
Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

Christian Komusiewicz * 1 André Schidler * 2 3 Frank Sommer * 2 Manuel Sorge * 2 Luca Pascal Staus * 1

Abstract
Binary decision diagrams (BDDs) are widely ap-
plied tools to compactly represent labeled data
as directed acyclic graphs; for efficiency and in-
terpretability reasons small BDDs are preferred.
Given labeled data, minimizing BDDs is NP-
complete and thus recent research focused on the
influence of parameters such as the solution size s
on the complexity [Ordyniak et al., AAAI 2024].
Our main positive result is an algorithm that is
efficient if in particular s, the domain size D,
and the Hamming distance between any two data
points is small, improving on previous running-
time bounds. This algorithm is inspired by the
witness-tree paradigm that was recently success-
ful for computing decision trees [Komusiewicz
et al., ICML 2023], whose extension to BDDs
was open. We extend our algorithmic results to
the case where we allow a small number of mis-
classified data points and complement them with
lower bounds that show that the running times
are tight from multiple points of view. We show
that our main algorithm holds practical promise
by providing a proof-of-concept implementation.

1. Introduction
Binary decision diagrams (BDDs), also known as decision
graphs and decision streams, are fundamental data structures
used to describe (Lee, 1959; Akers, 1978; Bryant, 1992)
and classify data (Oliver, 1993; Oliveira & Sangiovanni-
Vincentelli, 1996; Mues et al., 2004; Shotton et al., 2013;
Ignatov & Ignatov, 2017; Florio et al., 2023). BDDs have
a wide variety of applications, ranging from circuit veri-
fication (Lee, 1959; Akers, 1978; Bryant, 1992) and opti-
mization (see the survey by Castro et al. (2022)) to artificial
intelligence topics such as planning (Sanner et al., 2010;

*Equal contribution 1Institute of Computer Science, University
of Jena, Germany 2Institute of Logic and Computation, TU Wien,
Austria 3Computer Architecture, University of Freiburg, Germany.
Correspondence to: Luca Pascal Staus <luca.staus@uni-jena.de>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Castro et al., 2019), knowledge compilation (Abı́o et al.,
2012; Lai et al., 2013; Serra, 2020) and constraint propaga-
tion (Andersen et al., 2007; Perez & Régin, 2015; Verhaeghe
et al., 2018; Latour et al., 2019). In the context of classifica-
tion, a BDD is a rooted directed acyclic graph in which each
internal node represents a separating hyperplane and each
terminal node is uniquely associated with a class. For rea-
sons of efficiency of working with BDDs and interpretability,
it is crucial that the size of the BDDs is small; throughout
the paper by size we mean the number of inner nodes.

Compared to decision trees, another widely-studied concept
with particular relevance to explainable AI, BDDs can offer
smaller sizes and less redundancy (Oliver, 1993; Oliveira &
Sangiovanni-Vincentelli, 1996; Shotton et al., 2013; Ignatov
& Ignatov, 2017). Optimizing in particular the size of
decision trees has received immense attention from the point
of view of implementations (see the surveys by Carrizosa
et al. (2021); Costa & Pedreira (2023)) and algorithms and
complexity (Ordyniak & Szeider, 2021; Eiben et al., 2023;
Komusiewicz et al., 2023; Ordyniak et al., 2024; Gahlawat
& Zehavi, 2024; Schidler & Szeider, 2024; Harviainen et al.,
2025; Kobourov et al., 2025). Computing minimum-size
BDDs is comparatively less studied (Hu et al., 2022; Florio
et al., 2023; Cabodi et al., 2024; Ordyniak et al., 2024).
While both are NP-hard (Hyafil & Rivest, 1976; Bollig &
Wegener, 1996), one reason for this difference may be that
the search space of possible solutions is much larger than
for decision trees (Florio et al., 2023); the topology needs
to be optimized jointly with choosing the correct separating
hyperplanes. Therefore it is even more important to find
ways to shrink and efficiently traverse the search space. In
this work we contribute to that research direction.

An algorithmic paradigm that was successful in the context
of decision trees is that of witnesses (Komusiewicz et al.,
2023): In this paradigm one builds the tree incrementally,
identifying each time an incorrectly classified, dirty,
example, which necessitates a new separating hyperplane
that classifies the example correctly. Then one uses the
dirty example as a witness that this separating hyperplane
is necessary, mandating that the example is classified in the
corresponding subtree. This reduces the search space and
led to a new state of the art in computing minimum-size
perfect decision trees, that is, decision trees with zero
misclassifications (Staus et al., 2025).

1

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

It was previously open if and how the witness paradigm
could be applied to computing minimum-size BDDs (Or-
dyniak et al., 2024). Indeed, only impractical enumerative
approaches were known with large running-time guarantees.
In this paper, we show that the witness paradigm is directly
applicable to computing BDDs, that it yields practically
relevant algorithms with much improved running-time guar-
antees, and we give a proof-of-concept implementation that
can already compute minimum-size BDDs of sizes up to 7.

Problem statements. In the learning problem for BDDs,
we are given a set E ⊆ Rd of training data, labeled with
classes by a labeling function λ. We may first aim to find
the minimum-size BDD that perfectly classifies the training
data, that is, there are no classification errors. This can be
formulated as a search problem as follows:

BOUNDED-SIZE BDD (BSBDD)
Instance: A data set (E, λ) and an integer s ∈ N.
Task: Find a BDD of size at most s that (per-

fectly) classifies (E, λ).

We call the corresponding size-minimization problem
MINIMUM-SIZE BDD (MSBDD). Note that algorithms
solving BSBDD can solve MSBDD with an additional
factor of s in the running time by successively increasing
s = 1, 2, . . . and solving BSBDD until a solution is found.

The requirement of perfect classification is often too strong
for practice and thus we also study the generalization ER-
ROR BSBDD of BSBDD in which we are additionally
given an integer t and we ask to find a BDD of size at
most s that classifies all examples in E correctly except for
at most t misclassifications.

Finally, researchers often study ordered BDDs (OB-
DDs) (Akers, 1978; Hu et al., 2022; Cabodi et al., 2024). An
OBDD is associated with an order over the possible separat-
ing hyperplanes and each root-terminal path in the desired
BDD has to respect this order. In the corresponding problem
variants we replace BDD with OBDD in the problem name
and ask for an OBDD instead.1

Methods. All of the above problem variants are NP-hard
and thus we cannot expect efficient algorithms in general.
Thus, we apply an approach based on parameterized algo-
rithms (Gottlob et al., 2002; Flum & Grohe, 2006; Nieder-
meier, 2006; Cygan et al., 2015; Downey & Fellows, 2013):
We try to identify small parameters p of the input or desired
output and design fixed-parameter (FPT) algorithms with
running time f(p)·|I|O(1), where |I| is the input size. Or we
try to prove that such algorithms are not possible, based on
reasonable, widely accepted complexity-theoretic assump-
tions such as the Exponential Time Hypothesis (ETH) (Im-

1Note that we do not assume that an ordering is given. The
ordering has to be computed alongside the OBDD.

pagliazzo & Paturi, 2001; Impagliazzo et al., 2001).

Relevant parameters for this analysis are the size s of the de-
sired (O)BDD, the number d of features, the largest domain
size D of a feature, and the largest number δ in which two
examples in E differ2. To our knowledge, the only work
performing such an analysis is Ordyniak et al. (2024) who
obtained an FPT algorithm for BSBDD and its ensemble
version with respect to δ, D, and s.

Results. Our main result is an algorithm that applies the
witness paradigm to BDDs in a nontrivial way: We show
that a BDD can be built incrementally, by successively iden-
tifying an incorrectly classified, dirty, example e ∈ E, and
finding a separating hyperplane that changes its current, in-
correct classification path in the BDD. By doing that, we
learn the new information that in all solutions the example e
needs to reach this separating hyperplane in its classification
path. We can thus label a new edge in the BDD with e as a
witness and mandate that e has to traverse this edge. This
reduces the search space tremendously. The result is an
algorithm for BSBDD with running timeO((6s2δD)s · sn)
(Theorem 3.3), where n = |E|, improving on the previ-
ously best-knownO((3δD)s

2 ·nO(1) (Ordyniak et al., 2024).
Moreover, it avoids inherently enumerative approaches and
instead is a search-tree algorithm with large potential for
heuristic optimizations such as early termination rules. Our
algorithmic approach is very versatile: We show that it can
be extended to classification with errors (ERROR BSBDD),
to computing OBDDs, and to computing minimum size en-
sembles of BDDs. Indeed, it shows that BDDs are strongly
extendable, a desirable algorithmic property of data struc-
tures that represent data, which was previously open (Or-
dyniak et al., 2024). Apart from other algorithmic results,
we provide several tightness results based on the ETH that
show, for instance, that the dependency of the exponent on
s is optimal, and that dependency on other parameters of
the exponential part of the running time cannot be removed.
Proofs marked with (⋆) are deferred to the appendix.

To demonstrate the practical potential, we provide an imple-
mentation of our main algorithmic result. We compare it to
a state-of-the-art SAT-based approach (Cabodi et al., 2024)
on standard benchmark data. Despite its proof-of-concept
status, our implementation computes optimal BDDs of size
up to seven, is faster than the SAT-based approach for BDD
sizes up to four, and in general solves 79% of the instances
that also the SAT-approach solves within a 1h time limit.

2. Preliminaries
For n ∈ N, we denote [n] := {1, 2, . . . , n} . For a vec-
tor x ∈ Rd, we denote by x[i] the ith entry in x. Let Σ

2See Ordyniak & Szeider (2021, Table 1) and Staus et al. (2025,
Table 3) for indication that this parameter is small in practical data.

2

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

be a set of class symbols. A data set with classes Σ is a
tuple (E, λ) of a set of examples E ⊆ Rd and their class
labeling λ : E → Σ. Note that this definition captures data
sets with ordered features because such features can be
mapped into R. We assume that (E, λ) does not contain
two examples with identical coordinates but different class
labels. For a fixed data set (E, λ), we let n := |E| denote
the number of examples and d the dimension of the data set.

For each dimension i ∈ [d], we let Thr(i) be a smallest set
of thresholds such that for each pair of examples e1, e2 ∈
E with e1[i] < e2[i], there is a threshold h ∈ Thr(i)
with e1[i] ≤ h < e2[i]. Note that such a set Thr(i) can be
computed in O(n log n) time and that |Thr(i)| ≤ D. A cut
is a pair (i, h) where i ∈ [d] is a dimension and h ∈ Thr(i)
is a threshold in dimension d. Cuts(E) is the set of all
cuts. The left side of a cut with respect to E′ ⊆ E is E′[≤
(i, h)] := {e ∈ E′ : e[i] ≤ h}, and the right side of a cut
with respect to E′ is E′[> (i, h)] := {e ∈ E′ : e[i] > h}.

To define BDDs we use special directed acyclic graphs
(DAGs). These DAGs G have one root denoted by root(G)
from which all other vertices are reachable. We write V (G)
to denote the set of vertices of G and A(G) to denote the
set of arcs of G. The arcs in these DAGs are tuples (s, h, c)
where s is the start vertex, h is the end vertex, and c is
either ℓ or r and indicates whether the arc goes to the left
child or the right child of s. We say that s is an in-neighbor
of h and h is an out-neighbor of s. If only one arc with
start vertex s and end vertex h exists or if the direction is
irrelevant, then we just write (s, h). We define the in-degree
of a vertex h as the number of arcs where h is the end vertex
and similarly we define the out-degree of a vertex s as the
number of arcs where s is the start vertex. Additionally, each
vertex is only allowed to have at most one left child and one
right child, meaning the maximum out-degree is 2. A path
in a DAG G is a sequence of arcs (a1, . . . , ak) such that the
end vertex of ai is the start vertex of ai+1 for all i ∈ [k− 1].
We write Path(G) to denote the set of all paths in G.

