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ABSTRACT

We show that the diffusion map affinity matrix is the twisted Hadamard product of
the self-attention matrix. Concretely, let the generalized feature-similarity matrix
be W = M + A with M = M† a Hermitian (real part, encoding geometry) and
A = −A† skew-Hermitian (imaginary part, encoding directionality). Softmax
applied to the real logits from M yields a first-order, row/column-stochastic atten-
tion operator. The diffusion kernel then arises as the twisted Hadamard product (a
Product-of-Experts identity), producing a symmetric second-order affinity whose
spectrum matches diffusion maps. The skew part A contributes only phases; plac-
ing them outside the softmax yields a U(1) gauge-equivariant “magnetic” variant
without breaking stochasticity.

1 INTRODUCTION

Laplacian-eigenmap and diffusion-maps methods Belkin & Niyogi (2003); Coifman & Lafon (2006)
and the attention mechanism Bahdanau et al. (2014); Vaswani et al. (2017) are two of the most
widely used kernels in modern machine learning. Diffusion maps construct a Markov operator on
samples and recover geometry via the spectrum of a (possibly normalized) graph Laplacian, enabling
robust manifold learning and diffusion-based embeddings. Attention, by contrast, builds a row-
stochastic kernel from pairwise scores via a softmax and powers today’s Transformer architectures.
Although typically applied in different domains, the two formalisms share a common backbone: (i)
a nonlinear kernelization of pairwise scores (e.g., Gaussian or exponential), followed by (ii) a row-
wise normalization that yields a random-walk interpretation. In statistical physics, this normalization
corresponds to Gibbs–Boltzmann weights; in machine learning, it appears as the softmax. These
parallels suggest a tighter connection than is usually made explicit. This connection we explore was
motivated by recent linearization schemes in both theories in diffusion-maps Candanedo (2025) and
in attention Tsai et al. (2019); Nauen et al. (2025).

We show that attention and diffusion maps are two faces of the same construction. Our starting point
is a bilinear dissimilarity between samples, built from a feature→feature operator M estimated in
a Koopman/EDMD fashion. From this formulation we obtain two directed distances d±ij whose
softmax normalizations coincide with the usual attention matrices (query→key and key→query).
We then demonstrate that the symmetric (Hermitian) part of M governs the diffusion-map distance,
while its skew part contributes only a complex phase that can be interpreted as a U(1) connec-
tion. This leads naturally to the construction of an equivariant first-order graph operator based on
attention, whose adjoint product recovers the magnetic Laplace–Beltrami operator used in diffu-
sion maps. Finally, we provide a gauge-consistent magnetic variant by placing the complex phases
outside the normalization, which preserves local U(1)N invariance.

Our contributions are as follows. Concretely, we (i) unify diffusion maps and attention through a
common bilinear kernel; (ii) identify attention as a first-order equivariant difference whose compo-
sition yields the second-order diffusion operator; (iii) provide a principled recipe to learn M from
data (Koopman-in-feature-space), separating geometry (symmetric part) from directionality (skew
part); and (iv) introduce a simple magnetic/connection form compatible with both diffusion and
attention. Notation-wise we use Einstein index and summation notation throughout.
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2 SIMILARITY

To begin our discussion we wish to determine the similarity between two data samples. Samples in
our dataset are characterized by a vector of numbers in some high dimensional space vX , wX ∈ CD.
Over N samples, we obtain a high-dimensional point-cloud represented by the following dataset
matrix RiX ∈ CN×D, with indices i, j ∈ {1, 2, · · · , N} and X,Y ∈ {1, 2, · · · , D}. Our objective
is to find similarities between our samples. This can be achieved by the generalized-distance matrix
with a Bilinear Dissimilarity (BD) matrix (potentially asymmetric and complex), WXY ∈ CD×D:

D2
ij = 1iR2

j −RiXWXY R
†
Y j +R2

i1j −RjXWXY R
†
Xi , (1)

with R2
i = RiXWXY R

†
Y i = (RiY W†

Y XR†
Xi)

∗ ∈ CN , and 1i ∈ RN is a vector of entirely
ones. In general D2

ij ∈ CN×N , however it may be partitioned into real and imaginary parts
by the Hermitian/Anti-Hermitian partition of the BD matrix: the Hermitian Mahalanobis bilin-
ear form MXY = 1

