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Protein science is a broad discipline that analyses both individ-
ual proteins as well as whole proteomes of organisms via labo-
ratory experiments (that is, proteomics) and computational 

approaches (for example, molecular modelling, machine learning, 
data science) to ultimately create accurate and reusable methods 
for use in biomedicine and biotechnology. Protein informatics 
can be defined as the computational and data-centric branch of 
protein science through which the quantitative aspects of proteins  
are modelled.

The functional characterization of proteins is critical for devel-
oping new and effective biomedical strategies and biotechnologi-
cal products. As of May 2021, there are around 215 million protein 
entries in the UniProt protein sequence and annotation knowledge-
base; however, only 0.56 million (~0.26%) of them have been manu-
ally reviewed and annotated by expert curators, indicating a large 
gap between the current sequencing (data production) and annota-
tion (labelling) capabilities. This gap is mainly due to the cost and 
time intensive nature of obtaining results from wet-lab experiments 
and the manual curation thereof. To supplement experimental and 
curation-based annotation, in silico approaches are being used. In 
this context, many research groups have been working on devel-
oping new computational methods to predict proteins’ enzymatic 
activities1–3, biophysical properties4–6, protein and ligand interac-
tions7–11, three-dimensional structures12–14 and, ultimately, their 
functions15–17. Protein function prediction (PFP) can be defined as 
the assignment of functional definitions to proteins, automatically 
or semi-automatically. The primary terminology for the functions 
of biomolecules is codified in the Gene Ontology (GO) system, a 
hierarchical network of concepts (that is, a controlled vocabulary) 
that annotates the molecular functions of genes and proteins, as 
well as their subcellular localizations and the biological processes in 

which they are involved18. The most comprehensive benchmarking 
project for PFP is the Critical Assessment of Functional Annotation 
(CAFA) challenge19, in which participants predict GO-based func-
tional associations for a set of target proteins, functions of which are 
later identified by manual curation, to be used in the assessment of 
the performance of participating predictors; CAFA challenges so far 
indicate that PFP is still an open problem.

It has been shown in literature that complex computational 
problems, where features are high dimensional and have complex/
non-linear relationships, are amenable to deep learning-based tech-
niques20. These techniques can efficiently learn task-related rep-
resentations from noisy and high-dimensional input data. Deep 
learning has thus been successfully applied to various domains 
such as computer vision, natural language processing and the life 
sciences21–24. Features of biomolecules (for example, genes, proteins, 
RNAs and so on) should be extracted and encoded as quantitative/
numerical vectors (that is, representations) to be used in machine/
deep learning-based predictive modelling. Given the raw and 
high-dimensional input features of a biomolecule, a representation 
model calculates this feature vector as a succinct and orthogonal 
representation of that biomolecule. An optimally trained super-
vised predictive system can efficiently learn features of samples in 
the dataset and perform the prediction tasks (for example, DNA 
binding regions on the sequence, biochemical properties, subcel-
lular localization and so on) using these representations as input.

Protein representation approaches can be grouped into two main 
categories; (1) classical representations (that is, the model-driven 
approach), which are generated using predefined rules about prop-
erties such as the evolutionary relationships between genes/proteins 
or the physicochemical properties of amino acids (Supplementary 
Table 1), and (2) data-driven representations, which are constructed 
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using statistical and machine learning algorithms (for example, arti-
ficial neural networks) that are trained for predefined tasks such as 
the prediction of the next amino acid on the sequence (Table 1). 
Later, the output of the trained model—namely, the representation 
feature vector—can be used for other protein informatics-related 
tasks such as function prediction. In this sense, representation 
learning models leverage the transfer of knowledge from one task to 
another. The generalized form of this process is known as transfer 
learning25 and it is reported to be a highly efficient data-analysis 
approach in terms of time and cost26. Hence, protein representation 
learning models minimize the need for data labelling27.

Representation learning on proteins is a young but highly active 
area of research, and is mainly inspired by approaches proposed for 
natural language processing (NLP). Protein representation learning 
methods are therefore frequently called protein language models in 
the literature.

The literature shows that various protein representation learning 
methods, especially the ones that incorporate deep learning, have 
been successful at extracting relevant inherent features of proteins 
(Table 1). Although there are studies that evaluate learned protein 
representation models27–29, there is a requirement for a comprehen-
sive survey and benchmark to systematically evaluate these meth-
ods in the context of learning multiple aspects of proteins including 
ontology-based functional definitions, semantic relationships, fam-
ilies and interactions.

In this study we conduct a comprehensive investigation of the 
available protein representation learning methods that were pro-
posed since 2015, with detailed benchmark analyses measuring the 
potential of these methods to capture the functional properties of 
proteins. We cover both classical and artificial learning-based meth-
ods and provide insight into their respective approaches to repre-
sent proteins. We classify these methods according to their technical 
features and their applications (Supplementary Section 5). Aiming 
to evaluate how much each representation model captures different 
facets of functional information, we constructed and applied bench-
marks based on; (1) semantic similarity inference between proteins, 
(2) ontology-based PFP, (3) drug target protein family classification, 
(4) protein–protein binding affinity estimation (see the ‘Results’ 
section). Finally, we discuss the results and current issues and pro-
vide a perspective on the future of learned protein representations 
(see the ‘Discussion’ section).

The whole study is schematically summarized in Fig. 1a. 
Furthermore, we provide the benchmarking software we imple-
mented for this task (Protein Representation Benchmark, PROBE), 
which allows one to easily evaluate the performance of any represen-
tation method over the four benchmarking tasks we defined above, 
and to compare the results with those reported in this study. We 
hope that the discussion and conclusions of this study will inform 
researchers who would like to apply machine/deep learning-based 
representation techniques on biomolecular data for predictive 
modelling. Finally, we hope this study will inspire new ideas for 
the development of novel, sophisticated and robust data-centric 
approaches to solve open problems in protein science.

Results
We have selected 23 representation learning methods for our bench-
marking tasks (inference of semantic similarities between protein 
pair, GO-based PFP, drug target protein family classification and 
protein–protein binding affinity prediction), according to their 
previously reported success in predictive tasks, and subject to their 
availability as open access tools or as ready to use pre-constructed 
feature vectors. Mean pooling is used to aggregate residue features 
into protein features (see Methods). During the selection pro-
cess, we also considered the source protein features/attributes used 
to train these methods (for example, sequence, PPIs and so on) 
and the algorithmic approaches, with the aim of covering a wide 

variety of methodologies. The methods included in the bench-
mark are thus: Learned-Vec30, SeqVec31, Mut2Vec32, Gene2Vec33, 
TCGA_EMBEDDING34, ProtVec4, TAPE-BERT-PFAM27, MSA- 
Transformer35, CPCProt36, ProtBERT-BFD29, UniRep37, ESM-1b38, 
ProtALBERT29, ProtXLNet29 and ProtT5-XL29, along with the classi-
cal representations BLAST39, HMMER40, PFAM41, AAC42, APAAC43, 
K-Sep44, InterPro2GO45, UniRule2GO46 and Ensembl-Orthology47 
as baselines. The review of the relevant literature, including the 
construction and application of protein representations (Fig. 1b), 
and their technical and application-based classification and evalu-
ation (Supplementary Fig. 15) are given in the Methods and in 
Supplementary Section 5. A comprehensive summary of 39 protein 
representation learning methods obtained from the literature, includ-
ing the above-mentioned benchmark methods, is given in Table 1.

Some of the methods listed above were not applicable to spe-
cific benchmark tasks. For example, InterPro2GO45 (GO_REF: 
0000042), UniRule2GO46 (GO_REF: 0000104), GO projections 
using Ensembl-Orthology47 (GO_REF: 0000107) are only suit-
able for the ontological function prediction task as these meth-
ods are not model-based (that is, they do not have feature vectors, 
only protein–GO term associations). Furthermore, BLAST-39 and 
HMMER-based40 protein sequence similarity feature vectors could 
not be used in the binding affinity prediction task, as the input 
sequences in this benchmark are not full protein sequences. Average 
performances of all methods on all four benchmarks and are sum-
marized in Table 2.

We have plotted the distribution of the GO terms used in our 
benchmark tasks to confirm visually that they are distributed 
uniformly over the recorded biomolecular function space, cover-
ing nearly all branches in the GO graph (Supplementary Fig. 14), 
in an effort to show that our GO-based datasets are sufficiently 
representative.

It is important to note that, protein representation learning meth-
ods fall into one of the two categories as protein- or residue-level 
features, according to the resolution of predicted properties. Our 
benchmarks (and the methods they test) are mostly in the former 
category (one partial exception is the estimation of protein–protein 
binding affinity change following mutations). There are also meth-
ods that predict residue level features6,48,49 (Table 1), and bench-
marking studies evaluating these methods27,28, in the literature.

