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ABSTRACT

Fairness in data mining tasks like clustering has recently become an increasingly
important aspect. However, few clustering algorithms exist that focus on fair
groupings of data with sensitive attributes. Including fairness in the clustering
objective is especially hard for density-based clustering, as it does not directly
optimize a closed form objective like centroid-based or spectral methods.
This paper introduces FairDen, the first fair, density-based clustering algorithm.
We capture the dataset’s density-connectivity structure in a similarity matrix that
we manipulate to encourage a balanced clustering. In contrast to state-of-the-
art, FairDen inherently handles categorical attributes, noise, and data with several
sensitive attributes or groups. We show that FairDen finds meaningful and fair
clusters in extensive experiments.

1 INTRODUCTION

Applying machine learning in critical situations, such as medical diagnostics or recidivism, requires
fair and reliable models. It is crucial to ensure that minorities are not disadvantaged in the decision-
making process based on machine learning models. This paper focuses on group-level fairness, i.e.,
treating different groups equally (Chhabra et al., 2021). These groups usually arise from sensitive
attributes such as gender, race, or age.

Clustering is the task of grouping data objects based on similarity and is widely used in various
domains. Recently, issues with fairness in data-driven models, particularly, machine learning, have
been discussed, e.g., in connection with new legislation and laws regarding disparate impact (Dressel
& Farid, 2018). Without adequately addressing sensitive attributes, most state-of-the-art clustering
algorithms may produce unfair clusters: minorities might be disproportionately assigned to the same
cluster, and people may suffer from biases in downstream tasks. For clustering, group-level fairness
means avoiding favoring or discriminating against any sensitive group within each cluster (Chhabra
et al., 2021), e.g., by making sure that the distribution of sensitive groups within each cluster is as
close as possible to their overall distribution in the dataset (Chierichetti et al., 2017). The toy dataset
in Figure 1 shows three spatial groups with a sensitive attribute denoted by the shape of the objects.
A fair clustering consists of clusters with as many circles as triangles, corresponding to their overall
distribution in the dataset. Clustering methods like k-Means (Lloyd, 1982) or k-Center (Har-Peled,
2008) can be adapted to a fair version (Bera et al., 2019; Bercea et al., 2018). However, incorporating
fairness into density-based clustering is difficult, as this clustering notion does not directly optimize
a closed form objective function like centroid-based or spectral methods.

Especially for real-world applications, fairness in density-based clustering methods is crucial
as centroid-based methods have several shortcomings: 1) In contrast to density-based methods,
centroid-based methods typically cannot handle categorical data, rendering them suboptimal for data
with the most common sensitive attributes like ’gender’, ’race’, or ’marital status’: these attributes
usually have categorical values. 2) Density-based methods inherently manage noise, which is com-
mon in real-world applications, whereas partitioning-based clusterings may be more susceptible to
the impact of noise. 3) For geographic data, travel distance along streets or railroads is often more
expressive than the Euclidean distance, making density-connected clusters an inherently better fit.
For example, an important task for city planning is to find school districts where the socio-economic
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Figure 1: Different methods, balance, and clustering quality measured by DCSI (higher is better).
A balanced density-based clustering has for each cluster the same ratio of circles to triangles as
in the overall dataset, yielding a balance value of 1.0. Shapes indicate membership to one of two
sensitive groups: the first moon has 50% triangles and 50% circles, the second moon has only
triangles, the third moon has only circles, and all moons have the same number of data points. In
contrast to our competitors, FairDen achieves a perfect balance and well-separated density-based
clusters, indicated with a higher DCSI value. Colors indicate the two clusters found by FairDen
and its competitors FairSC, clustering with Fairlets, Scalable Fair Clustering, respectively, the three
density-based clusters found by DBSCAN.

distribution of schools is similar to ensure a fair education for all pupils. Density-based clusters
offer good routes for school buses picking up the children and ensuring socio-economic fairness.
However, there is no method yet that finds fair density-connected clusters.

In this work, we propose FairDen, a novel method that integrates fairness into density-based clus-
tering. For this, we first capture the data’s density-based structure, which may include categorical
attributes. Capturing the structure allows us to flexibly manipulate the resulting similarity matrix
based on fairness constraints. Our code is available at GitHub1.

Our main contributions are as follows:

• We introduce FairDen, the first fair density-based clustering algorithm which successfully detects
fair clusters of arbitrary shapes while enforcing a balance with respect to all sensitive attributes.

• FairDen is the first fair clustering algorithm that can handle mixed-type data and multiple sensitive
attributes at once. Furthermore, it automatically detects noise points.

• Our experiments show that FairDen determines more balanced clusterings with respect to sensitive
attributes than other density-based methods and detects density-based clusters better than other
fair methods.

2 FAIRDEN: FAIR DENSITY-BASED CLUSTERING

In the following, we describe our novel density-based fair clustering method in detail. Including a
fairness constraint into density-based clustering is challenging due to the characteristics of density-
connectivity. At the heart of density-based clustering (e.g., DBSCAN (Ester et al., 1996)), it is
defined as a binary property for each pair of points: Given a data set X = (x1, . . . , xn) comprised
of n points, two points are density-connected if and only if there is a chain of core points connecting
them. Core points lie in dense areas and are defined as points with at least minPts points in their
ε-radius for a given minPts ∈ N>1, ε ∈ R>0. Points form a chain if the (usually Euclidean)
distance d(p, q) between any two consecutive points is not larger than ε. A cluster is then a maxi-
mal set of density-connected points. This definition does not allow for an easy adaption of clusters
to fulfill fairness criteria like balance between groups (Chierichetti et al., 2017; Bera et al., 2019)
(cf. Section 2.2). Group-level fairness aims to achieve a ratio between sensitive groups within each
cluster that corresponds to their ratio in the full dataset. However, the two most prominent exist-
ing approaches for including group-level fairness into clustering are not applicable to density-based
clustering: Density-based methods usually do not have a differentiable clustering objective, thus,
approaches like Bera et al. (2019) or Bercea et al. (2018) are not applicable. Other approaches use
fairlets, i.e., minimal sets satisfying fairness that approximately preserve the k-clustering objective.

1https://jugit.fz-juelich.de/ias-8/fairden
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However, those may destroy the density-connectivity structure of the dataset when locally merging
points, as shown in Figure 1. Thus, to achieve fair density-connectivity-based clustering, we ap-
proach this problem from a novel perspective: we capture the density-connectivity between points
in a continuous representation that admits group balancing, thereby presenting the first fair density-
based clustering method. We describe how we capture the density-connectivity in Section 2.1, in-
troduce fairness constraints in Section 2.2, and how to combine both in Section 2.3. In Section 2.4
we explain clustering with categorical data. A complexity analysis, limitations, and interpretation
are in Section 2.5. The pseudo-code is in Appendix A.1, and our implementation is available online.

