1 and L−1(0).

C.2 Proof of Corollary 2.2

Proof. From Proposition 2.1, L−1(0) is homeomorphic to (GLh)
l−1. According to Corollary

B.3, this implies that L−1(0) has the same number of connected components as (GLh)
l−1. From

Proposition B.5, GLh(R)l−1 has 2l−1 connected components. Therefore, L−1(0) has 2l−1 connected
components.
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C.3 Proof of Proposition 2.3

Proof. When ε = 0, the skip connection is effectively removed, and the loss function (2) reduces to
(1). By Corollary 2.2, the minimum of L has 4 connected components. In the rest of the proof, we
consider the case where ε ̸= 0.

Let (W10 ,W20 ,W30) = (I, (α − ε)I, α−1Y X−1), where α ∈ R is an arbitrary number such that
α ̸= ε and α ̸= 0. Then (W10 ,W20 ,W30) is a point in L−1(0). Define set G1 = {g ∈ Rh×h :
det (gW20W10X + εX) ̸= 0}. Let a : GL1 ×G1 → Param be the following map:

g1, g2 7→ (g1W10 ,

g2W20g
−1
1 ,

W30(W20W10X + εX)(g2W20W10X + εX)−1). (8)

From the definition of G1, (g2W20W10X + εX) is invertible, so a is well defined. Additionally, we
have L(a(g1, g2)) = L(W10 ,W20 ,W30) = 0,∀g1, g2 ∈ GL1 ×G1. Therefore, denoting the image
of a as S1, we have S1 ⊆ L−1(0).

Let S0 = {(W1,W2,W3) : W3 = Y (εX)−1 and W1 = 0} if ε ̸= 0, or ∅ otherwise. For
(W1,W2,W3) ∈ S0, we have L(W1,W2,W3) = ||Y − Y (εX)−1(0 + εX)||2 = 0. Therefore,
S0 ⊆ L−1(0).

We then show that the minimum of L is the union of S1 and S0. Consider a point (W1,W2,W3) ∈
L−1(0). If W1 = 0, then ε ̸= 0, otherwise (W1,W2,W3) cannot be in L−1(0). In this case,
W3 must equal to Y (εX)−1, and (W1,W2,W3) ∈ S0. If W1 ̸= 0, then W1W

−1
10

∈ GL1

and W2W1W
−1
10

W−1
20

∈ G1. The second part is due to W2W1W
−1
10

W−1
20

W20W10X + εX =

W2W1X + εX ̸= 0 since (W1,W2,W3) ∈ L−1(0). In this case we have (W1,W2,W3) =
a(W1W

−1
10

,W2W1W
−1
10

W−1
20

), which means that (W1,W2,W3) ∈ S1.

The number of connected components of S1 and S0 can be obtained from their structures. Since
W20W10X ̸= 0, there is a homeomorphism between G1 and GL1 defined by the map

f : G1 → GL1, g 7→ gW20W10X + εX (9)

with inverse f−1 : GL1 → G1, g 7→ ε(g − εX)(W20W10X)−1. Since a is also a homeomorphism,
its image S1 is homeomorphic to GL1 ×GL1 and has 4 connected components. When ε ̸= 0, S0 is
a line and thus has 1 connected component.

The last part of the proof shows the connectedness of the connected components of S1 and S0. Let
G+

1 = {g2 ∈ G1 : f(g2) ∈ GLsign(εX)} be the connected component in G1 that correspond to
GLsign(εX), and G−

1 = {g2 ∈ G1 : f(g2) ∈ GL−sign(εX)} be the component that correspond to
GL−sign(εX). For convenience, we name the connected components of Im(a) as follows:

C1 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL+, g2 ∈ G+
1 }

C2 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL−, g2 ∈ G+
1 }

C3 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL+, g2 ∈ G−
1 }

C4 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL−, g2 ∈ G−
1 }

Note that for (W1,W2,W3) ∈ S1, there exists a (unique) g2 ∈ G1 such that we can write W3 as

W3 = W30 [W20W10X + εX][g2W20W10X + εX]−1) = Y f(g2)
−1.