Semantic similarity inference. This analysis aims to measure how 
much information representation models capture about biomolecu-
lar functional similarity. In this context we used GO annotations 
that represent the molecular functions, large-scale biological roles 
and subcellular localization of proteins. We first calculated pairwise 
quantitative similarities between representation vectors of proteins 
in our dataset using cosine, Manhattan and Euclidean distances/
similarities. We then compared these with the ground truth (func-
tional) similarities between these proteins, which are measured on 
the basis of the actual GO annotations of these proteins using stan-
dard semantic similarity measures (for example, Lin similarity50). 
To compare the success of different protein representation meth-
ods, we calculated Spearman rank-order correlation values between 
representation vector similarities and the actual GO-based semantic 
similarities of the same protein pairs, using three different test data-
sets (explained in detail in the Methods). The higher the correlation 
values, the better the success of the representation.

Results based on the Manhattan distance are given in Fig. 2 
and Supplementary Fig. 5. Performance results considering the 
cosine similarity and Euclidean distance measures can be found 
in Supplementary Figs. 3, 4, 6 and 7, with the statistical signifi-
cance of correlations indicated with asterisks (* represents a cor-
relation P-value between 0.05 and 0.005; **, a correlation P-value 
between 0.005 and 0.00005; ***, a correlation P-value equal to or  
below 0.00005.
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Table 1 | A comprehensive list of protein representation learning methods

Method/study 
name and  
reference

Learning 
approach

Depth of 
the system

Machine 
learning 
algorithm

Training input 
data

Vector size 
(no. of dim.)

General 
objective(s) of 
the system

Specific application(s) 
of the method

Importance of the study Data repository

ProtVec4 Unsupervised 
(local)

Shallow Word2vec Protein 
sequences

100 Structural feature/
physicochemical 
feature prediction

Disordered protein/region 
prediction

First word vector-based 
protein representation

https://github.
com/ehsanasgari/
Deep-Proteomics

Seq2Vec5 Unsupervised 
(global)

Shallow Doc2vec Protein 
sequences

250 Sequence-based 
feature prediction

Protein sequence 
classification and retrieval

First Doc2vec-based protein 
representation

N/A

Wan et al.94 Supervised 
(single task)

Shallow Word2vec 
(modified 
for negative 
examples)

Protein 
sequences 
and Morgan 
fingerprints

100 Interaction 
prediction

Ligand–target protein 
interaction prediction

Protein representation 
model for drug–target 
interaction prediction

N/A

ProtVecX95 Unsupervised 
(local)

Shallow Word2vec Protein 
sequences

500 Sequence-based 
feature prediction

Motif discovery, enzyme 
activity prediction and 
toxin prediction

Variable length protein 
sequence representation

https://github.com/
ehsanasgari/dimotif

DeepDTA96 Supervised 
(single task)

Deep CNN Protein and 
ligand sequences

128 Interaction 
prediction

Ligand–target protein 
interaction prediction

Unsupervised trained 
representation for protein 
ligand binding affinity 
prediction

https://github.com/
hkmztrk/DeepDTA

Oubounyt et al.97 Unsupervised 
(global)

Deep Word2vec, 
Doc2vec and 
CNN

Protein 
sequences

100 Genetic feature 
prediction

Alternative splicing 
prediction

Use of both Word2vec and 
Doc2vec for alternative 
splicing

N/A

DeepCon-QA6 Unsupervised 
(global)

Shallow Word2vec, 
hidden 
Markov, CNN

Protein 
sequences and 
structures

200 Structural feature 
prediction

Protein quality 
assessment

Application of protein 
representations on protein 
structure model quality 
assessment

N/A

Choy et al.34 Unsupervised Shallow Artificial 
neural network

Gene expression 
profiles 
(RNAseq)

50 Genetic feature 
prediction

Prediction of 
immunotherapy 
responders

Gene expression-based 
protein representation

https://github.com/
zeochoy/tcga-embedding

rawMSA98 Unsupervised 
(global)

Deep CNN–LSTM Protein 
sequences

300 Structural feature 
prediction

Secondary structure 
prediction, relative solvent 
accessibility prediction 
and inter-residue contact 
map prediction

Multiple sequence 
alignment-based protein 
representation

https://bitbucket.org/
clami66/rawmsa

SpliceVec99 Unsupervised 
(global)

Shallow Word2vec, 
Doc2vec and 
multilayered 
perceptron

Protein 
sequences

100 Genetic feature 
prediction

Alternative splicing 
prediction

Unsupervised trained 
representation for 
alternative splicing

N/A

PhosContext2Vec49 Unsupervised 
(global)

Shallow Word2vec and 
Doc2vec

Protein 
sequences and 
residue-level 
features

126 Sequence-based 
feature prediction

Post-translational 
modification prediction

A protein representation 
model for phosphorylation 
site prediction

https://github.com/yxu132/
prot2vec_contextualvec

Mejía-Guerra et al.100 Unsupervised 
(local)

Shallow Word2vec Protein 
sequences

300 Sequence-based 
feature prediction

Regulatory region 
prediction

A protein representation 
model for regulatory region 
prediction

https://bitbucket.org/
bucklerlab/k-mer_grammar
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Method/study 
name and  
reference

Learning 
approach

Depth of 
the system

Machine 
learning 
algorithm

Training input 
data

Vector size 
(no. of dim.)

General 
objective(s) of 
the system

Specific application(s) 
of the method

Importance of the study Data repository

Gene2Vec33 Unsupervised 
(local)

Shallow Word2vec Gene 
co-expression 
profiles

200 Sequence-based 
feature prediction

Gene function prediction Gene co-expression-based 
protein representation for 
gene–gene interaction

https://github.com/
jingcheng-du/Gene2vec

Yang et al.30 Unsupervised 
(global)

Shallow Doc2vec Protein 
sequences

64 Physicochemical 
feature prediction

Prediction of localization, 
thermostability, 
absorption and 
enantioselectivity

Application of protein 
representations to predict 
the functional properties of 
proteins

https://github.com/fhalab/
embeddings_reproduction

Cohen et al.101 Unsupervised Shallow Vector 
symbolic 
architectures

Protein 
sequences and 
amino acid 
properties

1,000 Sequence-based 
feature prediction

West Nile virus specific 
immunoglobulin receptor 
search

Application of protein 
representations on 
immunoglobulin receptor 
search

N/A

Mut2Vec32 Unsupervised 
(local)

Shallow Word2vec Gene mutations, 
biomedical 
literature, PPIs

300 Genetic feature 
prediction

Classification of driver 
and passenger mutations

Mutation-based gene 
representation

http://infos.korea.ac.kr/
mut2vec

DNA2Vec102 Unsupervised 
(local)

Shallow Word2vec Gene sequences 100 Genetic feature 
prediction

Nucleotide sequence 
similarity search

Variable length DNA 
sequence representation

https://github.com/pnpnpn/
dna2vec

Mol2Vec103 Unsupervised 
(local)

Shallow Word2vec Morgan 
substructures

300 Sequence-based 
feature prediction

Kinase activity prediction Word vector-based 
molecule representation

https://github.com/
samoturk/mol2vec

Viehweger et al.104 Unsupervised 
(global)

Shallow Doc2vec Protein domains 100 Sequence-based 
feature prediction

Prediction of growth 
medium and growth 
temperature of bacteria

Protein domain-based 
representation in 
metagenomics

https://github.com/
phiweger/nanotext

Qi et al.105 Supervised 
(multitask)

Shallow Feed-forward 
neural network

Multiple 
sequence 
alignments 
and protein 
sequences

35 Sequence-based 
feature/structural 
feature/interaction 
prediction

Secondary structure, 
solvent accessibility, DNA 
binding, signal peptide, 
PPI, transmembrane 
topology and coiled coil 
predictions

Multitask distributed 
continuous protein 
representation

N/A

ProtEmbed106 Supervised 
(single task)

Shallow Maximum 
margin ordinal 
regression

Protein domain 
sequences

250 Sequence-based 
feature prediction

Remote homology 
prediction

Distributed continuous 
protein representation

N/A

G2Vec107 Unsupervised 
(local)

Shallow Word2vec Gene expression 
profiles and PPI

128 Genetic feature 
prediction

Cancer biomarker 
prediction

Gene expression-based 
representation for cancer 
biomarker prediction

https://github.com/
mathcom/G2Vec

DeepText2GO108 Unsupervised 
(global)

Shallow TF-IDF and 
Doc2vec

Biomedical 
literature 
and protein 
sequences

201 Sequence-based 
feature prediction

Protein functional 
annotation

Text and protein sequence 
integration for protein 
representation

N/A

WideDTA62 Unsupervised 
(global)

Deep CNN Protein and 
ligand sequences, 
protein domains, 
maximum 
common 
substructures

256 Interaction 
prediction

Ligand–target protein 
interaction prediction

Hybrid representation for 
protein binding affinity 
prediction

N/A

Continued

Table 1 | A comprehensive list of protein representation learning methods (Continued)

N
atu

re M
ach


in

e Int
ellig

enc
e | V

O
L 4 | M

a
rch


 2022 | 227–245 | w

w
w

.nature.com
/natm

achintell
230

https://github.com/jingcheng-du/Gene2vec
https://github.com/jingcheng-du/Gene2vec
https://github.com/fhalab/embeddings_reproduction
https://github.com/fhalab/embeddings_reproduction
http://infos.korea.ac.kr/mut2vec
http://infos.korea.ac.kr/mut2vec
https://github.com/pnpnpn/dna2vec
https://github.com/pnpnpn/dna2vec
https://github.com/samoturk/mol2vec
https://github.com/samoturk/mol2vec
https://github.com/phiweger/nanotext
https://github.com/phiweger/nanotext
https://github.com/mathcom/G2Vec
https://github.com/mathcom/G2Vec
http://www.nature.com/natmachintell


