
SLiM: Speculative Decoding with Hypothesis Reduction

Anonymous ACL submission

Abstract

Speculative decoding has emerged as a promi-001
nent alternative to autoregressive decoding for002
expediting inference in large language models003
(LLMs). However, prevailing assumptions of-004
ten focus solely on latency reduction, neglect-005
ing the computational expenses. In this pa-006
per, we present Speculate Less, validate More007
(SLiM), a speculative decoding enhancement008
to reduce the speculation set while validating009
more effective tokens. SLiM is designed to mit-010
igate LLMs’ computation costs associated with011
the token verification by introducing hypothesis012
reduction based on a fast posterior estimation.013
It consistently surpasses counterparts lacking014
cost reduction across a spectrum from CPU015
to GPU. Our evaluation with diverse conver-016
sational datasets shows that SLiM can achieve017
a substantial 70% reduction in FLOPs while018
generating more effective predictions on top of019
prior arts.020

1 Introduction021

Recent advancements in large language models022

(LLMs), such as LLaMA (Touvron et al., 2023a,b),023

GPT-4 (OpenAI, 2023b), and Vicuna (Chiang et al.,024

2023a), have showcased their tremendous potential025

as proficient artificial intelligence (AI) assistants026

(Geng and Liu, 2023; Biderman et al., 2023) across027

diverse domains. Despite their widespread adop-028

tion, these models are severely limited by inference029

speed due to their serial decoding mechanisms.030

To address this concern, several methods have031

been proposed to expedite token generation. In032

particular, speculative decoding (Leviathan et al.,033

2023; Xia et al., 2022; Miao et al., 2023; Liu et al.,034

2023; Spector and Re, 2023; Yang et al., 2023) has035

emerged as a prominent strategy by leveraging the036

speculate and verify mechanism, resulting in sub-037

stantial inference time reduction. It is a dual-stage038

procedure wherein (1) lightweight models generate039

hypothesized token sequences speculatively, and040

I’ll meet you

Drafting mechanism

at, the, party, where
at, our, house, and
at, the, house, and
at, your, party, and
at, our, party, and

0.3

0.2
0.1
0.3
0.1

Fast posterior estimation

New stage: hypothesis reduction

Stage 1: speculation

at, the, party, where
at, our, house, and
at, the, house, and
at, your, party, and
at, our, party, and

at the party where
at our house and
at the house and
at your party and
at our party and

Stage 2: verification

I’ll meet you
at the party

Original model

Figure 1: Prior works parallelize token generation by (1)
generating multiple hypotheses with a lightweight drafting
mechanism and (2) verifying the hypotheses with powerful
hardware in parallel. Our work introduces a hypothesis re-
duction stage to drastically reduce the computation, making
our approach friendly for resource-constrained devices.

(2) the original LLMs verify their acceptance. The 041

key principle of speculative decoding is that it re- 042

frames the inherent sequential decoding of tokens 043

as a parallel operation, leveraging hardware’s paral- 044

lelization power to reduce latency for time-sensitive 045

applications. 046

Two criteria need to be met for speculative de- 047

coding to gain speed: (1) the lightweight model 048

must draft the predictions much faster than the 049

original LLM, and (2) the device must have suffi- 050

cient computation throughput for the parallel ver- 051

ification of multiple hypotheses. While the first 052

criterion (light drafting mechanism) has garnered 053

attention and inspired several works, the second 054

criterion (speedy verification) has been generally 055

overlooked in the community. This becomes a 056

substantial concern since recent methods tend to 057

generate a relatively larger number of hypotheses 058

(Cai et al., 2023). In many practical scenarios, the 059

1

Table 1: Computational budget per iteration versus its in-
ference time with 8-bit quantized Vicuna-7B on NVIDIA
GeForce RTX 4090.