2

(
WXY + (W†)XY

)
∈ CD×D and the anti-Hermitian connection AXY =

1
2

(
WXY − (W†)XY

)
∈ CD×D, such that WXY = MXY +AXY :

D2
ij = ℜD2

ij + iℑD2
ij

= D2
ij + iBij

The real-part obtained from the Hermitian term is:

D2
ij = 1iR

2
j −RiXMXY R

†
Y j︸ ︷︷ ︸+R2

i 1j −RjXMXY R
†
Y i︸ ︷︷ ︸ (2)

= d
(−)
ij + d

(+)
ij (3)

with R2
i = RiXMXY R

†
Y i ∈ RN . While the purely imaginary-parts, i.e. iBij are obtained from the

anti-Hermitian partition AXY :

Bij = 1iκj + κi1j + i RiXAXY R
†
Y j︸ ︷︷ ︸

a
(+)
ij

+i RjXAXY R
†
Y i︸ ︷︷ ︸

a
(−)
ij

with κi = −iRiXAXY R
†
Y i ∈ RN , and Bij ∈ RN×N . Above Bij is entirely real and symmetric.

The pieces a(±)
ij = −(a(±))∗ji ∈ CN×N .

2.1 BILINEAR DISSIMILARITY MATRIX

We now discuss concrete choices for the bilinear dissimilarity (BD) matrix W ∈ CD×D used in
the generalized squared distance. A natural construction comes from Koopman/EDMD (Koopman
(1931); Schmid (2010); Brunton & Kutz (2022)): given a sequence of feature vectors {RiX}Ni=1
(complex, not necessarily centered), define the zero–lag covariance and the τ–lag cross–covariance

C(0)XY =
1

N

N∑
i=1

R†
XiRiY ∈ CD×D, C(τ)XY =

1

N − τ

N−τ∑
i=1

R†
XiRi+τ,Y ∈ CD×D,

(4)

with R†
i the conjugate transpose. We then set

WXY = C(0)−1
XZ C(τ)ZY , (5)

optionally using Tikhonov regularization C(0)−1⇝ (C(0) + λID)−1 or the whitened form W =
C(0)−1/2C(τ)C(0)−1/2 for numerical stability. Here C(0) is Hermitian PSD, whereas C(τ) and
W are generally complex and asymmetric, which is desirable when modeling directed effects.

As an alternative, one can generate an asymmetric BD matrix from a random off–diagonal Wishart
block. Draw Q ∈ C(2D)×p with i.i.d. entries (e.g., complex normal), form the Wishart matrix
W = QQ† ∈ C(2D)×(2D), and partition

W =

(
W11 W12

W21 W22

)
, Wσσ′ ∈ CD×D.
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Taking the off–diagonal block W := 1
p W12 (or W21 = W ∗

12) yields a complex, non-Hermitian BD
matrix that induces an asymmetric similarity.

These examples recover familiar special cases: for WXY = δXY we obtain ordinary Euclidean
squared distances (the law of cosines) and a trivial anti-Hermitian part BXY = 0XY ; for learned
Mahalanobis metrics one may take W = M ⪰ 0; and sample-dependent or anisotropic variants are
obtained by letting W depend on (i, j) or by applying local scaling to C(0)/C(τ) before forming
equation 5.

3 SOFTMAX

Let’s define the following nonlinear-operator applied on a matrix zij ∈ RN×N (or the real part
of a complex matrix), the i-axis softmax (the Boltzmann distribution of −zij with β = 1, i.e.
softmaxi(−zij) = Boltzmanni(zij)) is elementwise exponentiation followed by normalization over
i, yielding an i-stochastic (column-stochastic) matrix. Analogously for the j-axis:

(softmaxi(zij))ij =
e⊙(zij)

1k e⊙(zkj)
=

e⊙(zij)∑
k e

⊙(zkj)
, (6)

(softmaxj(zij))ij =
e⊙(zij)

e⊙(zik) 1k
=

e⊙(zij)∑
k e

⊙(zik)
. (7)

In particular,
∑

i(softmaxi(zij))ij = 1j for all j, and
∑

j(softmaxj(zij))ij = 1i for all i. Note in
this definition only the real-part contributes to the normalization. Now let’s consider the Product-of-
Experts (PoE) identity of softmax. zi|j := (softmaxi(zij))ij , si|j := (softmaxi(sij))ij . Then

(softmaxi(zij + sij))ij = µj zi|j si|j , µj =

(∑
k

zk|jsk|j

)−1

.