A
n

a
lysis

N
aTu

re M
a

ch
In

e In
TeLLIg

en
ce

Method/study 
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Learning 
approach

Depth of 
the system

Machine 
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algorithm

Training input 
data

Vector size 
(no. of dim.)
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the system

Specific application(s) 
of the method

Importance of the study Data repository

SeqVec31 Unsupervised 
(global)

Deep LSTM (ELMO) Protein 
sequences

1,024 Structural feature 
prediction

Secondary structure 
prediction and disordered 
region prediction

Dynamic language model 
implementation for protein 
representation

https://github.com/Rostlab/
SeqVec

UniRep37 Unsupervised 
(global)

Deep mLSTM Protein 
sequences

5,700 Sequence-based 
feature/
structural feature/
physicochemical 
feature prediction

Secondary structure 
prediction, protein 
stability prediction, 
protein semantic 
similarity prediction, and 
protein engineering/
design

Dynamic protein 
representation to be used 
for diverse protein related 
tasks

https://github.com/
churchlab/UniRep

TAPE27 Unsupervised 
(global)

Deep LSTM, 
Transformer 
and ResNet

Protein 
sequences

2,048 (LSTM)
100 (ResNet)
768  
(Transformer)

Sequence-based 
feature/structural 
feature prediction

Three-dimensional 
structure prediction, 
homology detection, 
protein engineering/
design

Benchmark framework for 
protein embeddings

https://github.com/
songlab-cal/tape

Bepler et al.109 Supervised 
(multitask)

Deep Bidirectional 
LSTM

Global structural 
similarity and 
pairwise residue 
contact maps

100 Structural feature 
prediction

Structural similarity 
search and protein 
domain prediction

A novel similarity measure 
between arbitrary-length 
sequences of vector 
embeddings based  
on a soft symmetric 
alignment

https://github.com/ 
tbepler/protein- 
sequence-embedding- 
iclr2019

ESM-1b38 Unsupervised 
(global)

Deep Transformer 
(BERT)

Protein 
sequences

1,280 Structural feature/
physicochemical 
feature prediction

Secondary structure 
prediction and 
inter-residue contact map 
prediction

First bidirectional 
transformer implementation 
validated with multiple 
protein related tasks

N/A

D-Space110 Supervised 
(multitask)

Deep CNN Protein 
sequences

256 Sequence-based 
feature prediction

Protein mutagenesis 
analysis, protein profile 
search, protein annotation 
and protein similarity 
search

Multitask large-scale trained 
protein representation

https://github.com/
syntheticgenomics/
sgidspace

Tubiana et al.61 Unsupervised 
(global)

Shallow RBM Protein 
sequences

100 Structural feature 
prediction

Protein engineering/
design and inter-residue 
contact map prediction

RBM-based model https://github.
com/jertubiana/
ProteinMotifRBM

Kane et al.111 Unsupervised 
(global)

Shallow Node2vec, 
OhmNet, 
Doc2vec

Protein 
sequences and 
PPIs

128 Sequence-based 
feature prediction

PFP Tissue-based function 
prediction

N/A

Faisal et al.112 Supervised 
(multitask)

Shallow Random Forest 
and SVM

Protein 
sequences

355 Sequence-based 
feature prediction

Classification of nuclear 
receptors, protein 
family classification, 
cell penetrating peptide 
prediction

Use of protein sequence 
fragments to represent 
a protein using multiple 
descriptors

N/A

Continued

Table 1 | A comprehensive list of protein representation learning methods (Continued)
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UDSMProt113 Supervised 
(multitask)

Deep Bidirectional 
LSTM

Protein 
sequences

256 Sequence-based 
feature/structural 
feature prediction

Enzymatic activity 
prediction, remote 
homology and fold 
detection

Application of unsupervised 
protein representations  
for small datasets and 
Enzyme Comission 
prediction

https://github.com/nstrodt/
UDSMProt

DeepPrime2Sec114 Unsupervised 
(global)

Deep Bidirectional 
LSTM, CNN, 
ELMO and 
Word2vec

Protein 
sequences

16 to 2,000 
(best results 
with 300)

Structural feature 
prediction

Secondary structure 
prediction

Comparison of multiple 
deep representation 
learning models for 
secondary structure 
prediction

http://llp.berkeley.edu/
DeepPrime2Sec

CPCProt36 Unsupervised 
(global)

Deep Contrastive 
predictive 
coding

Protein 
sequences

512 Sequence-based 
feature/structural 
feature prediction

Structure prediction, 
homology
detection,
protein engineering

First model uses contrastive 
predictive coding for protein 
representation.

https://github.com/amyxlu/
CPCProt

ProtTrans 
(ProtBERT-BFD, 
ProtXLNet, 
ProtALBERT, 
ProtT5-XL)29

Unsupervised 
(global)

Deep Transformer Protein 
sequences

1,024 (BERT) 
1,024 
(ProtXLNet) 
4,096 
(ProtALBERT) 
1,024 
(ProtT5-XL)

Structural feature/
physicochemical  
feature/sequence- 
based feature 
prediction

Secondary structure/
subcellular localization 
prediction,m
embrane versus water 
solubility classification

First comprehensive 
study that compares large 
transformer models for 
protein representation 
learning

https://github.com/
agemagician/ProtTrans

ProtCNN115 Unsupervised 
(global)

Deep CNN Protein 
sequences

1,100 Protein sequence 
feature prediction

Protein family prediction First CNN that uses  
dilated convolution on 
protein sequence,  
trained with the whole  
Pfam database.

https://github.com/
google-research/
google-research/tree/
master/using_dl_to_
annotate_protein_universe

MSA-Transformer35 Unsupervised 
(global)

Deep Transformer Protein 
sequences

768 Structural feature 
prediction

Secondary structure 
prediction, contact 
prediction.

First transformer-based 
model that exploits MSAs

https://github.com/
facebookresearch/esm

DeepSequence63 Unsupervised 
(global)

Deep Variational 
autoencoder

Protein sequences 30 Sequence-based 
feature prediction

Mutational effect  
prediction

First variational autoencoder 
that exploits MSAs for 
mutational effect  
prediction.

https://github.com/
debbiemarkslab/
DeepSequence

Vector sizes vary for some of the methods. In such cases we indicate the vector sizes that yield the best predictive performance. LSTM, long short-term memory; CNN, convolutional neural network; RBM, restricted Boltzmann machine; PPI, protein–protein interaction; MSA, 
multiple sequence alignments; SVM, support vector machine.

Table 1 | A comprehensive list of protein representation learning methods (Continued)
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According to the results presented in Fig. 2a and Supplementary 
Fig. 5, ProtT5-XL is the most successful representation model in the 
GO molecular function (MF) category, considering all three data-
sets. Mut2Vec32 is the best performer in the GO biological process 

(BP), TCGA_EMBEDDING and PFAM achieved the highest cor-
relation score in the GO cellular component (CC) category. SeqVec, 
ProtXLNet, ProtBERT-BFD and Learned-Vec are other notable 
methods that follow the top performers in these categories. More 
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Introduction to
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proteins
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Fig. 1 | Schematic representation of the study. a, Overview of the protein representation benchmark study. b, Various data sources/types can be used to 
construct representations and these data can be used to train unsupervised or supervised models, and the output representation vectors can be used for 
diverse applications.
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Table 2 | Categorization of the benchmarked representation methods and their respective predictive performance

Grouping General 
approach 
used in 
representation

Specific data source/methodology 
used in representation

Representation 
method name

Semantic similarity inference 
(based on the Manhattan 
distance)

Ontology-based PFP Drug target protein family 
classification

PPI 
binding 
affinity 
estimation

Spearman correlation F1-score MCC (average) MSE 
(average)MF BP CC Ave. MF BP CC Ave. Random 50% 30% 15%

Classical 
representation 
methods and rule/
association-based 
methods

Homology Similarity (annotation transfer 
between similar sequences)

BLAST 0.20 0.14 0.05 0.13 0.87 0.56 0.57 0.67 0.85 0.83 0.81 0.68 NA

HMMER 0.25 0.30 0.24 0.26 0.89 0.61 0.60 0.70 0.85 0.84 0.83 0.73 NA

Functional/structural regions PFAM 0.35 0.42 0.51 0.43 0.86 0.56 0.58 0.67 0.90 0.90 0.90 0.81 2.26

Transition probability between amino 
acids

K-Sep 0.22 0.29 0.29 0.27 0.81 0.52 0.50 0.61 0.67 0.72 0.71 0.64 0.97

Annotation transfer between 
orthologues

Ensembl-Orthology NA NA NA NA 0.20 0.24 0.26 0.23 NA NA NA NA NA

Expert curation UniRule2GO NA NA NA NA 0.01 0.01 0.04 0.02 NA NA NA NA NA

InterPro2GO NA NA NA NA 0.37 0.11 0.27 0.25 NA NA NA NA NA

Composition Amino acid composition AAC −0.01 0.21 0.09 0.10 0.41 0.19 0.23 0.28 0.50 0.43 0.43 0.45 1.85