A binary decision diagram (BDD) is a special DAG B as
described above and each vertex in V (B) is either a split
vertex with out-degree 2 or a leaf with out-degree zero.
Let S(B) be the set of all split vertices and L(B) the set
of all leafs. Furthermore, cutB : S(B) → Cuts(E) maps
every split vertex to a cut and claB : L(B)→ Σ labels each
leaf with a class. We drop the subscript if B is clear. We
assume that cla is injective meaning there can only be at
most one leaf for each class in Σ. The size of B, denoted
as size(B) = |S(B)|, is the number of split vertices. Note
that a BDD is not allowed to have two arcs with the same
start and end vertex. Part a) of Figure 1 shows an example
BDD with three split vertices s1, s2, s3 and two leafs.

For each example e we define its classification path cB(e) =
(a1, . . . , aℓ) in B as the unique path from the root of B

to one of the leafs such that ai with start vertex si goes
to the left if and only if e is on the left side of cut(si)
for all i ∈ [ℓ]. In other words, at each split vertex s we
decide if an example goes to the left or right child based on
whether the example is on the left or right side of cut(s).
For each vertex v ∈ V (B) we define E[B, v] as the set of
all examples e ∈ E where v appears on cB(e). Similarly,
for all arcs a ∈ A(B) we define E[B, a] as the set of all
examples e ∈ E where a appears on cB(e). We say that
these examples are assigned to v and a, respectively. If B
is clear from the context, we just write E[v]. By definition,
each example e ∈ E is assigned to exactly one leaf ℓ of B.
We say that ℓ is the leaf of e in B and denote ℓ by leaf(B, e)
or just leaf(e) if B is clear.

We call B reduced if each arc has at least one example as-
signed to it. Clearly, any BDD can be turned into a reduced
BDD without changing the leaf of any example by remov-
ing any vertex v or arc a with E[v] = ∅ or E[a] = ∅ and
contracting any arc with an out-degree one start vertex.

An example e ∈ E is dirty in B if we have λ(e) ̸=
cla(leaf(e)). The set of all dirty examples in B is Dirty(B).
A BDD classifies (E, λ) if no example is dirty. In this case
we call B perfect.

3. Witness-BDD-Algorithm
There is a naive brute force algorithm that solves BSBDD
in polynomial time when s is constant.
Theorem 3.1 (⋆). BOUNDED-SIZE BDD can be solved in
time (s4 · d ·D)s · |I|O(1).

3.1. An efficient Algorithm to solve BSBDD

Next, we present a much faster algorithm for BSBDD than
Theorem 3.1 where we replace the number d of dimensions
with the much smaller parameter δ. Our algorithm WitBDD
is a branch-and-bound algorithm that starts with a BDD of
size zero and then branches into all possible refinements
of this BDD that increase its size by one. This is repeated
recursively until the maximum size is reached. To limit the
number of refinements that have to be considered, WitBDD
annotates the arcs of the BDD with examples called wit-
nesses. WitBDD must then ensure that if an arc is annotated
with a witness, that witness must also be assigned to that
arc. However, for this to work we first introduce a modified
definition of BDDs called witness BDDs.

A witness BDD (WBDD) is a DAG W as described in the
previous section. Additionally, the root of W must have
in-degree zero and out-degree one. Each vertex in V (W)
that is not the root is either a split vertex with in-degree one
and out-degree 2, a merge vertex with in-degree 2 and out-
degree one or a leaf with in-degree one and out-degree zero.
Let S(W) be the set of all split vertices, M(W) the set of

3

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

a)

s1

s2

s3

b)

s1

s2

s3

m1

m2

r

Figure 1. Part a) shows a BDD B and part b) shows an equivalent
WBDD W . We turn B into W by adding a new root vertex r and
the two merge vertices m1 and m2. To revert this transformation
we contract the outgoing arcs of the three newly added vertices.

all merge vertices and L(W) the set of all leafs. Further-
more, cutW : S(W) → Cuts(E) maps every split vertex
to a cut, claW : L(W) → Σ labels each leaf with a class
and witW : A(W)→ 2E \ {∅} assigns a non-empty set of
examples called witnesses to each arc. We drop the subscript
if W is clear. We assume that cla is injective, meaning there
can only be at most one leaf for each class in Σ. The size
of W , denoted as size(W), is the number of split vertices.
Since we know the in- and out-degree of every vertex we
obtain the equation

size(W) = |S(W)| = |M(W)|+ |L(W)| − 1 (1)

which shows that the total vertex count is 2 · size(W) + 2.
Note that a WBDD is explicitly allowed to have two arcs
with the same start and end vertex as long as one goes to the
left and one goes to the right. We need this property only
during branching in WitBDD; the result will not have such
arcs. Part b) of Figure 1 shows an example WBDD with
three split vertices s1, s2, s3, two merge vertices m1,m2,
the root vertex r, and two leafs. All remaining definitions
from the previous section are the same for WBDDs. We call
a WBDD W consistent if for all examples e ∈ E the set of
arcs {a ∈ A(W) : e ∈ wit(a)} forms a path that is a prefix
of the classification path cW (e) of e in W . In particular, this
means we have wit(a) ⊆ E[W,a] for all a ∈ A(W).

In the appendix we show that a perfect reduced BDD of size
s exists if and only if a perfect consistent WBDD of size s
exists. For an example see Figure 1. Thus, we only need to
consider consistent WBDDs in WitBDD.

We now define one-step-refinements for consistent WBDDs.
Given a consistent WBDD W , a one-step-refinement mod-
ifies W by adding a new split vertex and either a new leaf
or a new merge vertex. Formally, we define a one-step-
refinement as a tuple (a1, a2, i, h, e) where a1 and a2 are
arcs in W , (i, h) ∈ Cuts(E) is a cut and e ∈ Dirty(W) is a
dirty example that is assigned to a1. In particular this means
that a1 has to be on the classification path of e. Additionally,
a2 is allowed to be ⊥.

a) r b)

Φ-Insertion
r

s1

m1

c)

Leaf-Insertion s1

s2

m1

r d)

H-Insertion s1
s2

s3

m1

m2

r

Figure 2. A sequence of one-step-refinements leading from a size-
zero witness BDD to the witness BDD in part b) of Figure 1. The
arcs that get refined are drawn in orange and the resulting new
arcs are dashed. First, a Φ-Insertion creates the new split vertex s1
and merge vertex m1. Then, a Leaf-Insertion adds the new split
vertex s2 and new blue leaf. Finally, an H-Insertion adds another
new split vertex s3 and a new merge vertex m2.

There are three types of one-step-refinements which are
demonstrated in Figure 2. For all three types, we first sub-
divide the arc a1 to add a new split vertex s with cut(s) =
(i, h). The endpoint q of the arc a1 becomes the left child
of s if e ∈ E[≤ (i, h)], and q becomes the right child other-
wise. Which vertex becomes the second child of s depends
on the type of the one-step-refinement.

The first type is called a leaf-insertion. A one-step-
refinement is a leaf-insertion if there is no leaf ℓ
with cla(ℓ) = λ(e) and a2 = ⊥. For such a refinement
we add a new leaf with this class and make it the second
child of s.

The second type is called an H-insertion. A one-step-
refinement is an H-insertion if it is not a leaf-insertion
and a1 ̸= a2. For such a refinement we subdivide the
arc a2 to add a new merge vertex m which becomes the
second child of s.

The third type is called a Φ-insertion. A one-step-refinement
is a Φ-insertion if a1 = a2. Recall that we first subdivide
arc a1 to create a new split vertex s and second, we subdi-
vide the new arc (s, q) to add a new merge vertex m which
becomes the second child of s.

When a one-step-refinement subdivides an arc a it creates
two new arcs a′ and a′′. We set wit(a′) = wit(a′′) =
wit(a). For the arc as from s to the second child of s we
set wit(as) = {e}. Additionally, we add e to the wit set of
all arcs on the classification path of e up to and including
the arc from the start vertex of a1 to s.

Figure 2 shows how applying these three types of one-step-
refinements to a WBDD may look.

We write W
r−→ R to denote that the WBDD R was created

by applying the one-step-refinement r to W . Note that some
one-step-refinements may create an inconsistent WBDD or a
graph which is not even a DAG: This can happen with a one-
step-refinement (a1, a2, i, h, e) if the examples in wit(a1)

4

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

Algorithm 1: WitBDD
Input: A consistent WBDD W , a data set (E, λ), and

a maximum size s ∈ N.
Output: A perfect consistent WBDD of size at most s

or ⊥ if none could be found.

1 Function Refine (W , (E, λ), s)
2 if W classifies (E, λ) then return W
3 if W has size s then return ⊥
4 e← some dirty example from Dirty(W)
5 forall r = (a1, a2, i, t, e) ∈ Ref(W, e) do
6 Apply r to W to create a new consistent

WBDD R
7 R′ ← Refine (R, (E, λ), s)
8 if R′ ̸= ⊥ then return R′

9 return ⊥

and the example e are not on different sides of the cut (i, h),
if the new arc from a1 to a2 creates a cycle, or if a2 = ⊥ but
a leaf with the class of e already exists. No such refinement
will lead to a perfect BDD. Thus, we write Ref(W) to
denote the set of all valid one-step-refinements, that is, all
one-step-refinements where R is still a consistent WBDD.
We write Ref(W, e) to denote the subset of valid one-step-
refinements where e is the dirty example.

We can now describe the branching algorithm WitBDD.
Initially we choose any example e ∈ E and construct a
consistent WBDD W with exactly one arc between the
root r and a leaf ℓ. We set wit((r, ℓ)) = {e} and cla(ℓ) =
λ(e). We then call Refine in Algorithm 1. Refine takes
a consistent WBDD W as input and checks if a sequence of
one-step-refinements exists that can turn W into a perfect
consistent WBDD with size at most s. For this, we first
check if W is already perfect. If not, we then check if W
has already reached the maximum size. If that is also not
the case we choose some dirty example e in Line 4. We then
iterate over all possible valid one-step-refinements with e as
the dirty example in Line 5, apply them to W in Line 6 and
recursively call Refine in Line 7. If a perfect consistent
WBDD is found that has size at most s we immediately
return it. Otherwise the loop runs until all possible one-step-
refinements have been checked.

Lemma 3.2. For a given data set (E, λ) and positive inte-
ger s, WitBDD correctly solves BSBDD.

Before we prove Lemma 3.2, we will first show that the
algorithm has the desired running time.

Theorem 3.3. BSBDD can be solved in O((6s2δD)s · sn)
time.

Proof. We first bound how many times Refine is called.
Clearly, the recursion depth is at most s since the size of

the WBDD is bounded by s. That means that Refine
is called O(Rs) times where R is the maximum number
of iterations of the loop in Line 5. Since the loop is not
called if W already has size s we can assume that we
have size(W) < s.

For a one-step-refinement in Ref(W, e) we first need to
choose an arc a1. This arc must be on the classification path
of e. This path can visit each non-leaf vertex at most once
and contains exactly one leaf. Due to Equation (1) we know
that there are at most 2 · size(W) + 2 ≤ 2s vertices in W .
Hence, the number of arcs on the classification path of e is
also at most 2s. For a2 we can choose any arc in A(W). To
bound this, we can add up the out-degrees of all vertices.
This gives us 2 · |S(W)| + |M(W)| + 1. Since we have
at least one leaf and size(W) < s we get the following
inequality:

2 · |S(W)|+ |M(W)|+ 1 ≤ 3 · size(W) + 1 ≤ 3s.