2.1 TRANSFORMING THE DENSITY-BASED OBJECTIVE

As outlined above, the major challenge in fair density-based clustering lies in the discrete nature of
density-connectivity. Our idea is thus to transform the original problem into a continuous one that
admits fairness balancing. Concretely, we capture the density-connectivity constraint by leveraging
the density-connectivity distance (dc-distance) (Beer et al., 2023), which intuitively gives the small-
est ε such that two points are density-connected. While the density-connectivity between two points
p, q ∈ X is still a discrete property, the dc-distance gives a mapping from the continuous space of
possible ε-values onto the binary property by checking ddc(p, q) ≤ ε. The dc-distance represents
pairwise distances between n objects in a tree structure with objects as leaves and distances in the
nodes. The hierarchy defined by the dc-distance works analogously to the well-known clustering hi-
erarchy defined by the single-link distance in agglomerative single-linkage clustering. While usually
the single link distance is based on the Euclidean distance, the dc-distance builds upon the mutual
reachability distance used by DBSCAN, cf. Appendix B.2. Consequently, any partitioning based
on the hierarchy defined by the dc-distance will give density-connected clusters. In FairDen, we
observe that by casting the density-based clustering problem as one of the partitionings, optimizing
a cut criterion on this hierarchy admits using spectral clustering methods (Beer et al., 2023). For
this, we regard the following affinity matrix and its Laplacian (line 3 of Alg. 1):

Aij = 1− ddc(i, j)

maxi,j ddc(i, j)
(1)

L = D −A (2)

where D is the degree matrix. Minimizing the minCut as described in Beer et al. (2023) with ultra-
metric spectral clustering yields DBSCAN-like clusters. However, as we want to capture density-
based clusters of potentially different densities, we cut the hierarchy given by the ultrametric at
different levels instead of thresholding at a specific value for ε. This leads us to more prevalent ver-
sions of spectral clustering that detect the normalized cut (Hess et al., 2019) instead of the minCut.
Thus, we apply k-means on the spectral embedding given by the first k eigenvectors of our Laplacian
L (see Von Luxburg (2007)) that we will adopt as shown in the following. Note that any clusters
FairDen finds in the hierarchy given by the dc-distance follow the density-connectivity notion.

To find the normalized cut we solve for

min
H∈Rn×k

Tr(H⊤LH) (3)

WhereH encodes our clustering:

Hpl =

{
1/
√
vol(Cl) p ∈ Cl

0, p /∈ Cl
(4)

And vol(Cl) is the volume of the cluster Cl, i.e., vol(Cl) =
∑

p∈Cl,q∈X Apq . Similar to Klein-
dessner et al. (2019b), and as common in spectral clustering, we relax Eq. 4 to only requiring the
following equality where Ik ∈ Rk×k is the k × k identity matrix:

H⊤DH = Ik (5)

Adopting the dc-distance as the basis for our similarity matrix in FairDen, we can now incorporate
the fairness constraint in the form of a balancing matrix for density-based clustering, similar to the
approach taken for spectral clustering in Kleindessner et al. (2019a).
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2.2 FAIRNESS CONSTRAINT

As in recent work on fair clustering, our goal is to balance clusters regarding membership in sensi-
tive groups (Kleindessner et al., 2019b; Chierichetti et al., 2017), where for each cluster, the ratio
between different groups of specific sensitive attributes is as similar as possible to the ratio in the
entire dataset. Where, e.g., FairSC (Kleindessner et al., 2019b) only considers individual sensitive
attributes, FairDen handles also combinations of several sensitive attributes (e.g., gender and race
simultaneously). Known as intersectional fairness (Gohar & Cheng, 2023), it has been shown that
the combination of sensitive values (e.g., black woman) can lead to unique discrimination issues.

Our multi-sensitive notion takes into account membership in each sensitive group: Assume that each
data object x ∈ X belongs to precisely one of gi many sensitive groups Sij of size |Sij | ≥ k with
j = 0, ..., gi − 1 for each of its sensitive attributes Si, with i = 0, ..., a− 1 and k being the number
of clusters: ∀Si : X =

⋃̇
jSij

We want to maximize the group-level balance (Chierichetti et al., 2017; Bera et al., 2019) that
assesses the ratio rij(c) of all sensitive groups Sij within each cluster c to rij , the distribution of the
sensitive groups within the whole dataset.

We define rij =
|Sij |
n and rij(Cl) =

|Sij∩Cl|
|Cl| , where |Sij ∩Cl| is the number of samples belonging

to group Sij within a cluster Cl. The balance for a cluster Cl (see Eq. 6) is the minimum balance
value for each sensitive group Sij within the cluster, see Eq. 7.

balance(Cl) = min
∀Sij

balanceij(Cl) (6)

balanceij(Cl) = min

(
rij

rij(Cl)
,
rij(Cl)

rij

)
(7)

To handle several sensitive attributes simultaneously, we introduce combined group membership
vector fSx

p , where Sx denotes membership in some combination of sensitive groups across sensitive
attributes. Thus, instead of gi groups for every of the a attributes, we consider up to

∑a
i=1 gi

combined sensitive groups Sx (e.g., Asian + female, Asian + male). Due to this representation,
FairDen has the advantage of different sensitive attributes combined being weighed equally, and
attributes with fewer groups (e.g., gender) do not impact the clustering more than attributes with
more groups (e.g., race), as would be the case for simple concatenation of sensitive attributes.

For a balanced clustering, the ratio of each combined sensitive group Sx within each cluster Cl

should be as similar as possible to its ratio in the overall dataset:

∀Cl, Sx :
| Sx ∩ Cl |
|Cl|

≈ |Sx|
n

(8)

Thus, our FairDen objective for a perfect balance is

∀Cl, Sx :
| Sx ∩ Cl |
|Cl|

− |Sx|
n

= 0 (9)

With that and Eq. 4, we reformulate Eq. 9

∀Cl, Sx :
∑
p∈X

(
fSx
p −

|Sx|
n

)
Hpl = 0 (10)

To solve this equation, we use fairness matrix F ∈ Rn×|Sx| with vectors fSx
p − (|Sx|/n) · 1n as

columns for the first |Sx|−1 combined sensitive groups2 (Alg. 1 line 4). The fairness matrix captures
the term in brackets in Eq. 10, thereby balancing the clustering regarding the sensitive groups. Then,
we include Eq. 10 as a constraint into our overall clustering objective from Eq. 3:

F⊤H = 0 (11)
By enforcing this constraint we make sure that any cluster assignmentH yields a balanced clustering
with respect to any sensitive group as mandated by the fairness matrix F .