Amino acid composition and 
physicochemical properties

APAAC 0.17 0.27 0.24 0.23 0.58 0.34 0.40 0.44 0.29 0.16 0.38 0.09 1.79

Representation 
learning 
methodsa,b

Automatically 
learned 
sequences

Amino acid sequence ProtVeca 0.19 0.30 0.21 0.23 0.64 0.36 0.38 0.46 0.34 0.31 0.39 0.37 1.13

Learned-Veca 0.41 0.30 0.31 0.34 0.68 0.39 0.41 0.49 0.59 0.60 0.58 0.54 1.18

UniRepb 0.42 0.47 0.32 0.41 0.82 0.48 0.53 0.61 0.69 0.75 0.75 0.63 0.73

SeqVecb 0.42 0.24 0.42 0.36 0.89 0.60 0.61 0.70 0.89 0.88 0.88 0.85 0.53

MSA-Transformerb 0.38 0.31 0.30 0.33 0.67 0.47 0.50 0.55 0.67 0.72 0.73 0.63 0.91

CPCProta 0.06 0.11 −0.09 0.03 0.65 0.40 0.44 0.50 0.63 0.66 0.62 0.64 0.73

TAPE-BERT-PFAMb 0.50 0.21 0.22 0.31 0.85 0.54 0.58 0.65 0.77 0.79 0.76 0.73 2.35

ProtBERT-BFDb 0.29 0.32 0.42 0.34 0.85 0.61 0.62 0.69 0.84 0.84 0.84 0.81 0.57

ESM-1bb 0.38 0.42 0.37 0.39 0.83 0.53 0.61 0.66 0.87 0.84 0.92 0.86 0.48

ProtXLNetb 0.23 0.31 0.25 0.26 0.82 0.50 0.59 0.63 0.81 0.80 0.85 0.72 0.61

ProtALBERTb 0.22 0.37 0.32 0.30 0.89 0.63 0.64 0.72 0.92 0.91 0.92 0.88 0.42

ProtT5-XLb 0.57 0.21 0.40 0.39 0.90 0.66 0.68 0.75 0.92 0.92 0.92 0.90 0.60

Others Mutations, biomedical literature, PPI Mut2Veca 0.55 0.58 0.39 0.51 0.57 0.43 0.46 0.49 0.44 0.45 0.44 0.46 NA

Gene expression TCGA-Embeddinga 0.04 0.48 0.50 0.34 0.34 0.32 0.41 0.36 0.33 0.33 0.32 0.29 NA

Gene co-expression Gene2Veca 0.18 0.41 0.36 0.31 0.53 0.44 0.50 0.49 0.33 0.32 0.34 0.27 NA

Mean performances considering all methods 0.28 0.32 0.29 0.30 0.66 0.44 0.47 0.52 0.67 0.66 0.68 0.62 1.08
aSmall-scale learned representations. bLarge-scale learned representations. The performance of representation methods on each benchmark (and its subtasks) are shown with average scores. The best performance for each benchmark and subtask is shown in bold. Details can be 
found in the Results and Methods. NA, method is not included in the benchmark. MCC, Matthew’s correlation coefficient. MSE, mean squared error.
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AnalysisNaTure MachIne InTeLLIgence

information about best performers in this benchmark are given in 
Supplementary Section 8.1.

In building our benchmark, we initially employed the whole 
reference human proteome as our test dataset; however, all pair-
wise combinations between ~20.000 proteins proved to be a sparse 
comparison space, making differences between the methods tested 
statistically insignificant. Apart from the dataset, another impor-
tant parameter in this benchmark was the distance metric. We 
calculated the performance bed on multiple distance metrics (for 
example, Cosine, Manhattan and Euclidean). We advise the reader 
to inspect the results of all four benchmarking tasks over all pro-
vided datasets and metrics to reach an unbiased evaluation over  
representation methods.

Ontology-based PFP. As the second benchmark of our study, 
we aimed to assess the success of representation models in 

classification-based automated PFP. Here, GO18 term annotations 
of proteins were used to train and test the same 23 protein repre-
sentation models via supervised machine learning-based classifica-
tion. In this benchmark we preferred a linear classifier (that is, the 
linear support vector classification with stochastic gradient descent 
(SGD) optimizer from scikit-learn51). We do this to decouple the 
final performance of the classification from the classifier. If we 
had used a more sophisticated classifier (for example, kernel SVM, 
random forest and so on) it would not be possible to tell whether 
a certain result was due to the power of the representation model 
or some non-linear transformation performed by the classifier; 
however, by using a linear boundary classifier we make sure that 
the representations under test are up to the task of presenting the 
protein space in a linearly separable fashion. We discussed further 
details regarding the selection of GO terms under Supplementary  
Section 8.2.
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Fig. 2 | Protein semantic similarity inference benchmark results. a–c, Performance (Spearman correlation) of protein representation methods in inferring 
pairwise semantic similarities between proteins considering GO categories of molecular function (Manhattan, a), biological process (Manhattan, b) and 
cellular component (Manhattan, c). Scatter plots show the performance on Sparse Uniform and Well_Annotated_500 datasets on the x- and y-axes, 
respectively. Scores are calculated in terms of Spearman correlation between the ranked true pairwise GO-based semantic similarity list (calculated using 
Lin similarities50 between documented GO annotations of proteins with experimental and manual curation evidence codes) and the representation-based 
ranked pairwise similarity list (calculated using ‘1 – normalized Manhattan distances’ between numerical feature vectors of proteins). Methods with data 
leak suspicion are marked by ^ symbols. The colours indicate groups of models (green, classical representations; blue, small-scale learned representations; 
red, large-scale learned representations). See the Methods for details.
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The PFP performance results are given for the nine GO 
groups ([low, middle, high] × [shallow, normal, specific]) using 
F1-score-based heat maps in Fig. 3. The overall GO term predic-
tion performance results (averaged over the nine groups)—in terms 
of recall, precision, F1-score, accuracy and Hamming distance—are 
given in Supplementary Table 4. It is important to mention that 
these performance figures are better than the results reported for 
the CAFA challenges, due to the way we modelled the experiment. 
We only run a test sample on the model that contains its true label 
as one of the five tasks (that is, GO terms), instead of running all test 
samples on all prediction models. This experimental design choice 
was made to prevent accumulation of the scores of all benchmarked 
methods in low-performance regions (especially for hard-to-predict 
ontologies such as BP), which would prevent clear comparison of 
the performances. Our aim is to compare the methods with each 
other from different perspectives within a highly controlled envi-
ronment, rather than finding the best overall method for PFP, which 
was the objective of the CAFA challenge. It should also be noted that 
learned protein representations displayed notable performances in 
the CAFA challenge52,53.

It is shown in both Fig. 3 and Supplementary Table 4 that the 
top methods showed similar performances in the MF prediction 
task across almost all GO groups (for example, low, high, specific, 
shallow and so on), among which ProtT5-XL29 achieved first place 
and the ProtBERT-BFD29, SeqVec31, ProtALBERT29 and HMMER40 
models ranked next with similar scores. For the BP prediction 
task, ProtT5-XL was again the best performer and ProtALBERT, 
SeqVec, ProtBERT-BFD and HMMER were the runners-up. 
Finally, for the CC prediction task, ProtT5-XL preserved its place 
as the best performer, and ProtALBERT, SeqVec and HMMER were 
the runners-up. A detailed discussion on these results is given in 
Supplementary Section 8.2.

In the PFP benchmark, some of the learned representation mod-
els performed considerably better than classical methods, statisti-
cally speaking. The overall performances observed in the CC and 
BP GO term prediction tasks were lower than the MF prediction 
tasks. This is plausible as most of the learning-based methods use 
protein sequence data as input, and the sequence is not a direct indi-
cator for localization (as the cleaved signal peptides are absent) or 
the biological role of the protein in a large-scale process. We also 
observed that the success rate in CC term prediction decreases with 
decreasing number of annotated proteins. A similar observation 
also holds for the MF and BP categories; however, the effect was less 
pronounced. We did not observe a similar performance delta with 
increasing or decreasing term specificities (that is, shallow/generic 
terms versus specific/informative terms). Nevertheless, it is possible 
to state that there is still an issue regarding the prediction of spe-
cific/informative GO terms, as many of them have a low number of 
annotated proteins.

Drug target protein family classification. In our third benchmark 
analysis, we measured the performance of protein representations 
in the framework of drug discovery, with the prediction of drug 
target proteins’ main families (that is, enzymes, membrane recep-
tors, transcription factors, ion channels and others), as listed in 
the ChEMBL database54. As these families are made up of proteins 
with distinct structural characteristics, this benchmark analysis is 
also expected to reflect the ability of these models in learning struc-
tural properties. Furthermore, by using a data source other than 
functional annotations, we seek to diversify our benchmark and to 
evaluate the representations from a different perspective. We also 
incorporated an extra layer of detail to this benchmark by prepar-
ing four different versions of the protein family annotation data-
set, each filtered in terms of a different predetermined sequence 
similarity threshold (that is, Random Split dataset, and 50%, 30% 
and 15% similarity threshold datasets using Uniclust50, Uniclust30 

and MMSEQ-15 clustering, respectively) to be used in train/vali-
dation dataset splits in the tenfold cross-validation analysis. As a 
result, no pair of sequences—in which one is in the training and the 
other in the validation fold—exists that has a sequence similarity 
of more than the selected threshold (that is, 50%, 30% and 15%) in 
any case. The similarity-based split dataset statistics are shown in 
Supplementary Table 11. The aim behind benchmarking methods 
over these datasets was to inspect how much of the learning is based 
on simple sequence similarity, as opposed to learning complex and 
hidden patterns that correspond to the prediction tasks at hand. In 
this benchmark, we evaluated six small-scale and eight large-scale 
protein representation learning models, together with six classical 
representation methods.