Hence, there are at most 3s choices for a2. Since the wit-
nesses of a1 and e must be on different sides of the cut (i, h)
we have at most δ choices for the dimension i and at most D
choices for the threshold h.

This bounds the total number of one-step-refinements that
are considered in Line 5 by 6s2δD. Applying a one-step-
refinement can be done in O(sn) time and checking if all
examples are classified correctly and if not finding a dirty
example can also be done in O(sn) time.

To prove Lemma 3.2 we first need to define embeddings.
An embedding maps each arc in a WBDD W to a path in a
different WBDD W ′ subject to certain conditions.

Definition 3.4. Given two consistent WBDDs W and W ′

we say that W admits an embedding φ : A(W) →
Path(W ′) into W ′ if the following conditions hold:

1. S(W) ⊆ S(W ′) and M(W) ⊆M(W ′) and L(W) ⊆
L(W ′) and root(W) = root(W ′).

2. For all s ∈ S(W) we have cutW (s) = cutW ′(s) and
for all ℓ ∈ L(W) we have claW (ℓ) = claW ′(ℓ).

3. For all a ∈ A(W) we have:

(a) φ(a) is a path from the start vertex of a to the
end vertex of a and they are the only vertices
from V (W) that appear on φ(a).

(b) For all arcs a′ on φ(a) we have witW (a) ⊆
witW ′(a′).

(c) If s1 ∈ S(W), then a goes to the left in W if and
only if the first arc in φ(a) goes to the left in W ′.

4. For all a1, a2 ∈ A(W) with a1 ̸= a2, the only vertices
appearing on both φ(a1) and φ(a2) may be their start
and end vertices.

5

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

The idea of the proof is to first show that the starting WBDD
of the algorithm admits an embedding into some perfect
WBDD P of size at most s if such a WBDD exists. We
then show that for any WBDD W that admits an embedding
into P and that has at least one dirty example e there exists a
one-step-refinement that the algorithm considers that creates
a WBDD that also admits an embedding into P . We then
finish the proof by showing that if size(W) = size(P),
then W must be perfect because P is perfect.

Proof of Lemma 3.2. We assume that a perfect WBDD P
of size at most s exists. If not then the algorithm will clearly
return ⊥ since any WBDD generated by the algorithm has
size at most s. We assume that the witness labeling of P is
maximal, that is, witP (a) = E[P, a] for all a ∈ A(P).

We start by showing that the WBDD W of size zero that
Refine is initially called with admits an embedding into P .
We know that W only has a root r and one leaf ℓ. The root
of a WBDD is always the same and since P is perfect, there
must be a leaf in P that has the same class as ℓ. Hence,
Items 1 and 2 of Definition 3.4 are fulfilled. We now just
need to map the arc (r, ℓ) of W to a path from r to ℓ in P
such that Items 3a to 3c and 4 are fulfilled. Let e be the
witness in witW (r, ℓ). Since P is perfect, we know that the
classification path of e in P must start in r and end in ℓ.
Thus, by mapping (r, ℓ) to this path we fulfill all conditions.

Next, we assume that we already have some WBDD W
that admits an embedding φ into P . We want to show
that if Refine is called with W , then at least one of the
WBDDs R that are created inside the for-loop must also
admit an embedding into P . Let e be a dirty example in W .
If such an example does not exist then W is already per-
fect and we are done. We now need to find a one-step-
refinement r = (a1, a2, i, h, e) ∈ Ref(W, e) with W

r−→ R
such that R admits an embedding τ into P .

We start by identifying a1 and the vertex z1 which is created
when the one-step-refinement subdivides a1. Let a1 be the
first arc on the classification path cW (e) of e in W such
that φ(a1) is not fully included in cP (e) and let z1 be the
start vertex of the first arc in φ(a1) where the two paths do
not match. For this to happen there must be exactly two
arcs in P with z1 as the start vertex which means that z1 is
a split vertex. Note that such an arc a1 must exist since e
is dirty in W but not dirty in P . Let s1 be the start vertex
and h1 the end vertex of a1. We need to show that z1 is not
equal to s1 or h1 and therefore not a vertex in W .

Clearly, we have z1 ̸= h1 since h1 is not the start vertex
of any arc in φ(a1). We also have z1 ̸= s1. To see this we
use Item 3c in Definition 3.4. Without loss of generality, we
assume that a1 goes to the left in W , that is, a1 = (s1, h1, ℓ).
Hence, e is on the left side of cutW (s1). The first arc
in φ(a1) must therefore also go to the left in P . By the

definition of z1, the arc on cP (e) with start vertex z1 must
go to the right which is a contradiction to e being on the left
side of cutW (s1) = cutP (s1). Hence, we have z1 ̸= s1.

With this we now know that z1 ̸∈ V (W). We now
set (i, h) = cutP (z1). Without loss of generality, we as-
sume that e is on the right side of (i, h). Due to Item 3b
in Definition 3.4 and the definition of z1 we know that
all witnesses in wit(a1) must be on the left side of (i, h)
while e is on the right side. This ensures that the one-step-
refinement r creates a consistent WBDD and is therefore
contained in Ref(W, e).

We now just need to find a suitable arc a2. To do this we
will first try to find the vertex z2 which is created when the
one-step-refinement subdivides a2. This vertex must come
after z1 on the classification path of e in P . Let Q be the
suffix of cP (e) that starts at the vertex following z1. Also,
let Ψ be the image of φ, i.e. Ψ = {φ(a) : a ∈ A(W)}. We
now define z2 as the first vertex on Q that also appears on
some path π ∈ Ψ.

We now differentiate between two cases based on whether
such a z2 exists or not. We first assume that it does not
exist. In this case there cannot be a leaf in W that has the
same class as e. If this leaf ℓ did exist it would have an in-
neighbor ℓ′ in W . The path φ(ℓ′, ℓ) would then intersect Q
which contradicts z2 not existing. In this case we set a2 = ⊥
and the one-step-refinement becomes a leaf-insertion.

We now look at the other case where z2 does exist. Let a2
be the arc in W with φ(a2) = π. Also let s2 be the start
vertex and h2 the end vertex of a2. We need to show that z2
is a merge vertex in Z and that z2 does not exist in W .

Let a2 be the arc in W with φ(a2) = π. Also let s2 be the
start vertex and h2 the end vertex of a2. We first want to
show that z2 must be a merge vertex. To do this we assume
towards a contradiction that z2 only has one incoming arc.
We now want to find an arc a1 in W such that z2 is not
the start vertex of a′ but still appears on φ(a′). If z2 ̸= s2
we can just use a′ := a2. If z2 = s2 then we set a′ to the
incoming arc of z2 in W . Now, if z2 is not the start vertex
of Q then the parent of z2 in P must appear on both φ(a′)
and Q. This is a contradiction since z2 should by definition
be the first such vertex. If z2 is the start vertex of Q then z1
must appear on the path φ(a′) in P . Due to condition Item 4
in Definition 3.4, we must have a1 = a′. We know that z2
appears on cP (e) right after z1. We also know that φ(a1)
diverges from that path at z1 but still has z2 = h1 as its end
vertex. That is only possible if z2 has two incoming arcs
which contradicts it having only one. This proves that z2
must be a merge vertex.

We now want to show that z2 is not equal to s2 or h2 and
therefore not a vertex in W . For this let us assume towards
a contradiction that z2 is equal to s2 or h2. Since z2 is a

6

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

merge vertex it has exactly two incoming arcs a′ and a′′

in W with start vertices s′ and s′′. Each start vertex of the
two incoming arcs of z2 in P must appear on at least on
of the paths φ(a′) and φ(a′′). If z2 is not the first vertex
on Q then one of those start vertices must also appear on Q
which contradicts z2 being the first vertex on Q that appears
on some path in Ψ. If z2 is the first vertex on Q then z1
must be one of those two start vertices. This means z2
appears on exactly one of the paths φ(a′) and φ(a′′); z2
cannot appear on both since that would violate Item 4 of
Definition 3.4. Without loss of generality, we assume that z2
appears on φ(a′) which means we must have a′ = a1. We
know that the classification path cP (e) diverges from φ(a1)
at z1. But since z2 follows z1 on that path we know that z1
must also appear on φ(a′′), contradicting our assumption
that it appears on exactly one of the incoming paths.

We now know that z2 ̸∈ V (W) and that it must be a merge
vertex in P . With this we have found the two vertices that
are created by the one-step-refinement when subdividing a1
and a2. If a1 = a2 then r becomes a Φ-insertion. Otherwise,
it becomes an H-insertion.

Now, that we have found a suitable one-step-refinement r,
we need to show that R with W

r−→ R admits an embed-
ding τ into P . Due to how r was constructed we know
that Items 1 and 2 of Definition 3.4 are fulfilled. We just
need to deal with Item 3 of Definition 3.4. For this we de-
fine τ(a) = φ(a) for all arcs a that exist in both W and R.
We now need to find a suitable path in P for all arcs that
are added by r. The arcs that are created by subdividing a1
or a2 are assigned to the corresponding subpaths of φ(a1)
and φ(a2). By construction the newly added vertices z1
and z2 must exist on these paths. Next we need to assign
a path to the arc az from z1 to z2. For simplicity we set z2
to the newly added leaf in the case that r is a leaf insertion.
We define τ(az) as the subpath of cP (e) that starts at z1
and ends at z2. By definition of z1 and z2, this path must
exist and z1 and z2 must be the only vertices from V (R)
that appear on it. With this, Item 3a is fulfilled. Item 3c of
Definition 3.4 is also fulfilled by construction. For all arcs a
on the classification path of e in R up to z2 the path φ(a)
must be fully included in the classification path of e in P .
Item 3b of Definition 3.4 must also be fulfilled since these
are the only arcs where e is added as a witness and when
subdividing an arc the witnesses are just copied from the
original arc. Since we chose z1 and z2 as the first vertices
that fulfill their respective conditions we clearly have that no
two paths overlap in P outside of their start and end vertices.
Hence, Item 4 is also fulfilled. This proves the statement.

Finally, to prove the correctness of the algorithm we only
need to show that W is perfect if size(W) = size(P).
From Item 1 of Definition 3.4 and Equation (1) we see that
we must have V (W) = V (P). This also means that any

arc a in W is mapped to itself by φ. With Item 3c this
guarantees that the structure of W must be the same as the
structure of P . Finally, with Item 2 we can see that the
classification paths of all examples will be the same in W
and P . Consequently, W must also be perfect.

3.2. Extensions of WitBDD for more general Problems

Ordyniak et al. (2024) presented a general theoretical frame-
work for learning smallest interpretable models, such as
decision trees and BDDs. More precisely, they presented
a framework of so-called strong-extendability to compute
perfect decision trees and a weaker framework of so-called
extendability to compute perfect BDDs. With the help of
extendability, they showed that BSBDD can be solved in
(δ ·D·2O(s))s time. They posed as an open question whether
this running time can be significantly reduced.