2we omit a membership vector for the last combined sensitive group s.t. the matrix is not over-determined
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2.3 INTEGRATING DENSITY-CONNECTIVITY AND FAIRNESS

FairDen integrates the density-connectivity objective (Eq. 3, 5) with the fairness constraint (Eq. 11):

min
H∈Rn×k

Tr(H⊤LH) subject toH⊤DH = Ik and F⊤H = 0 (12)

While this objective bears superficial similarity with the one for spectral clustering in Kleindess-
ner et al. (2019b), there are fundamental differences in the two approaches: Most importantly, our
Laplacian L in FairDen captures density-connectivity and is unrelated to the Laplacian of Klein-
dessner et al. (2019b). Furthermore, our fairness constraints handle multiple sensitive attributes. We
now reshape Eq. 12 so that it can be solved by spectral clustering, i.e., by eigendecomposition and
subsequent application of k-means on the first k eigenvectors. For this, we ensure the condition in
Eq. 11 is met (Alg. 1 line 5): we compute the orthonormal basis of the nullspace of F⊤, as the
columns of a matrix Z ∈ Rn×(|Sx|−1), so that we can replaceH = ZY for a Y ∈ R(n−|Sx|+1)×k:

min
Y

Tr(Y⊤Z⊤LZY) subject to Y⊤Z⊤DZY = Ik (13)

We want to express the condition in the shape V⊤V = Ik. We make use of the fact that Z⊤DZ is
positive definite and square (as it comes from a fully connected graph given by dc-distances that are
calculated for all pairs): This means, there is a Q ∈ R(n−|Sx|+1)×(n−|Sx|+1) so that: Q2 = Z⊤DZ
(Alg. 1 lines 6 and 7). With this, we can replace Y = Q−1V for some V ∈ R(n−|Sx|+1)×k in Eq. 13:

min
V

Tr(V⊤Q−1⊤Z⊤LZQ−1V) subject to V⊤V = Ik (14)

Now our solution V to Eq. 14 can be found by computing the eigenvalue decomposition of
Q−1⊤Z⊤LZQ−1 and the k eigenvectors belonging to the k smallest eigenvalues become the
columns of V (Alg. 1 line 8). We obtain a fair density-based clustering by applying k-means on
H = ZQ−1V (Alg. 1 line 9). Note that subdividing the hierarchy given by the dc-distance automat-
ically detects noise points as subtrees that are smaller than the given µ. Our algorithm thus returns a
k-means clustering that gives us k non-noise clusters (Alg. 1 lines 10-18).

2.4 CATEGORICAL ATTRIBUTES AND MULTIPLE SENSITIVE ATTRIBUTES

While most fair clustering methods (cf. Section 3.4) target numerical data or assume a given sim-
ilarity matrix (Kleindessner et al., 2019b), this is in strong contrast to their real-world use cases:
Most data for which fairness is fundamental contains categorical attributes, especially considering
sensitive attributes are usually categorical. Thus, handling categorical data, while preserving the
underlying information, in fair clustering is of utmost importance.

In FairDen, we provide full inclusion of categorical attributes and mixed-type data. For this, we com-
pute a similarity matrix SG based on Goodall1 (Boriah et al., 2008). We extend Eq. 1 to a weighted
average of dc-distance and categorical similarity measure. Consider data set X = (x1, . . . , xn) with
n d-dimensional points where the d dimensions consist of dn numerical and dc categorical features.
Instead of using Eq. 1, we can then compute our affinity matrix as follows:

Aij =
dn
d

(
1− ddc(i, j)

maxi,j ddc(i, j)

)
+

dc
d
· SG(i, j) (15)

Like this, we combine both types of data weighted proportionally to the number of numerical and
categorical features within the dataset. Note that this approach is not suitable for k-means-like
algorithms, as they need a metric space where centroids can be computed: Clustering methods
solving a k-objective would require an embedding of the categorical data first. In contrast, density-
based methods only require a distance or similarity matrix. FairDen captures arbitrarily shaped
clusters with the dc-distance. Since the dc-distance is defined on numerical data, the input data
has to feature some numerical attributes. With the above extension, we allow for the inclusion of
categorical attributes in a mixed data type approach.

When including multiple sensitive attributes, we combine those sensitive attributes into one meta-
sensitive attribute, such that FairDen balances the combined groups. For example, for sensitive
attributes race and gender the combinations might include groups like ’Female-Asian’. Clearly,
multiple sensitive attributes are highly complex to handle, and achieving balance also requires a
sufficient amount of data for each subgroup, for a fair clustering to be attainable.
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2.5 ANALYSIS

General Interpretation FairDen aims for optimal balance (see Eq. 9 and following). By working
on the hierarchy of density-based clusterings given by the dc-distance, all clusterings by spectral cuts
are density-based. However, we relax DBSCAN’s clustering criterion by allowing clusters of dif-
ferent densities, and by prioritizing balance. Thus, as Section 3.5 shows, FairDen finds clusterings
with high balance values. Their density-connectivity is of course slightly lower than the non-fair
density-connectivity of DBSCAN clusterings. However, FairDen captures arbitrarily-shaped clus-
ters better than any other fair clustering algorithm, see e.g. Figure 1, leading to higher clustering
quality regarding density-based clusters throughout our experiments in Section 3.5.

Complexity Analysis The complexity of FairDen in the number of data points is dominated by the
eigenvector decomposition in O(n3). As we need only up to k (number of clusters) eigenvectors,
this step can be accelerated significantly by, e.g., using power iterations. After computing the dc-
distance matrix, the runtime is independent of the dimensionality, yielding linear dependency in
dimensionality d. Thus, the complexity is in O(n3 · d), comparable to other fair clustering methods.

Limitations Note that a balanced clustering with k clusters is only possible if every sensitive
group has at least k members. In extreme cases with insufficient data for particular subgroups, these
individuals are not considered - here, a manual check regarding minorities with very few members
is advisable. For several sensitive attributes, FairDen optimizes the balance of their combination,
and not of the individual sensitive attributes, which may or may not be adequate depending on the
application goal.