=
(softmaxi(zij))ij (softmaxi(sij))ij∑
k(softmaxi(zkj))kj (softmaxi(skj))kj

.

(softmaxj(zij + sij))ij = µ̃i z̃i|j s̃i|j , µ̃i =

(∑
k

z̃i|k s̃i|k

)−1

.

(softmaxi(zij + sij))ij =
zi|j si|j∑
k zk|j sk|j

. (8)

This was similarly done for z̃i|j := (softmaxj(zij))ij , s̃i|j := (softmaxj(sij))ij . Now for the
special case: sij = 1i cj (analogously for ui1j). Then

si|j =
ecj∑
k e

cj
=

1

N
(uniform in i),

(softmaxi(zij + sij))ij =
zi|j (1/N)∑
k zk|j (1/N)

= zi|j = (softmaxizij)ij .

Hence softmax has a kind of shift-invariance:

softmaxi
(
zij + 1i cj

)
= softmaxi(zij) , (9)

softmaxj
(
zij + uj1j

)
= softmaxj(zij) , (10)

and is a direct corollary of the product-of-experts identity.

4 SOFTMAX APPLICATION

Given our dataset is a point-cloud, we may define combinatorial-Laplacian as:

Lij = Diδij − Ωij . (11)

3
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With Ωij = Ωji ∈ RN×N the weighted adjacency-matrix (of the points), and Di =
∑

j Ωij is called
the degree vector. In order to create the diffusion-map random-walk-Laplacian matrix we define the
following:

∆ij = D⊙−1
i Lij = δij −D⊙−1

i Ωij = δij − Pij . (12)
Above Pij is the Markov transition-matrix (row-stochastic, i.e. over index j), because it shares a
shifted spectrum to the random-walk Laplacian on the complete graph. Now our similarity mea-
sure in section 2 now may be used to define a weighted adjacency-matrix on the complete-graph,
connecting all data-points with each other. However, in that section we had square-distances, i.e.
dissimilar samples had a large value, to obtain similarities (dissimilar samples should be near zero)
we use the Gaussian-Radial-Basis-Function, or the negative-exponentiation. This is the Diffusion-
Map operator (with β ∈ R+ an inverse-temperature parameter playing the scale-parameter role, also
termed ε, σ2 in the literature):

Pij = softmaxj
(
−βD2

ij

)
(13)

Pij = softmaxj
(
−β
(
d−ij + d+ij

))
. (14)

The diffusion-map-operator can be normalized-symmetrically, for numerics i.e. ease of diagonal-
ization 1. However, what about the case of just the d±ij? These yield the two attention-matrices:

A−
ij = softmaxi

(
−βd−ij

)
(15)

A+
ij = softmaxj

(
−βd+ij

)
. (16)

For the queries→keys (+) and keys→queries (−) versions. This can be shown for the most com-
monly used form A+

ij :

Aij = softmaxj
(
βQiXK⊤

Xj

)
= softmaxj

(
βRiY W

(Q)
Y XW

(K)
XZ R†

Zj

)
= softmaxj

(
−β
(
−RiY W

(Q)
Y XW

(K)
XZ R†

Zj

))
= softmaxj

(
−β

(
1i

(
RiY W

(Q)
Y XW

(K)
XZ R†

Zj

)
j
−RiY W

(Q)
Y XW

(K)
XZ R†

Zj

))
= softmaxj

(
−βd+ij

)
.

And the connection to the diffusion-maps-operator Pij is made using the PoE identity:

Pij = µiA−
ijA

+
ij , (17)

with µi = (A−
kjA

+
kj)

−1 being the usual row-normalization. Hence, succinctly we can have P ∝
A− ⊙ A+ = A ⊙ AT = S (a twisted Hadamard product). This operator can be shown2 to be
symmetric3.