Next, we argue that BDDs are in fact strong-extendable
by invoking WitBDD. In order to verify this, an annotated
model (M,A) is required such that M is not a model for
the input classification instance and A is some annotation.
Moreover, let e be a dirty example, that is, an example which
is not correctly classified by M . A full set of strict extensions
for an annotated model (M,A) and example e is a set E
of strict extensions of (M,A) such that every model M ′

that correctly classifies e and is an extension of (M,A)
also has an extension of some annotated model in E . Now,
observe that our notion of a witness BDD together with the
definition of one-step-refinements and embeddings, and the
correctness of our algorithm WitBDD shown in Lemma 3.2
verifies that BDDs are strongly extendable.

Ordyniak et al. (2024, Theorem 3) showed that strong-
extendability leads to an efficient algorithm to solve en-
sembles, that is, a set S of BDDs with at least one split
vertex each, where the classification of an example is the
majority vote of all BDDs in S. By s we denote the total
size of all BDDs in the ensemble. We denote the ensemble
variant of a problem by adding ENSEMBLE to the problem
name. Thus, we obtain the following.

Corollary 3.5. ENSEMBLE BSBDD can be solved in
time O((6s2δD)s · sn).

Moreover, the framework of strong-extendability is not only
limited to perfect BDDs; it can also be applied to ERROR
BSBDD, that is, computing a minimum size BDD with at
most t errors: Now it is not sufficient anymore to choose an
arbitrary dirty example in Line 4 of Algorithm 1. If there are
at most t errors, and the WBDD has size at most s, we found
a solution. Otherwise, we choose an arbitrary subset S of
t + 1 dirty examples. If a solution exists, at least one of
them has to be classified correctly. Next, we branch on all
one-step-refinements for each dirty example in S in Line 5.
The correctness of this algorithm can be shown analogously

7

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

to Lemma 3.2 and thus we obtain the following:
Corollary 3.6. ERROR BSBDD and ENSEMBLE ERROR
BSBDD can be solved in time O((6s2δD(t+ 1))s · sn).

Moreover, as we discussed in the introduction, WitBDD
can not only be used to solve decision problem BSBDD
(and its generalization), but WitBDD can also be used to
solve the optimization variant MSBDD. Thus, to solve the
optimization problems, we obtain an additional factor of s
in the running times.

Also, WitBDD works for OBDDs by simply checking be-
fore Line 7 if R is ordered and only calling Refine if that
is the case. Hence, we obtain the following.
Corollary 3.7. BOUNDED-SIZE OBDD can be solved in
time O((6s2δD)s · s2n).

Note that this generalizes to the ensemble model and the
model with up to t errors.

4. Further Parameterized Complexity Results
Next, we study whether ERROR BSBDD can be solved
efficiently when the number d of dimensions is small.
Kobourov et al. (2025, Theorem 1) showed that minimum-
size decision trees with zero errors, that is, t = 0, can be
computed in polynomial time when d is a constant. In the
conclusion they argue that also a minimum-size decision
tree with at most t errors can be computed in polynomial
time whenever d is a constant. We now show that, in con-
trast, ERROR BSBDD remains NP-hard even if d = 4.
Theorem 4.1 (⋆). ERROR BSBDD and ERROR
BSOBDD are NP-hard and cannot be solved in f(s +
d) · no(s+d) time, unless the ETH fails, even if d = 4.

In contrast, when the number of dimensions d and the maxi-
mum domain size D are bounded, then minimum-size BDDs
can be computed efficiently also for unbounded error param-
eter t. This result also holds for OBBDs.
Theorem 4.2 (⋆). ERROR BSBDD and ERROR
BSOBDD are FPT for D + d.

Ordyniak & Szeider (2021) showed that computing a mini-
mal size decision tree is unlikely to admit an FPT algorithm
for s, even if D = 2 and t = 0 and that it is NP-hard even
if D = 2, δ = 2, and t = 0. Their reduction works for
BDDs and OBBDs as well giving the following hardness.
Proposition 4.3 (⋆). BSBDD and BSOBDD (1) cannot
be solved in f(s+D) · no(s+D) time, unless the ETH fails,
even if D = 2, and (2) are NP-hard, even if D = δ = 2.

Recall that our witness-BDD algorithm presented in Theo-
rem 3.3 has a running time of O((6s2δD)s · sn). Proposi-
tion 4.3 shows that the exponential dependence on s cannot
be significantly improved without violating the ETH.

5. Experiments
We implemented Algorithm 1 to gauge how it performs in
practice. More precisely, our implementation solves MS-
BDD and MSOBDD, the optimization problems where
we search for a perfect (O)BDD of minimal size. We are
not aware of existing implementations for MSBDD and
hence compare against the SOTA SAT-implementation for
MSOBDD due to Cabodi et al. (2024). Since the imple-
mentation of Cabodi et al. was not publicly available, we
re-implemented their SAT-encoding.

Experimental setup. For our experiments we used
35 datasets of the Penn Machine Learning Benchmarks (Ro-
mano et al., 2022) that were also used by Staus et al. (2025)
in their experiments on computing optimal decision trees;
see Table 1 in the appendix. Each of these instances is a
binary classification problem. Analogously to Cabodi et al.
(2024), we randomly sampled multiple subsets of the ex-
amples from each data set: Specifically, for each data set
we constructed 10 instances by randomly selecting 10% of
the examples and 10 instances by randomly selecting 20%
of the examples. This gives a total of 700 instances. For
each instance we set a time limit of 60 minutes. Our ex-
periments were performed on Intel(R) Xeon(R) Platinum
8360Y(2) CPUs with 2.6 GHz and 24 cores and 256 GB
RAM. Each individual experiment was performed on a pri-
vate core with a RAM limit of 2 GB. For the SAT encoding
we increased the limit to 20 GB. We implemented WitBDD
in C++ and the SAT-formulation in Python with CaDiCaL
1.9.5 as the SAT-solver. Our source code is available in the
supplementary material.3

Heuristic running time improvements. Compared to the
pure theoretical description, WitBDD incorporates some
first heuristic improvements. Some improvements are also
used for the SAT-encodings to make the comparison fair.

1) Data reduction rules. For WitBDD and for the SAT-
encoding, we apply some simple data reduction rules
that were described by Staus et al. (2025) for computing
minimum-size decision trees. These rules reduce redun-
dancy in the dataset by removing examples that have the
same value as another example in all dimension, dimen-
sion where all examples have the same value, and cuts that
are equivalent to other cuts. It is straightforward to show
that these rules can also be applied to BSBDD For further
details, we refer to Staus et al. (2025, Appendix B).

2) Dirty example priority. Any dirty example e in Line 4 of
Algorithm 1 is possible. Ideally, we want e to minimize the
number of recursive calls in Line 5. Since it takes too long
to calculate this number exactly for all dirty examples e, we
instead try to approximate it as follows for each e: We count

3https://doi.org/10.5281/zenodo.15489411

8

https://doi.org/10.5281/zenodo.15489411

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

the number of cuts that separate e and the witness of the last
arc on the classification path of e and multiply this number
by the length of the current classification path e.

3) Budget one improvement. If the difference of the size of
the current WBDD and the maximum size s is only one then
all dirty examples must be correctly classified with a single
one-step-refinement ρ. Thus, when WitBDD chooses an
arc a1 for ρ, all dirty examples must be assigned to a1; oth-
erwise we cannot classify them all correctly. Consequently,
we can discard all arcs a1 which violate this property.

4) Pair lower bound. Staus et al. (2025, Section 4) describe
a Pair Lower Bound (PairLB) for computing the smallest
perfect decision tree. This bound is also valid for BDDs:
In the PairLB one constructs a SET COVER instance where
the universe consists of all pairs of examples of different
classes. For each cut c in the dataset, a subset consisting of
all pairs that are separated by c is added to the SET COVER
instance I . The set X of all cuts in a perfect BDD is a
solution to I . Hence, any lower bound for I is a lower
bound for the smallest size of any perfect BDD. To compute
such a lower bound, we solve the LP relaxation of an ILP
formulation for SET COVER, using Gurobi 10.0.3. (Gurobi
Optimization, LLC, 2024). This lower bound is used as
starting value for s in WitBDD and the SAT-encoding.

5) Packing lower bound. For WitBDD, we additionally use
the SET COVER instance I from the PairLB to compute a
packing of the cuts such that each set in the packing has at
least one example pair that can only be separated by cuts in
that set. The number of sets in the packing is a lower bound
for I and therefore also for the smallest size of a perfect
BDD. The advantage is that this lower bound can also be
used during the run-time of WitBDD: At the beginning of
each recursive call, we can check how many sets of packing
are not yet covered by some cut in the current BDD. This
number is a lower bound for the number of further one-step-
refinements needed to correctly classify all examples.

For WitBDD we simultaneously use five different packings
to improve the likelihood that in some packing the number
of uncovered sets is too large. The first packing is computed
greedily while the remaining four are computed randomly.

Experimental results. WitBDD solved 443 instances and
the SAT encoding solved 557 out of the 700 instances. All
instances that were solved by WitBDD were also solved
by the SAT encoding. Figure 3 shows the running times
of the two algorithms compared to the sizes of the optimal
BDDs. It shows that WitBDD generally performs better
than the SAT encoding on instances with a small optimal
size. In fact, on the 353 instances with an optimal size of at
most 4, WitBDD is on average roughly 828 times faster than
the SAT encoding with a median speedup of 64. However,
on the remaining 90 instances with an optimal size that is

1 2 3 4 5 6 7 8
Optimal BDD sizes

100

101

102

103

104

105

106

Ru
nn

in
g

tim
es

 in
 [m

s]

SAT
WitBDD

Figure 3. Comparison of WitBDD and the SAT encoding based on
optimal BDD size. The dashed line represents the timeout.

bigger than 4 the SAT encoding was on average roughly 37
times faster than WitBDD with a median speedup of 7.

The reason for this is most likely that the search space of
WitBDD increases by a lot as the size bound s increases.
For instances with an optimal size of at least 5 the function
Refine was called on average roughly 360 ·106 times with
a median of 14 · 106. On instances with an optimal size < 4
the average was only 4 · 106 with a median of 3038.

In a nutshell, the experiments show that our basic proof-of-
concept implementation outperforms the SOTA for small
BDD sizes (s ≤ 4) while it is substantially slower for
medium-size BDDs (5 ≤ s ≤ 8) and larger BDDs (s > 9)
are out of reach of the current methods.

6. Conclusion
We provided a branch-and-bound algorithm WitBDD with
running timeO((6s2δD)s · sn) for computing minimal size
BDDs. This significantly improves upon the previous best
known running time guarantee of (δ ·D · 2O(s))s (Ordyniak
et al., 2024). Moreover, we provided a proof-of-concept
implementation WitBDD and showed that WitBDD holds
practical promise against the SOTA SAT-formulation. In
our opinion, WitBDD holds a lot of potential for further
improvements: Since it is a branch-and-bound algorithm,
symmetry breaking techniques and improved lower bounds
should give a substantial speed-up.

While we presented our results to compute minimal-size
BDDs, our techniques also work for computing minimal-
depth BDDs: in Algorithm 1 we just need to restrict the
one-step-refinements to those that do not violate the depth
constraint. Since each BDD with depth at most h has at
most 2h inner nodes, this gives anO((6h2δD)2

h ·2hn) time
algorithm for this problem.

9

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

Acknowledgments
André Schidler was supported by Austrian Science Fund
(FWF) grant 10.55776/P36420 and an Amazon Research
Award (Fall/2023). Frank Sommer was supported by the
Alexander von Humboldt Foundation. Luca Pascal Staus
was supported by the Carl Zeiss Foundation, Germany,
within the project “Interactive Inference”.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abı́o, I., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-

Carbonell, E., and Mayer-Eichberger, V. A New Look
at BDDs for Pseudo-Boolean Constraints. Journal of
Artificial Intelligence Research, 45:443–480, 2012. doi:
10.1613/JAIR.3653.