3 EXPERIMENTAL EVALUATION

We measure cluster quality with DCSI (Gauss et al., 2024) and group-level fairness with general-
ized balance Bera et al. (2019) (Sect. 3.2,3.1). We study real-world benchmarks (Sect. 3.3) and
compare to state-of-the-art fair clustering methods FairSC (Kleindessner et al., 2019b), normalized
FairSC (Kleindessner et al., 2019b), Fairlets (Chierichetti et al., 2017), and Scalable Fair Cluster-
ing (Backurs et al., 2019) (Section 3.4). Following Schubert et al. (2017), we fix the parameter
µ = 2d− 1 for FairDen and show an ablation in App. A.2. Further technical details in App. C.1.

3.1 EVALUATING CLUSTERING QUALITY

Note that ground truth labels of benchmark data are not typically balanced, but rather potentially
include bias. Crucially, these labels cannot serve as external measures for fairness, but only for
(biased) group assignments. Thus, an optimal correspondence to the ground truth clustering is not
necessarily desirable. We aim to find a fair, balanced clustering, rather than replicating the biases
in original labels. To evaluate the clustering quality, we compare standard clustering with DBSCAN
to that of our fair results using normalized mutual information (NMI) (Danon et al., 2005) and ad-
justed rand index (ARI) (Hubert & Arabie, 1985) where higher values indicate better results. When
assessing NMI and ARI regarding DBSCAN results (denoted as NMIDB , ARIDB), we exclude data
points marked as noise by DBSCAN in both solutions when computing these measures. DBSCAN’s
hyperparameters are optimized as described in Appendix C.1. We additionally include DCSI (Gauss
et al., 2024) as an internal evaluation measure to assess quality of density-based clusters of arbitrary
shape. DCSI evaluates the separation and connectivity of a cluster based on the density-connectivity
in DBSCAN (Ester et al., 1996) (details in App. C.2). We follow good evaluation practices as rec-
ommended in Ullmann et al. (2023). Thus we do not use other internal measures like Silhouette
Coefficient (Rousseeuw, 1987) or Dunn Index as they are not suitable for clusters with non-convex
shapes (Gauss et al., 2024). For clusterings Cν that include noise labels, we compute NMI, ARI, and
DCSI values based on all non-noise labeled points and multiply the results with the percentage of
non-noise points. This accounts for the extent of data that is actually assigned to clusters. Note that
detecting any noise prevents an optimal score, introducing a bias against noise-detecting methods
like FairDen. However, detecting noise is essential for real-world use cases where the percentage of
noise is unknown beforehand.
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Table 1: Properties of our group-level fair competitors.

Algorithm Fairlets Scalable Fair Clustering Fair SC FairDEN(ours)

Density-based ✗ ✗ ✗ ✓
Multiple sensitive attributes ✗ ✗ ✗ ✓
Multiple (> 2) sensitive groups ✗ ✗ ✓ ✓
Categorical features ✗ ✗ ✗ ✓

3.2 EVALUATING FAIRNESS

Building on Equations 6 and 7, we report the balance (Chierichetti et al., 2017; Bera et al., 2019)
for a clustering C with k clusters as the average balance over the individual clusters, with values
between 0 and 1 where higher values imply fairer results. Note that, while balance is one of the
most common measures in the area of fairness in clustering, it has some limitations to be considered
during evaluation and analysis:

• If a sensitive group is smaller than the number of clusters, at least one cluster has a balance of 0,
significantly reducing the overall balance.

• As the balances are computed per cluster, a higher balance does not necessarily mean that the
majority of points are in fair clusters, as cluster sizes might vary heavily.

• Some existing works only report the balance of the largest clusters (e.g., Bera et al. (2019)),
making a direct comparison difficult.

In order to ensure a fair evaluation in the presence of noise, we adjust the balance calculation by
excluding noise-labeled points for the calculation and multiplying the result by the percentage of
non-noise points, similar to the evaluation of clustering quality.

3.3 REAL WORLD DATA

We use the common benchmark datasets for fair clustering (Chhabra et al., 2021; Le Quy et al.,
2022), details shown in Table 6: The datasets Adult (Kohavi et al., 1996), Bank (Moro et al., 2014),
Communities and Crime (Asuncion & Newman, 2007), and Diabetes (Strack et al., 2014) provide
different scenarios in terms of dimensionality and number of sensitive groups. Achieving a balanced
clustering for sensitive groups with fewer members than the number of clusters (k) is not feasible
(e.g., if a minority encloses only 2 members, they cannot be distributed across 5 clusters). Thus, we
include all data objects belonging to sensitive groups of sufficient size: |Sij | ≥ k.

3.4 COMPETITORS

We compare FairDen with state-of-the-art fair clustering methods aiming at group-level fairness.
Table 1 shows important properties of FairDen and its competitors: FairDen closes several important
gaps, as most state-of-the-art fair clustering methods handle neither categorical features nor multiple
sensitive attributes. We compare to the following methods that we discuss in more detail in Section 4:

FairSC and normalized FairSC (Kleindessner et al., 2019b) need a weighted adjacency matrix as
input. Thus, as common in spectral clustering, we employ a kNN graph with k = 15 based on
the numerical features and sensitive attributes to apply those methods also on tabular data. Fairlet
and Fairlet MCF (Chierichetti et al., 2017) as well as Scalable Fair Clustering (Backurs et al.,
2019) follow a two-stage approach based on identifying fairlets. Since the construction of fairlets is
an NP -hard problem both researchers present an approximative method, which are included in our
experiments. The fairlet approach limits the methods to one binary sensitive attribute. Thus, they
cannot be used in all our experiments.

3.5 EXPERIMENTS

Fair Clustering of Real-World Benchmark Data Figure 2 shows that FairDen consistently
reaches the highest or competitive balance values for the real-world datasets when regarding only
one sensitive attribute. Note that Fairlet and Scalable Fair Clustering cannot be applied to datasets
with non-binary sensitive attributes. Table 2 shows (along the balance values) also the evaluation of
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Figure 2: Balances for all competitors and benchmark datasets. Fairlet (MCF) and Scalable Fair
Clustering are not included for settings including non-binary sensitive groups.