Following from the definition of G+
1 , for a point (W1,W2,W3) in C1 or C2, sign(W3) =

sign(Y (εX)−1). Additionally, when g2 is close to 0, g2 belongs to G+
1 . The boundary of both C1

and C2 contain a point in S0:

lim
g1→0+

a(g1, g1) = lim
g1→0−

a(g1, g1) = (0, α− ε, Y (εX)−1) ∈ S0.

Therefore, both C1 and C2 are connected to S0.

For points in C3 and C4, sign(W3) ̸= sign(Y (εX)−1). Therefore, no point in C3 or C4 can be
sufficiently close to S0. As a result, these components are not connected to S0. In summary, when
ε ̸= 0, S0 connects 2 components of S1, and the minimum of L has 3 connected components.
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C.4 Proof of Lemma 3.1

Proof. Consider the map f and its inverse f−1 defined in (7) in the proof of Proposition 2.1. Let
g = f−1(W1,W2) and g′ = f−1(W ′

1,W
′
2). By Corollary B.2, since (W1,W2) and (W ′

1,W
′
2) are

not in the same connected component of L−1(0), g and g′ are not in the same connected component of
GLh. Equivalently, det(gg′) < 0. Consider a g1 ∈ GLh such that det(g) < 0. Then det(g1gg

′) > 0,
which means that g1g and g′ belong to the same connected component of GLh. Therefore, according
to Corollary B.2, g1 · (W1,W2) = f(g1g) and (W ′

1,W
′
2) = f(g′) belong to the same connected

component of L−1(0).

C.5 Proof of Proposition 3.2

Proof. Let (g1, ..., gl−1), (g
′
1, ..., g

′
l−1) ∈ (GLh)

n−1 such that f(g1, ..., gl−1) = (W1, ...,Wl) and
f(g′1, ..., g

′
l−1) = (W ′

1, ...,W
′
l ). Let P0 = I . For i = 1, ..., l − 1, if det(gig′iP

−1
i−1) > 0, set Pi to I .

Otherwise, we set Pi to an arbitrary element in P ∈ Sh \Ah, which is not empty when h ≥ 2.

Let (g′′1 , ..., g
′′
l−1) ∈ (GLh)

n−1 such that f(g′′1 , ..., g
′′
l−1) = (W1P1, P

−1
1 W2P2, ..., Pl−2Wl−1Pl−1,

Pl−1Wl). By the way we construct Pi’s, we have g′′i = P−1
i−1g

′
iPi and det(gig

′′
i ) > 0. Therefore, gi

and g′′i belong to the same connected component of (GLh)
l−1 for all i. Since f is a homeomorphism

between (GLh)
l−1 and L−1(0), (W1P1, P

−1W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl) and (W ′
1, ...,W

′
l )

are connected in L−1(0).

C.6 Proof of Proposition 3.3

Proof. Let (W2,W1) ∈ L−1(0) be an arbitrary point on the minimum of L. Let α = 0.5, m =
4
√
k

∥Y ∥2
+ 2, and (W ′

2,W
′
1) = (W2m

−1,mW1). Then

L((1− α)W1 + αW ′
1, (1− α)W2 + αW ′

2)

=||Y − ((1− α)W2 + αW ′
2)((1− α)W1 + αW ′

1)X||22
=||Y − (1− α)2W2W1X − α2W ′

2W
′
1X − (1− α)α(m+m−1)W2W1X||22

=||(1− (1− α)2 − α2 − (1− α)α(m+m−1))Y ||22
=||(2α(1− α)− α(1− α)(m+m−1))Y ||22
=||(α(1− α)(2−m−m−1)Y ||22
=(2−m−m−1)20.252||Y ||22

(10)

Note that α(1− α) = 0.25 and m+m−1 > 2. Substitute in m, we have

L((1− α)W1 + αW ′
1, (1− α)W2 + αW ′

2) > ||(2−m)20.252||Y ||22 = k. (11)

12


	Introduction
	Connectedness of minima
	Linear network with invertible weights
	ResNet with 1D weights

	Mode connectivity
	Mode connectivity up to permutation
	Failure case of linear mode connectivity

	Curves on minimum from group actions
	Discussion
	Related Work
	Background
	Connected components
	Groups
	Relating connectedness of groups, orbits, and level sets

	Missing Proofs
	Proof of Proposition 2.1
	Proof of Corollary 2.2
	Proof of Proposition 2.3
	Proof of Lemma 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3


