
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINE-GRAINED ENERGY PREDICTION FOR PARAL-
LELIZED LLM INFERENCE WITH PIE-P

Anonymous authors
Paper under double-blind review

ABSTRACT

With the widespread adoption of Large Language Models (LLMs), energy costs of
running LLMs is quickly becoming a critical concern. However, precisely measur-
ing the energy consumption of LLMs is often infeasible because hardware-based
power monitors are not always accessible and software-based energy measurement
tools are not accurate. While various prediction techniques have been developed to
estimate LLM energy consumption, these approaches are limited to single-GPU
environments and thus are not applicable to modern LLM inference which is typ-
ically parallelized across multiple GPUs. In this work, we remedy this gap and
introduce PIE-P, a fine-grained energy prediction framework for multi-GPU infer-
ence, including tensor, pipeline, and data parallelism. Predicting the energy under
parallelized inference is complicated by the non-determinism in inter-GPU commu-
nication, additional communication overheads, and difficulties in isolating energy
during the communication/synchronization phase. We develop a scalable prediction
framework that addresses these issues via precise sampling, fine-grained modeling
of inter-GPU communication, and careful accounting of parallelization overheads.
Our evaluation results show that PIE-P yields accurate and fine-grained energy
predictions across parallelism strategies, significantly outperforming baselines.

1 INTRODUCTION

Scaling model capacity (Chen et al., 2025), i.e., increasing the number of model parameters, has
vastly improved instruction following (Zhang et al., 2023), tool use (Qin et al., 2023), and reasoning
abilities (Xu et al., 2025) in many Large Language Models 1 (LLMs) including Llama, Olmo,
GPT4, Claude, and many others. However, these scaling improvements have come at the expense
of corresponding increase in compute and energy costs. Coupled with the widespread adoption and
deployments for web scale queries2, these advances also raise LLM inference energy to staggering
levels. Recent estimates show that energy consumption for LLM inference can account for 80–90%
of total energy consumption in certain data centers (Wenjen, 2024), and the inference energy alone is
projected to grow to 1,050 terawatt-hours by 2026 (Kakolyris et al., 2024).

Given the environmental and cost considerations of LLM energy use (Strubell et al., 2019; Schwartz
et al., 2020; Bender et al., 2021; Morrison et al., 2025), it is critical to understand the energy
consumption of LLM inference to design energy-efficient models. Knowing the model-level energy
helps developers of LLM-based services make energy-aware choices in terms of model sizes, model
optimizations, and parallelization strategies. Further, knowing the energy consumed by individual
modules of an LLM can help identify key energy bottlenecks.

A natural approach to characterize LLM energy consumption is to measure it directly using full-
system hardware energy monitors (Anthony et al., 2020; Courty et al., 2024a; Shaikh et al., 2021;
Argerich & Patiño-Martínez, 2024). However, in multi-tenant clusters hardware power monitors are
often unavailable, since they require inline meters, administrative privileges, and typically exclusive
machine access. Finally, direct measurement techniques cannot measure the energy consumption of
individual components of an LLM, such as at the module level.

1In this work, we consider LLMs to be models with billions of parameters.
2OpenAI services have hit a billion queries per day as of April 2025 (Singh, 2025).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

As a result, the first critical step of accurately estimating the energy consumption of an LLM and
understanding its energy bottlenecks remains challenging. This is especially true in parallelized-
inference scenarios, a setting widely used today to overcome GPU memory (and compute) constraints.
There has been related work on designing prediction frameworks to predict LLM energy consumption.
These frameworks either use coarse-grained, resource utilization-based techniques (Strubell et al.,
2019; Nguyen et al., 2024) or primarily consider GPU power consumption (Morrison et al., 2025). As
a result, they do not capture the complex interactions that affect overall energy consumption and result
in poor accuracy, as we demonstrate in our experiments. The most relevant approach, IrEne (Cao
et al., 2021), does provide accurate energy predictions by employing a model tree abstraction that
takes into account resource utilization and fine-grained model execution features for prediction.
However, IrEne only works for a single GPU setting.

Parallel inference introduces significant new challenges for accurate energy prediction. First, energy
consumed under parallel inference depends on the communication costs in addition to the computa-
tion and memory costs. Second, there is higher variance in energy consumption due to the inherent
non-determinism in communication between the GPUs (Xiong et al., 2024). Finally, these challenges
add to the basic generalization problem in energy prediction, where architectural variations between
models prevent direct transferability of energy measurements and predictions, even within the same
model family (Warraich et al., 2023).

In this work, we present Parallelized Inference Energy Predictor (PIE-P), a fine-grained energy
prediction framework designed for parallel LLM inference. PIE-P builds on the model-tree abstraction
approach of IrEne (Cao et al., 2021) and breaks down the model into its constituent modules, and
then predicts the energy consumption of the model as a function of the energy consumption of the
modules. Unlike IrEne which is limited to single-GPU settings, however, PIE-P specifically applies to
all three popularly deployed parallelism strategies—data parallelism (Hillis & Steele, 1986), pipeline
parallelism (Choi et al., 2023), and tensor parallelism (Shoeybi et al., 2020). Tensor parallelism is the
most challenging of the three settings; accordingly, our design focuses on this setting, but we then
discuss the generalization of PIE-P to pipeline and data parallelism.

PIE-P addresses the challenges of energy prediction for multi-GPU parallel inference using the
following key ideas: (i) Synchronization Sampling to mitigate non-determinism related measurement
issues prevalent in tensor parallelism via a carefully designed sampling approach that records
the energy measurements of idle times and uses it to accurately estimate energy spent during
synchronization/GPU communication; (ii) Use of Structural Model Features, such as number of
attention heads, to capture the relationship between model architecture and communication patterns
when using different parallelisms; (iii) Aggregate Runtime Feature Representation to scalably and
concisely represent the features of multiple GPUs based on aggregates of their runtime features;
and (iv) Expanded Model Tree Abstraction to include the operations, such as AllReduce, across
multiple GPUs and to capture inter-GPU communication overheads specific to different parallelisms.
The expanded model tree abstraction is used to predict the energy consumption of the model and
each LLM module. We emphasize that both module- and model-level prediction are essential:
module-level profiling localizes optimization hotspots (e.g., attention/MLP and synchronization)
while model-level prediction enables end-to-end energy estimation.

We implement PIE-P to predict the energy consumption on a variety of open LLM families (Vi-
cuna (Chiang et al., 2023), Mistral (Jiang et al., 2023), Llama (Touvron et al., 2023), and Qwen (Bai
et al., 2023)) of varying sizes (7B–70B). We use PIE-P’s measurement methodology to obtain
fine-grained energy measurements and build the prediction framework for these LLMs and their
generalization across size, inputs, and model variants at both model and module levels for all three
parallelisms. We will release all code and data upon publication. Our results demonstrate that
PIE-P consistently achieves low model-level energy prediction error under tensor parallelism (MAPE
≈17.6%), pipeline parallelism (MAPE ≈13.25%), and data parallelism (MAPE ≈14.36%). Com-
pared to the next-best performing baseline, PIE-P reduces energy prediction error by 1.5–3×. We
end with a use case that shows how PIE-P can help navigate the trade-off between inference time and
energy consumption per token across different model sizes and GPU configurations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In recent years, there has been increased interest in the sustainability and energy consumption of
LLMs, as well as improving the efficiency of LLMs. We describe these methods below and identify
the gaps in the literature.

LLM Energy modeling and prediction. The seminal work by Strubell et al. (Strubell et al., 2019)
and several follow up works (Nguyen et al., 2024; Wilkins et al., 2024) use coarse-grained resource-
utilization or input/output tokens as a proxy to predict LLM energy consumption. The problem is
that using utilization alone or tokens alone leads to poor prediction accuracy since it cannot capture
the complex interactions that affect overall energy consumption (Cao et al., 2020); we demonstrate
this experimentally in Section 5. The more recent work on energy prediction (Morrison et al., 2025)
uses a tool called CodeCarbon (Courty et al., 2024b) which provides a lower bound prediction by
accurately measuring power consumption of GPUs. Our experiments (Section 5) show that although
this is more accurate than other approaches, it still results in large prediction errors.

The most related work to ours is IrEne (Cao et al., 2021), which takes into account the model structure
and fine-grained model execution features to make accurate energy predictions for a model as well as
its components. However, IrEne is not designed for parallel inference settings, and therefore results
in increased prediction errors under these settings (see Section 5).