According to the mean tenfold cross-validation results of our 
multitask classification model (Fig. 4 and Table 2), ProtT5-XL and 
ProtALBERT are the best performers on all datasets. PFAM, ESM-1b 
and SeqVec models also had remarkable predictive performance. As 
expected, there is a general trend of decreasing performance as one 
uses train/test datasets with lower similarity-based split thresholds; 
however, this decrease is much more evident in classical representa-
tions than representation learning methods. For example, BLAST 
is ranked as the sixth best method on the random split dataset 
(MCC: 0.85), whereas it ranked eighth, ninth and tenth on the 50%, 
30% and 15% similarity-based split datasets (with mean MCCs of 
0.83, 0.81 and 0.68), respectively. On the other hand, ProtT5-XL 
preserved its top performance for nearly all datasets (with mean 
MCCs of 0.92 for the first three datasets and 0.90 for the 15% split). 
Other representation learning-based methods such as ESM-1b, 
SeqVec and ProtBERT-BFD gained ranks from random split to 15% 
similarity-based split (Fig. 4 and Table 2). The statistical signifi-
cance of the performance differences is provided in Supplementary 
Table 8. Protein family specific scores (Supplementary Figs. 8–12) 
showed that ProtT5-XL provided the best accuracy in the classifica-
tion of enzymes (Supplementary Fig. 8). ProtT5-XL, ProtALBERT, 
PFAM, ProtXLNet, ESM-1b, SeqVec, HMMER and BLAST are top 
representation methods for membrane receptors (Supplementary 
Fig. 9). For transcription factors, ProtT5-XL, ProtALBERT, ESM-1b 
and PFAM took top places (Supplementary Fig. 10). For ion chan-
nels, ProtT5-XL, BLAST, ProtALBERT, PFAM and ESM-1b are the 
best scoring models (Supplementary Fig. 11). Finally, ProtALBERT, 
ProtT5-XL, SeqVec and ESM-1b are the best performers for the oth-
ers class (Supplementary Fig. 12).

What is interesting here is that when the similarity threshold 
is dropped to 15%, which is even lower than the so-called twilight 
zone to transfer structural and functional annotations between 
proteins (that is, ~25% sequence similarity), top representation 
learning-based methods still perform very well. These results sug-
gest that representation learning methods may have the ability to 
capture patterns beyond simple sequence similarities; however, fur-
ther investigation is required to discuss this topic. ProtT5-XL and 
ProtALBERT are the best performing models in this benchmark (for 
example, MCC = 0.92 and 0.91 on the Uniclust50 dataset). Possible 
underlying reasons for this success are explained in Supplementary 
Section 8.3.

Protein–protein binding affinity estimation. In this benchmark 
we assessed the performance of representation methods in predict-
ing experimentally identified protein–protein binding affinities. 
More specifically, the change in binding affinities due to mutations 
observed in one of the interaction partners is predicted. We used 
the SKEMPI dataset, which contains PPI binding affinity scores 
(that is, Kd values) between co-crystalized complexes (from PDB) 
of both wild-type proteins and variants. The benchmark evaluates 
representation methods in terms of their ability to extract residue 
and/or region-level structural features that have critical importance  
for physical interactions between protein pairs to occur; and how 
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Fig. 3 | Ontology-based protein function prediction benchmark results. a–c, Heat maps indicating the clustered performance results (weighted F1-scores) 
of protein representation methods in ontology-based PFP benchmark in terms of GO categories of molecular function (a), biological process (b) and 
cellular component (c). The colours indicate groups of models (yellow, rule-based annotation methods; green, classical representations; blue, small-scale 
learned representations; red, large-scale learned representations). See Methods for details.
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single, double or triple amino acid changes affect the binding 
affinities. This subject has significant translational value in terms 
of understanding the underlying molecular mechanism of many 
genetic diseases and of proposing new and effective treatments.

Details regarding the dataset, tests, metrics and extended results 
can be found in Supplementary Section 8.4. Performance scores 
are given in Fig. 5 and Supplementary Table 9, and the statistical  

significance of the differences in performance of tested methods are 
presented in Supplementary Table 10.

According to these results, ProtALBERT produced the best esti-
mations with MSE = 0.43 and MAE = 4.57, correlation = 90.7%. 
These are approximately 25% better than the results of the base-
line PPI prediction based on Siamese residual RCNN (PIPR) model 
(MSE = 0.63, MAE = 5.48, corr = 87.3%). Please see Supplementary 

APAAC
a

c d

b

APAAC

APAAC

APAAC

AAC

AAC AAC

AAC

K-Sep

K-Sep

K-Sep

K-SepMSA-transformer

MSA-transformer

MSA-transformer

MSA-transformer

HMMER

HMMER

HMMER

HMMER

Blast

Blast

Blast

Blast

ESM-1b

ESM-1b ESM-1b

ESM-1b

SeqVec

SeqVec

SeqVec

SeqVec

ProtT5-XL

ProtT5-XL ProtT5-XL

ProtT5-XLProtALBERT

ProtALBERT ProtALBERT

ProtALBERT

0 0.2 0.4 0.6 0.8 1.0

Value

0 0.2 0.4 0.6 0.8 1.0

Value

0 0.2 0.4 0.6 0.8 1.0

Value

0 0.2 0.4 0.6 0.8 1.0

Value

PFAM

PFAM

PFAM

PFAM

UniRep

UniRep

UniRep

TAPE-BERT-PFAM

TAPE-BERT-PFAM

TAPE-BERT-PFAM

ProtXLNet

ProtXLNet

ProtXLNet

UniRep

TAPE-BERT-PFAM

ProtXLNet

ProtBERT-BFD

ProtBERT-BFD

ProtBERT-BFD

ProtBERT-BFD

TCGA-embedding

TCGA-embedding

TCGA-embedding

TCGA-embedding

Gene2Vec

Gene2Vec Gene2Vec

Gene2Vec

ProtVec

ProtVec ProtVec

ProtVec

Mut2Vec

Mut2Vec Mut2Vec

Mut2Vec

Learned-Vec

Learned-Vec Learned-Vec

Learned-Vec

CPCProt

CPCProt

CPCProt

CPCProt

Metric
Accuracy
F1-score
MCC

Fig. 4 | Drug target protein family classification benchmark results. a–d, Box plots displaying the overall performance results (F1-score, accuracy and 
MCC) of protein representation methods in the drug target protein family classification benchmark on the Random Split (a), UniClust50 (b), UniClust30 
(c) and MMSEQ-15 datasets (d). Models are sorted according to mean MCC scores which can be found in Table 2. Colours of names indicate groups of 
models (green, classical representations; blue, small-scale learned representations; red, large-scale learned representations). See the Methods for details. 
Whiskers indicate minimum/maximum values.

Nature Machine Intelligence | VOL 4 | March 2022 | 227–245 | www.nature.com/natmachintell238

http://www.nature.com/natmachintell


AnalysisNaTure MachIne InTeLLIgence

Section 8.4 for more information on the baseline models used in 
this benchmark. Moreover, the ESM-1b and the SeqVec models 
had performances that surpassed PIPR in all scoring metrics. These 
results are interesting as PIPR learns input sequences in a super-
vised framework (in an end-to-end fashion), aiming to maximize 
the binding affinity prediction performance. In contrast, the protein 
representations in our benchmark are learned (during pre-training) 
via tasks (for example, predicting the next amino acid in the 
sequence) completely unrelated to binding affinity prediction, and 
then trained in a supervised manner on binding affinity values via 
simple regression. These results might be explained by the atten-
tion mechanism learning the amino acid substitution information. 
This was also shown in past literature55. Moreover, ProtTrans study 
showed that attention heads may capture the interaction of amino 
acids29. This observation could also explain the best-in-class perfor-
mance produced by ProtALBERT: this model has a lower number 
of parameters compared with other transformers in our benchmark 
(except TAPE-BERT-PFAM), yet the highest number of attention 
heads. The attention heads are high-dimensional associative data 
structures that consist of query, key and value variables. When an 
input (query) is given, attention values are calculated on the basis of 
the similarity between query and value. These variables are learned 

during training. In protein representation learning, attention heads 
learn/discover sequence motifs, which can later be associated with 
the defined tasks by the remainder of the model56.

