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Abstract

We study the depth of problem-solving capabilities of LLMs, and to what extent1

they perform mathematical reasoning in a compositional manner. To this end,2

we create a new benchmark by composing pairs of existing math word problems3

together so that the answer to the second problem depends on correctly answering4

the first problem. We measure the difference between the performance of solving5

each question independently and solving the compositional pairs as the reasoning6

gap of a model. Our findings reveal a significant reasoning gap in most frontier7

LLMs. This gap is more pronounced in smaller and more cost-efficient models.8

The objective of this study is not to introduce yet another benchmark, but rather to9

provide a case study aimed at gaining deeper insights into current models’ reasoning10

abilities, and to reassess existing established training methods and benchmarks.11
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Figure 1: Reasoning Gap: Pairs of GSM8K test questions are chained together so that the answer of the first
question (Q1) is a variable in the second one (Q2). The model is required to correctly answer both questions
to solve the problem. If a model has an accuracy of S1 on the Q1 set, and S2 on Q2 set, then the expected
Compositional GSM accuracy is S1 × S2. The x-axis corresponds to the geometric mean

√
S1 × S2, labeled

GSM8K accuracy for simplicity. The trend-line y = x2 is the expected Compositional GSM accuracy.
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Compositional GSM Problem
Let X be the answer to the Q1:

Q1: There are 27 unicorns left in the world. One third of them are in the Scottish Highlands. Two thirds of
the Scottish unicorns are female. How many female Scottish unicorns are there?

Solve it and use the value of X to solve Q2. Explain your answer step by step.

Q2: Zack’s locker is half as big as Timothy’s locker. Peter’s locker is 1/4 as big as Zack’s locker. If Peter’s
locker is X cubic inches, how big is Timothy’s locker in cubic inches?

Figure 2: Example Problem from the Compositional GSM benchmark. The answer of Question-1 (Q1) is
a variable X in Question-2 (Q2). Therefore, the model has to be able to solve the first question correctly in
order to solve the second question. The new final answer of Question-2 is calculated by modifying its code-form
solution and executing it. Question-1 and the number to modify in Question-2 are chosen to have a new final
answer which is a positive integer not too far from the old answer of Question-2.

1 Introduction12

The strong performance of large language models (LLMs) on high-school and college-level math13

reasoning benchmarks (Dubey et al., 2024; Google, 2024; OpenAI, 2023b), has led to the common14

belief that LLMs have “mastered” grade-school math, particularly as measured by the GSM8K15

benchmark (Cobbe et al., 2021a). This apparent mastery of grade-school math problems raises a16

deeper question: do LLMs truly grasp the underlying concepts or do they mostly rely on dataset17

contamination or memorization (Srivastava et al., 2024b)? For example, a recent examination on pri-18

vate “held-out” grade-school problems (Zhang et al., 2024a) reveals that while frontier closed-source19

LLMs show minimal signs of overfitting, some open-weights models show systematic overfitting,20

possibly due to test data contamination.21

In this work, we perform a case study to evaluate how well LLMs can combine learned concepts to22

solve unseen problems, to probe the brittleness of their reasoning abilities. To do so, we introduce23

Compositional GSM, a two-hop version of GSM8K with higher difficulty, where each problem chains24

two test questions together such that the answer to the first question is used as a variable in the25

second question (Figure 2). As LLMs can easily solve grade-school math problems, they should26

also be capable of solving combinations of those problems. As such, we measure the gap between27

their performance on solving the questions individually and on Compositional GSM. Specifically,28

we benchmark frontier open-weights and closed LLMs, including Gemini (Google, 2023, 2024),29

Gemma2 (Gemma Team et al., 2024), Llama-3 (AI@Meta, 2024), GPT (OpenAI, 2023a), Phi (Abdin30

et al., 2024) and Mistral families (Jiang et al., 2024).31

Here are our key findings:32

• Most models exhibit a gap between their performance on GSM8K test set and Compositional33

GSM (Figure 1).34

• This reasoning gap is particularly larger in small and more cost-efficient models (Figure 3 and35

Figure 5).36

• Instruction-following tuning of LLMs heavily favours the original GSM8K split (Figure 6).37

• Finetuning with human data and synthetic data results in a similar reasoning gap trend (Figure 8).38

• Math-specialized LLMs exhibit reasoning gap and task-specific overfitting Figure 7.39

• Smaller models benefit more from generating code rather than natural language Chain-of-Thought40