Akers, S. B. Binary decision diagrams. IEEE Trans. Com-
puters, 27(6):509–516, 1978. doi: 10.1109/TC.1978.
1675141.

Andersen, H. R., Hadzic, T., Hooker, J. N., and Tiede-
mann, P. A constraint store based on multivalued de-
cision diagrams. In Bessiere, C. (ed.), Proceedings of
the 13th International Conference on Principles and
Practice of Constraint Programming (CP 2007), volume
4741 of Lecture Notes in Computer Science, pp. 118–
132. Springer, 2007. ISBN 978-3-540-74969-1. doi:
10.1007/978-3-540-74970-7 11.

Bollig, B. and Wegener, I. Improving the variable ordering
of OBDDs is NP-complete. IEEE Trans. Computers, 45
(9):993–1002, 1996. doi: 10.1109/12.537122.

Bryant, R. E. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Comput. Surv., 24(3):
293–318, 1992. doi: 10.1145/136035.136043.

Cabodi, G., Camurati, P. E., Marques-Silva, J., Palena, M.,
and Pasini, P. Optimizing binary decision diagrams for
interpretable machine learning classification. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 43(10):3083–
3087, 2024. doi: 10.1109/TCAD.2024.3387876.

Carrizosa, E., Molero-Rı́o, C., and Romero Morales, D.
Mathematical optimization in classification and regres-
sion trees. Transactions in Operations Research, 29(1):
5–33, 2021. doi: 10.1007/s11750-021-00594-1.

Castro, M. P., Piacentini, C., Ciré, A. A., and Beck, J. C.
Relaxed BDDs: An admissible heuristic for delete-free
planning based on a discrete relaxation. In Benton, J.,
Lipovetzky, N., Onaindia, E., Smith, D. E., and Srivas-
tava, S. (eds.), Proceedings of the Twenty-Ninth Interna-
tional Conference on Automated Planning and Schedul-
ing (ICAPS 2019), pp. 77–85. AAAI Press, 2019. doi:
10.1609/icaps.v29i1.3462.

Castro, M. P., Ciré, A. A., and Beck, J. C. Decision diagrams
for discrete optimization: A survey of recent advances.
INFORMS J. Comput., 34(4):2271–2295, 2022. doi: 10.
1287/IJOC.2022.1170.

Costa, V. G. and Pedreira, C. E. Recent advances in
decision trees: An updated survey. Artificial Intelli-
gence Review, 56(5):4765–4800, 2023. doi: 10.1007/
S10462-022-10275-5.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D.,
Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S.
Parameterized Algorithms. Springer, 2015. doi: 10.1007/
978-3-319-21275-3.

Downey, R. G. and Fellows, M. R. Fundamentals of Parame-
terized Complexity. Texts in Computer Science. Springer,
2013. doi: 10.1007/978-1-4471-5559-1.

Eiben, E., Ordyniak, S., Paesani, G., and Szeider, S. Learn-
ing small decision trees with large domain. In Proceed-
ings of the 32nd International Joint Conference on Arti-
ficial Intelligence (IJCAI ’23), pp. 3184–3192. Interna-
tional Joint Conferences on Artificial Intelligence Organi-
zation, 2023. doi: 10.24963/IJCAI.2023/355.

Florio, A. M., Martins, P., Schiffer, M., Serra, T., and Vi-
dal, T. Optimal decision diagrams for classification. In
Proceedings of the 37th AAAI Conference on Artificial In-
telligence (AAAI ’23), pp. 7577–7585. AAAI Press, 2023.
doi: 10.1609/AAAI.V37I6.25920.

Flum, J. and Grohe, M. Parameterized Complexity The-
ory. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2006. doi: 10.1007/3-540-29953-X.

Gahlawat, H. and Zehavi, M. Learning small decision trees
with few outliers: A parameterized perspective. In Pro-
ceedings of the 38th AAAI Conference on Artificial Intel-
ligence (AAAI ’24), pp. 12100–12108. AAAI Press, 2024.
doi: 10.1609/AAAI.V38I11.29098.

Gottlob, G., Scarcello, F., and Sideri, M. Fixed-parameter
complexity in AI and nonmonotonic reasoning. Ar-
tif. Intell., 138(1-2):55–86, 2002. doi: 10.1016/
S0004-3702(02)00182-0.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024.

10

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

Harviainen, J., Sommer, F., Sorge, M., and Szeider, S. Op-
timal decision tree pruning revisited: Algorithms and
complexity. In Proceedings of the 42th International
Conference on Machine Learning (ICML ’25), 2025. To
appear.

Hu, H., Huguet, M., and Siala, M. Optimizing binary de-
cision diagrams with MaxSAT for classification. In Pro-
ceedings of the 36th AAAI Conference on Artificial Intel-
ligence (AAAI ’22), pp. 3767–3775. AAAI Press, 2022.
doi: 10.1609/AAAI.V36I4.20291.

Hyafil, L. and Rivest, R. L. Constructing optimal binary
decision trees is NP-complete. Inf. Process. Lett., 5(1):
15–17, 1976. doi: 10.1016/0020-0190(76)90095-8.

Ignatov, D. Y. and Ignatov, A. D. Decision stream: Culti-
vating deep decision trees. In Proceedings of the 29th
IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2017), pp. 905–912. IEEE Com-
puter Society, 2017. ISBN 978-1-5386-3876-7. doi:
10.1109/ICTAI.2017.00140.

Impagliazzo, R. and Paturi, R. On the complexity of k-
SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001. doi:
10.1006/JCSS.2000.1727.

Impagliazzo, R., Paturi, R., and Zane, F. Which problems
have strongly exponential complexity? J. Comput. Syst.
Sci., 63(4):512–530, 2001. doi: 10.1006/jcss.2001.1774.

Kobourov, S. G., Löffler, M., Montecchiani, F., Pilipczuk,
M., Rutter, I., Seidel, R., Sorge, M., and Wulms, J. The
influence of dimensions on the complexity of computing
decision trees. Artif. Intell., 343:104322, 2025. doi:
10.1016/J.ARTINT.2025.104322.

Komusiewicz, C., Kunz, P., Sommer, F., and Sorge, M.
On computing optimal tree ensembles. In Proceedings
of the International Conference on Machine Learning
(ICML ’23), volume 202 of Proceedings of Machine
Learning Research, pp. 17364–17374. PMLR, 2023. doi:
10.5555/3618408.3619123.

Lai, Y., Liu, D., and Wang, S. Reduced ordered binary deci-
sion diagram with implied literals: a new knowledge com-
pilation approach. Knowledge and Information Systems,
35(3):665–712, 2013. doi: 10.1007/S10115-012-0525-6.

Latour, A. L. D., Babaki, B., and Nijssen, S. Stochas-
tic constraint propagation for mining probabilistic net-
works. In Kraus, S. (ed.), Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence (IJCAI 2019), pp. 1137–1145. ijcai.org, 2019. doi:
10.24963/IJCAI.2019/159.

Lee, C. Y. Representation of switching circuits by binary-
decision programs. Bell System Technical Journal, 38(4):
985–999, 1959. doi: 10.1002/j.1538-7305.1959.tb01585.
x.

Mues, C., Baesens, B., Files, C. M., and Vanthienen, J. De-
cision diagrams in machine learning: an empirical study
on real-life credit-risk data. Expert Systems with Applica-
tions, 27(2):257–264, 2004. doi: 10.1016/J.ESWA.2004.
02.001.

Niedermeier, R. Invitation to Fixed-Parameter Algorithms.
Oxford University Press, 2006. doi: 10.1093/acprof:
oso/9780198566076.001.0001.

Oliveira, A. L. and Sangiovanni-Vincentelli, A. L. Using the
minimum description length principle to infer reduced
ordered decision graphs. Machine Learning, 25(1):23–50,
1996. doi: 10.1007/BF00115299.

Oliver, J. J. Decision graphs – an extension of decision
trees. In In Proceedings of the 4th international workshop
on artificial intelligence and statistics (AISTATS)), pp.
343—350, 1993.

Ordyniak, S. and Szeider, S. Parameterized complexity of
small decision tree learning. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI ’21),
pp. 6454–6462. AAAI Press, 2021. doi: 10.1609/AAAI.
V35I7.16800.

Ordyniak, S., Paesani, G., Rychlicki, M., and Szeider, S. A
general theoretical framework for learning smallest inter-
pretable models. In Proceedings of the 38th AAAI Con-
ference on Artificial Intelligence (AAAI ’24), pp. 10662–
10669. AAAI Press, 2024. doi: 10.1609/AAAI.V38I9.
28937.

Perez, G. and Régin, J. Efficient operations on MDDs for
building constraint programming models. In Yang, Q.
and Wooldridge, M. J. (eds.), Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intel-
ligence (IJCAI 2015), pp. 374–380. AAAI Press, 2015.
ISBN 978-1-57735-738-4.

Romano, J. D., Le, T. T., Cava, W. G. L., Gregg, J. T.,
Goldberg, D. J., Chakraborty, P., Ray, N. L., Himmel-
stein, D. S., Fu, W., and Moore, J. H. PMLB v1.0: an
open-source dataset collection for benchmarking machine
learning methods. Bioinform., 38(3):878–880, 2022. doi:
10.1093/BIOINFORMATICS/BTAB727.

Sanner, S., Uther, W. T. B., and Delgado, K. V. Approxi-
mate dynamic programming with affine ADDs. In van der
Hoek, W., Kaminka, G. A., Lespérance, Y., Luck, M., and
Sen, S. (eds.), Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems

11

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

(AAMAS 2010), pp. 1349–1356. IFAAMAS, 2010. ISBN
978-0-9826571-1-9. doi: 10.1145/1838206.1838383.

Schidler, A. and Szeider, S. SAT-based decision tree learn-
ing for large data sets. J. Artif. Intell. Res., 80:875–918,
2024. doi: 10.1613/JAIR.1.15956.

Serra, T. Enumerative branching with less repetition. In He-
brard, E. and Musliu, N. (eds.), Proceedings of the 17th
International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Re-
search (CPAIOR 2020), volume 12296 of Lecture Notes
in Computer Science, pp. 399–416. Springer, 2020. ISBN
978-3-030-58941-7. doi: 10.1007/978-3-030-58942-4
26.

Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J. M.,
and Criminisi, A. Decision jungles: Compact and rich
models for classification. In Burges, C. J. C., Bottou, L.,
Ghahramani, Z., and Weinberger, K. Q. (eds.), Proceed-
ings of the 27th Annual Conference on Neural Informa-
tion Processing Systems (NIPS 2013), pp. 234–242, 2013.
doi: 10.5555/2999611.2999638.

Staus, L. P., Komusiewicz, C., Sommer, F., and Sorge, M.
Witty: An efficient solver for computing minimum-size
decision trees. In Proceedings of the 39th Conference
on Artificial Intelligence (AAAI ’25), pp. 20584–20591.
AAAI Press, 2025. doi: 10.1609/AAAI.V39I19.34268.

Verhaeghe, H., Lecoutre, C., and Schaus, P. Compact-
mdd: Efficiently filtering (s)MDD constraints with re-
versible sparse bit-sets. In Lang, J. (ed.), Proceed-
ings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence (IJCAI 2018), pp. 1383–
1389. ijcai.org, 2018. ISBN 978-0-9992411-2-7. doi:
10.24963/IJCAI.2018/192.