Table 2: Number of clusters k, Balance, DCSI, ARI for real-world benchmark data. Diabetes dataset
for k=2 (Ground truth) and k=4 (DBSCAN clusters) respectively.

k Algorithm Balance DCSI ARI

A
du

lt
(g

en
de

r)

2 DBSCAN 0.01 0.97 0.00
2 FairDen 0.86 0.04 0.05
2 FairSC 0.40 0.00 0.23
2 FairSC (N) 0.49 0.00 0.27
2 Fairlet (MCF) 0.94 0.00 0.00
2 GroundTruth 0.66 0.00 1.00
2 Scalable 0.95 0.01 -0.01

A
du

lt
(r

ac
e)

2 DBSCAN 0.50 0.99 0.02
2 FairDen 0.83 0.09 0.05
2 FairSC 0.34 0.00 -0.03
2 FairSC (N) 0.32 0.00 0.16
2 Fairlet (MCF) - - -
2 Scalable - - -
2 GroundTruth 0.52 0.00 1.00

B
an

k

2 DBSCAN 0.79 0.99 0.01
2 FairDen 0.98 0.14 0.21
2 FairSC 0.42 0.00 -0.06
2 FairSC (N) 0.88 0.00 -0.04
2 Fairlet (MCF) - - -
2 Scalable - - -
2 GroundTruth 0.86 0.00 1.00

k Algorithm Balance DCSI ARI

C
om

m
un

iti
es

2 DBSCAN 0.01 0.65 -0.03
2 FairDen 0.92 0.15 0.09
2 FairSC 0.82 0.13 0.03
2 FairSC (N) 0.86 0.13 0.03
2 Fairlet (MCF) 0.99 0.05 0.16
2 Scalable 0.75 0.08 -0.03
2 GroundTruth 0.52 0.07 1.00

D
ia

be
te

s

2 DBSCAN - - -
2 FairDen 0.96 0.08 0.01
2 FairSC 0.89 0.00 -0.01
2 FairSC (N) 0.96 0.00 0.01
2 Fairlet (MCF) 0.97 0.00 0.00
2 Scalable 0.99 0.01 0.00
2 GroundTruth 0.96 0.00 1.00

4 DBSCAN 0.01 0.88 -
4 FairDen 0.95 0.24 -
4 FairSC 0.23 0.01 -
4 FairSC (N) 0.61 0.19 -
4 Fairlet (MCF) 0.95 0.00 -
4 Scalable 0.96 0.07 -
4 GroundTruth - - -

clusterings, i.e., DCSI and ARI. Density-connected structures become more significant for higher
numbers of clusters, while most benchmark datasets have binary classification as ground truth. Con-
sequently, the DCSI values are very low as soon as a few points are assigned differently than their
density-connectivity suggests. Nevertheless, FairDen achieves the highest DCSI besides DBSCAN
for almost all datasets while improving the balance by a large amount.

Multiple sensitive attributes While our competitors (Chierichetti et al., 2017; Backurs et al.,
2019; Kleindessner et al., 2019b) cannot balance a clustering with respect to several sensitive at-
tributes at once, FairDen can include an arbitrary number of sensitive attributes, successfully bal-
ancing the sensitive attributes as Figure 3 shows. We regard fairness with respect to all three sensi-
tive attributes of the Adult dataset and study various combinations of sensitive attributes in FairDen.
Each heat map shows the balance regarding the individual sensitive attributes. Note that this is
different from balancing the combined groups. In the first heat map, each row represents the out-
comes when labeling exactly one of the attributes as sensitive, while the remaining are included as
non-sensitive categorical attributes. As expected, the balance for any sensitive attribute is highest
in the row where it was included as sensitive in FairDen: each column’s highest value lies on the
diagonal. The second heat map shows results when including two sensitive attributes simultaneously
(as indicated by the row description), yielding Pareto-optimal balance values for the respective at-
tributes. The third heat map reveals an interesting effect: although all balance values are notably
high (surpassing any combination for a single sensitive attribute), it seems like we could achieve
a better-balanced cluster when using only marital status and race as sensitive attributes (row three
of second heat map ”M&R”). However, when inspecting the results and the underlying clustering,
it is apparent that combining all three attributes results in more combinations of sensitive groups,
consequently rendering the fairness constraint more complex than for just two sensitive attributes.
When evaluating the balance across the combined sensitive groups, we can observe that including
three sensitive attributes results in a higher balance (0.32) regarding the combination than ”M&R”
(0.25). Thus, the consideration of combined sensitive groups may not always yield the optimal solu-
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Figure 3: Columns show balance with respect to sensitive attributes gender (G), marital status (M)
and race (R) in FairDen clusterings of the Adult dataset. Left: results for clustering when including
only one of the sensitive attributes, highest column-wise values/balance for the attribute labeled as
sensitive is framed in green. Middle: results for clusterings when including two of the sensitive
attributes as indicated by the row description. Lowest column-wise values/ balance of attribute that
is not labeled as sensitive is framed in red. Right: results for including all three sensitive attributes.

tion in terms of proportionally distributing individual sensitive attributes, but it does ensure the most
balanced distribution across all combinations.

Table 3: Comparison of results when exclud-
ing/including (FairDen-/ FairDen) categori-
cal attributes for datasets Adult (sensitive at-
tribute: gender/ race) and Bank. Note that
none of our fair competitors is able to work
with categorical attributes.

Algorithm Balance ARIDB NMIDB Noise

A
du

lt
(g

) DBSCAN 0.01 1.00 1.00 0.99
FairDen 0.96 0.00 0.00 0.00
FairDen- 0.86 0.00 0.00 0.00
Ground Truth 0.66 -0.04 0.01 -

A
du

lt
(r

) DBSCAN 0.50 1.00 1.00 0.00
FairDen 0.86 0.01 0.01 0.00
FairDen- 0.83 0.01 0.02 0.00
Ground Truth 0.52 0.01 0.01 -

B
an

k
(m

) DBSCAN 0.79 1.00 1.00 0.00
FairDen 0.99 0.01 0.01 0.00
FairDen- 0.98 0.01 0.01 0.00
Ground Truth 0.86 0.00 0.00 -

Categorical data In contrast to our competitors,
FairDen inherently includes categorical attributes.
We conducted a comparison of results, excluding
(FairDen-) and including (FairDen) categorical at-
tributes in Table 3, with sensitive attributes as indi-
cated. As the DCSI is not defined for data with cate-
gorical attributes, we only report the correspondence
to DBSCAN results (columns ARIDB and NMIDB).
The results, see Table 3, show that both versions usu-
ally improve the balance with respect to the ground
truth. When incorporating categorical attributes, the
balance increases. The correspondence to original
DBSCAN clusters stays approximately the same for
both versions, i.e., the density-connectivity aspect
is not negatively influenced by including categorical
attributes. Lastly, noise levels consistently remained
low for the three datasets.