(CoT) to solve Compositional GSM problems (Figure 11).41

2 Compositional Grade-School Math (GSM)42

Each question in compositional GSM consists of two questions, Question-1 and Question-2, from a43

subset of 1200 examples of the original GSM8K test set. The final answer of Question-1 is refereed44

to as X which is a variable in Question-2 (Figure 2). The final answer of Question-2 is obtained45

by substituting X and solving it. The choice of Question-1 and the number to modify and replace46

with X in Question-2 was made in a a way such that the new final answer of Question-2 is different47

from its old final answer, and is a positive integer not too far from the old final answer. To obtain48
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Figure 3: Compositional Reasoning Gap of notable open-weights and closed-source LLMs. Smaller, more
cost-efficient and math specific models have a bigger gap.

the new final answer of Question-2 automatically, we replace a number in the code-form solution of49

Question-2. We used a slightly modified version of the code-form solutions from Gao et al. (2023).50

The new final answer is the result of executing the code with the new number. We put significant51

efforts into ensuring that the modification to Question-2 is sensible. Figure 10 shows the distribution52

of final answers (magnitude) of the original test set of GSM8K and compositional GSM. Both test53

sets have a similar distribution of final answers.54

Quality Checks To make sure that the modified questions are sensible and logical, we generated55

16 candidate solutions per modified question from GPT-4o and Gemini 1.5 Pro. We filtered those56

questions for which less than 4 (out of 16) agree with the expected final answer from code execution.57

We checked these questions manually and modified them if needed so that they are logical (about58

25% of questions).59

Reasoning Gap Question-1 and Question-2 in our compositional queries are from the original60

test split Doriginal, and the modified test split Dmodified respectively. Assuming that a model has an61

accuracy of S1 on Doriginal and S2 on Doriginal, it is expected for it to have an accuracy of S1 × S2 on62

the compositional split Dcomp. We report the following as the compositional reasoning gap score,63

Compositional reasoning gap : ∆ = Sc − S1 × S2 (1)

where Sc is the performance of the model on Dcomp.64

3 Experiments & Results65

Setup We evaluate each model on three test sets: 1) the original GSM8K test split, 2) the modified66

GSM8K test split which are the questions with X being substituted, and 3) the compositional GSM67

test set. Each test set has 1200 examples. Following Zhang et al. (2024a), we evaluate all models with68

an 8-shot prompt (Appendix A) for the original and modified GSM8K test splits. We also created69

a similar 8-shot prompt (Appendix D) for the compositional GSM questions. We evaluate GPT-4o,70

GPT-4o mini, LLAMA3-70B and 8B (PT and IT), Phi 2, Phi-3-mini-instruct, Gemini 1.0, 1.5 Flash71

and 1.5 Pro, Gemma2 9B and 27B (PT and IT), Mistral-7B (PT and IT), Mixtral-8x7B (PT and IT)72

and Mathstral-7B. All models are sampled with temperature 0, and pass@1 (Chen et al., 2021) is73

used to measure the performance on each test split. Some of the models require a preamble prefixed74

to the 8-shot prompt in order to output in a consistent format (Appendix B). We test both cases and75

report the best performance for each model.76

The distance to the trend-line in Figure 1 shows the reasoning gap of models. The x-axis corresponds77

to
√
S1 × S2, which is the geometric mean of the accuracies on the set of Q1 and Q2 independently.78
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Figure 4: Can models answer the second question if they have correctly answered the first one? Here, we
compare how often models are able to solve a question independently to how often they are able to solve them
in the compositional format given that the first question is solved correctly. This is an alternate measurement
of the compositional reasoning gap. If a model can solve a question independently, it should be able to solve
it in a compositional setting given that the prerequisites are met. The gap from the diagonal line suggests that
some models have overfit to the format of GSM8K type questions. While models may correctly answer the first
question, they frequently makes subtle errors and miss key details when solving the second question.