5 GAUGE EQUIVARIANCE

We return to the skew–Hermitian similarity in §2. Let a(+)
ij = RiXAXY R

†
Y j ∈ CN×N arise from

the anti-Hermitian part A† = −A of the BD matrix; in particular a
(+)
ii is purely imaginary, so

ℜ a
(+)
ii = 0. From the phase of a(+)

ij we define an edge connection (a U(1) parallel transport)

Uij = exp
(
i q arg a

(+)
ij

)
, |Uij | = 1, q ∈ R, (18)

1Symmetric normalization uses inverse-square-root D−1/2
j applied to both rows and columns, i.e. Sij =

D
−1/2
i ΩijD

−1/2
j . A matrix normalized symmetrically shares the same spectrum as the row-normalized ver-

sion.
2Sji = AjiAij

∗ = (Aij(Aji)
∗)∗ = (Sij)

∗.
3Assume real-logits d± ∈ RN×N satisfy d+ = (d−)⊤ and use inverse-temperature β. Define bidirectional

attentions A− = softmaxi(−β d−),A+ = softmaxj(−β d+). Then,(
softmaxi(d

+)
)
ij

=
ed

+
ij∑

k e
d+
ik

=
ed

−
ji∑

k e
d−
ki

=
(
softmaxj(d

−)
)
ji
,

hence A+ =
(
A−)T .

4
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with the convention Uij = 1 if a(+)
ij = 0. This construction gives the standard properties: unit

modulus, Uji = U∗
ij so U† = U−1, and U(1) gauge covariance under node phases. Concretely, let

R = diag(eiϕ1 , . . . , eiϕN ) act on edge objects by

Uij 7−→ U ′
ij = Ri Uij R

−1
j = e i(ϕi−ϕj) Uij . (19)

More generally, an edge matrix Eij of weight α ∈ R transforms as

Eij 7−→ E′
ij = Rα

i Eij R
−α
j = e iα(ϕi−ϕj) Eij . (20)

The map X 7→ RXR−1 is a similarity, hence it changes eigenvectors but preserves eigenvalues; in
particular, the spectrum is gauge-invariant under equation 194. A key convenience of the Abelian
case is that entrywise products respect the weight. Writing (B ⊙ C)ij := Bij Cij , if B has weight
α and C has weight β, then B ⊙ C has weight α+ β:

(B ⊙ C)′ij = (Rα
i BijR

−α
j ) (Rβ

i CijR
−β
j ) = Rα+β

i (B ⊙ C)ij R
−(α+β)
j . (21)

In particular,

E and C gauge–equivariant =⇒ E ⊙ C gauge–equivariant (weights add). (22)

Two immediate uses are: (i) the adjacency Ωij is invariant (weight 0), so Ω⊙ E inherits the weight
of E; and (ii) the masked edge operator

Ω̃ij := Ωij ⊙ Uij

is gauge-covariant of weight 1 by equation 19–equation 21. Using equation 20 and equation 22, all
Abelian constructions in this section follow by inspection.

Now that our Abelian bridge is complete, we consider the feasibility of a non-Abelian bridge,
motivated by equivariant work in Attention, Fuchs et al. (2020); Liao & Smidt (2023); Xu et al.
(2023), and Diffusion maps, Singer & Wu (2012). Unfortunately, the twisted-Hadamard-covariance
equation 22 for non-Abelian groups do not hold. For non-Abelian groups (e.g. SU(2)) acting by
Eij 7→ RiEijR

−1
j with noncommuting Ri, the Hadamard map is not an equivariant bilinear map in

general (componentwise, duplicated free indices and noncommuting middle factors obstruct rewrit-
ing the transform as Ri(·)R−1

j ). This is why Abelian “twisted-Hadamard” constructions cleanly
preserve equivariance, while their non-Abelian analogues require either promotion to tensor-squared
connections (on V ⊗ V ) or projection to scalar invariants; see Appendix A for a concise proof.

6 CONCLUSION

We established a Diffusion–Attention Connection: under mild and explicit conditions, diffusion
maps arise as the adjoint square of self-attention built from the same bilinear dissimilarity. Con-
cretely, let the (real) logits be zij = −β d+ij induced by a Hermitian geometry operator M , and
define first–order attention by a row/column softmax along a fixed axis. Then the symmetric sec-
ond–order operator

P ∝ A(+) ⊙ (A(+))† (23)

is (up to a standard similarity) the diffusion-map operator constructed from the same kernel, hence it
shares spectra and embeddings. This clarifies when attention behaves as diffusion and, equally, when
it does not (e.g., mixed axes, missing normalization, or complex phases inside the softmax). Beyond
this identity, we separated geometry from directionality via the split W = M+A (Hermitian M ,
anti-Hermitian A). The anti-Hermitian part induces a U(1) edge phase