12

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

Appendix

A. Additional Material for Section 3
A.1. Proof of Theorem 3.1

Proof. Let (I, s) be an instance of BSBDD. We can assume
|Σ| ≤ s+ 1 since a BDD can have at most s+ 1 leafs and
therefore cannot correctly classify all examples if they have
more than s+ 1 different classes.

The idea of the algorithm is to simply enumerate all possible
BDDs of size s and check if they are perfect. We start by
creating s split vertices and one designated leaf for each
class in Σ for a total of at most 2s + 1 vertices. Each
split vertex now needs a left child and a right child. There
are at most 2s options for the endpoint of each arc. This
means we can enumerate all possible BDD structures in s4s ·
|I|O(1) time.

For each BDD structure we now need to go through all
possible cuts for each split vertex. Since there are d dimen-
sions and at most D thresholds in each dimension, this step
requires ds ·Ds · |I|O(1) time for each BDD structure.

Checking if a BDD is perfect can be done in |I|O(1) time.
Hence, the overall running time is (s4 ·d ·D)s · |I|O(1).

Transforming a BDD into an WBBD and vice versa.
Given a reduced BDD B we can turn B into an equiva-
lent consistent WBDD B′ with size(B) = size(B′) and
claB(leaf(B, e)) = claB′(leaf(B′, e)) for all e ∈ E; for
an example see Figure 1. We first add a new root with
exactly one arc going to the previous root root(B). Next,
we need to make sure that all vertices in B have in-degree
one since they are all either split vertices or leafs. For a
vertex v ∈ V (B) with an in-degree of at least two we add a
new merge vertex m and replace the end vertex in two of the
incoming arcs of v with m. We also create a new arc (m, v).
We repeat this until all vertices v ∈ V (B) have in-degree
one except for the new root and the merge vertices. Finally,
we set witB′(a) = E[B′, a] for all a ∈ A(B′). Since B is
reduced, we know that these sets are not empty.

Similarly, we can turn any consistent WBDD W into an
equivalent reduced BDD W ′ with size(W) = size(W ′)
and claW (leaf(W, e)) = claW ′(leaf(W ′, e)) for all e ∈ E,
see Figure 1. We just reverse the process described above by
contracting the outgoing arcs of any merge vertex and the
root. Hence, a perfect reduced BDD of size s exists if and
only if a perfect consistent WBDD of size s exists. Thus,
we only need to consider consistent WBDDs in WitBDD.

B. Additional Material for Section 4
B.1. Proof of Theorem 4.1

Proof. We provide a reduction from MULTICOLORED k-
BICLIQUE, which cannot be solved in f(k)·|V (G)|o(k) time
unless the ETH fails (Cygan et al., 2015).

MULTICOLORED k-BICLIQUE
Input: An integer k and a bipartite graph G =

(P,Q,E) where P = {P1, . . . , Pk}, Q =
{Q1, . . . , Qk}, and |Pi| = n = |Qi| for
each i ∈ [n].

Question: Does G have a multicolored k-
biclique, that is, a vertex set S such that |S ∩
Pi| = 1 = |S ∩ Qi| such that each vertex
in S ∩ P is adjacent to each vertex in S ∩Q?

Note that it is safe to assume that k ≤ n. The property
that all partite sets Pi and Qi have the same number n of
vertices is only used to simplify the proof. For each partite
set Pi and Qi we let p1i , p

2
i , . . . , p

n
i and q1i , q

2
i , . . . , q

n
i be an

arbitrary but fixed ordering of Pi and Qi, respectively.

Intuition: We create two dimensions dℓP and drP , and dℓQ
and drQ per partite set P and Q, respectively. Dimension dℓP
is partitioned into k different blocks T 1

P,ℓ, T
2
P,ℓ, . . . , T

k
P,ℓ

such that the ith block represents the vertex set Pi. The
other dimensions are partitioned similarly.

In our construction we use many badges, that is, sets of
indistinguishable examples. Each block starts with a badge
of blue forcing examples of size more than t and ends with
a badge of red enforcing examples of size more than t (or
vice versa). Consequently, each minimal-size BDD (a) has
to separate each two consecutive blocks with a cut to sepa-
rate the red enforcing examples of the previous block and
the blue forcing examples of the new block and (b) needs
another cut within each block to separate the blue forcing
examples and the red enforcing examples of that block to
fulfill the error threshold t. We set the size s of the BDD
to 4 · (k + (k − 1)) = 8k − 4. Hence, each minimal-size
BDD has to contain all cuts between two distinct blocks
(these are 4 · (k − 1)) and exactly one cut in each block
(these are 4 · k).

Furthermore, the two cuts in the i-th blocks of dimen-
sions dℓP and drP , or dℓQ and drQ correspond to a vertex
selection in Pi, and Qi, respectively. We achieve this as
follows: Consider the ith block T i

P,ℓ of dℓP . Block T i
P,ℓ

(after the forcing examples and before the enforcing ex-
amples) contains an alternating sequence of badges (size
more than t) of blue separating examples and badges (size
more than |E(G)| but less than t) of red choice examples.
Each consecutive badge of separating examples and badge
of choice examples can only be separated if the unique cut

13

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

p11 p21

P1

p12 p22

P2

q11 q21

Q1

q12 q22

Q2

Figure 4. An instance of MULTICOLORED 2-BICLIQUEwith n =
2. A multicolored 2-biclique is depicted in orange.

between them in this block T i
P,ℓ or in the corresponding

block T i
P,r in dimension drP is part of the BDD. Our er-

ror threshold t is chosen such that all separating examples
have to be classified correctly and that exactly 2k badges
of choice examples have to be classified correctly. Since
each badge of separating examples has size more than t, at
most one badge of choice examples of each block can be
classified correctly. This badge of choice examples then
corresponds to a vertex selection in Pi.

Additionally, we add one red edge example e per edge in G
such that e can only by correctly classified if both endpoints
of the corresponding edge are selected. To achieve this, we
add badges of blue restricting examples of size more than t
which have the effect that selecting one endpoint of an edge
is not sufficient to classify this edge correctly as red. By
setting t accordingly, we ensure that the selected vertices
from a multicolored k-biclique.

Construction: We first define the parameters s and t, and
then we describe the data set. A visualization is shown in
Figures 4 to 7.

Parameters: Let z = n9 and x = n5. Both numbers are
used to set the size of sets of examples. We set s = 4k +
4(k−1) = 8k−4, and we set t = 2·k(n−1)·x+|E(G)|−
k2.

Description of the examples: By a badge we denote a set of
indistinguishable examples, that is, all examples in that set
have the same thresholds in all dimensions.

• We create a badge Bi
H,y of blue forcing examples of

size z and a badge Ri
H,y of red enforcing examples

of size z for each H ∈ {P,Q}, each y ∈ {ℓ, r}, and
each i ∈ [k].

• We create an red edge example e(u,w) for each
edge (u,w) ∈ E(G).

• We create a badge Cu of red choice examples of size x
for each vertex u ∈ V (G).

• We create a badge Sa
H,j of blue separating examples

of size z for each H ∈ {P,Q}, a ∈ [k] and each j ∈
[n+ 1].

• We create a badge F j
u of blue restricting examples of

size z for each vertex u ∈ V (G) and each j ∈ [2k].

The following notation is useful for the assignment of thresh-
olds to the examples: For each vertex u ∈ V (G), we say that
the badge F a

u of blue restricting examples for each a ∈ [2k],
the badge Cu of red choice examples, and the red edge ex-
amples corresponding to all edges having one endpoint u,
are the examples associated with vertex u. Observe that
each edge example e(u,w) is associated with both u and w.

Note that |V (G)| = 2 ·k ·n. In total, we add 4 ·k · z forcing
examples, 4 · k · z enforcing examples, m ≤ |V (G)|2 =
4 · k2 ·n2 edge examples, |V (G)| ·x choice examples, 2 · z ·
k ·(n+1) separating examples, and 2k ·|V (G)|·z restricting
examples. Since k ≤ n, these are O(n12) examples.

Description of the dimensions: We create 4 dimensions dℓP ,
drP , dℓQ, and drQ. In each dimension dim, the examples are
arranged in k blocks and one set Rest(dim), which contains
all remaining examples. We next describe the ith block T i

P,ℓ

(T i
P,r) of dimension dℓP (drP), see also Figure 5 for an visu-

alization. We describe the example sets at each threshold in
increasing order.

• At the first threshold in the block T i
P,ℓ we have the

badge Bi
P,ℓ of blue forcing examples and the badge F i

q

of blue restricting examples for any vertex q ∈ Q.

At the first threshold in the block T i
P,r we have

the badge Ri
P,r of red enforcing examples and the

badge F k+1−i
q of blue restricting examples for any

vertex q ∈ Q.

• The next thresholds are populated alternatingly as fol-
lows: First, we have the badge Si

P,1 of blue separat-
ing examples. Second, at the next threshold, we have
all examples associated with the first vertex p1i ∈ Pi.
Third, at the next threshold, we have the badge Si

P,2 of
blue separating examples. Fourth, we have all exam-
ples associated with the second vertex p2i ∈ Pi. This
continuous until the badge Si

P,n+1 of blue separating
examples.

• At the last threshold in the block T i
P,ℓ we have

the badge Ri
P,ℓ of red enforcing examples and the

badge F k+i
q of blue restricting examples for any ver-

tex q ∈ Q.

At the first last in the block T i
P,r we have the

badge Bi
P,r of blue forcing examples and the

badge F 2k+1−i
q of blue restricting examples for any

vertex q ∈ Q.

14

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

T i
P,ℓ : Bi

P,ℓ F i
Q | Si

P,1 | E(p1i) Cp1
i

Fp1
i | Si

P,2 | E(p2i) Cp2
i

Fp1
i | Si

P,3 | F k+i
Q Ri

P,ℓ

T i
P,r : Ri

P,r F i
Q | Si

P,1 | E(p1i) Cp1
i

Fp1
i | Si

P,2 | E(p2i) Cp2
i

Fp1
i | Si

P,3 | F k+i
Q Bi

P,r

Figure 5. Visualization of the two blocks T i
P,ℓ and T i

P,r corresponding to the instance of Figure 4. Here, E(pji) refers to all red edge
examples corresponding to edges having endpoint pji . Furthermore, F i

Q = {F i
q : q ∈ Q} and F k+i

Q = {F k+i
q : q ∈ Q}. A possible cut

in a block is depicted as “|”. The unique cut in each block of the optimal BDD shown in Figure 7 is shown in orange.

dℓP : T 1
P,ℓ | T 2

P,ℓ | Rest(dℓP)

drP : Rest(drP)| T 2
P,r | T 1

P,r

dℓQ : T 1
Q,ℓ | T 2

Q,ℓ | Rest(dℓQ)

drQ : Rest(drQ)| T 2
Q,r | T 1

Q,r

Figure 6. Visualization of the four dimensions using the blocks
and the set of unused examples. The cuts “|” between each two
consecutive blocks and between the last block and the set of unused
examples has to be contained in every optimal BDD.

dℓP < p11 layer 1

dℓP > R1
P,ℓ

dℓP < p22

layer 2

drP > p11 layer 3

drP < R1
P,r

drP > p22

layer 4

dℓQ < q21 layer 5

dℓQ > Q1
P,ℓ

dℓQ < q22

layer 6

drQ > q21 layer 7

drQ < Q1
P,r

drQ > q22

layer 8

redblue

Figure 7. Visualization of the optimal BDD B and its 8 layers
corresponding to the instance of Figure 4 which is described in the
(⇒) direction of the correctness proof.