Energy measurement and optimizations. With the rising awareness of the environmental costs
associated with LLMs, there has been a number of scholarly works on measuring energy consumption
and estimating carbon emissions (Lacoste et al., 2019; Anthony et al., 2020; Courty et al., 2024a;
Shaikh et al., 2021; Argerich & Patiño-Martínez, 2024; Luccioni et al., 2022). However, these works
either use direct measurement with hardware energy monitors or use software-based energy profilers
such as NVIDIA’s NVML. As discussed earlier, hardware monitors are not always available for
energy measurement. Further, for these measurements to be accurate, the model needs exclusive
access to the hardware which is not always possible.

Software profilers such as NVML have poor accuracy as they only consider GPU power consumption
and are widely treated as a lower bound on energy consumption; see NVIDIA; Lacoste et al. (2019);
Anthony et al. (2020); Courty et al. (2024a); Shaikh et al. (2021); Argerich & Patiño-Martínez (2024);
Luccioni et al. (2022). Consistent with this literature, in Appendices G and H we empirically confirm
that software energy profilers underestimate energy, leading to large prediction errors.

Several existing works have also focused on LLM energy optimizations that include parallelization
strategies, dynamic schedulers, and DVFS (dynamic voltage frequency scaling) (Kakolyris et al.,
2024; Wilkins et al., 2024; Jia et al., 2024). Similar to energy optimization, there are also related
works on optimizing LLM inference latency (Agrawal et al., 2025; Cheng et al., 2024; Dong et al.,
2024). But these works do not extend to predicting energy and are addressing an orthogonal problem.

Modeling and predicting latency. More recent works (Lu et al., 2023; Hu et al., 2022; Luo et al.,
2022; Lee et al., 2025; Yu et al., 2021; Zhu et al., 2020) have focused on predicting the latency
of LLMs by tracing ML operations. However, predicting energy consumption is a fundamentally
different problem compared to latency. For example, GPUs are optimized specifically for performance;
as a result, scaling different architectural knobs (more cores, higher clocks) translates to lower latency
in a relatively deterministic manner. Energy, on the other hand, does not scale linearly with the same
knobs, making prediction much harder.

3 BACKGROUND AND CHALLENGES

Our goal is to develop a methodology for predicting the energy consumption of LLM inference over
multiple GPUs. There are three main parallelism strategies that are widely used for LLM inference,
described below in increasing order of complexity.

1. Data parallelism replicates the entire LLM on multiple GPUs, allowing input data to be processed
in parallel (Hillis & Steele, 1986). However, this requires the LLM to be small enough to fit in
the memory of a single GPU. At inference time, the outputs (e.g., logits or token probabilities)
are combined using a strategy called AllGather. In an AllGather across p replicas, each GPU

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

exchanges partitions of its tensor with others over p−1 steps (e.g., a ring implementation) so that
eventually every GPU holds the concatenation of all replicas’ outputs; see Appendix E for details.

2. Pipeline parallelism partitions the LLM into s sequential stages, assigning each stage to a different
GPU and processing micro-batches in a pipeline (Choi et al., 2023). This allows inference with
models that do not fit in a single GPU’s memory. During inference, communication is point-to-
point: the activations produced by stage i are sent to stage i+1 (and so on) for the next computation
step; see Appendix D for the brief cost model and schematic.

3. Tensor parallelism splits individual model computations (such as matrix multiplications) across
multiple GPUs to enable parallel execution of operations even within a single layer (Shoeybi et al.,
2020). Similar to pipeline parallelism, this is used when the LLM is too large to fit on a single
GPU, and is widely used because of its efficiency. One of the main additions to the LLM inference
due to tensor parallelism is the AllReduce (Zong et al., 2025) component. AllReduce enables
GPUs to sequentially communicate and reduce partially computed results across GPUs using ring
protocol; the aggregated results are redistributed for further processing. These collation operations
require inter-GPU communication and careful synchronization to ensure correct and consistent
aggregation of partial results (see Appendix B).

Challenges. LLM energy consumption under parallel inference is driven by not only the com-
putation cost, but also the inter-GPU communication costs. Under data parallelism, the replicas
work independently, except for the collation of output from each replica in the AllGather phase; as
such, the additional energy of this phase needs to be accounted for. The AllGather phase is largely
deterministic, so predicting the energy consumption under data parallel inference is feasible. For
pipeline parallelism, we have to track the energy consumption when data is sent from one stage to the
other, in addition to the local computation. These data transfers happen in sync with each stage’s
computations and the timing can vary depending on sequence length and network speeds.

Tensor parallelism is the most challenging of the three cases because synchronization across GPUs
(e.g., ReduceScatter/AllGather) is interleaved with layer computation for high efficiency. This leads
to two main challenges: (i) Non-determinism in GPU wait times as GPUs often lag/lead each other
in compute operations (due to variations in memory access, caching effects, hardware scheduling)
during the synchronization phase. From a measurement standpoint, this causes difficulty in isolating
AllReduce energy as it requires distinguishing between the non-deterministic waiting phase (where
GPUs are idle) and the network transfer phase. (ii) Fine-grained energy accounting is challenging as
AllReduce overlaps computation and network transfer. From a prediction standpoint, this requires
isolating the different sources of energy consumption and accounting for them. This is not an issue in
pipeline and data parallelism as GPU communication and computation are not synchronized.

4 DESIGN OF PIE-P

We now describe how we address the challenges above to design an accurate energy prediction frame-
work. As a first step, we develop a fine-grained measurement methodology to measure communication
energy (in addition to the computation energy) that will be used to train the prediction framework. We
note that PIE-P performs all these measurements offline. We run repeated, controlled passes to capture
the distributions of time and energy induced by GPU communication; these empirical distributions
are then reused during prediction. As a result, during inference, PIE-P incurs no additional overhead.

Our prediction methodology builds on IrEne (Cao et al., 2021) and develops a multi-level regression
model that uses fine-grained model description and resource utilization features. The key idea in
IrEne is that the energy of a model can be predicted as a composition of the (predicted) energies
of its components. To this end, IrEne builds a model tree abstraction that captures the model’s
computational structure; see details in Appendix A. However IrEne is designed for single GPU
settings and does not work well for parallel inference (see Section 5).

PIE-P makes three significant extensions to IrEne’s prediction methodology to handle parallel infer-
ence: (i) expands the model tree abstraction with dedicated communication modules—AllReduce
for tensor parallelism, point-to-point stage transfers for pipeline parallelism, and AllGather for
data parallelism—to capture inter-GPU synchronization/transfer overheads; (ii) employs scalable,
aggregate features that capture the energy impact of multiple GPUs and replica/stage interactions;
and (iii) uses an expanded set of model description features to capture the relationship between the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

model architecture and communication energy under each parallelism strategy. Figure 1 shows the
overall architecture of PIE-P. We explain the key components of PIE-P in the subsections below.

Figure 1: PIE-P architecture consisting of three
main components: (1) Energy Measurement cap-
tures energy consumption during computation
and synchronization phases through specialized
profiling, (2) Model Tree Abstraction that ab-
stracts the model into a model tree, and (3) En-
ergy Prediction that uses the model tree abstrac-
tion to learn energy consumption of the total
model and each module.

Fine-grained Measurement. Different from
IrEne, we isolate the energy for GPU synchro-
nization via precise energy measurement of com-
putation and communication stages.

• Tensor Parallelism: During profiling, we cap-
ture the full distribution of energy consumption
caused by non-deterministic GPU synchroniza-
tion through multiple runs. By capturing a dis-
tribution of GPU wait times, rather than relying
on a single execution run, we ensure that PIE-P
reflects both leading and lagging GPU behavior,
accounting for any variability.

• Pipeline Parallelism: We capture point-to-point
transfer by benchmarking the interval between
completion of boundary layer in the producing
stage and start of the next stage in the next GPU.

• Data Parallelism: Since each replica produces
its own output, profiling the final output stage
already includes the terminal single AllGather.

These energy readings are then synchronized with system-level utilization logs (including GPU
compute activity and memory bandwidth) to enable energy attribution to modules, such as AllReduce,
within the model. For training, we collect energy measurements at the module level.

Runtime features including CPU metrics and GPU energy are collected using low-overhead libraries,
NVIDIA-SMI and Linux’s procfs. Structural features are extracted from the model architecture, and
FLOPs are computed using standard formulas based on model dimensions and operations. We then
use statistical aggregates such as min, max, standard deviation, and mean over these features, along
with the number of GPUs provided as input, to make predictions.