We find that most models fall below expectation on Compositional GSM. Specifically, it is evident79

that cost-efficient models have a larger gap than more expensive models. Our analysis shows that80

tuning models for instruction following introduces more gap in their reasoning capabilities. In the81

following sections, we will further examine the models and discuss their shortcomings.82

3.1 Does Solving Question-1 Guarantee Solving Question-2?83

Correctly solving Question-1 is a prerequisite to solve Question-2 in the compositional format.84

In Figure 4, we look at how often models are able to solve a question independently versus how85

often can they solve it given they have correctly solved the previous question in the compositional86

format. What remains for the model to do here is to substitute X and solve Q2. The deviation from87

the diagonal line indicates that certain models may have become too specialized in handling GSM8K-88

style questions, and are unable to answer a second question having generated the solution to the first89

question. Our qualitative analysis shows that when given two questions, the model might answer the90

first one correctly, but often makes subtle errors and overlooks details, leading to inaccurate reasoning91

and solution for the second question.92

3.2 Cost-Efficient LLMs Reason Differently93

The reasoning abilities of cost-efficient LMs has been rapidly improving over time, as evaluated using94

standard benchmarks (Bansal et al., 2024). For example, GPT-4o mini and Gemini 1.5 Flash both95

achieve above 90% accuracy on GSM, while costing 25− 35× cheaper than GPT-4o and Gemini96

1.5 Pro respectively. This progress could be attributed to several factors, such as better pretraining97

data (AI@Meta, 2024), and knowledge distillation (Agarwal et al., 2024; Team et al., 2024). To this98

end, we investigate whether these reasoning gains on GSM8K still persist on Compositional GSM.99

We study four family of models, each comprising both a high-cost and low-cost option, where cost100

is measured via parameter count or API pricing. Figure 5 shows the original GSM8K test split101

performance and Compositional GSM performance for all models. The numbers above the bars102

represents the reasoning gap defined in Eq 1. While cheaper models perform comparably on the103

original GSM8K test, they exhibit a notable drop in performance on the Compositional GSM test set.104

Furthermore, our results demonstrates that the additional cost does not translate into a proportional105

gain in performance on the Compositional GSM test. Specifically, Gemini 1.5 Pro is 35x more106

expensive than 1.5 Flash, but the gap narrows from -11.3% to -5.8%. Similarly, GPT-4o costs 25x107

more than GPT-4o mini, while the gap is reduced from -14.2% to -1.1%.108
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Figure 5: Cost efficient LLMs reason differently: showing four family of models, each having a high-cost
and low-cost option. Although the cheaper models perform similarly on the original GSM8K test, they show a
significant decline in performance on the Compositional GSM test. Furthermore, it is clear that additional cost
does not yield a corresponding decrease in the reasoning gap.

3.3 Instruction-Tuning Impacts LLM Reasoning Differently109

We compare pretrained and instruction-following tuned versions of models in three families of Mistral,110

LLAMA3 and Gemma2. Figure 6 illustrates this comparison, along with the performance gains from111

instruction-tuning, displayed above bars for each test set. On small models (top row), this comparison112

shows that current instruction-tuning is heavily optimized for GSM8K questions. Instruction-tuning113

leads to a significantly larger improvement on the original GSM8K test set than the Compositional114

GSM test across model families. However, this trend does not apply to larger models (bottom row),115

where the improvements are inconsistent.116

3.4 Reasoning Gap in Math-Specialized LLMs117

Math-specialized models are LLMs tailored to solve problems in the specific domain of mathematical118

reasoning. Such LLMs have an extensive coverage of diverse mathematical fields, so can they119

generalize to Compositional GSM or do they demonstrate task-specific overfitting? To answer this120

question, we evaluated three mathematical LLMs, namely NuminaMath-7B-CoT (Beeching et al.,121

2024), Mathstral-7B and Qwen2.5-Math-7B-IT (Yang et al., 2024) on GSM8K and Compositional122

GSM (Figure 7). We observe that these math-specialized LLMs exhibit reasoning gaps comparable123

to those in other models of similar size within our analysis. For instance, Qwen2.5-Math-7B-IT is124

reported to have an accuracy of 83.6% on MATH (Hendrycks et al., 2021), but has a large reasoning125

gap of −21.9%.126

3.5 Supervised Finetuning Can Lead to Task-Specific Overfitting127

Finetuning models on task specific problems is a common strategy to improve reasoning performance.128

In this section, we explore how it impacts the performance on Compositional GSM. We investigate129

the performance of Gemma2 27B PT as we finetune it on the original GSM8K training data, and130

self-generated rationales (aka synthetic data) to identify any difference in the characteristics of these131

two sources. We collect self-generated rationales which results in correct final answers for all GSM8K132

training queries.133

See Appendix C for details of data generation and training for this set of experiments. We evaluated134

intermediate checkpoints (at 50, 100 and 400 training steps) from both settings on GSM8K original135

test split and Compositional GSM split (Figure 8). We observer a similar pattern for both settings.136