Note that for each badge of forcing examples and each
badge of enforcing examples in one of the k blocks in di-
mensions dℓP and drP , there exists exactly one badge of
restricting examples F j

q for each q ∈ Q at the same thresh-
old.

The blocks T i
Q,ℓ and T i

Q,r for dimensions dℓQ and drQ are
defined analogously.

Now, we describe how the blocks T i
P,ℓ and T i

P,r are ar-
ranged in dimensions dℓP and drP , respectively. For this, we
also need the unused examples Rest(dℓP) in dimension dℓP .
Essentially, Rest(dℓP) contains all examples which are not
contained in any of the blocks T 1

P,ℓ, . . . , T
k
P,ℓ. The sets of

unused examples Rest(drP), Rest(dℓQ), and Rest(drQ) are de-
fined analogously. We refer to Figure 6 for a visualization.

In dimension dℓP we have the blocks T 1
P,ℓ, T

2
P,ℓ, . . . , T

k
P,ℓ

in that specific ordering, followed by the unused exam-
ples Rest(dℓP). In dimension drP we first have the unused ex-
amples Rest(drP), and then the blocks T k

P,r, T
k−1
P,r , . . . , T 1

P,r

in that specific ordering. The arrangement of the blocks
and unused examples in the dimensions dℓQ and drQ is analo-
gously.

Correctness: We show that G has a multicolored k-biclique
if and only if there exists a BDD B with at most s inner
nodes making at most t errors.

In the following, for a dimension dim ∈ {dℓP , drP , dℓQ, drQ}
and a badge X (or an example e), we use the notation dim <
X (dim < e), to denote a cut, that is, all examples which
have a threshold smaller than the examples of badge X
(example e) in dim go to the left child of this cut, and
all remaining examples go to the right child of this cut.
Moreover, we say that a cut dim < X violates an example e
if e[dim] ≥ X , and otherwise we say that dim < X applies
to e.

(⇒) Let S be a multicolored k-biclique of G, see Figure 4
for an example. By pi and qi we denote the unique vertex
of S in Pi or in Qi, respectively. We now design a BDD B
with exactly s = 8k−4 inner nodes making at most t errors,
see also Figure 7 for an visualization. We want to emphasis
that the constructed BDD B is not unique, that is, there are
also other BDD’s with exactly s inner nodes making at most

15

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

t errors.

Basically, the BDD B has 4k layers, see Figure 7 for a
visualization. A layer is a sequence of (at most two) cuts
leading to the blue leaf if all cuts of this layer apply to an
example e, and otherwise, if at least one cut of this layer
violates an example e, then e is redirected into the next layer.
Each example which is violated by at least one cut in the
last layer is then put into the red leaf.

We say that layer j applies to an example e if e can be
put to the blue leaf via layer j. Otherwise, we say layer j
violates e. We use the following observation:

Claim B.1. (a) If all layers violate an example e, then e is
classified as red.

(b) Otherwise, if any of the 4k layers applies e, then e is
classified as blue.

Consequently, in order to show that a blue example e is
correctly classified it is sufficient that at least one of the
layers applies to e. Furthermore, any red example e can
only be correctly classified by B if all layers violate e.

The first k layers include all cuts in dimension dℓP . More-
over, layer j corresponds to the block T j

P,ℓ. Furthermore,
the second k layers include all cuts in dimension drP . More-
over, layer (k + j) corresponds to the block T j

P,r. Together
these 2k layers correspond to the k vertices of S ∩ P . More
precisely, layers j and (k + j) correspond to the vertex pj
selected in the partite set Pj .

For the remaining 2k layers an analog property holds for
dimensions dℓQ and drQ. We now describe the first k layers
and then the second k layers in detail:

First k layers:

• Layer 1 only consists of the cut dℓP < p1.

• Layer 2 consists of the two cuts dℓP > R1
P,ℓ and dℓP <

p2.

• Layer 3 consists of the two cuts dℓP > R2
P,ℓ and dℓP <

p3.

• Layer k consists of the two cuts dℓP > Rk−1
P,ℓ and dℓP <

pk.

Layers k + 1 to 2k:

• Layer k + 1 only consists of the cut drP > p1.

• Layer k + 2 consists of the two cuts drP < R1
P,r

and drP > p2.

• Layer k + 3 consists of the two cuts drP < R2
P,r

and drP > p3.

• Layer 2k consists of the two cuts drP < Rk−1
P,r

and drP > pk.

Layers 2k + 1 to 4k are defined analogously. We observe
the following:

Claim B.2. If an example e has a threshold in some block T
in some dimension dim, then the layer corresponding to T
in dim is the unique layer in dim which can apply to e.

Proof of Claim. For simplicity assume without loss of
generality that dim = dℓP and that T = T i

P,ℓ. Any ex-
ample e ∈ T i

P,ℓ has a larger threshold than each vertex pj
with j < i in dℓP . Consequently, the cut dℓP < pj in layer j
violates e. Also, e has a smaller threshold than each exam-
ple in Rj

P,ℓ for each j ∈ [i+2, k]. Consequently, the cut dℓP
in layer j − 1 violates e. ■

Claim B.2 implies that if e ∈ Rest(dim), then each layer in
dimension dim violates e.

Clearly, the BDD B consists of exactly s inner nodes.
Hence, it remains to verify that B makes at most t errors.

B makes at most t = 2·k(n−1)·x+|E(G)|−k2 errors. Ob-
serve that t < z = n9. We first verify that all forcing exam-
ples, all enforcing examples, all separating examples, and all
restricting examples are correctly classified by B. Second,
we show that exactly 2k badges of choice examples are cor-
rectly classified by B. Recall that each badge of choice ex-
amples has size x. Also, recall that we have |V (G)|·x choice
examples in total. Thus, the BDD B then misclassifies ex-
actly (|V (G)| − k) · x− 2 · k · x = 2 · k · (n− 1) · x choice
examples. Finally, we show that B correctly classifies all
edge examples corresponding to edges having both end-
points in S. Since S is a multicolored k-biclique, these
are k2 examples. Recall that we have exactly |E(G)| edge
examples. Hence, if we have shown the above 3 steps, then
we have verified that B makes at most t errors. We use
Claims B.1 and B.2 to show these statements.

• Forcing examples: We show that for a badge Bi
P,ℓ

of blue forcing examples the ith layer applies: The
cut dℓP > Ri−1

P,ℓ applies to Bi
P,ℓ since Bi

P,ℓ is contained
in the next block T i

P,ℓ. Also the cut dℓP < pi applies
to Bi

P,ℓ since the block T i
P,ℓ starts with the set Bi

P,ℓ.

Analogously, one can show that the (k + i)th layer
applies to Bi

P,r, that the (2k+i)th layer applies to Bi
Q,ℓ,

and that the (3k + i)th layer applies to Bi
Q,r.

• Enforcing examples: Let e ∈ Ri
P,ℓ. By Claim B.2, all

layers except layer i violate e. Also, layer i violates e
since the cut dℓP < pj violates e.

Analogously, one can show that non of the layers ap-
plies for any other red enforcing example.

16

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

• Separating examples: Consider the badge Si
P,j of

blue separating examples. Recall that {pi} = S ∩ Pi.
By h ∈ [n] we denote the index of pi in the order-
ing p1i , p

2
i , . . . , p

n
i , that is pi = phi . We show that either

(a) the ith layer applies if j ≤ h, or (b) the (k + i)th
layer applies if j > h. Without loss of generality we
assume that j ≤ h. The ith layer applies since the
cut dℓP > Ri−1

P,ℓ applies to Si
P,j since Si

P,j is contained
in the next block T i

P,ℓ. Also the cut dℓP < pi applies
to Si

P,j since j ≤ h and pi = phi .

Analogously, one can find a layer which applies to each
other separating example.

• Restricting examples: We show that for the badge F i
u

of blue restricting examples where u ∈ Q and i ∈ [k]
the ith layer applies: The cut dℓP > Ri−1

P,ℓ applies to F i
u

since F i
u is contained in the next block T i

P,ℓ. Also the
cut dℓP < pi applies to F i

u since the block T i
P,ℓ starts

with the set F i
u.

Analogously, one can show that the (2k + i)th layer
applies to the blue restricting examples F i

u where u ∈
Q and u ∈ [k+1, 2k]. Then, the argumentation for F i

u

with u ∈ P is analogously.

• Choice examples: Consider the badge Cpi
of

red choice examples. Recall that {pi} = S ∩ Pi. By
Claim B.2 we only need to consider layers i and (k+i).
Layer i violates Cpi

since the cut dℓP < pi violates Cpi
,

and layer k + i violates Cpi since the cut drP > pi vio-
lates Cpi .

Analogously, one can show that all layers violate the
red choice examples Cqi where {qi} = S ∩Qi.

• Edge examples: Let e = e(pi, qj) be an red edge
example corresponding to an edge (pi, qj) ∈ E(G)
such that pi, qj ∈ S. The argumentation is almost
identical to the choice examples Cpi

with pi ∈ S: By
Claim B.2 we only need to consider layers i, (k + i),
(2k + j), and (3k + j). Layer i violates e since the
cut dℓP < pi violates e, layer (k + i) violates e since
the cut drP > pi violates e, layer (2k + j) violates e
since the cut dℓQ < qj violates e, and layer (3k + j)
violates e since the cut drQ > qj violates e.

(⇐) Let B be a BDD with at most s inner nodes making
at most t errors. We now show that G has a multicolored
k-biclique.

Outline: First, we show that B has exactly s = 8k − 4 in-
ner nodes. Note that we only argue about which cuts the
BDD B has to contain; the structure of B is not important.
More precisely, we show that B contains all unique cuts
which splits all blocks in all dimensions (these are exactly
4 · (k − 1) = 4k − 4 many) and exactly one cut within

each block (these are exactly 4 · k many). We achieve this
since all blue forcing examples have to be separated from
all red enforcing examples by B since both the forcing and
the enforcing examples are arranged in badges of z > t ex-
amples each. Second, we verify that the cuts in blocks T i

P,ℓ

and T i
P,r have the form dℓP < pji or dℓP ≤ pji and drP > pji

or drP ≥ pji for some vertex pji ∈ Pi. An analog property
also holds for the blocks T i

Q,ℓ and T i
Q,r. Let S be the corre-

sponding vertex set. Finally, we verify that S corresponds to
a multicolored k-biclique. Clearly, S contains exactly one
vertex of each partite set, and thus we only have to show
that there exists an edge between any vertex in S ∩ P and
any vertex in S ∩Q.

Step 1: First, we show that B contains all cuts between two
consecutive blocks in all 4 dimensions. Recall that these
are 4 · (k − 1) = 4k − 4 many. Without loss of general-
ity, we consider the two consecutive blocks T i

P,ℓ and T i+1
P,ℓ .

Now, consider the badge Ri
P,ℓ of red enforcing examples

of block T i
P,ℓ and the badge Bi+1

P,ℓ of blue forcing examples
of block T i+1

P,ℓ . Note that dℓP < Bi+1
P,ℓ is the unique cut in

dimension dℓP which separates Ri
P,ℓ from Bi+1

P,ℓ . Further-
more, we have Ri

P,ℓ, B
i+1
P,ℓ ∈ Rest(dim) for each remaining

dimension dim ∈ {drP , dℓQ, drQ}. Consequently, B contains
the unique cut dℓP < Bi+1

P,ℓ between the two blocks T i
P,ℓ

and T i+1
P,ℓ .