Resource Utilization Features

CPU utilization (%)
CPU memory utilization (%)
GPU utilization (%)
GPU memory utilization (%)
CPU clock speed (GHz)
CPU memory clock speed (GHz)
Memory (bytes)
GPU clock speed (GHz)
GPU memory clock speed (GHz)

Execution Features

Batch size
Sequence length
FLOPs per token (billions)
Execution time (s)
GPU energy from NVML (Wh)
Number of GPUs*

Model Structure Features*

Feed-forward dimension
Transformer blocks
Hidden embedding size
Attention heads
Key–value heads

Table 1: Features used by PIE-
P for prediction; * denotes new
features added for PIE-P.

PIE-P Model Tree Abstraction. The AllReduce module is in-
tegrated into the model tree abstraction at precise synchroniza-
tion points within the tensor-parallelized transformer architecture.
Specifically, we add nodes in the model tree abstraction after: (1)
the self-attention output projection and (2) the MLP layer in the
feed-forward network. Our profiling framework timestamps three
critical phases: the initiation of the waiting phase (when fastest
GPUs become idle), the beginning of network transfer (when actual
data movement starts), and the synchronization completion (when
all GPUs have finished processing).

For pipeline parallelism, the model tree abstraction also includes
inter-stage transfer nodes at each pipeline boundary. We timestamp
(1) completion of boundary layer in the producing stage, (2) the first
byte placed on the interconnect, and (3) the start of first operation
in the consuming stage. For data parallelism, the final output
aggregation is represented as the batch-output module; profiling
this module already captures the terminal AllGather, so additional
synchronization nodes are not needed.

PIE-P Features. PIE-P specifically extends IrEne’s feature set to
accommodate the requirements of parallelized inference. Table 1
lists all features used in PIE-P, categorizing them into three groups:
resource utilization, execution parameters, and model structure.
PIE-P incorporates model structure features to capture the relation-
ship between model architecture and communication patterns in
tensor-parallel settings. For instance, the number of attention heads

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

influences how work is divided across GPUs during tensor parallelization, affecting communication
volume in AllReduce operations. Similarly, the feed-forward dimension and hidden embedding size
determine the size of tensors that must be communicated during synchronization.

Next, PIE-P obtains features from multiple GPUs. However, maintaining separate feature sets for
each GPU is not a scalable solution and would create inconsistent feature dimensions for different
parallelization degrees. Instead, PIE-P computes and employs statistical aggregates of the runtime
features by computing the mean, standard deviation, min and max values across all GPUs. This
scalable aggregation approach captures workload imbalance through the standard deviation and
min/max statistics.

Finally, PIE-P incorporates GPU energy reported by NVML as part of its runtime feature set. The
feature set used for prediction is the same across tensor parallelism, pipeline parallelism, and
data parallelism. The significance of these feature choices is validated via a correlation analysis of
runtime features (Appendix K) and an ablation study of model features (Appendix N).

PIE-P Prediction. PIE-P uses a multi-level regressor. However, unlike IrEne which builds its model
tree from low-level ML primitives (e.g., Linear, Softmax) as the leaf nodes, PIE-P constructs the
model abstraction tree directly at the module level (e.g., Self-Attention, Feed-Forward). This is
because, for example, Tensor parallelism operates at the module level, where operations such as
Self-Attention and Feed-Forward Networks (MLP) are split across GPUs. The energy consumption
patterns emerge from how these higher-level modules communicate across GPUs, rather than from
individual ML primitives.

Pe(n) =
∑

c∈child(n)

α(c)Pe(c), if n is non-leaf

= PModulei
e (n), if n is leaf

α(c) = 1 + tanh
(
W feat(c) + b

)
/τ

(1)

The regressor is specified via the energy predic-
tion Pe(n) for an arbitrary node n in the model
tree abstraction. The energy of a node n is com-
puted as a weighted sum of the energy of its chil-
dren c ∈ child(n). The weight α(c) for each
child is itself predicted as a regression over the
features feat(c) of the corresponding component

or through a separately trained regressor if the child c is a leaf. Formally, the predicted energy for
node n is given in Eq. 1, where W are the recurrent parameters (weights) of the model learnt over a
training set of ground-truth energy measurements and PModulei

e (n) denotes the predicted energy for
leaf node n corresponding to module type Modulei, obtained using a module-specific regression.

5 EVALUATION

Our evaluation demonstrates PIE-P’s effectiveness across diverse scenarios and across model families
to validate its key technical components. Our evaluation primarily focuses on the most challenging
case of tensor parallelism; the difficulties in energy prediction for this case were discussed in Section 3.
Results for pipeline parallelism and data parallelism are discussed in Section 5.3.

Evaluation Methodology. Our experiments are conducted on a server with an AMD EPYC Milan
7543P processor (32 cores) and four NVIDIA RTX A6000 GPUs (48GB GDDR6, PCIe 4.0). Ground-
truth system power/energy is measured with an external power monitor (Watts Up Pro). We apply
the PIE-P methodology to obtain fine-grained measurements for four widely-used, diverse set
of transformer-based LLM families across varying sizes (7B–70B): Vicuna, Mistral, Llama, and
Qwen (Chiang et al., 2023; Jiang et al., 2023; Touvron et al., 2023; Bai et al., 2023). Their open-
source nature allows for complete instrumentation and detailed energy profiling across different
configurations. Models exceeding single-GPU memory (Vicuna-33B, Mistral-48B, Qwen-32B,
Llama-70B) were tested only on multi-GPU configurations, with Llama-70B requiring 4 GPUs. We
use the energy measurements data to then train and evaluate the PIE-P energy prediction model using
3-fold cross-validation; details of our training methodology are provided in Appendix L.

Baselines. We evaluate PIE-P against three baselines techniques:
(i) IrEne (Cao et al., 2021). We extend IrEne to multi-GPU by using aggregated runtime features,
similar to PIE-P. Note that IrEne does not include inter-GPU collectives from model-level energy
prediction; this helps isolate the benefits of PIE-P in explicitly modeling multi-GPU communication.
(ii) CodeCarbon (Courty et al., 2024b). We use CodeCarbon’s measurement path that estimates en-
ergy from readily available telemetry (e.g., GPU via NVML, CPU via RAPL/powermetrics/heuristics)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0

20

40

60

80

100
M

AP
E

(%
)

18
35

40 42
12

24
45 44

16
27

41
38

8
27

32
47

15
30

47 45
14

28
38

47

23
30

50
54

22
28

49
72

21
29

50
56

22
27

49
72

23
37

50
53

24 27
50

85

19
33

39
49

14
32

40
55

16
33

39
52

14
31

39
63

Ll
am

a-
70

b
is

 O
O

M
 o

n
2

G
PU

s

13
33

41
11

4

14
30

40
35

16
28

41
56

16
31

41 39
17

28
44

61

17
30

39
47

18
28

40
61

Vicuna Mistral Llama Qwen
2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU 2GPU 4GPU

7b 13b 33b 8b 24b 48b 7b 13b 70b 7b 14b 32b

PIE-P
CodeCarbon
IrEne
Wilkins et.al.

Figure 2: MAPE results across model families for PIE-P and the baselines under tensor parallelism.

and—optionally—maps energy to CO2 via grid carbon intensity; this is chosen because it is widely
used by researchers and practitioners for system-level energy/emissions estimation, including more
recently by Morrison et al. (2025).
(iii) Wilkins et al. (Wilkins et al., 2024). We implement this token-in/token-out regression technique

eK(τin, τout) = α0 τin + α1 τout

+ α2 τinτout
(2)

which predicts per-request energy as a function
of input and output token counts with an interac-
tion term in Equation 2, where the coefficients
(α0, α1, α2) are fit from a calibration set. This is included as a recent, deployment-friendly approach
that captures length-based energy variation without hardware monitors.

For completeness, we also evaluate PIE-P without the waiting phase (i.e., our model tree and
structural features without synchronization sampling) as an ablation study in Appendix J to highlight
the importance of synchronization sampling in PIE-P.

5.1 ENERGY PREDICTION RESULTS FOR TENSOR PARALLELISM

Figure 2 shows the mean absolute percentage error (MAPE) for PIE-P and the three baselines for
all four model families across model sizes and parallelization degrees. For each model family (e.g.,
Vicuna), we train a regressor on 70% of module-level predictions aggregated across all variants (e.g.,
7B) and evaluate on the remaining 30%. Each bar in Figure 2 reflects the resulting MAPE for one
variant, with baseline comparisons included (see Appendix L for training details).