Hypothesis 1 4 5 8 26 65 95
GFLOPs/iter 19.6 40.0 59.0 117.6 254.8 431.2 607.6
Time/iter (ms) 1.00 1.74 1.87 1.94 2.65 2.74 2.83

inference has very limited computational budgets,060

and therefore a high-complexity verification step061

can offset the speed-up benefits gained from specu-062

lation. Table 1 shows an actual example, where the063

forward latency increases with FLOPs along with064

a larger number of hypotheses verification.065

To mitigate the above caveat, we introduce the066

three-stage speculative decoding process which in-067

serts a novel hypothesis reduction stage between068

the two existing stages. Figure 1 illustrates the pro-069

cess, in which our hypothesis reduction performs a070

fast posterior estimation to eliminate unlikely can-071

didates, yielding high computation savings in the072

verification stage. In other words, we propose to073

have a lightweight verification strategy before per-074

forming the expensive one. Our lightweight verifi-075

cation computes the corrected posterior estimation076

based on a simple bigram correlation function, pro-077

viding a more confident assessment to prune the078

hypotheses.079

Figure 2 provides a preview of how our strategy080

significantly reduces the number of floating-point081

operations (FLOPs) per speculation step needed to082

achieve the same speed. In summary, we make the083

following contributions:084

• Motivated by the need to reduce the number of085

costly verifications for real-time applications, we086

expand the speculative decoding paradigm with087

a third hypothesis reduction stage to achieve sub-088

stantial computation savings in the verification089

stage.090

• We contribute SLiM as a method for hypothesis091

reduction in speculative decoding and show that092

we can save 70% computations while achieving093

a competitive speed-up performance (1.8-2.3×)094

on various conversational benchmarks and dif-095

ferent model sizes, paving the way for fast LLM096

inference for on-device applications.097

• We conduct empirical studies of SLiM on diverse098

devices from CPUs to powerful GPUs. SLiM099

universally outperforms both autoregressive de-100

coding and state-of-the-art batch-speculative de-101

coding in terms of real-time latency and token102

generations per forward pass.103

0 100 200 300 400 500 600 700
FLOPs/iter (G)

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Av
er

ag
e

ac
ce

pt
ed

 to
ke

ns
/it

er

w/ hypothesis reduction

w/o hypothesis reduction

Figure 2: Speedup-computations trade-offs for LLM infer-
ence on Vicuna-80 generic prompts (Chiang et al., 2023a).
The green and red points illustrate the distribution of speedup-
computation trade-offs within speculative decoding, both with
and without the hypothesis reduction proposed in this study.
Our proposed hypothesis reduction technique increases the
token acceptance rate with reduced computations.

2 Related Works 104

Given the widespread use of Large Language Mod- 105

els (LLMs) across diverse applications, the accel- 106

eration of their inference speed has garnered sig- 107

nificant attention (Kim et al., 2023a). Extensive 108

efforts have been dedicated to replacing the autore- 109

gressive decoding method with parallel decoding 110

(or non-autoregressive decoding) (Gu et al., 2017; 111

Wang et al., 2019; Li et al., 2019; Wei et al., 2019; 112

Shao et al., 2020; Ghazvininejad et al., 2019; Guo 113

et al., 2020; Kasai et al., 2020). While these works 114

focus on machine translation, Welleck et al. (2019); 115

Gu et al. (2019); Stern et al. (2019); Schuster et al. 116

(2022) consider sentence generation task. However, 117

these approaches often necessitate intricate model 118

training, which limits their practical applicability 119

in the context of large models. 120

Recently, Speculative Decoding (Chen et al., 121

2023; Leviathan et al., 2023) has stood out as 122

a prominent approach to accelerate LLMs’ infer- 123

ences. This method adopts a “speculate and verify” 124

strategy, utilizing a draft model—a smaller model 125

with faster inference capabilities—to propose to- 126

kens for verification by the original model. This 127

approach enables the generation of multiple tokens 128

simultaneously, enhancing overall inference speed. 129

While earlier works predominantly focus on 130

single-sequence speculation (Stern et al., 2018; Xia 131

et al., 2022; Chen et al., 2023; Leviathan et al., 132

2023; Gante, 2023; Liu et al., 2023), recent ad- 133

vancements leverage parallel computing for batch- 134

2

Table 2: Speculative decoding methods categorized by impor-
tant features.