Robustness with respect to number of clusters
In all previous experiments, the number of clusters (k) was determined based on the ground truth
of the dataset or DBSCAN clustering (cf. Appendix C.1). In Figure 4, we assess the performance
and balance of all algorithms under consideration for various numbers of clusters. Note that the
Fairlet (MCF) and Scalable Fair Clustering approaches cannot handle data with non-binary sensitive
attributes. As a result, for the sensitive attribute race (depicted on the left), comparisons can only
be made with FairSC versions. In this context, FairDen constantly receives the highest balance (top
left) while achieving comparable quality measured by DCSI. When gender is considered as the sen-
sitive attribute (on the right), FairDen exhibits the highest DCSI up to k = 4, and is only surpassed
by Scalable and the FairSC variants for a larger number of clusters. Notably, all methods except
FairSC versions yield relatively high balance values.

4 RELATED WORK: GROUP-LEVEL FAIR CLUSTERING USING BALANCE

Several fair clustering methods have been developed to ensure group-level fair clustering. We refer
to the notion of group-level fairness as introduced by Chierichetti et al. (2017), which aims to ensure
that each group is represented in each cluster in proportions similar to the overall dataset. Other def-
initions such as proportional fairness (Chen et al., 2019) also exist. Many works have approached
this problem from different angles, e.g., including probabilistically defined group-membership (Es-
maeili et al., 2020), treating it as a constrained optimization problem (Esmaeili et al., 2021), and
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Figure 4: Balance (top) and DCSI (bottom) depending on number of clusters k. Gender has only
two sensitive groups, race has five sensitive groups, which some competitors cannot handle.

integrating different notions of group-level fairness (Dickerson et al., 2024). Our focus is on work
that optimizes balance.

Chierichetti et al. (2017) and Bercea et al. (2018) proposed two-stage approaches. Chierichetti
et al. (2017) introduced the concept of fairlets, which are minimal sets of points with a balanced
distribution. These fairlets are then used as input for a subsequent clustering method, achieving a
balanced clustering that can approximately preserve clustering objectives for k-center or k-means.
Bercea et al. (2018) solve a fair reassignment problem with a linear program (LP) based on weakly
supervised rounding. However, these methods are more suitable for centroid-based approaches and
are not appropriate for density-connected clusters: These minimal subsets can influence the density-
connectivity between clusters significantly, leading to a potentially very poor approximation. This
effect is evident in Figure 1, where clustering a three moons toy dataset with a binary sensitive
attribute using fairlets in density-connected structures consisting of only one sensitive group (e.g.,
the middle cluster) leads to an undesirable patchwork of points in the left and middle cluster. Similar
to Bercea et al. (2018), Bera et al. (2019) and Ahmadian et al. (2019) present LP-based algorithms.
Bera et al. (2019) aims for a balance within bounds depending on a user-input α and β, which differs
from the focus of this paper, where we optimize the balance objective. Based on the solution returned
by a clustering algorithm, they solve a fair assignment problem with an LP. Note that, while this
approach allows non-binary sensitive attributes, it is still only defined for k-center, k-median, and k-
means objective. Ahmadian et al. (2019) solve the k-center objective with bicriteria approximation
guarantee, bounding the additive violation. Scalable Fair Clustering (Backurs et al., 2019) partitions
the dataset into fairlets that are merged into k clusters. The merging alleviates problems caused
by fairlets in similar approaches (see Figure 1) so that clusters are more contiguous. Fair Spectral
Clustering (FairSC) (Kleindessner et al., 2019b) is a group-level fair spectral clustering algorithm
that builds on an affinity graph. It comes in two versions: unnormalized FairSC, which is based on
ratio cuts, and normalized FairSC, which is based on normalized cuts. However, FairSC can handle
only one sensitive attribute and lacks details on how to obtain the affinity graph from tabular data.

Note that all these approaches do not consider density or density-connectivity, have limitations in
handling noise, and do not accommodate categorical data in the clustering process. Additionally,
methods based on fairlets struggle with multiple sensitive attributes or more than two sensitive
groups. These limitations are summarized in Table 1.

5 CONCLUSION

We introduced FairDen, the first density-based fair clustering algorithm. By imposing fairness to
the density-connectivity distance we transformed the problem to a graph cut solvable with spectral
clustering. FairDen is, to the best of our knowledge, the first group-level fair clustering algorithm
that incorporates categorical data, multiple sensitive attributes, and non-binary sensitive attributes at
once. Extensive experiments show that FairDen indeed finds fair and density-based clusters. Future
work includes investigating different fairness notions, handling micro-clusters, and exploiting GPU
parallelism and Nyström approximation (Hohma et al., 2022) for runtime improvement.
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A FAIRDEN

A.1 PSEUDO-CODE

The pseudo-code for our novel fair density-based clustering method FairDen is given in Algorithm 1:

Algorithm 1 FairDen
Input: X ∈ Rnxd dataset, G ∈ Rnxa group-membership vectors for each of the a sensitive at-

tributes, µ, k
Output: assignment of point in X to one of k cluster indices or to index −1 for noise

1: Ddc ← dc-distance(X ) pairwise dc-distances in X
2: A ← 1−Ddc/max(Ddc) get affinity matrix (Eq. 1)
3: L ← D −A get Laplacian (Eq. 2)
4: fSx

p ← combined membership(G) membership vector to combined sensitive group Sx for each
point p ∈ X

5: F ← fSx
p −

|Sx|
n ∗ 1n get Fairness matrix

6: Z ← orth basis(nullspace(F⊤)) get orthonormal basis for the nullspace of F⊤ (Eq. 11)
7: Q ←

√
Z⊤DZ

8: V ← k smallest eigenvectors of (Q−1)⊤Z⊤LZQ−1

9: H ← ZQ−1V
10: Clustering C ← k-means(H) compute clustering
11: while |Cl| < µ (for any cluster Cl) do
12: CN ← Cl, for |Cl| < µ
13: if |C \ CN | < k then
14: repeat step 10 for k := k + 1
15: else
16: return C
17: end if
18: end while
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A.2 MIN POINTS ABLATION

Table 4 gives a small ablation study for the hyperparameter µ that we set, according to Schubert
et al. (2017), to µ = 2d − 1 for all experiments in the main part of the paper. According rows are
marked in bold. While there is no free lunch, the heuristic yields a good trade-off between clustering
quality measured by DCSI and balance for all data sets.

Table 4: Overview of DCSI, balance and noise (in %) results regarding different values for µ.