We see that PIE-P consistently achieves the lowest MAPE in all cases, with an average of 17.6%.
We also observed that removing synchronization sampling from PIE-P substantially increased MAPE
from 17.6% to 36.9%, suggesting the importance of fine-grained sampling in the design of PIE-P.
See Appendix J for the ablation and discussion.

By contrast, CodeCarbon incurs an average MAPE of 28.49%, which is about 1.7× the MAPE of
PIE-P. The poor prediction accuracy of CodeCarbon is likely because of its reliance on coarse GPU
profiling and slow sampling, which misses the fine-grained multi-GPU sync/transfer events and
their energy consumption. IrEne also performs poorly, with an average MAPE of 40.45% (about
3× that of PIE-P). This is to be expected as IrEne prediction is designed for single-GPU settings
and omits inter-GPU communication, which leads to systematic misattribution under parallelism.
Finally, Wilkins et al. consistently incurs high MAPE, with an average of 58.77% (more than 4×
that of PIE-P). This is because it solely uses a token-in/token-out regression that ignores inter-GPU
communication. It also ignores hardware and runtime variance, and so its accuracy worsens with the
degree of parallelism (number of GPUs employed).

On closer inspection of Figure 2, we also see that the performance gap between PIE-P and the
baselines widens with increasing parallelization. This is because the energy contribution of AllRe-
duce, due to its ring communication topology (see Section 3), increases with the number of GPUs;
see Figure 5 in Appendix C. By ignoring this important AllReduce component, the baselines incur
systematic prediction errors that worsen with parallelization. In contrast, across models, scaling from
2 to 4 GPUs causes only a modest change in MAPE for PIE-P, validating its robust predictions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We also find that prediction accuracy depends on model complexity. For instance, the PIE-P
accuracy for Vicuna and Llama is superior (average MAPE of 14.3% and 15.4%, respectively)
compared to that for Mistral and Qwen (average MAPE of 22.4% and 16.5%, respectively).

Model MAPE FLOPs/Block Modules/Block

Vicuna 6.28% 187 GFlops Standard Self-Attn., MLP
Mistral 11.01% 245 GFlops Grouped-Query Attn., SwiGLU
Llama 7.93% 203 GFlops Rotary Embeddings, RMSNorm
Qwen 9.03% 213 GFlops Multi-Query Attn., Rotary

Table 2: Energy prediction errors at the transformer module
level across model families; models with more complex attention
mechanisms (e.g., Mistral, Qwen) tend to show higher errors.

This disparity correlates with the
corresponding transformer block
complexities, as shown in Ta-
ble 2. Mistral’s higher MAPE
(particularly at 22%–24% for the
48B variants) can be attributed
to its more sophisticated grouped-
query attention mechanism and
SwiGLU activation, which gener-
ate more complex communication
patterns during synchronization. Similarly, Qwen’s multi-query attention mechanism contributes to
its slightly elevated prediction error compared to Vicuna’s relatively simpler architecture. As part of
future work, we will develop models that capture these complex interactions for improved accuracy.
For detailed module-level prediction results, please refer to Appendix F.

Model MAPE Model MAPE
Vicuna 7B 15.84% Llama 7B 18.15%
Vicuna 13B 17.72% Llama 13B 21.11%
Vicuna 33B 17.55% Llama 70B 22.41%
Vicuna BS-16 16.89% Llama BS-16 18.33%
Vicuna BS-32 18.20% Llama BS-32 19.16%
Mistral 8B 21.17% Qwen 8B 20.15%
Mistral 24B 23.13% Qwen 14B 20.99%
Mistral 48B 24.52% Qwen 32B 18.98%
Mistral BS-16 19.79% Qwen BS-16 20.15%
Mistral BS-32 21.82% Qwen BS-32 19.15%

Table 3: Leave-one-out prediction results for
PIE-P. One model size or batch size (BS) is ex-
cluded from training and used only for testing.

Generalization across unseen variants. To eval-
uate PIE-P’s ability to predict the energy of unseen
model variants—a critical capability for practical
deployment—we conduct extensive Leave-One-
Out cross-validation experiments across model
and batch sizes. The methodology is further de-
tailed in Appendix L. Table 3 shows model-level
prediction errors for all model families.

We see that PIE-P generalizes well to model sizes.
Specifically, PIE-P maintains reasonable accuracy
across all families when trained on most model
sizes and tested on a held-out size. The MAPE
ranges from 15.84% (Vicuna 7B) to 24.52% (Mis-
tral 48B), with an average generalization MAPE
of 19.99% across all model sizes. PIE-P also generalizes well over batch sizes with MAPE values
ranging from 16.89% to 21.82%, with an average of 19.05% across all families. For detailed results,
refer to Appendix I.

The consistent performance across these leave-one-out experiments shows that PIE-P learns general-
izable relationships between model architecture and energy patterns in tensor parallel environments.
This is especially useful for predicting energy consumption of new model variants or batch sizes
without expensive profiling campaigns.

Generalization across models. We also evaluate PIE-P’s ability to generalize across entire model
architectures—a significantly more challenging task. We exclude one model family from training and
evaluate predictions on that held-out family. Table 4 presents these cross-model results.

Excluded family PIE-P IrEne
Vicuna 24.1% 49.3%
Mistral 27.0% 56.5%
Llama 26.1% 55.3%
Qwen 27.6% 58.4%

Table 4: Cross-architecture general-
ization results. Each row lists the
model excluded from training.

When generalizing to the Vicuna family (first row in Table 4),
PIE-P achieves a MAPE of 24.1%, compared to 49.3% for
IrEne, a relative improvement of 51.1%. This pattern holds
for all families. In practical deployment scenarios where new
model architectures are introduced, PIE-P’s cross-architecture
generalization capability, demonstrated in Table 4, represents a
significant advantage, allowing reasonable energy predictions
for novel model families without requiring extensive retraining
or measurement.

5.2 USE CASE: INFERENCE TIME VS ENERGY FOR DIFFERENT LEVELS OF PARALLELIZATION

Consider a setting where an LLM user needs to choose a model and the number of GPUs across
which to deploy. In addition to maximizing throughput (i.e., have less time spent on inference per

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

token), lower energy consumption is also an important consideration. We show how the user can
employ PIE-P to make the right decision. Figure 3 illustrates the trade-off between (measured)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Inference Time per Token (s)

1

2

4

10

21

Pr
ed

. E
ne

rg
y/

To
ke

n
(1

0
3

W
h,

Lo
g)

Vic.7B - 1GPU
Vic.7B - 2GPU

Vic.7B - 4GPU

Vic.13B - 1GPU
Vic.13B - 2GPU

Vic.13B - 4GPU

Vic.33B - 2GPU

Vic.33B - 4GPU

Figure 3: Predicted trade-off between
inference time per token and energy per
token (on log scale) for Vicuna under
tensor parallelism.

inference time per token and predicted energy consump-
tion per token across different Vicuna model sizes and
GPU configurations under tensor parallelism; we use the
highest batch size achievable for each model size. We
verify that this trend remains consistent when using actual
energy values (see Figure 8 in Appendix M).

While energy increases at maximum throughput, both per-
token energy cost and inference time decrease with the
degree of parallelization; this is true for all three model
sizes. However, as the model size scales from 7B to 33B,
energy rises due to increased computational complexity,
leading to diminishing efficiency gains from paralleliza-
tion. In effect, the energy impact of parallelization is not
straightforward, and having predicted energy can help the user make an informed choice.

5.3 ENERGY PREDICTION RESULTS FOR PIPELINE AND DATA PARALLELISM

0

10

20

30

40

50

60

M
AP

E
(%

)

12
40

45
15

44
49

14
35

42
16

38 40

15
30

42
17

34
48

13
30

25
17

29 28

13
30

27
17

27
32

Pipeline Parallelism Data Parallelism

2GPU4GPU 2GPU4GPU 2GPU4GPU 2GPU4GPU 2GPU4GPU
7b 13b 33b 7b 13b

PIE-P
CodeCarbon
IrEne

Figure 4: MAPE results for Vicuna under
pipeline and data parallelism.

Figure 4 shows the MAPE for PIE-P and the base-
lines for the Vicuna family across model sizes and
parallelization degrees under pipeline and data par-
allelism. We omit the Wilkins et al. baseline as it is
significantly inferior to others (see Figure 2). We do
not report Vicuna 33B results for data parallelism as
this model size does not fit in the GPU memory.