Draft and base Batch Hypothesis
Method models combined speculation reduction

Chen et al. (2023) ✗ ✗ ✗

Xia et al. (2022) ✗ ✓ ✗

Stern et al. (2018) ✓ ✗ ✗

Cai et al. (2023) ✓ ✓ ✗

Ours ✓ ✓ ✓

sequence speculations to further accelerate infer-135

ences (Cai et al., 2023; Miao et al., 2023; Spector136

and Re, 2023; Yang et al., 2023). Notably, (Fu137

et al., 2023) introduces a novel lossless parallel138

decoding method based on Jacobi iteration. How-139

ever, these approaches often come at the cost of140

increased computation due to the enlargement of141

the hypothesis set.142

In the context of lossy acceleration methods,143

where the generated output deviates from the orig-144

inal model, BiLD (Kim et al., 2023b) employs a145

large model to enhance and refine the generation146

of a smaller model. On the other hand, SoT (Ning147

et al., 2023) takes a distinct approach by initially148

creating a skeleton of points and subsequently com-149

pleting each point in parallel. SLiM differs from150

them by preserving the original outputs.151

In contrast to existing research, SLiM incorpo-152

rates the batch-speculative strategy with sequence153

posterior estimation to reduce the hypothesis set154

without compromising the acceptance rate. The155

estimation has been guided with a correlation func-156

tion learned from online corpora. While (Yang157

et al., 2023) also leverages online corpora for spec-158

ulation, it necessitates an exact match of context159

between the corpus and model inputs, limiting160

its applicability to specific types of problems like161

retrieval-augmented generation. In contrast, SLiM162

is application agnostic. When selecting the draft163

model, SLiM follows the strategy introduced by164

Stern et al. (2018) and Cai et al. (2023) to mitigate165

additional complexity. This method entails inte-166

grating additional prediction heads atop the base167

model, allowing it to predict extra tokens. Notably,168

while these approaches share a common founda-169

tion, neither incorporates any hypothesis reduction170

technique. SLiM stands out as the first method171

specifically designed to reduce the complexity of172

both speculative and verification stages. Table 2173

provides an overview of SLiM’s position in the174

speculative decoding landscape alongside represen-175

tative examples.176

3 Method 177

3.1 Background 178

Speculative decoding endeavors to predict the next 179

m tokens x1:m simultaneously, given an input 180

prompt h. It comprises two sequential stages in 181

each iteration: (i) speculate and (ii) verify. 182

In the speculate stage, the method speculates 183

sequences of the next m tokens. This involves 184

relying on a draft model g to approximate the 185

distribution of the next m tokens, expressed as 186

g(h) ≈ p(x1:m|h) and generate a set of hypoth- 187

esized sequences H. Moving on to the verify stage, 188

the original model f comes into play to validate 189

each guess. To ensure consistency with autoregres- 190

sive decoding, the method identifies the longest 191

sequence x1:l satisfying the condition: 192

xj = argmax f([h,x1:j−1]), j = 1, . . . , l, (1) 193

among all hypothesized sequences {xj}j ∈ H. 194

This paradigm involves a trade-off between the 195

two stages. An accurate draft model can generate 196

more accurate guesses, resulting in a smaller H 197

and fewer sequences needing verification by the 198

original model during the verification stage. How- 199

ever, designing a powerful draft model is nontriv- 200

ial, and a complex model might incur significant 201

latency during the forward call of g(h), offsetting 202

the benefits of multi-token acceleration in real time. 203

Conversely, a simple draft model is easier to obtain 204

but may necessitate a larger set H for verification, 205

leading to higher hardware requirements of parallel 206

computing and increased latency. 207

3.2 SLiM: Speculate Less and Validate More 208

SLiM proposes a solution to the dilemma that alle- 209

viates computation burdens in both the speculate 210

and verify stages by adopting a simple draft model 211

and a hypothesis reduction technique. In the spec- 212

ulate stage, rather than directly approximating the 213

joint distribution of x1:m, SLiM trains m− 1 addi- 214

tional prediction heads atop the same backbone f 215

to predict the marginal distributions p(xi|h), where 216

i = 2, . . . ,m. This results in a draft model com- 217

prising m−1 models approximating the marginals, 218