The Compositional GSM performance increases with some training (up to 100 steps), but drops with137

more training steps while GSM8K test performance keeps increasing, which suggests overfitting.138
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Figure 6: Impact of Instruction-Tuning on Reasoning Gap: comparing pretrained and instruction-following
tuned variant of models from Mistral, LLAMA3 and Gemma2 families. Numbers above bars represent im-
provements from instruction-tuning on each set. For smaller models (top), we observe that instruction-tuning is
highly optimized for GSM8K questions, which results in a greater improvement on the original GSM8K test set
compared to the Compositional GSM test. However, this pattern does not hold for larger models (bottom).

Our results show that training on synthetic data generally leads to a higher Compositional GSM139

performance. We did not observe further improvements on either test splits after 400 training steps.140

3.6 Models Get Distracted Easily141

Assuming an LLM answers a question correctly, it is somewhat expected that it would answer the142

same question correctly with additional context. Figure 9 shows how often a model answers a question143

(from Q1 set) correctly on the x-axis, and how often it answers it correctly in our compositional144

format, as Q1. Ideally, models should be on the x = y line, but we observe that most of the models145

fall short of this expectation. Examining the responses from models with greater deviations from the146

trendline in Figure 9 reveals that they frequently make subtle errors. They often overlook important147

details, such as missing a reasoning step related to each in the question or omitting a multiplication148

step when the question specifies in a month. The models generally adhere well to the output format149

provided in the 8-shot context, resulting in negligible instances of non-extractable answers. This150

distraction is caused by the existence of a second question Q2 in the prompt. Such failures lead to151

not being able to correctly answer Q1, which subsequently impairs the models’ ability to answer Q2152

correctly.153

4 Related Work154

Mathematical Reasoning with Language Models. The performance of large language models on155

mathematical reasoning tasks has seen rapid development in recent years (Lightman et al., 2023;156

McAleese et al., 2024; Shao et al., 2024). Majority of these improvements are due to vast amount of157

pretraining and post-training on math related data (Google, 2024; Lewkowycz et al., 2022; OpenAI,158

2023b) and various self-improvement (Gulcehre et al., 2023; Singh et al., 2023; Zelikman et al.,159

2022) and specialized prompting techniques. We do not plan to evaluate all of the methods from the160

existing literature on Compositional GSM benchmark. These methods could potentially influence161
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and reduce the reasoning gap at inference. Future research could investigate how they impact the162

reasoning gap and overall robustness.163

Prompting Techniques to Improve Reasoning in Language Models. There is a broad range of164

ongoing research aimed at improving reasoning abilities of language models. For instance, specialized165

prompting techniques designed to elicit explicit reasoning (Li et al., 2024a; Wei et al., 2022; Yao166

et al., 2023a) and methods to provide models with more inference compute (Wang et al., 2023c) or167

verification (Cobbe et al., 2021b; Hosseini et al., 2024; Lightman et al., 2023; Wang et al., 2023b;168

Zhang et al., 2024b) to solve problems.169

Mathematical Reasoning Robustness. Our work is heavily inspired by the study of mathematical170

reasoning gap via rewrites of GSM8K test queries (Zhang et al., 2024a). Srivastava et al. (2024a)171

introduce a framework for thoroughly assessing the mathematical reasoning abilities of LLMs by172

employing different functional variants of benchmarks. Others have investigated the robustness of173

mathematical reasoning abilities of LLMs via adversarial examples (Anantheswaran et al., 2024; Li174

et al., 2024b), leakage estimation (Xu et al., 2024), semantic substitutions (Chen et al., 2023; Wang175

et al., 2023a) and distractions within the context (Shi et al., 2023).176

Compositional Reasoning. The ability of models to apply learned patterns to novel combinations177

of elements and generalize effectively has been studied extensively. Hupkes et al. (2020); Lake and178

Baroni (2018) have looked at seq2seq models’ ability to compose known fractions together into novel179

combinations in synthetic settings. More recently, the in-context compositional generalization of180

LLM reasoners has been further examined (Hosseini et al., 2022; Khot et al., 2023; Press et al., 2023;181

Yao et al., 2023b; Yin et al., 2024; Zhou et al., 2023).182

5 Discussion and Conclusion183

We designed the Compositional GSM benchmark, which requires solving dependent pairs of math184

word problems. These problems are from the original GSM8K test split. We investigate the “System185