Similar to the tensor parallelism results, PIE-P con-
sistently achieves the lowest MAPE in all cases, with
an average of 14.84% and 15% for pipeline and data
parallelism, respectively. CodeCarbon has more than
2× the prediction error of PIE-P, with an average
MAPE of 36.8% and 30.25% for pipeline and data parallelism, respectively. IrEne incurs average
MAPE of 45.6% and 28% for pipeline and data parallelism, respectively. This is because both
CodeCarbon and IrEne ignore communication energy during inference; however, this hurts less under
data parallelism because here the communication occurs in a single AllGather stage. In contrast,
under pipeline parallelism, data is transferred point-to-point repeatedly, resulting in larger errors
when omitting communication energy.

6 CONCLUSIONS AND LIMITATIONS

Understanding the energy costs of LLMs is a critical first step towards energy efficient design
and deployment but one that is also challenging. We present PIE-P, a prediction framework that
remedies a key gap in accurate energy estimation of LLMs in parallelized inference settings, a
necessity as model sizes demand multi-GPU inference. PIE-P provides a new measurement method
that overcomes challenges that stem from non-determinism and synchronization related aspects
of parallelizing inference. For accurate prediction, PIE-P expands tree abstractions of the model
and adds structural model descriptors to a multi-level regressor. Empirical results across models
show that PIE-P significantly reduces prediction error compared to previous approaches for all three
parallelization strategies.

We acknowledge that PIE-P is hardware-dependent, and one of our immediate next steps is to bridge
this hardware dependency gap. Through our experiments, we have found hardware-agnostic energy
prediction for LLMs to be a challenging task, warranting a full project in itself. PIE-P currently
supports only decoder-style transformer models. Extending it to encoder-based or encoder-decoder
models is left for future work. This is challenging because encoder and encoder-decoder models often
have bidirectional attention patterns and different execution flows, which affect both the structure of
the model tree and the communication patterns.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We have taken steps to support reproducibility. The paper specifies the prediction method and design
choices in section 3 and section 4, respectively, the experimental setup and evaluation protocol in
section 5, and ablations and edge cases (Appendix J and additional appendices). Upon acceptance,
we will release the code of PIE-P as supplementary material, including scripts for (i) offline profiling,
(ii) feature extraction, (iii) model training/evaluation, and (iv) figure/table generation. We provide the
details of our experimental setup in section 5. The configuration files with instructions to reproduce
our results will be released with the code along with datasets/workloads, prompts, and execution
modalities used in each experiment.

REFERENCES

Amey Agrawal, Haoran Qiu, Junda Chen, Íñigo Goiri, Ramachandran Ramjee, Chaojie Zhang,
Alexey Tumanov, and Esha Choukse. Medha: Efficiently serving multi-million context length llm
inference requests without approximations, 2025. URL https://arxiv.org/abs/2409.17264.

Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Tracking
and predicting the carbon footprint of training deep learning models, 2020. URL https://arxiv.
org/abs/2007.03051.

Mauricio Fadel Argerich and Marta Patiño-Martínez. Measuring and improving the energy efficiency
of large language models inference. IEEE Access, 12:80194–80207, 2024. doi: 10.1109/ACCESS.
2024.3409745.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big. In Proceedings of the ACM
Conference on Fairness, Accountability, and Transparency, 2021.

Qingqing Cao, Aruna Balasubramanian, and Niranjan Balasubramanian. Towards accurate and
reliable energy measurement of NLP models. In Proceedings of SustaiNLP: Workshop on Simple
and Efficient Natural Language Processing, pp. 141–148, 2020.

Qingqing Cao, Yash Lal, Harsh Trivedi, Aruna Balasubramanian, and Niranjan Balasubramanian.
IrEne: Interpretable energy prediction for transformers. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics, 2021.

Zihan Chen, Song Wang, Zhen Tan, Xingbo Fu, Zhenyu Lei, Peng Wang, Huan Liu, Cong Shen,
and Jundong Li. A survey of scaling in large language model reasoning, 2025. URL https:
//arxiv.org/abs/2504.02181.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. Mini-llm: Memory-efficient structured
pruning for large language models, 2024. URL https://arxiv.org/abs/2407.11681.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and Youngjin Kwon. EnvPipe:
Performance-preserving DNN Training Framework for Saving Energy. In 2023 USENIX An-
nual Technical Conference (USENIX ATC 23), Boston, MA, USA, 2023.

10

https://arxiv.org/abs/2409.17264
https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2007.03051
https://arxiv.org/abs/2504.02181
https://arxiv.org/abs/2504.02181
https://arxiv.org/abs/2407.11681
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, MarionCoutarel, Boris Feld, Jérémy
Lecourt, LiamConnell, Amine Saboni, Inimaz, supatomic, Mathilde Léval, Luis Blanche, Alexis
Cruveiller, ouminasara, Franklin Zhao, Aditya Joshi, Alexis Bogroff, Hugues de Lavoreille,
Niko Laskaris, Edoardo Abati, Douglas Blank, Ziyao Wang, Armin Catovic, Marc Alen-
con, Michał Stęchły, Christian Bauer, Lucas Otávio N. de Araújo, JPW, and MinervaBooks.
mlco2/codecarbon: v2.4.1, May 2024a. URL https://doi.org/10.5281/zenodo.11171501.

Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, MarionCoutarel, Boris Feld, Jérémy
Lecourt, LiamConnell, Amine Saboni, Inimaz, supatomic, Mathilde Léval, Luis Blanche, Alexis
Cruveiller, ouminasara, Franklin Zhao, Aditya Joshi, Alexis Bogroff, Hugues de Lavoreille, Niko
Laskaris, Edoardo Abati, Douglas Blank, Ziyao Wang, Armin Catovic, Marc Alencon, Michał
Stęchły, Christian Bauer, Lucas Otávio N. de Araújo, JPW, and MinervaBooks. mlco2/codecarbon:
v2.4.1, May 2024b. URL https://doi.org/10.5281/zenodo.11171501.

Harry Dong, Tyler Johnson, Minsik Cho, and Emad Soroush. Towards low-bit communication for
tensor parallel llm inference, 2024. URL https://arxiv.org/abs/2411.07942.

W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Commun. ACM, 29(12):1170–1183,
December 1986. ISSN 0001-0782. doi: 10.1145/7902.7903. URL https://doi.org/10.1145/
7902.7903.

Hanpeng Hu, Chenyu Jiang, Yuchen Zhong, Yanghua Peng, Chuan Wu, Yibo Zhu, Haibin Lin, and
Chuanxiong Guo. dpro: A generic performance diagnosis and optimization toolkit for expediting
distributed dnn training. In D. Marculescu, Y. Chi, and C. Wu (eds.), Proceedings of Machine
Learning and Systems, volume 4, pp. 623–637, 2022. URL https://proceedings.mlsys.org/
paper_files/paper/2022/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf.

Ziyang Jia, Laxmi N. Bhuyan, and Daniel Wong. Pccl: Energy-efficient llm training with power-aware
collective communication. In 2024 IEEE 42nd International Conference on Computer Design
(ICCD), pp. 84–91, 2024. doi: 10.1109/ICCD63220.2024.00023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/
abs/2310.06825.

Andreas Kosmas Kakolyris, Dimosthenis Masouros, Petros Vavaroutsos, Sotirios Xydis, and Dim-
itrios Soudris. Slo-aware gpu frequency scaling for energy efficient llm inference serving, 2024.
URL https://arxiv.org/abs/2408.05235.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning, 2019. URL https://arxiv.org/abs/1910.09700.

Seonho Lee, Amar Phanishayee, and Divya Mahajan. Forecasting gpu performance for deep learning
training and inference. In Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1, ASPLOS ’25, pp. 493–508,
New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400706981. doi:
10.1145/3669940.3707265. URL https://doi.org/10.1145/3669940.3707265.

Guandong Lu, Runzhe Chen, Yakai Wang, Yangjie Zhou, Rui Zhang, Zheng Hu, Yanming Miao,
Zhifang Cai, Li Li, Jingwen Leng, and Minyi Guo. Distsim: A performance model of large-
scale hybrid distributed dnn training. In Proceedings of the 20th ACM International Conference
on Computing Frontiers, CF ’23, pp. 112–122, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400701405. doi: 10.1145/3587135.3592200. URL https:
//doi.org/10.1145/3587135.3592200.