Discussion
The number of AI-based protein informatics studies has been 
growing lately to further the understanding of complex relations 
between sequence, structure and function57. In this study we evalu-
ated protein representation learning methods in terms of their abil-
ity to capture functional properties of proteins to be used for—and 
ultimately overcome—the critical challenges in the protein science, 
biotechnology and biomedicine domains. These models, with their 
high representation power and modest resource requirements (at 
least during inference), can be (re)used for a variety of tasks. We 
therefore argue that learned representations will play an essential 
role in protein research and development in the near future. Below 
we discuss critical points relevant to the field of protein repre-
sentation learning by referring to the results of our benchmarks. 
A summary of available protein representation learning stud-
ies and methods is given in Table 1. The overall performance of 
selected methods in our four predictive benchmarks can be found  
in Table 2.
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Representation learning-based methods often perform better 
than the classical methods in the functional analysis of proteins. 
In all of our benchmarks, we observed that the learned represen-
tations (particularly the large-scale models) were superior to the 
classical models in terms of predictive performance, confirming the 
benefit of the artificial learning-based data-driven approach in rep-
resenting functional properties of biomolecules. On the other hand, 
in the molecular function category of the PFP prediction bench-
mark, HMMER, a classical approach in biomolecular similarity 
detection and functional annotation that is built on hidden Markov 
models (HMMs), could compete with deep learning-based protein 
representation methods. This result is in accordance with previous 
studies in the sense that sequence similarities are correlated with 
biochemical properties of proteins to such a high degree that a sim-
ple vectorial representation that uses this feature can perform nearly 
as well as complex sequence modelling methods19. In light of these 
results, we claim that the explicit incorporation of homology infor-
mation into the training of representation learning models may 
lead to improvements considering predictive performances. This 
is also evident from high performance deep learning-based pro-
tein structure predictors such as RoseTTAFold14 and AlphaFold213, 
which use multiple sequence alignments to dramatically enrich the 
sequence-based input.

We believe that learned protein representations, in their current 
state, are also essential for other reasons, which are discussed in 
Supplementary Section 9.

Model design and training data type/source are critical factors in 
representation learning. Our experiments show that one of the most 
crucial factors in protein representation learning is the design of the 
representation model. For example, in our benchmark, we included 
two types of BERT models. The TAPE-BERT-PFAM was trained with 
32 million protein domain sequences. ProtBERT-BFD was trained 
with 2.1 billion metagenomic sequence fragments; however, the per-
formance difference between these two is insignificant (Table 2). On 
the other hand, more complex models trained with the same 2.1B 
dataset (such as ProtT5-XL) showed much better performance in 
most of the benchmarks. Hence, we believe that model design/archi-
tecture is of prime importance (information related to the design/
architecture of these methods are given in the Methods, and dis-
cussed, in relation to predictive performances, in the Results section).

Another finding about training data sources is that incor-
porating multiple data types may lead to better performance in 
function-related prediction tasks. As an example, AAC and APAAC 
both use amino acid composition; however, APAAC also adds phys-
icochemical properties to its representation model and performs 
significantly better in the semantic similarity inference and PFP 
benchmarks. Likewise, Mut2Vec incorporates mutation profiles, 
PPI and text data, and achieved top performance. especially in the 
semantic similarity inference benchmark.

In the context of our study, it is possible to talk about two 
entirely different source datasets: the first one is used for the actual 
representation learning (that is, for training the representation 
learning model), and the second is for different supervised predic-
tive modelling applications. Details on these datasets are given in 
Supplementary Section 9.

Potential data leaks should be considered during the construc-
tion and evaluation of protein representation learning methods. 
A data leakage can be defined as the accidental leakage of knowl-
edge between the training and validation phases of a machine learn-
ing method, leading to overoptimistic performance measurements 
and is a critical issue that should be considered during performance 
testing58. In our analyses, we observed that certain representation 
models performed well in tasks that are biologically related to the 
tasks that these models were pre-trained on; although the data and 

the actual tasks were different from each other. This discussion is 
continued in Supplementary Section 9.

The current state and challenges in protein representation learn-
ing. There are several challenges within the field of protein repre-
sentation learning. Although most of the protein representation 
learning models (proposed so far) are derived from NLP models 
(LSTM/transformer-based deep learning models), there is a struc-
tural difference between the problems of modelling language and 
proteins. In particular, it has been estimated that an adult native 
American English speaker uses 46,200 lemmas and multiword 
expressions on average59; however, there are only 20 different amino 
acids in a protein, which are treated in a manner analogous to lem-
mas of a language by representation models. These NLP models 
calculate a representation vector for each word. Similarly, when 
this approach is applied to protein sequence data, a representation 
vector is calculated for each amino acid. These vectors are pooled 
to create fixed sized vectors for each sentence/document and pro-
tein, for NLP and protein informatics tasks, respectively. Hence, 
the low number of building blocks in protein representations (that 
is, 20 amino acids) may pose an advantage for smaller models in 
competing with larger ones in the protein representation learning 
domain, in contrast to NLP. Thus, more investigation is encouraged 
for protein sequence specific learning models. A related key chal-
lenge is associated with model sizes which is discussed in detail in 
Supplementary Section 9.

Model interpretability is critical for understanding why a model 
behaves the way it does. In an interpretable (that is, explainable) 
representation, all features are encoded in a segregated form, which 
means that the feature(s) corresponding to each position on the 
vector is known; however, most of the learned protein representa-
tions investigated in this study are not interpretable/explainable. For 
example, presence of a TIM barrel structure in a protein might be 
encoded in the fifth position of its representation vector, whereas 
the molecular weight information may be shared between the third 
and fourth positions. In the data science field in general, disentan-
glement studies try to associate the real properties of samples with 
individual positions of the output vectors60. The disentanglement of 
protein representations is a new subject, and only a few represen-
tation model developers have explored this issue thus far61,37. As a 
result, a systematic approach does not yet exist and new frameworks 
are required for the standardized evaluation of protein representa-
tion model interpretability.

Most of the protein representation models proposed so far 
are trained using only one type of data (for example, protein 
sequences). However, protein knowledge is associated with multiple 
types of biological information, such as PPIs, post-translational 
modifications, gene/protein (co)expressions and so on. To the best 
of our knowledge, only a few of the available protein representa-
tion models used multiple types of data32,62. Among the methods in 
our benchmark study, Mut2Vec32,62 was one such example, incor-
porating PPIs, mutations and biomedical texts, and produced more 
accurate results than many of the solely sequence-based representa-
tions in GO BP- and CC-based PFP. We propose that the integration 
of additional types of protein related data, especially evolutionary 
relationships, may further augment the accuracy in predictive tasks. 
MSA-Transformer35 and undirected graphical models (for exam-
ple, DeepSequence63) exploit homology information through deep 
learning. While DeepSequence calculates latent factors using the 
posterior distribution of MSAs, MSA-Transformer uses row- and 
column-based attention to combine MSAs and protein language 
models. Although MSA-Transformer showed average performance 
in our benchmarks, it was found to be successful on secondary 
structure and contact prediction tasks in the literature, which sug-
gests MSA-Transformer’s ability to capture evolutionary relation-
ships. Related to this, there is a clear requirement in the literature 
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for holistic protein vectors that can effectively represent proteins 
from a generalized point of view, to be used for various different 
protein informatics-related purposes. In our opinion, it may be pos-
sible to create these holistic representations by concatenating mul-
tiple representation vectors that were previously and independently 
constructed using different types of biological data (as a means of 
pre-training), and training new models using the integrated ver-
sion of these vectors for high-level supervised tasks such as pre-
dicting biological processes and/or complex structural features 
(Supplementary Fig. 13). Another way of constructing these holistic 
representations is directly learning on heterogeneous graphs that 
integrate multiples types of protein relationships (for example, other 
proteins, ligands, diseases, phenotypes, functions, pathways and so 
on)64 via graph representation learning.

Protein representation learning methods can be used to design 
new proteins. Protein design is one of the key challenges in biotech-
nology65. Rational protein design involves evaluating the activities 
and functions of many different alternative sequences/structures 
to provide the most promising candidates for experimental valida-
tion, which can be seen as an optimization problem66. The sequence 
space to be explored for this purpose is enormous. For example, 
the mean length of human proteins is around 350 amino acids, for 
which 20350 different combinations exist, even though most of them 
would be non-functional sequences. In the past couple of decades, 
computational approaches have been used for protein design, and 
these have produced promising results particularly in enzyme 
design67–69, protein folding and assembly70 and protein surface 
design. Efficient antibodies71 and biosensors72 have thus been devel-
oped. Some of these methods use quantum mechanical calcula-
tions73,74, molecular dynamics75,76 and statistical mechanics77,78, each 
having exceptionally high computational cost79, and require expert 
knowledge. Similar shortcomings can also be stated for major pro-
tein design software such as Rosetta80. Recent studies have shown 
that artificial learning-based generative modelling can be employed 
for de novo protein design. In the machine learning domain81, gen-
erative modelling, as opposed to discriminative modelling, is an 
approach where synthetic samples are produced that obey a prob-
ability distribution learned from real samples. This is accomplished 
by effectively learning the representations of samples in the training 
dataset. Deep learning has recently become the key approach for 
generative model architectures82, and has been applied in various 
fields including protein/peptide design. For example, Madani et al. 
used protein language models to design new functional proteins 
belonging to different protein families from scratch and validated 
their designs by wet-lab experiments83. More examples can be found 
in Supplementary Section 9. These studies indicate that representa-
tion learning is critical for novel applications in both protein and 
ligand (drug) design.