2” mathematical reasoning capabilities of LLMs by comparing their performance on the original186

GSM8K test split and our Compositional GSM test set. Our analysis reveals a notable reasoning gap187

in most models. Many leading LLMs exhibit a substantial difference in performance when solving188

questions independently versus as part of the compositional pair. Our study indicates that smaller and189

more cost efficient models exhibit a larger reasoning gap. Models frequently struggle with pairs of190

questions and get distracted likely because they are tuned to handle one question at a time. They often191

answer the first question correctly, but lose attention to details and make subtle errors in answering192

the second question. We also noticed that learning from human data and self-generated data results in193
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Figure 9: Some LLMs get distracted easily: Measuring models’ ability to solve a question in the standard
format (non-compositional) versus solving the same question as Q1 in the compositional format. Models below
the trend-line get distracted and cannot answer Q1 in the compositional format even though solving it does not
depend on solving any other question.
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Figure 10: Distribution of final answers from the test set of original GSM8K and compositional GSM
benchmark. The number modification in the compositional benchmark was done in a way to ensure that the new
final answer is a positive integer not too far from the old answer. Our compositional GSM benchmark has a
similar distribution of final answers.

similar behaviour. In both settings, as training progresses, the model’s performance on the original194

test split improves. However, beyond a certain point, performance on the Compositional GSM test195

begins to decline.196

We emphasize that this benchmark should not be viewed as an endpoint or merely as a tool for197

generating additional training data, but as a catalyst to gain insights about current models and to re-198

evaluate and improve existing benchmarks. Our findings are intended to stimulate further exploration199

and provide new perspectives. Future research could build on this setup by incorporating more200

challenging questions, such as those from the MATH dataset, or by extending the framework to201

multi-modal problems to gain deeper insights into the reasoning capabilities of LLMs.202
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Figure 11: Natural Language CoT v.s. Code: Generating code to solve the problems helps in both settings of
original test split and Compositional GSM split. Smaller models benefit more from generating code rather than
natural language Chain-of-Thought (CoT) to solve Compositional GSM questions.

Breaking down the natural language problem into executable code steps has been shown to improve398

models’ reasoning and generalization abilities (Gao et al., 2023; Gou et al., 2023). To this end, we399

evaluate whether the compositional problem-solving ability of LLMs improves when generating400

natural langauge CoT rationales compared to generating executable Python code. For code generation,401

we utilize a compositional 8-shot prompt(Appendix E), where the answers are written as two functions,402

one which solves the first question solve_q1(), and solution() which solves the second question with a403

X = solve_q1() line at the beginning.404

Our results are shown in Figure 11 for two families of open-weight instruction-tuned models:405

LLAMA3-8B and 70B, and Gemma2-9B and 27B. Notably, generating code generally improves406

performance on Compositional GSM problems, albeit not uniformly. Specifically, the smaller models,407

LLAMA3-8B and Gemma2-9B, benefit significantly more from generating code solutions compared408

to generating natural language CoTs. This variability in the performance gains from generating code409

solutions indicates that such the in-context learning behaviors of LLMs are inconsistent.410
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A GSM8K 8-shot Prompt411

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove
today. After they are done, there will be 21 trees. How many trees did the
grove workers plant today?
A: There are 15 trees originally. Then there were 21 trees after some more were
planted. So there must have been 21 - 15 = 6. The final answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars
are in the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The final
answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces
do they have left in total?
A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had
32 + 42 = 74. After eating 35, they had 74 - 35 = 39. The final answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12
lollipops. How many lollipops did Jason give to Denny?
A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny.
So he gave Denny 20 - 12 = 8. The final answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and
dad. How many toys does he have now?
A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then
that is 4 more toys. 5 + 4 = 9. The final answer is 9.

Q: There were nine computers in the server room. Five more computers were
installed each day, from monday to thursday. How many computers are now in the
server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were
added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The final answer is
29.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday,
he lost 2 more. How many golf balls did he have at the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 -
23 = 35. After losing 2 more, he had 35 - 2 = 33 golf balls. The final answer
is 33.

Q: Olivia has 23.Sheboughtfivebagelsfor3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars.
So she has 23 - 15 dollars left. 23 - 15 is 8. The final answer is 8.

Q: {question}
A:
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B Prmopt Preambles412

GSM8K Preamble

I am going to give you a series of demonstrations of math Problems and Solutions.
When you respond, respond only with the Solution of the final Problem, thinking
step by step. At the end of the Solution, when you give your final answer, write
it in the form “The final answer is ANSWER.”