Second, we verify that B contains at least one cut within
each block. Since we have 4k blocks and s ≤ 8k − 4,
we can then conclude that B contains exactly one cut
within each block. Without loss of generality, we con-
sider the block T i

P,ℓ. Now, consider the badge Bi
P,ℓ of

blue forcing examples and the badge Ri
P,ℓ of red en-

forcing examples of this block T i
P,ℓ. Furthermore, we

have Bi
P,ℓ, R

i
P,ℓ ∈ Rest(dim) for each remaining dimen-

sion dim ∈ {drP , dℓQ, drQ}. Consequently, B contains at
least one cut within the block T i

P,ℓ.

Step 2: By construction, all blue examples and also all
red enforcing examples are arranged in badges of size z > t
each. Consequently, all blue examples and also all red en-
forcing examples have to be classified correctly by B.
Moreover, observe that all red choice examples are ar-
ranged in badges of size x = n5 each, and that we have
|E(G)| < (kn)2 < n5 red edge examples. Since t =
2 · k(n− 1) · x+ |E(G)| − k2, we conclude that B has to
classify at least 2k badges of choice examples correctly.

We now show that B can classify at most one badge of
choice example per partite set Pi or Qi correctly. Since
there are exactly 2k partite sets, we can then conclude that B
classifies exactly one badge of choice example per partite
set correctly.

17

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

It remains to verify that B can classify at most one badge
of choice example per partite set, say P1, correctly. Con-
sider the badge Cpj

1
of red choice examples correspond-

ing to the jth vertex of P1 and also the two badges S1
P,j

and S1
P,j+1 of blue separating examples. By construction,

Cpj
1
, S1

P,j , S
1
P,j+1 are contained in the blocks T 1

P,ℓ and T 1
P,r,

and in Rest(dℓQ) and Rest(drQ). Moreover, we observe the
following:

Claim B.3. (a) Cpj
1

and S1
P,j can only be separated by the

cuts dℓP < pj1 and drP ≥ pj1, and (b) Cpj
1

and S1
P,j+1 can

only be separated by the cuts dℓP ≤ pj1 and drP > pj1.

By Step 1, we know that B contains exactly one cut in
each block. Thus, both cuts in blocks T 1

P,ℓ and T 1
P,r are

required to classify Cpj
1

correctly. Moreover, for any other
vertex ph1 ∈ P1, the two necessary cuts to classify Cph

1
cor-

rectly are disjoint from the necessary cuts for Cpj
1
. Conse-

quently, B can classify at most one badge of choice example
per partite set correctly.

Hence, we have now verified that B classifies exactly one
badge of choice examples per partite set correctly. Since
each badge of choice examples corresponds to a vertex
of V (G), we obtain a vertex set S containing exactly one
vertex per partite set Pi and Qi.

Step 3: According to our choice of t = 2 · k(n − 1) ·
x + |E(G)| − k2 and to Step 2, we conclude that B has
to correctly classify at least k2 red edge examples. In the
following, we show that any edge example e corresponding
to an edge (u,w) such that at least one of its endpoints
is not contained in S, is misclassified by B. If we have
verified this, we can then conclude that S is a multicolored
k-biclique.

Now, let e = e(u,w) be an red edge example such that at
least one of the endpoints of the corresponding edge (u,w),
say u, is not contained in S. Without loss of generality,
we assume that u = pi1 /∈ S. Now, let {pj1} = S ∩ P1.
Note that i ̸= j. First, we consider the case that i < j, see
also Figure 5 for a visualization. Consider the badge F 1

w

of blue restricting examples. Observe that both e and F 1
w

are contained in the blocks T 1
P,ℓ and T 1

P,r. Recall that by
Claim B.3, the unique cut in dimension dℓP is either dℓP < pj1
or dℓP ≤ pj1 and that the unique cut in dimension drP is
either drP ≥ pj1 or drP > pj1. Consequently, the unique
cut of B in T 1

P,ℓ applies to both e and F 1
w, and the unique

cut of B in T 1
P,r violates by both e and F 1

w. Moreover, e
and F 1

w use the identical thresholds in dℓQ and drQ. Thus,
we conclude that e and F 1

w cannot be distinguished by B.
By construction, |F 1

w| = z > t and thus both e and F 1
w

are classified as blue. Second, the case that i > j can be

handled analogously by considering the set F k+1
w . Hence,

we have shown that e gets misclassified by B.

Lower Bound: Recall that in the constructed instances,
d = 4. Since MULTICOLORED k-BICLIQUEis NP-hard
and the reduction runs in polynomial time, we obtain the
claimed NP-hardness. Moreover, since s = 8k − 4 in the
constructed instances and MULTICOLORED k-BICLIQUE
cannot be solved in f(k) · |V (G)|o(k) time unless the ETH
fails (Cygan et al., 2015), we obtain that ERROR BSBDD
cannot be solved in f(s+ d) · |I|o(s+d) time if the ETH is
true, where |I| is the overall instance size, even if d = 4.

Observe that the BDD constructed in the proof of Theo-
rem 4.1 is also an OBDD. Hence, we obtain the same hard-
ness results also for ERROR BSOBDD.

B.2. Proof of Theorem 4.2

Proof. Initially, we bound the size of any minimal decision
tree for the corresponding classification instance (E, λ) of
the ERROR BSBDD or ERROR BSOBDD instance. Since
decision tree is also a BDD, this number is then an upper
bound for any minimal size BDD. This upper bound then
allows us to brute force the size of an optimal BDD. After-
wards, we can use the same ideas of the XP-algorithm for s
behind Theorem 3.1 to first guess the structure of the BDD
and second to populate the inner nodes with cuts.

Note that in each minimal-size decision tree no leaf is empty,
that is, each leaf contains at least one example. Conse-
quently, the length of each root-leaf path is bounded by the
maximal number of cuts which is d ·D. In other words, the
depth of each minimum decision tree is at most d ·D. Since
decision trees are binary trees, each minimal size decision
tree contains at most 2d·D inner nodes. Consequently, each
minimal size BDD has size at most 2d·D.

Now, we can guess the size z ∈ [2d·D] of a minimum-size
BDD. Next, for this size z, we use the algorithm behind
Theorem 3.1. In other words, first, in z2z · |I|O(1) time,
we guess the structure of the BDD, where |I| is the overall
instance size. Second, in zd·D · |I|O(1) time, we guess the
cut for each node in the BDD. For OBBDs, we additionally
check whether the order property is fulfilled. Overall, the
running time is (2d·D)(2

d·D+1+d·D) · poly(|I|), where |I|
is the overall instance size. The algorithm is correct since
a minimal BDD B has size z ≤ 2d·D and at one stage
we try this specific value of z. Moreover, since we try all
possibilities for the structure of the BDD, the algorithm also
finds the structure of B and since we try all possibilities for
all cuts, the algorithm also finds the correct cuts.

18

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

B.3. Proof of Proposition 4.3

Proof. (1) We reduce from HITTING SET. The input con-
sists of an universe U , a family of subsets F of U and a
number k. The goal is to select S ⊆ U of size k such that
each set F ∈ F contains at least one element of S. HITTING
SET is NP-hard and cannot be solved in f(k) · no(k) time,
unless the ETH fails (Cygan et al., 2015).

We create a classification instance as follows: For each
element u ∈ U we create a binary dimension du. Further-
more, for each set F ∈ F we create a blue example eF .
Example eF has value 1 in each dimension corresponding
to an element u contained in F , and value 0 in each other
dimension. Afterwards, we add a red example e∗ which
has value 0 in each dimension. Clearly, D = 2. Finally, we
set s = k

Note that each minimal size decision tree is equivalent to a
minimal size hitting set (Ordyniak & Szeider, 2021). Since
the classification instance contains exactly one red exam-
ple e∗, each minimal size decision tree is a path such that
all leaves are blue except one leaf of the last cut which is
red. Consequently, each minimal size BDD has the same
structure. Furthermore, since the cuts in each such path can
be reordered arbitrarily without misclassifying any example,
this result extends to OBBDs.

(2) This result follows by the same reduction by reducing
from the NP-hard VERTEX COVER which is the special case
of HITTING SET where each set in the family F has size 2.
As a consequence, we obtain δ = 2.

C. Additional Material for Section 5
We improved the SAT-encoding of Cabodi et al. (2024) for
the following reason: It is not clear to us how the→ implica-
tion of the↔ constraint 19) of their model can be encoded
efficiently without substantially increasing the number of
used variables. This constraint models the classification path
of an example m. However, for the correctness of the model
it is sufficient to have the← implication in constraint 19):
Initially, m is contained in the root i and since the root has
a dimension k, and a left and right child, example m is then
redirected to exactly one of them, say n. This ensures that
the right hand side for these values of i, n,m, k is fulfilled
and thus emn = 1. Applying this argument iteratively leads
to the classification path of example m.

19

Learning Minimum-Size BDDs: Towards Efficient Exact Algorithms

Instance name n n′ d d′ c c′ δ δ′ D D′

postoperative-patient-data 72 72 22 17 22 22 14 14 2 3
hayes-roth 84 84 15 15 15 15 8 8 2 2
lupus 86 79 3 2 126 78 3 2 75 53
appendicitis 106 106 7 7 523 460 7 7 99 98
molecular biology promoters 106 106 228 228 228 228 104 104 2 2
tae 106 106 5 5 96 94 5 5 46 45
cloud 108 108 7 7 585 555 7 7 108 100
cleveland-nominal 130 130 17 17 17 17 11 11 2 2
lymphography 148 148 50 37 50 50 26 23 2 3
hepatitis 155 155 39 28 355 335 28 25 85 85
glass2 162 162 9 9 709 667 9 9 136 132
backache 180 180 55 50 469 429 26 26 180 151
auto 202 202 52 35 961 916 31 29 184 182
glass 204 204 9 9 894 846 9 9 172 165
biomed 209 209 14 14 735 577 9 9 191 125
new-thyroid 215 214 5 5 329 232 5 5 100 73
spect 219 219 22 22 22 22 22 22 2 2
breast-cancer 266 266 31 25 40 40 15 15 11 11
heart-statlog 270 270 25 23 376 369 18 18 144 142
haberman 283 283 3 3 89 86 3 3 49 46
heart-h 293 293 29 22 325 318 19 19 154 154
hungarian 293 293 29 22 325 318 19 19 154 154
cleve 302 302 27 25 390 382 18 18 152 151
heart-c 302 302 27 25 390 382 18 18 152 151
cleveland 303 303 27 25 391 383 18 18 152 151
ecoli 327 326 7 5 351 233 6 5 81 59
schizo 340 340 14 14 2218 2209 14 14 203 203
bupa 341 341 5 5 307 302 5 5 94 94
colic 357 357 75 71 408 400 36 36 85 82
dermatology 366 366 129 101 188 188 57 53 61 61
cars 392 388 12 11 704 531 9 9 346 266
soybean 622 622 133 73 133 108 68 49 2 7
australian 690 690 18 16 1155 1119 16 15 350 350
diabetes 768 768 8 8 1246 1238 8 8 517 515
contraceptive 1358 1358 21 21 66 65 13 13 34 34

Table 1. Overview of the data sets we used for our experiments including their name, number of examples n, number of dimen-
sions d, number of total cuts c, maximum number δ of dimensions in which two examples differ, and the largest domain size D.
The columns n′, d′, c′, δ′, and D′ show the values of the data sets after applying all reduction rules described by Staus et al. (2025,
Appendix B). Bold entries indicate a change of this specific value in the input instance and after the application of all reduction rules.

20