We believe protein representation learning approaches will have 
influence on various fields of the protein science with real-world 
applications in the near future, thanks to their flexibility to inte-
grate heterogeneous protein data (that is, physical and chemi-
cal properties/attributes, functional annotations and so on) at 
the input level, and their ability to efficiently extract complex  
latent features.

Methods
In this section, together with relevent sections in the Supplementary Information, 
we explain different approaches to representing proteins (Supplementary  
Section 1), classical representation methods (Supplementary Section 2), an 
evaluation of representation learning approaches from a technical point of view 
(Supplementary Section 3) and detailed information on representation methods 
included in our benchmark analyses (Supplementary Section 4).

We group protein representation learning methods’ technical approaches 
(Supplementary Fig. 15a) and objectives/applications reported in their respective 
publications (Supplementary Fig. 15b) in Supplementary Section 5. Here we 
formed five main categories according to the application domains: (1) protein 

interaction prediction (essential for understanding molecular mechanisms 
and pathways), (2) physicochemical feature prediction (important for protein 
engineering and drug discovery related tasks), (3) genetic feature prediction,  
(4) PFP and (5) structural feature prediction. Supplementary Fig. 15b categorizes 
the main domains and specific application fields under each one. Methods  
with more than one objective are classified according to their major objective. 
Common hallmarks possessed by most of the successful protein representations are 
explained and discussed in Supplementary Section 6.

We present methodological details regarding the datasets, modelling 
approaches, training/test procedures and performance evaluation for each 
benchmark task below (metrics are explained in Supplementary Section 7). We 
share the source code, models and datasets related to this study so that the data 
can be used by other groups for benchmarking new representation models and to 
compare the results with those we provide here.

The methods that we included in our benchmark study are Learned-Vec30, 
SeqVec31, Mut2Vec32, Gene2Vec33, TCGA_EMBEDDING34, ProtVec4, 
TAPE-BERT-PFAM27, MSA-Transformer35, CPCProt36, ProtBERT-BFD29, 
UniRep37, ESM-1b38, ProtALBERT29, ProtXLNet29, ProtT5-XL29. Furthermore, 
classical representation methods BLAST39, HMMER40, AAC42, APAAC43, K-Sep44, 
PFAM41 and rule/association-based models, UniRule2GO46, InterPro2GO45 and 
Ensembl-Orthology47 are employed. All protein representation methods are 
summarized in terms of their technical aspects (for example, learning approach, 
algorithm and so on), input data types, vector sizes, objectives, applications, 
importance and available data repositories in Table 1.

Most of the protein representation learning methods produce outputs as 
residue features, which means that a separate representation vector is calculated 
for each amino acid of the protein. Later, residue level features are aggregated 
to obtain an overall representation for the protein. In our study we chose to use 
mean pooling for the aggregation procedure, due to its unbiased and conservative 
structure. It is important to note that the aggregation mechanism is a critical  
factor affecting model performance and this topic is evaluated with ablation  
studies in the literature84.

Semantic similarity inference benchmark. To construct the full semantic 
similarity inference benchmark dataset, we downloaded all human protein entries 
in the UniProtKB/Swiss-Prot database as well as their GO term annotations 
from the UniProt-GOA database (2019_11 release). The electronically inferred 
annotations—labelled with the IEA evidence code—were excluded from the 
dataset, leaving only the annotations reviewed by human experts. We subsequently 
enriched the dataset by propagating the annotations to the parent terms of the 
asserted terms in the GO graph, according to the true path rule. Our finalized  
full annotation dataset contained 14,625 distinct GO terms (3,374 of them 
belonged to MF, 9,820 belonged to BP and 1,431 belonged to CC) and  
326,009 annotations (75,884 of them belonged to MF, 154,532 belonged to  
BP and 95,593 belonged to CC).

We calculated the true (that is, ground truth) pairwise GO-based semantic 
similarities between all proteins in our dataset independently for all GO aspects 
(that is, MF, BP and CC) using Lin similarity in the GoSemSim package85. Lin 
similarity50 is based on Shannon’s information theory, which states that the 
information content (IC) of an event is negatively proportional to the observation 
probability (P) of the event; IC is formulated as;

IC (P) = log (1/P) (1)

Another concept used in Lin similarity is the least common subsumer (LCS), 
which is the first common ancestor of the two GO terms when travelling to the 
root in the GO-directed acyclic graph. Lin similarity is thus defined as:

simlin =
2IC (LCS (c1, c2))
IC (c1) + IC (c2)

(2)

More information on semantic similarity measures can be found in  
the literature86.

The original/unfiltered semantic similarity dataset included pairwise GO-based 
semantic similarities between all proteins in our dataset. In this set, 3,077 proteins 
were used to calculate MF-based pairwise semantic similarities, 6,154 proteins 
were used for BP-based similarities and 4,531 proteins for CC-based similarities; 
however, there are numerous poorly annotated proteins, most of which contain 
insufficient information on their functional properties and might have introduced 
a bias in the similarity measurements. To mitigate this, we prepared subsets 
and used these subsets for our analysis. We prepared three semantic similarity 
subsets (Well_Annotated_500, Well_Annotated_200 and Sparse Uniform) for 
each GO category (MF, BP and CC), by filtering the semantic similarities in the 
full dataset. This way, nine datasets were generated in total. The first subset, 
containing only the top 500 proteins sorted by the number of GO annotations 
(labelled as well annotated 500 in the relevent figures). The second subset consists 
only of the top 200 such proteins (labelled as Well_Annotated_200 in the relevent 
figures). The similarity distribution is not uniform in the three datasets described 
above, creating very dense similarity score regions (Supplementary Fig. 2) that 
substantially decrease the correlation values due to rank changes among the pairs 
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with proximal similarities. This caused an accumulation around low correlation 
values that diminished the discriminative power of the measurements. To prevent 
this, we sampled every thousandth protein pair from the ranked list of pairwise 
similarities from the well annotated 500 set to generate a uniformly distributed 
dataset. This final dataset contains 247 similarity scores between 40 different 
proteins (labelled as sparse uniform in the relevant figures). Thus, among  
our three datasets, Sparse Uniform is the most trivial one to predict and  
Well_Annotated_500 is the most challenging.

In the benchmark phase, we compiled the protein representation vectors  
for the human protein entries in our dataset using the selected representation  
learning methods: Learned-Vec30, SeqVec31, Mut2Vec32, Gene2Vec33,  
TCGA_EMBEDDING34, ProtVec4, TAPE-BERT-PFAM27, MSA-Transformer35, 
CPCProt36, ProtBERT-BFD29, UniRep37, ESM-1b38, ProtALBERT29, ProtXLNet29 and 
ProtT5-XL29. Pre-calculated vectors, when available, were used directly; in other 
cases these were generated from their respective models. Furthermore, classical 
representation methods BLAST39, HMMER40, AAC42, APAAC43, K-Sep44 and 
PFAM41 are included as baselines. We subsequently calculated pairwise similarities 
between the proteins, using the compiled representation vectors. Cosine similarity, 
normalized Manhattan distance and normalized Euclidean distance are used to 
evaluate pairwise similarity (normalized Manhattan and Euclidean distances are 
converted to similarities by subtracting them from 1).

At this point, we had two sets of pairwise similarity arrays at hand; the first  
was calculated by taking the GO-derived semantic similarities between the  
proteins in our dataset into account (that is, the ground truth semantic 
similarities), and the second consisted of pairwise similarities calculated directly 
from representation vectors.

Finally, to observe and compare the performance of protein representation 
models in inferring semantic similarities, we calculated the Spearman rank-order 
correlation87 values (as explained in Supplementary Section 7) between the ranked 
lists of representation vector similarities and true semantic similarities.

Ontology-based PFP benchmark. The details of the dataset preparation procedure 
for the PFP benchmark are explained below in six steps. For each GO category 
(that is, MF, BP, CC);

	1.	 We obtained human proteins and their GO term annotations from  
UniProtKB/Swiss-Prot and UniProtGOA databases, respectively  
(release 2019_10 for both).

	2.	 We excluded all electronically made annotations (evidence code: IEA) from 
the list of GO term annotations with the aim of increasing the reliability of 
annotations and to prevent error propagation during prediction.

	3.	 For each GO term, we created an individual list that includes the accessions  
of the annotated proteins, to be used in model training and testing via 
cross-validation. We filtered each protein list using the UniRef clusters88 by 
only selecting the representative protein entry from each cluster. UniRef  
provides protein clusters that are formed based on sequence similarity.  
We used UniRef50 clusters, to ensure that there were no protein sequences 
with more than 50% sequence similarity in each list. Here the aim is to create 
train/test datasets without similar proteins that could otherwise introduce a 
bias to the analysis.

	4.	 GO terms were grouped as either low, middle or high according to the 
number of annotated proteins. GO terms with 2 to 30 annotated proteins 
were placed in the low group, terms with 100 to 500 annotated proteins 
were placed in the middle group and terms with more than 1,000 annotated 
proteins were placed in the high group. We deliberately left margins between 
groups to obtain a clear separation.