Compositional GSM Preamble

I am going to give you a series of demonstrations of compositional math questions
and solutions. Respond by thinking step by step. Solve the first question and
write the intermediate answer as “The Q1 answer is ANSWER1.“ Then solve Q2. At
the end of the solution, when you give your final answer, write it in the form
“The final answer is ANSWER2.”

C Rejection Finetuning Details413

Synthetic data was generated by prompting Gemma2 27B PT model with the 8-shot prompt in Ap-414

pendix A to solve GSM8K training questions. We generated 10 solutions for each question in the415

original GSM8K training data, and only kept those solutions with a correct final answer. These model416

generation solutions were used to train the model.417
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D Compositional 8-shot Prompt418

Let X be the answer to Q1:

Q1: There are 15 trees in the grove. Grove workers will plant trees in the
grove today. After they are done, there will be 21 trees. How many trees did
the grove workers plant today?

solve it and use the value of X to solve Q2. Explain your answer step by step.

Q2: There are X students in Marissa’s class. Each student started the year
with 10 pencils. After two months, 1/5 of the total pencils in class were used.
At the end of the year, only 1/3 of the remaining pencils were left. How many
pencils were left?

A: There are 15 trees originally. Then there were 21 trees after some more were
planted. So there must have been 21 - 15 = 6. The Q1 answer is 6. Therefore
X=6. So there were 6 x 10 = 60 pencils in the class at the start of the year.
After two months, 60 x 1/5 = 12 pencils were used. Thus, 60 - 12 = 48 pencils
were left unused after two months. Therefore, 48 x 1/3 = 16 pencils were left at
the end of the year. The final answer is 16.

Let X be the answer to Q1:

Q1: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars
are in the parking lot?

solve it and use the value of X to solve Q2. Explain your answer step by step.

Q2: Ingrid drinks X cups of water every day. If there are 16 cups in a gallon,
how many gallons of water does she drink in 32 days?

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The Q1 answer
is 5. Therefore X=5. So Ingrid drinks 5 cups of water a day so after 32 days
she drinks 5 * 32 = 160 cups of water. There are 16 cups in 1 gallon so she
drinks 160 / 16 = 10 gallons of water in 30 days. The final answer is 10.

...
Let X be the answer to Q1:

Q1: {QUESTION_1}

solve it and use the value of X to solve Q2. Explain your answer step by step.

Q2: {QUESTION_2}

A:

Some examples in the prompt are omitted due to space constraints. The remaining question-and-419

answer pairs follow the same format.420
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E Compositional Code Prompt421

Some examples in the prompt are omitted due to space constraints. The remaining question and422

code solutions are written with the same format. The answers are provided through two functions:423

solve_q1(), which addresses the first question, and solution(), which answers the second question.424

The solution() function begins with a line X = solve_q1() to incorporate the result from the first425

function.426

Write two functions ‘solve_q1‘ and ‘solution‘ to solve Q1 and Q2 problems.

Let X be the answer to Q1:

Q1: There are 15 trees in the grove. Grove workers will plant trees in the
grove today. After they are done, there will be 21 trees. How many trees did
the grove workers plant today?

Q2: There are X students in Marissa’s class. Each student started the year
with 10 pencils. After two months, 1/5 of the total pencils in class were used.
At the end of the year, only 1/3 of the remaining pencils were left. How many
pencils were left?

A: The answer is
```
def solve_q1():

"""There are 15 trees in the grove. Grove workers will plant trees
in the grove today. After they are done, there will be 21 trees. How many trees
did the grove workers plant today?"""

trees_initial = 15
trees_after = 21
trees_added = trees_after - trees_initial
result = trees_added
return result

def solution():
"""There are X students in Marissa’s class. Each student started the

year with 10 pencils. After two months, 1/5 of the total pencils in class were
used. At the end of the year, only 1/3 of the remaining pencils were left. How
many pencils were left?"""

X = solve_q1()
num_students = X
pencils_per_student = 10
total_pencils = num_students * pencils_per_student
pencils_left_after_two_months = total_pencils * (4/5)
remaining_pencils = pencils_left_after_two_months * (1/3)
result = remaining_pencils
return result

```
...

Let X be the answer to the following question:

Q1: {QUESTION_1}

Q: {QUESTION_2}

A: The answer is
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