11

https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.5281/zenodo.11171501
https://arxiv.org/abs/2411.07942
https://doi.org/10.1145/7902.7903
https://doi.org/10.1145/7902.7903
https://proceedings.mlsys.org/paper_files/paper/2022/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/b422680f3db0986ddd7f8f126baaf0fa-Paper.pdf
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2408.05235
https://arxiv.org/abs/1910.09700
https://doi.org/10.1145/3669940.3707265
https://doi.org/10.1145/3587135.3592200
https://doi.org/10.1145/3587135.3592200

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint
of bloom, a 176b parameter language model, 2022. URL https://arxiv.org/abs/2211.02001.

Liang Luo, Peter West, Pratyush Patel, Arvind Krishnamurthy, and Luis Ceze. Srifty:
Swift and thrifty distributed neural network training on the cloud. In D. Marculescu,
Y. Chi, and C. Wu (eds.), Proceedings of Machine Learning and Systems, volume 4, pp.
833–847, 2022. URL https://proceedings.mlsys.org/paper_files/paper/2022/file/
0cafb7890f6a7d4de65507d5bb7e0187-Paper.pdf.

Jacob Morrison, Clara Na, Jared Fernandez, Tim Dettmers, Emma Strubell, and Jesse Dodge.
Holistically evaluating the environmental impact of creating language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=04qx93Viwj.

Sophia Nguyen, Beihao Zhou, Yi Ding, and Sihang Liu. Towards sustainable large language model
serving, 2024. URL https://arxiv.org/abs/2501.01990.

NVIDIA. Nvidia management library. URL https://developer.nvidia.com/
management-library-nvml.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou,
Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789, 2023. URL https:
//arxiv.org/abs/2307.16789.

Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. Communications of the
ACM, 63(12):54–63, 2020.

Omar Shaikh, Jon Saad-Falcon, Austin P Wright, Nilaksh Das, Scott Freitas, Omar Asensio, and
Duen Horng Chau. Energyvis: Interactively tracking and exploring energy consumption for ml
models. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI EA ’21, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450380959. doi: 10.1145/3411763.3451780. URL https://doi.org/10.1145/3411763.
3451780.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism,
2020. URL https://arxiv.org/abs/1909.08053.

Shubham Singh. ChatGPT Statistics (2025) – Daily & Monthly Active Users, 2025. URL https:
//www.demandsage.com/chatgpt-statistics/.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and Policy Considerations for Deep
Learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 3645–3650, Florence, Italy, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. URL https:
//arxiv.org/abs/2302.13971.

Ertza Warraich, Omer Shabtai, Khalid Manaa, Shay Vargaftik, Yonatan Piasetzky, Matty Kadosh,
Lalith Suresh, and Muhammad Shahbaz. Ultima: Robust and tail-optimal allreduce for distributed
deep learning in the cloud, 2023. URL https://arxiv.org/abs/2310.06993.

Wendell Wenjen. Energy and the promise of ai, Jul 2024. URL https://www.datacenterdynamics.
com/en/opinions/energy-and-the-promise-of-ai/.

Grant Wilkins, Srinivasan Keshav, and Richard Mortier. Offline energy-optimal llm serving:
Workload-based energy models for llm inference on heterogeneous systems, 2024. URL
https://arxiv.org/abs/2407.04014.

12

https://arxiv.org/abs/2211.02001
https://proceedings.mlsys.org/paper_files/paper/2022/file/0cafb7890f6a7d4de65507d5bb7e0187-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/0cafb7890f6a7d4de65507d5bb7e0187-Paper.pdf
https://openreview.net/forum?id=04qx93Viwj
https://openreview.net/forum?id=04qx93Viwj
https://arxiv.org/abs/2501.01990
https://developer.nvidia.com/management-library-nvml
https://developer.nvidia.com/management-library-nvml
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://doi.org/10.1145/3411763.3451780
https://doi.org/10.1145/3411763.3451780
https://arxiv.org/abs/1909.08053
https://www.demandsage.com/chatgpt-statistics/
https://www.demandsage.com/chatgpt-statistics/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.06993
https://www.datacenterdynamics.com/en/opinions/energy-and-the-promise-of-ai/
https://www.datacenterdynamics.com/en/opinions/energy-and-the-promise-of-ai/
https://arxiv.org/abs/2407.04014

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dian Xiong, Li Chen, Youhe Jiang, Dan Li, Shuai Wang, and Songtao Wang. Revisiting the time cost
model of allreduce, 2024. URL https://arxiv.org/abs/2409.04202.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, Chenyang Shao, Yuwei Yan, Qinglong Yang,
Yiwen Song, Sijian Ren, Xinyuan Hu, Yu Li, Jie Feng, Chen Gao, and Yong Li. Towards large
reasoning models: A survey of reinforced reasoning with large language models, 2025. URL
https://arxiv.org/abs/2501.09686.

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. Habitat: A Runtime-Based
computational performance predictor for deep neural network training. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pp. 503–521. USENIX Association, July 2021. ISBN
978-1-939133-23-6. URL https://www.usenix.org/conference/atc21/presentation/yu.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023.

Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. Daydream: Accurately estimating
the efficacy of optimizations for DNN training. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pp. 337–352. USENIX Association, July 2020. ISBN 978-1-939133-14-4.
URL https://www.usenix.org/conference/atc20/presentation/zhu-hongyu.

Ruixing Zong, Jiapeng Zhang, Zhuo Tang, and Kenli Li. Ibing: An efficient interleaved bidirectional
ring all-reduce algorithm for gradient synchronization. ACM Transactions on Architecture and
Code Optimization, 01 2025. doi: 10.1145/3711818.

APPENDIX

A BACKGROUND: IRENE BASELINE

IrEne (Cao et al., 2021) is a multi-level energy prediction model that combines fine-grained model
execution features with resource utilization for more accurate energy prediction. IrEne first constructs
a model tree abstraction that captures the model’s computational structure at three levels: math level,
machine learning (ML) level, and module level. The math level consists of basic mathematical
operations like matrix multiplication and addition, which are model-agnostic and can generalize
across various models. The operations at the ML level nodes, such as Linear and LayerNorm, are
more specific to ML tasks but are still generalizable. The module level nodes (e.g., SelfAttention) are
higher-level nodes that are made up of several ML tasks combined together.

IrEne then uses a bottom-up prediction approach for energy estimation. At the leaf level, IrEne learns
the energy consumption of each node using features derived from runtime resource utilization (e.g.,
GPU usage) and model specifications (e.g., input size). IrEne uses ground truth measurement for
training. At each intermediate node going up to the root, energy predictions are recursively computed
by combining the predicted energy values of child nodes through a single regressor.

B BACKGROUND: ALLREDUCE

PIE-P extends the model tree abstraction of IrEne by introducing a dedicated module for AllReduce
operations, which is essential for capturing the energy dynamics of tensor-parallelized inference. This
extension is necessary because AllReduce operations introduce unique energy consumption patterns
tied to inter-GPU communication that cannot be captured by the existing math, ML, or module level
nodes.

The AllReduce module in our model tree abstraction represents the ring-based communication pattern
that is fundamental to tensor parallelism. In the ring AllReduce algorithm, GPUs are arranged in a
logical ring structure where each GPU communicates only with its immediate neighbors, reducing
global communication overhead. The operation proceeds in two distinct phases:

13

https://arxiv.org/abs/2409.04202
https://arxiv.org/abs/2501.09686
https://www.usenix.org/conference/atc21/presentation/yu
https://www.usenix.org/conference/atc20/presentation/zhu-hongyu

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Energy consumption across different model families and GPU configurations. The bars
show total energy consumption per model with lighter-colored segments representing AllReduce
communication energy (% shown) and darker segments showing remaining computation energy.

1. ReduceScatter Phase: Each GPU divides its data into equal chunks (one per GPU). In this
phase, each GPU sends a chunk to its successor in the ring and receives a chunk from its
predecessor. Upon receiving data, each GPU performs a reduction operation (e.g., sum)
with its corresponding local chunk. This process continues for n− 1 steps (where n is the
number of GPUs), at which point each GPU has one fully reduced chunk of the final result.

2. AllGather Phase: In this phase, the reduced chunks are disseminated to all GPUs. Each
GPU sends its reduced chunk to its successor and receives a different reduced chunk from
its predecessor. After n− 1 steps, all GPUs have all chunks of the fully reduced data.