	5.	 The specificity of the GO terms was determined as either shallow, normal and 
specific. In the GO graph, terms within the first third of the maximum depth 
of their respective branches were considered as shallow, terms in the second 
third were categorized to normal and the deepest third were placed into the 
specific group. It should be noted that the max depth varies according to the 
GO category.

	6.	 Based on the combinations of groups constructed in steps 4 and 5; a 
total of nine GO term groups (3 × 3) were formed for each GO category 
(MF-low-specific, BP-high-shallow and so on), making a total of 27 groups 
(9 × 3). There are no GO terms that correspond to two of these groups (for 
example, MF-high-specific and CC-high-specific) and thus these groups 
were left out of this analysis. As most of the remaining 25 groups were highly 
crowded, we selected five terms from each group for further evaluation. Four 
groups already had less than five GO terms. Hence, they were directly incor-
porated without further selection. We tried to select dissimilar GO terms in 
order to generalize the results over the whole functional spectrum, as much 
as possible. For this, we calculated pairwise semantic similarities between GO 
terms using Lin similarity, and the five most dissimilar terms were chosen for 
each group. The statistics of the finalized datasets are given in Supplementary 
Table 2 and the identifiers of the selected GO terms are given in Supplemen-
tary Table 3.

Using these datasets, multitask prediction models were constructed (one 
for each GO group mostly made up of five GO terms, and for each protein 

representation method) using linear SVM classification with SGD learning  
(with Hinge loss) as implemented in the scikit-learn library51, making a total 
number of 500 prediction models (25 GO groups × 20 representation methods). 
This is in addition to the predictions of the three rule/association-based methods 
(there are no prediction models for these methods as they are not vector-based). 
Fivefold cross-validation was used to evaluate performance for each model.  
The default values were selected for the hyperparameters of the SGD classifier  
(that is, L2 norm for error penalty and the hinge loss function). Due to the 
simplicity of the linear classification model, we assume that the effect of 
hyperparameter selection will be minimal.

Rule/association-based models, InterPro2GO45, UniRule2GO46 and 
Ensembl-Orthology47 were included, in addition to the classical and representation 
learning-based methods used in the previous (semantic similarity prediction) 
benchmark. As rule/association-based methods are non-vector-based, their 
pre-calculated GO annotations were directly obtained from the UniProt database 
(considering the selected 275 GO terms) and used in the performance evaluation.

Drug target protein family classification benchmark. To construct our drug 
target protein family classification benchmark dataset, we employed the ChEMBL 
database (v.25)54, which contains curated collections of drug/compound–target 
protein interaction data (that is, bioactivities) for experimental and computational 
research in drug discovery and development. Considering the hierarchical target 
protein categorization system presented in ChEMBL, we use four broad target 
protein families and grouped the rest of the targets as a fifth category (that is, 
enzymes, membrane receptors, transcription factors, ion channels and others). 
Moreover, we have collected additional human proteins using UniProt’s curated 
keyword annotations (for example, GPCR and ion channel) and UniProt Enzyme 
Commission number annotations. Furthermore, ChEMBL human drug target 
single proteins with the family annotations transporter, epigenetic regulator, 
secreted, other cytosolic, other nuclear, other categories and unclassified are 
merged as others. Finally, with the aim of collecting the transcription factor 
family members, the list provided in a highly cited and comprehensive study 
that catalogues human transcription factors89 was used. To only include the 
transcription factors with high confidence, we manually filtered this dataset 
(that is, eliminated proteins with attributes: TF tested by HT-SELEX? = not 
tested, CisBP considers it a TF? = no, TFclass considers it a TF? = no, Vaquerizas 
2009 classification = no, Motif status = no motif). After an additional manual 
filtering operation to eliminate proteins with ambiguous or redundant family 
annotations, we ended up with 4,365, 835, 347, 1,034 and 1,019 proteins for 
enzymes, GPCRs, ion channels, transcription factors and others, respectively. With 
these enrichments, we believe that the dataset has become more representative 
considering the space of known and potential drug targets in the human proteome.

We constructed four different datasets by splitting data into training and test 
datasets at various degrees of similarity. For this, we used the protein sequence 
similarity-based clustering scheme UniClust90 which has pre-calculated sequence 
clusters at different granulation levels such as 50%, 30%. Moreover, we follow the 
same protocol with the UniClust study and create another cluster at granulation 
level 15% for human proteins. We used the MMSeq tool as defined in the UniClust 
protocol and named our cluster dataset as MMSEQ-15. We separated our train/test 
datasets at these levels. Namely, for the 50% similarity level, there are no sequence 
pairs that have a similarity greater than 50% between train and test splits. To yield 
a fair comparison between the performances on different datasets, we kept the test/
validation dataset exactly the same, and discarded the sequences from the training 
datasets which have a sequence similarity higher than the selected threshold (this 
operation is repeated independently for each fold of the tenfold cross-validation, 
for each dataset). The overall number of proteins for each protein family and 
representation method in the raw/unfiltered dataset (which also corresponds to the 
random-split dataset) is shown in Supplementary Table 7. The number of proteins 
per family, cross-validation fold and similarity-based split dataset is provided in 
Supplementary Table 11. Small differences between the dataset sizes of different 
representation methods were due to the availability of vectors and are assumed 
to be negligible (the largest difference was around 3%). These family annotations 
were used as class labels for the multitask training of the target protein family 
classification models.

We tested the performance of protein representation methods by training 
four models (one for the random-split and three for the similarity-based splits) 
for each representation method and calculated the prediction performances on 
the respective test datasets. The results show a performance difference between 
conventional sequence similarity-based methods and novel representation 
learning-based methods when the similarity threshold is changed from 100% (that 
is, random split) to 50%, 30% and 15%. We have discussed this in detail in the 
discussion section. We used the scikit-learn51 SGD linear-SVM classifier, as in the 
previous task, with the OneVsRestClassifier mode to handle the multiple classes. 
The classifier was used with default parameters: hinge loss and L2 norm. The 
models were trained and tested with tenfold cross-validation.

Protein–protein binding affinity estimation benchmark. In this task we 
benchmarked the protein representation methods in terms of estimating 
real-valued binding free energies between protein pairs. For this task, we used 
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the structural database of kinetics and energetics of mutant protein interactions 
(SKEMPI) dataset91, which gathers experimentally measured mutation-based 
binding affinity change data on protein–protein heterodimeric complexes from 
the literature. SKEMPI includes 3,047 equilibrium dissociation constant (KD) 
measurements for 158 structures belonging to 85 protein–protein complexes (that 
is, PDB models). Each data point consists of two KD measurements between a 
protein pair, one of which is the wild-type version and the other a documented 
variant (with one or more single amino acid variations). The binding affinity 
changes following mutations are measured by subtracting the one from the 
other. During the benchmarking phase, we measured the performance of protein 
representation methods on directly predicting binding affinity values (including 
measurements belonging to both wild types and mutated proteins independent 
from each other) using the 2,950 data points in SKEMPI as our train/test  
dataset. This is the same dataset used by Chen et al.92, to whom we compare our 
results. We obtained the amino acid sequences that correspond to our complex 
structures from PDB.

For this benchmark, we selected 15 different protein representation learning 
methods and calculated protein representation vectors for each method using the 
sequences obtained in the previous step. In particular, Learned-Vec30, SeqVec31, 
Mut2Vec32, Gene2Vec33, TCGA_EMBEDDING34, ProtVec4, TAPE-BERT-PFAM27, 
MSA-Transformer35, CPCProt36, ProtBERT-BFD29, UniRep37, ESM-1b38, 
ProtALBERT29, ProtXLNet29 and ProtT5-XL29 were selected along with classical 
representation methods AAC42, APAAC43, K-Sep44 and PFAM41.

We applied element-wise multiplication to the representation vector couples 
to calculate the input vectors of the estimation model, which associate protein 
pairs with labels (that is, protein–protein binding affinity values). Bayesian 
Ridge Regression93 was used as the binding free energy estimator with tenfold 
cross-validation.

We compared our results with state-of-the-art methods; Siamese residual 
RCNN, Siamese residual GRU, Siamese CNN; as well as baseline methods such 
as autocovariance and composition-transition-distribution. These methods were 
proposed or employed in the PIPR study92. We chose the same estimator and 
cross-validation strategy as the PIPR study. We also used the same random states 
as the PIPR study (for determining the samples in each fold) in order to obtain an 
unbiased comparison. We compared estimation results with the ground truth from 
the SKEMPI dataset. We used scikit-learn51 to train the regression model and to 
calculate validation scores. We used MSE and MAE to measure the performance, 
the details of which are given in Supplementary Section 7.

Data availability
All of the datasets and results of this study are available for download at https://
github.com/kansil/PROBE. Protein representation and MSA files are available via 
Zenodo at https://doi.org/10.5281/zenodo.5795850 (ref. 116).

Code availability
The source code of this study is available for download at https://github.com/
kansil/PROBE. A ready-to-use web-tool containing all models of four benchmarks, 
to reproduce the results and to test new representation methods on the same 
predictive tasks are available on the CodeOcean platform, which is reachable from 
https://PROBE.kansil.org (ref. 117).
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