Data DCSI Balance µ Noise

A
du

lt
(g

) 0.9867 0.4983 4 -
0.9867 0.4983 5 -
0.0880 0.8142 10 0.0005
0.0878 0.8343 11 0.0005
0.0091 0.8630 15 0.0005

A
du

lt
(r

) 0.0000 0.4990 4 -
0.0989 0.8480 5 0.0005
0.0677 0.8499 10 0.0005
0.0599 0.8603 11 0.0005
0.0436 0.8633 15 0.0005

B
an

k

0.0706 0.9603 4 -
0.0910 0.9649 5 -
0.1357 0.9795 7 -
0.1613 0.9942 10 -
0.0567 0.9887 15 -

C
om

m
un

iti
es 0.2028 0.8533 4 0.0005

0.1325 0.8408 5 0.0005
0.0963 0.8536 10 0.0005
0.1461 0.8620 15 0.0005
0.1533 0.9199 135 0.0005

D
ia

be
te

s

0.0744 0.9606 4 0.0002
- - 5 -
- - 8 -

0.1193 0.9691 10 0.0002
0.0756 0.9622 15 0.0002

A.3 RUNTIME EXPERIMENTS

In this section, we investigate FairDen’s runtime in comparison to our competitors.

Experiment design We perform three experiments regarding the runtime of FairDen. We examine
three scenarios: (a) increasing the number of data points (b) increasing the number of numerical
features (dimension of the dataset), and (c) increasing the number of ground truth clusters. We
generate datasets with the data generator DENSIRED (DENSIty-based Reproducible Experimental
Data) (Jahn et al., 2024) for these experiments. The parameters used for the generation of the
datasets are shown in Table 5. Note that the data generator generates entirely new datasets for
each configuration. Consequently, not only do the parameters we intend to adjust vary, but the
underlying structures do as well. We randomly assign a binary, sensitive attribute (by permuting
an array composed of 50% ones and 50% zeros). The random assignment entails that we cannot
guarantee the distribution within the clusters. As a result, the different datasets may not be directly
comparable. However, this approach ensures equal conditions for all of the algorithms.

Experiment setup We perform five runs for each generated dataset. The runtime experiments are
performed on a workstation with an AMD Ryzen Threadripper PRO 3955W, 250 GB RAM, and an
RTX 3090. We set the cutoff time for each individual run to two hours.
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Table 5: DENSIRED parameters for runtime experiments.

Scenario Number of data points Dimensionality Number of clusters

(a) 100, 200, 500, 1000, 2,000, 5,000, 10,000 10 2

(b) 2,000 5, 10, 50, 100, 1,000 2

(c) 2,000 10 2,3,4,5,6,7,8,9

Results Figures 5-7 show runtime in seconds for the previously defined scenarios.

In the first scenario, we increase the number of data points in the dataset. The results are shown
in Figure 5. We observe that our runtime increase is similar to normalized FairSC, with FairDen
demonstrating slightly faster performance across the five runs. Both FairSC and Scalable Fair Clus-
tering are faster. Fairlets, in contrast, has a significantly higher runtime that exceeds our cutoff of
120 minutes for datasets with more than 2000 data points.

Figure 5: Runtime experiments for increasing numbers of data points n, with n ranging from 100 to
10,000. Fairlet exceeds the time cutoff for more than 2,000 data points.

In the second scenario, we increase the dimensionality of the dataset. Since our proposed selection
for µ depends on the dimensionality we regard two versions of FairDen in Figure 6: The bright
pink color shows FairDen as used throughout the paper with the automatically computed µ, the dark
green denotes FairDen with a fixed µ=5. The runtimes of both versions are very similar, ranging in
a difference of around 0.1 seconds.

After introducing the comparison of the two FairDen versions we want to include a comparison
across different methods, see the top of Figure 7. The left plot illustrates that the Fairlet approach
does not yield comparable runtimes. We include a second version of the plot excluding Fairlets to
show the differences between the remaining approaches better. Although all of the algorithms can
calculate the result in less than 18 seconds we observe some variations in runtime. While FairSC
and Scalable do not even need 2.5 seconds, normalized FairSC needs around 5. FairDen requires
more time; the difference observed here between the various dimensions of the dataset is partly due
to the fact that calculating the dc-distance takes a little longer. The calculations after determining
the dc-distance are independent of the dimensions of the dataset.

In the third scenario, we increase the number of ground truth clusters in the dataset. The runtime
results for this experiment are illustrated in the bottom of Figure 7. Note that the distribution of sen-
sitive attributes or the underlying clustering structures or noise points, might vary heavily between
the different datasets. We observe that especially in the bottom right part of Figure 7 for k = 5,
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Figure 6: Runtime in seconds for FairDen with a fixed µ=5 and µ automatically computed based on
the dimensionality of the data as used throughout the paper.

Figure 7: Runtime in seconds for experiments regarding (top) increasing numbers of features and
(bottom) increasing numbers of clusters (k), for k ranging from 2 to 9. Left: includes all of the
algorithms. Right: algorithms excluding the slowest method, Fairlet MCF. For the experiments with
increasing number of features, we used FairDen with a fixed value of µ=5.

where FairDen has a peak in the runtime. Note that also the curves of FairSC and FairSC(N) have
small bumps here. This effect might be due to an unfortunate positioning of noise points in this
specific dataset. Except for this outlier, FairDen performs very similar to normalized FairSC. While
FairSC and especially Scalable are significantly faster. The Fairlet approach needs again more time
than any of the competitors with around 40 minutes per run.
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B TECHNICAL BACKGROUND

The following section includes technical details regarding the dc-distance and DBSCAN.

B.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al., 1996) is one
of the most prominent clustering algorithms regarding the notion of density-based clustering. The
algorithm differentiates between core points, border points, and noise points. The process of DB-
SCAN clustering is illustrated for minPts=5 in Fig. 8. The minPts parameter denotes the mini-
mum number of points required within a point’s ε-radius for it to be regarded as a core point. Points
with less than minPts neighbors in their ε-neighborhood are considered border points if and only
if they have at least one core point in their ε-neighborhood, otherwise the point is considered a noise
point. DBSCAN implementations label noise points with -1.

Figure 8: Illustration of DBSCAN clustering with minPts=5.