There are two phases of the AllReduce process that is captured by the model abstraction tree:

1. Communication Nodes: Capturing the data transfers between adjacent GPUs in the ring.

2. Synchronization Nodes: Modeling the waiting periods where faster GPUs idle while
waiting for slower ones to complete their operations.

C ADDITIONAL RESULTS: ALLREDUCE ENERGY CONSUMPTION

Figure 5 shows the energy consumption breakdown for parallelized inference across different GPU
configurations for four model families: Vicuna, Mistral, Llama, and Qwen. Across all model families,
AllReduce consumes a considerable amount of energy both for 2 to 4 GPUs in tensor-parallel
configurations for batched inferences. For example, for the Vicuna family, the AllReduce energy
constitutes 14.2% (1.7 Wh/12.0 Wh) of total energy with 2 GPUs for the 7B model, increasing to
15.9% (2.5 Wh/15.7 Wh) with 4 GPUs. This proportion is higher for larger models, reaching 27.5%
(5.8 Wh/17.3 Wh) for Vicuna-33B with 2 GPUs and 35.1% (7.3 Wh/20.8 Wh) with 4 GPUs.

We observe that the proportion of AllReduce energy correlates strongly with the complexity of
the transformer architecture. Models with more sophisticated attention mechanisms and larger
feed-forward dimensions, such as Mistral and Qwen, show significantly higher AllReduce energy
proportions compared to models with simpler architectures like Vicuna. More complex transformer
blocks lead to higher AllReduce energy proportions because they generate larger intermediate tensors
that must be synchronized across GPUs. For instance, Mistral-8B employs grouped-query attention
with 32 attention heads but only 8 key-value heads, resulting in approximately 245 GFLOPs per
transformer block—31% higher than Vicuna-7B’s 187 GFLOPs per block with standard self-attention
and 32 attention heads. As a result, the proportional energy consumption of AllReduce for Mistral is
higher.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D POINT-TO-POINT DATA TRANSFERS IN PIPELINE PARALLELISM

In pipeline parallelism, stage i sends its forward activations to stage i+1 via point-to-point device-
to-device transfers (e.g., NVLink/PCIe/Ethernet). During inference there are no gradients; the only
communication is these hop-local activation sends/receives. Operationally, the transfer for a given
microbatch occurs immediately after stage i finishes its forward compute and before stage i+1
launches its first kernel on the received activations. We profile this communication by timestamping
(with nsys) the end of stage i’s last forward kernel and the start of stage i+1’s first forward kernel; the
interval between these two events is attributed to the Point-to-Point transfer. We integrate power over
this window to obtain P2P energy, repeating across hops and microbatches to form robust aggregates.
Because these are explicit, hop-local sends/recvs rather than collectives, timing variability is typically
small, and the attribution is more deterministic than in tensor-parallel synchronization phases.

E ALLGATHER COLLATION IN DATA PARALLEL INFERENCE

In data parallelism, each replica computes the full forward pass for its local microbatch and then
collates the final outputs (e.g., logits/token scores) across replicas with a single AllGather at the tail
of inference. Mechanistically, the last layer on each GPU (typically the output projection / logits
head) finishes, the runtime immediately launches an NCCL AllGather to exchange each replica’s
output tensor, and the concatenated result is handed to the host for post-processing (sampling, metrics,
or write-out). This makes profiling straightforward: profiling the output layer automatically profiles
the AllGather, since it is the next and final step. This collation is a single, tail-end exchange of final
outputs (logits/token scores) whose tensors are much smaller than hidden activations, and it happens
once per request (or per decode step).

F MODULE-LEVEL ENERGY PREDICTIONS

Module 2 GPUs 4 GPUs

Self-Attention 8.8% 11.4%
MLP 6.6% 9.5%
AllReduce 17.3% 19.4%
LayerNorm/RMSNorm 6.4% 7.3%
LLMEmbedding 9.9% 9.6%

Table 5: Module-level MAPE. PIE-P energy
prediction across components in 2-GPU and 4-
GPU settings.

Table 5 shows the module-level energy prediction
MAPE achieved by PIE-P for the primary modules
of Vicuna. For both 2-GPU and 4-GPU configura-
tions, PIE-P achieves low errors for the compute-
intensive Self-Attention (8.8–11.4%) and MLP
modules (6.6–9.5%). For the communication-
intensive AllReduce, the MAPE afforded by PIE-
P is relatively higher (17.3–19.4%) owing to the
greater variance in inter-GPU communication
overheads and non-deterministic delays; nonethe-
less, the prediction errors remain reasonable for reliable modeling (see Appendix L for implementa-
tion).

G NVML AS A PROXY FOR TOTAL ENERGY

Model MAPE Model MAPE
Vicuna 7B 33.4% Llama 7B 31.1%
Vicuna 13B 31.4% Llama 13B 31.3%
Vicuna 33B 29.8% Llama 70B 28.5%
Mistral 8B 44.2% Qwen 8B 42.4%
Mistral 24B 40.3% Qwen 14B 38.0%
Mistral 48B 39.0% Qwen 32B 38.3%

Table 6: MAPE when using NVML-reported
GPU energy as a proxy for total system energy.
This approach produces substantially higher er-
rors compared to PIE-P.

Hardware vendors provide built-in power measure-
ment interfaces such as NVIDIA Management Li-
brary (NVML) that report GPU-only energy con-
sumption. Can these readily-available measure-
ments be reliable proxies for total system energy
through simple regression techniques?

Table 6 shows the results when NVML is used to
predict total energy. Prediction errors across all
model families and sizes are high. Vicuna models’
MAPE range from 29.8% to 33.4%, while Mis-
tral’s are even higher between 39.0% and 44.2%.
NVML also generalizes poorly to unseen models, as shown in Appendix H. The result shows that
tensor-parallelized inference energy involves complex interactions between computation, synchro-
nization, and system-level dynamics that cannot be captured by GPU-only measurements alone.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H ADDITIONAL RESULTS: NVML GENERALIZATION FOR ENERGY
PREDICTION

Model MAPE Model MAPE
Vicuna 7B 48.3% Llama 7B 47.4%
Vicuna 13B 51.1% Llama 13B 49.1%
Vicuna 33B 50.0% Llama 70B 53.4%
Mistral 8B 57.3% Qwen 8B 51.1%
Mistral 24B 52.1% Qwen 14B 49.2%
Mistral 48B 51.3% Qwen 32B 56.5%

Table 7: Leave-one-out generalization results
for NVML-based regression. Each row shows
MAPE when using NVML measurements to pre-
dict total energy for a model excluded from train-
ing. The high error rates (47.4–57.3%) demon-
strate NVML’s poor generalization capabilities.

Beyond examining NVML’s limitations as a direct
proxy for total energy, we also evaluated its gen-
eralization capabilities using leave-one-out cross-
validation. Table 7 shows the results when NVML-
based regression models are trained on all models
of the same model family except one, then tested
on the excluded model.

The results reveal significantly higher prediction
errors compared to both in-sample NVML predic-
tion (29.8-44.2% MAPE) and PIE-P’s leave-one-
out performance (15.8-24.5% MAPE). MAPE val-
ues range from 47.4% to 57.3%, with an average
of 51.5% across all models (Table 7). These poor
generalization results further reinforce our conclusion that GPU-only measurements are insufficient
for accurate energy prediction in tensor-parallelized settings, particularly when generalizing to new
model architectures or configurations. The substantial gap between PIE-P and NVML generalization
performance (average improvement of 31.5 percentage points) demonstrates the critical importance
of our approach’s architecture-aware features and synchronization modeling.

I ADDITIONAL ANALYSIS: GENERALIZATION ACROSS UNSEEN VARIANTS

Table 3 showed the leave-one-out generalization results across model variants. Here, we describe
more analysis of the results beyond what was discussed in the main section.

PIE-P generalizes better over batch sizes PIE-P maintains consistent performance when trained
on one batch size and tested on another. The MAPE values for batch size generalization range from
16.89% to 21.82%, with an average of 19.05% across all families. Interestingly, generalization from
batch size 16 to 32 (19.33% average MAPE) performs similarly to generalization from batch size 32
to 16 (18.77% average MAPE), suggesting that PIE-P effectively captures the scaling relationship
between batch size and energy consumption.