Uij = exp
(
iq arg(RiAR†

j)
)
,

which we attach outside the softmax and re-normalize, yielding a gauge-equivariant, row-stochastic
“magnetic” attention. This places magnetic/connection Laplacians on the same footing as attention,
and explains design choices that preserve Hermiticity and Markovianity. The connection suggests

4If Ωv = λv and Ω′ := RΩR−1, then Ω′(Rv) = R(Ωv) = λ(Rv). We use “gauge covariance” for the
transformation law equation 20; spectral invariance is a consequence, not the definition.
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simple attention-style predictors for ordered data (in the spirit of Nonlinear Laplacian Spectrum
Analysis (NLSA), Takens (1980); Giannakis & Majda (2012; 2013).): given a context index c, c′ ∈∈
{1, 2, · · · , L} and values W (V ), first-order attention yields

R′
cX = A(+)

cc′ Rc′Y W
(V )
Y X , (24)

while the diffusion counterpart uses the second–order operator

R′
cX = Pcc′ Rc′Y W

(V )
Y X = ∆cc′ Rc′Y W

(V )
Y X (+ skip ). (25)

Here P is row-stochastic (random-walk), and ∆ = I − P provides controllable smoothing; the
adjoint-square view clarifies the relation among these updates.

The framework extends naturally to multi-head settings by combining headwise diffusions (e.g.,
mixtures

∑
h whP

(h) or PoE kernels) and to sample-dependent anisotropy via WXY → WijXY ,
aligning with variable-bandwidth and anisotropic kernels Berry & Harlim (2016); Kushnir et al.
(2012); related density-adapted practices in t-SNE Van der Maaten & Hinton (2008) fit the same
lens. Attention provides a first–order, normalized view; diffusion is its symmetric second–order
square. The split into M (geometry) and A (connection) yields principled, gauge-equivariant phased
variants and suggests simple multi-head diffusion maps.
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A HADAMARD PRODUCT IS NOT EQUIVARIANT FOR NON-ABELIAN ACTIONS

Let G be a non-Abelian matrix group5 with node-wise action on edge tensors

Bij,αβ 7−→ B′
ij,αβ = (Ri)αγ Bij,γδ (R

−1
j )δβ , Ri ∈ G,

and define the Hadamard (entrywise) product (B ⊙ C)ij,αβ := Bij,αβCij,αβ . Then, in general,

(B ⊙ C)′ ̸= Ri (B ⊙ C)R−1
j ,

i.e. the Hadamard map is not G–equivariant under left–right conjugation, unless the action reduces
to one-dimensional characters (the Abelian case).

With C transforming analogously to B, a direct calculation gives

(B ⊙ C)′ij,αβ =
(
Ri

)
αγ

(
Ri

)
αµ

Bij,γδ Cij,µν

(
R−1

j

)
δβ

(
R−1

j

)
νβ
. (26)

Equivariance would require

(B ⊙ C)′ij,αβ
?
= (Ri)αρ (B ⊙ C)ij,ρσ (R

−1
j )σβ = (Ri)αρ Bij,ρσCij,ρσ (R

−1
j )σβ .

Comparing with equation 26 reveals two structural obstructions:

(i) Duplicated free indices. The factors (Ri)αγ(Ri)αµ (and similarly on the right) entail two inde-
pendent copies of the representation at the same free index α. To match the target form, one would
need a G–equivariant bilinear map V ⊗ V → V that canonically collapses γ, µ into a single index
ρ (and similarly δ, ν into σ).

(ii) Noncommuting middle factors. Even abstractly attempting to factor equation 26 as Ri(·)R−1
j

fails because the two Ri’s (and two R−1
j ’s) act on different tensor legs and does not commute through

B and C in a way that produces a single conjugation of B ⊙ C.

If G = U(1) acts by characters Ri = eiϕi , then entries pick up commuting phases and

(B ⊙ C)′ij = Rα+β
i (B ⊙ C)ij R

−(α+β)
j ,

so weights add and equivariance holds.
5With representation matrix (Ri)αβ = exp

(
i θia T

a
αβ

)
(matrix exponential), Lie algebra generators T a, and

node-dependent coefficients θia.
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