B.2 DENSITY-CONNECTIVITY DISTANCE

The density-connectivity distance (dc-distance) is defined in Beer et al. (2023). It is based on
the mutual reachability distance dm(x, y) = max

(
dcore(x), dcore(y), deucl(x, y)

)
, which is known

from works as, e.g., DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999), or HDB-
SCAN (Campello et al., 2013). The dc-distance represents the minimax (path) distance on the graph
given by the mutual reachability distance dm, see Eq. 16:

ddc(x, y) = min
P∈P

max
e∈p(x,y)

|e|, (16)

where the length |e| of an edge e on a path p(x, y) that connects points x and y is given by the
dc-distance between the nodes that are connected by e. Intuitively, the dc-distance provides the
smallest ε so that two points are density-connected. As the dc-distance is based on the minimax
distance, it inherits relevant properties that make it a well-defined (ultra-)metric (also known as
rooted tree metric (Beer et al., 2023), which allows the representation of its distance matrix as
a tree or hierarchy). The hierarchy established by the dc-distance works analogously to how the
single link distance defines the traditional clustering hierarchy given by agglomerative single-linkage
clustering. For more details, we refer the reader to the original paper by Beer et al. (2023).
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Table 6: Properties of Real-World datasets. Sensitive attributes a, number of sensitive groups g(a)
for attribute a, number of numerical features dn, number of categorical features dc, DBSCAN
parameters minPts and ε.

Dataset Sens. Attr. (g(a)) dn(+ dc) minPts ε

race (5) 5 (+2) 4 2.1
Adult (Kohavi et al., 1996) gender (2) 5 (+2) 9 0.15

marital status (7) 5 (+2) 4 1.2

Bank (Moro et al., 2014) marital (3) 3 (+2) 4 1.5

Communities (Asuncion & Newman, 2007) black (2) 67 10 3.25

diabetes (Strack et al., 2014) gender (2) 7 10 0.45

C EXPERIMENT DETAILS

In the following, we give all experimental details and parameter settings, the definition of the used
evaluation measure DCSI, and details of the real-world benchmark datasets.

C.1 EXPERIMENT SETTINGS

The experiments are performed on a MacBook Pro, with an M2 Pro, and 16 GB of RAM using
Python 3.9. Where possible, we integrated the author implementations for our competitors and the
code reproducing every experiment for every competitor is included in our git.

The parameters of Scalable Fair Clustering are set according to the implementation (Backurs et al.,
2019) so that the maximum desirable balance is set, p = 1 and q =

⌈
|Sx|
|Sy|

⌉
, with |Sx| ≤ |Sy|.

The parameters for DBSCAN, minPts, and ε, were determined with a hyperparameter optimiza-
tion. The criterion for the optimization is the DCSI score with a constant setting of minPtsDCSI = 5.
The parameter space for minPtsDBSCAN comprises {4, 5, 10, 15, 2d − 1}, with d being the dimen-
sion of the dataset, and for ε ∈ {0.01, 0.05, 0.1, .., 0.5, 0.6, .., 2.5, 2.6, 2.8, 3, 3.25, 3.5, 3.75}. The
final parameter settings are given in Table 6.

C.2 DCSI

DCSI (Gauss et al., 2024) is an internal clustering validity index, that assesses the quality of a
clustering regarding the connectedness and separability of the assigned clusters. The score relies
on the notion of core points defined similarly to DBSCAN. The definition differs in terms of the
parameters minPts and ε, instead of defining them globally for all clusters, the approach of DCSI
regards them as parameters that should be set individually for each cluster. The score includes only
core points in its calculation. Core points are defined as points x with at least minPtsi data points
from the same cluster i having a distance d(x, x′) ≤ εi, note that εi and minPtsi are defined
separately for each cluster i. The distance employed here is the mutual reachability distance.

DCSI(C) =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

DCSI(Ci, Cj) (17)

DCSI(Ci, Cj) =
q

1 + q
,where q =

SepDCSI(Ci, Cj)

ConnDCSI(Ci, Cj)
(18)

Separation is defined as the minimum distance between the core points of two clusters, Ci and Cj ,
denoting how well the classes are separated. Connectedness is defined as the maximum distance
between core points within one cluster. The choice of core points depends on minPts and denotes
the influence of noise/outliers. The proposed values are minPtsi = 5 for all clusters and εi set to
the median distance between all points x within the cluster and their 2 ·minPtsi-th nearest neighbor
in cluster i. The score, Eq. 17, is an accumulation of DCSI scores calculated for each pair of clusters
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(cf. Eq. 18). Higher scoring denotes better clustering. Note that the score drops significantly when
a certain number of points is assigned to another cluster than the optimal density-based clustering.

C.3 REAL WORLD DATA

This section includes an overview of the included real-world datasets and our corresponding prepro-
cessing.

a) Adult. The Adult dataset (Kohavi et al., 1996) includes 15 demographic features and categorizes
48,842 people based on their annual income (above or below 50,000 US-dollars). The sensitive
attributes are gender, race and marital status. Depending on the setting, it has five numerical and
up to two categorical features. Note that the distribution of groups within the individual sensitive
attributes can vary largely, e.g., more than 70% of the data points belong to one protected race-
group. We sampled 2000 data points from the dataset and removed duplicate entries based on the
remaining features.

b) Bank. The bank marketing dataset (Moro et al., 2014) includes seventeen features that have been
collected during marketing campaigns in Portugal between 2008 and 2013. The sensitive attribute
marital includes three sensitive groups married, divorced, and single. The dataset includes a binary
categorization whether a person subscribed to a term deposit or not. We include three numerical and
two categorical variables. We sample the dataset to 5000 data points and remove duplicate entries
based on the remaining features.

c) Communities and Crime Communities and Crime (Asuncion & Newman, 2007) includes data
from the 1990 US census, law enforcement data from the 1990 LEMAS survey and crime data
from the 1995 FBI’s Uniform Crime Reporting (UCR). We use sensitive attributes as described in
Kamiran et al. (2013) and Kamishima et al. (2012), yielding 67 numerical features. We exclude
duplicate data points.

d) Diabetes The diabetes dataset (Strack et al., 2014) includes medical records regarding diabetes
from 130 US hospitals. It is labeled according to whether a patient is readmitted within 30 days. We
include seven numerical features and sample the number of data points to 5000, removing duplicates.
The sensitive attribute is gender, divided into female and male.

20


	Introduction
	FairDen: Fair Density-Based Clustering
	Transforming the Density-based objective
	Fairness Constraint
	Integrating density-connectivity and fairness
	Categorical Attributes and Multiple Sensitive Attributes
	Analysis

	Experimental Evaluation
	Evaluating Clustering Quality
	Evaluating Fairness
	Real World Data
	Competitors
	Experiments

	Related Work: Group-level Fair Clustering using Balance
	Conclusion
	FairDen
	Pseudo-Code
	Min Points Ablation
	Runtime Experiments

	Technical Background
	DBSCAN
	Density-connectivity distance

	Experiment details
	Experiment settings
	DCSI
	Real World Data