J ABLATION STUDY : PIE-P WITHOUT ACCOUNTING FOR COMMUNICATION
WAITING-PHASE IN TENSOR PARALLELISM

The purpose of this ablation is to isolate the contribution of synchronization sampling— our offline
profiling of non-deterministic inter-GPU waiting during tensor-parallel collectives—to end-to-end
energy prediction. In tensor model parallelism, small rank-to-rank skews around AllReduce in-
troduce variable waiting that meaningfully contributes to communication energy; the question
we answer here is how much accuracy is lost if this phenomenon is not profiled and modeled.

Excluded PIE-P PIE-P
Family w/o waiting
Vicuna 24.1% 41.4%
Mistral 27.0% 52.4%
Llama 26.1% 51.7%
Qwen 27.6% 55.0%

Table 8: Cross-architecture general-
ization: MAPE when an entire fam-
ily is excluded from training.

Methodologically, we keep the model-tree abstraction, struc-
tural (architecture) features, and aggregate runtime features
identical to PIE-P, and we train/evaluate under the same
data splits, hardware, and workloads; the only change
is within the AllReduce module, where we disable the
synchronization/wait-time component learned from offline
sampling. Ground-truth energy is identical to the main ex-
periments, and coarse meter misalignments are handled as
in training for PIE-P; importantly, as in the main method,
inference-time prediction incurs no measurement overhead. We report both model-level and module-
level errors, with particular attention to the collective-communication nodes in the model tree.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: MAPE results for PIE-P across all models. The light blue bars show total energy prediction
error without taking into account communication costs.

Empirically, eliminating the waiting-phase degrades accuracy substantially: the average model-level
MAPE rises from 17.6% for PIE-P to 36.9% for the ablated variant—an absolute increase of 19.3
points (≈2.2×) (Figure 6). The degradation is most pronounced in settings where tensor-parallel
communication dominates (e.g., larger models and 4-GPU runs), and is concentrated at collective
nodes: AllReduce modules show the largest per-module errors, which then propagate upward in
the model tree. Taken together, these results confirm that profiling synchronization variability once,
offline, is necessary for robust, generalizable energy prediction in tensor-parallel inference and
explains the consistent gap between the ablated baseline and PIE-P.

When holding out an entire architecture family, PIE-P maintains low error (24.1–27.6%) as seen in
Table 8, whereas removing synchronization modeling (PIE-P w/o waiting) degrades accuracy by
17–27%, underscoring that profiling rank-skew–induced waiting is essential for cross-architecture
generalization.

K ADDITIONAL RESULTS: FEATURE CORRELATION ANALYSIS

Figure 7: Spearman correlation heatmap of run-
time features for the Total Model Energy of the 3
Vicuna models with the runtime features.

To assess the influence of different input features
on total energy consumption, we performed a
Spearman rank correlation analysis across all
model configurations for Vicuna. As shown in
Figure 7, GPU energy reported by NVML ex-
hibits a strong correlation with total energy (ρ
between 0.633 and 0.762), as expected since
GPU computation dominates energy consump-
tion in LLMs.

However, some other features also show sub-
stantial correlations with total energy consump-
tion. Runtime features are particularly strongly
correlated with total energy, with batch size (ρ
between 0.735 and 0.737), execution time (ρ
between 0.658 and 0.664), and Memory (ρ between 0.656 and 0.663) all showing strong correlations.

These results demonstrate that relying solely on NVML-reported GPU energy is insufficient for
accurate prediction, as system-level utilization metrics capture critical aspects of energy consump-
tion—particularly in tensor-parallel configurations where communication and synchronization over-
heads are significant.

L TRAINING METHODOLOGY

Our training methodology follows a hierarchical approach, first training module-level predictors and
then combining them for model-level prediction. We employed 3-fold cross-validation at the module
level, training on 70% of datapoints while testing on the remaining 30%.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Each module (e.g., Self-Attention, MLP, AllReduce) is sampled 10,000 times to build a robust dataset.
A single sample corresponds to one aggregated measurement obtained by running the module 100,000
times in a specific GPU configuration setting. For each sampling run, we compute the mean, standard
deviation, minimum, and maximum values of these features across all participating GPUs to account
for runtime variance and workload imbalance. These are combined with structural features to form
the complete feature vector for each sample.

To ensure that the models are evaluated under varied operational conditions, we perform sampling
across multiple output configurations. Specifically, for each model variant, we run experiments using
batch sizes of 8, 16, 32, and 64, and output sequence lengths of 512 and 1024. This sampling regime
captures both low and high throughput scenarios, improving the robustness and generalizability of
our predictors. We use vLLM (Kwon et al., 2023), a widely used inference serving python library to
run our tests for all parallelism modalities.

For each model family (e.g., Vicuna), we combined module-level energy predictions across all
variants using the extracted features. The model-level energy prediction was composed using the
regression formula:

model_energy = R(self_attention_energy
+ MLP_energy
+ AllReduce_energy + . . .) (3)

For the PIE-P without waiting phase baseline, we substituted the AllReduce module’s predicted
energy with just the network transfer predicted energy, excluding the waiting phase component. For
the IrEne baseline, we excluded AllReduce energy completely from the regression.

Figure 2 reports the MAPE values obtained from this regression, where each model-level energy
prediction MAPE is derived from a regression over its module-level energy components. The error
bars represent the standard errors computed over the individual percentage errors of each prediction.

For each model variant, we obtain module-level energy MAPE values (in Table 5 by running each
module type (e.g., Self-Attention, MLP, AllReduce) multiple times under varying input configurations
and computing their predicted energy values. If a module appears multiple times in a model (e.g.,
multiple Feed Forward Networks), we first average the predicted energies across those instances. The
final MAPE for a module type is then averaged across all variants and across all four model families.

Figure 8: Ground truth energy trade-off
between inference time per token and en-
ergy per token (on log scale) for Vicuna
under tensor parallelism.

Figure 8 shows the trade-off between actual energy con-
sumption and inference time per token across Vicuna
model sizes and GPU configurations.

To evaluate generalization across unseen model variants,
we adopt a leave-one-variant-out strategy. Specifically, for
each experiment, we exclude one model variant entirely
from training and train a model-level energy regressor
using the predicted module-level energies from the re-
maining variants within the same model family. During
evaluation, we predict the total energy of the held-out
variant using its module-level energy predictions as input.
This setup allows us to assess the ability of PIE-P to gen-
eralize across model scales and configurations within a
family.

M GROUND TRUTH ENERGY VS INFERENCE TIME PLOT

Figure 8 shows the trade-off between actual energy consumption and inference time per token across
Vicuna model sizes and GPU configurations. This is discussed in the context of generalization within
the optimal model selection use case in Section 5.2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

N ABLATION: ROLE OF MODEL FEATURES

To assess the contribution of model structure features (e.g. attention heads, feed-forward
dimension etc.), we perform an ablation by removing them from the prediction model
and comparing MAPE with and without these features for all the variants of Vicuna.

Model With Model Without Model
Variant Features Features
Vicuna 7B 15.84% 17.2%
Vicuna 13B 17.72% 18.2%
Vicuna 33B 17.55% 20.1%

Table 9: Leave-one-out model-level prediction
MAPE with and without model features.

As shown in Table 9, while overall prediction
accuracy remains similar in full-data settings,
the inclusion of model features improves gen-
eralization performance in leave-one-out evalu-
ations—reducing MAPE by 2–4% across Vicuna
variants. These results suggest that model features
help the regressors capture structural differences
between variants, improving robustness when ex-
trapolating to unseen configurations. Although the effect on raw prediction accuracy is modest, the
improvement in generalization justifies their inclusion in the final model.

19

	Introduction
	Related Work
	background and Challenges
	Design of PIE-P
	Evaluation
	Energy Prediction Results for Tensor Parallelism
	Use case: Inference time vs energy for different levels of parallelization
	Energy Prediction Results for Pipeline and Data Parallelism

	Conclusions and Limitations
	Reproducibility Statement
	Background: IrEne baseline
	Background: AllReduce
	Additional results: AllReduce energy consumption
	Point-to-Point Data Transfers in Pipeline Parallelism
	AllGather Collation in Data Parallel Inference
	Module-level energy predictions
	NVML as a proxy for total energy
	Additional results: NVML generalization for energy prediction
	Additional Analysis: Generalization across unseen variants
	Ablation Study : PIE-P without accounting for communication waiting-phase in Tensor Parallelism
	Additional Results: Feature correlation analysis
	Training Methodology
	Ground Truth Energy vs Inference Time plot
	Ablation: Role of Model Features