gi(h) ≈ p(xi|h), with each gi having a similar 219

complexity to the original prediction head of f . 220

The hypothesis set H is constructed through the 221

Cartesian product of the top-k selection for each gi 222

3

alongside the top-1 prediction of f :223

H = Top1(f(h))×
m∏
i=2

Topk(gi(h)), (2)224

where Topk(p) denotes the set of elements with the225

top k probabilities in the distribution p. Notably,226

the set’s size grows exponentially as km−1.227

SLiM introduces a hypothesis reduction tech-228

nique by estimating the posterior probability229

p(x1:m|h) for each sequence and retaining those230

with the top k probabilities. Given that decoding231

with maximum posterior is Bayes’ optimal, this ap-232

proach ensures that accuracy is not compromised.233

Furthermore, the hypothesis size is reduced from an234

exponential to a linear function of the top-k param-235

eter. This reduction empowers SLiM to explore a236

larger hypothesis set without the necessity of verify-237

ing every hypothesis with the LLM. Consequently,238

SLiM effectively engages in less speculation while239

validating more tokens.240

The posterior is estimated by the formula:241

p̂(x1:m|h) =
m∏
i=1

p(xi|h)×
m−1∏
j=1

r(xj ,xj+1),

(3)

242

where r : V × V 7→ R is some fixed correlation243

function of two adjacent tokens, and p(xi|h) can be244

approximated by the prediction heads gi(h). The245

first term in equation 3 represents joint estimation246

under the assumption of token independence, while247

the second term enhances estimation with bigram.248

For a visual representation of our posterior esti-249

mation, we employ Fig. 3. In this illustration, the250

hypothesis H is constructed by combining the top-2251

and top-3 tokens predicted by the 2nd and 3rd pre-252

diction heads. These combinations are represented253

as nodes in a tree. Each edge is assigned a weight254

equivalent to the correlation r calculated by the255

endpoint nodes, and each node is associated with256

the probability assessed by the prediction heads.257

The posterior probability of a node is determined258

by the product of all node probabilities and edge259

weights along the path leading to it. The complete260

SLiM method is summarized in Algorithm 1.261

Theoretical Interpretation: SLiM’s posterior262

estimation is a problem of joint distribution esti-263

mation based on marginals (Frogner and Poggio,264

2019). An effective strategy involves leveraging265

a multimarginal variant of the optimal transport266

problem (Peyré et al., 2019; Séjourné et al., 2019).267

p2,2

p3,1 p3,3p3,2 p3,1 p3,3p3,2

r(t1,t2,1) r(t1,t2,2)

r(t2,1,t3,1) r(t2,1,t3,2) r(t2,1,t3,3) r(t2,1,t3,1) r(t2,1,t3,2) r(t2,1,t3,3)

Posterior Estimation = p1 × r(t1,t2,1) × p2,1 × r(t2,1,t3,3) × p3,3

p1

p2,1

Original head 1st extra head 2nd extra head

Figure 3: Illustration of SLiM’s posterior estimation.

Algorithm 1 SLiM
Require: input prompt h, original model f , marginal draft

models gi, i = 2, . . . ,m, correlation function r, top-k
parameter K.

1: while stop criteria not met do
2: Form the hypothesis setH in equation 2.
3: ∀x1:m ∈ H, obtain posterior by equation 3.
4: Form the pruned set H̃ by choosing

elements with largest K posteriors inH.
5: Choose the sequence x1:l in H̃ that has

the longest length satisfying equation 1.
6: Concatenate the prompt h← [h,x1:l].
7: end while

Multimarginal optimal transport is a technique 268

designed to identify the joint distribution p(x1:m) 269

that minimizes the cost of assembling a sequence. 270

Formally, given marginal distributions pi(xi) and a 271

cost c(x1:m) associated with forming the sequence 272

x1:m, the joint distribution is determined as the 273

solution to the constrained optimization problem: 274

min
p

∫
p(x1:m)c(x1:m) + KL

(
p||

m⊗
i=1

pi

)
, (4) 275

with constraints that p’s marginals equal to pi. In 276

SLiM, we relax these constraints for faster com- 277

putation. The following theorem establishes the 278

equivalence of the solution to SLiM’s posterior es- 279

timation in equation 3. The proof is available in 280

Appendix A. 281

Theorem 1. Suppose the optimal transport cost 282

is c(x1:m) = −
∑m

j=1 log r(xj ,xj+1), the relaxed 283

solution to the optimization equation 4 is the poste- 284

rior estimation in equation 3, subject to a normal- 285

ization constant. 286

3.3 Implementation 287

In our study, we focus on transformer-based lan- 288

guage models and adopt prediction-head-based 289

draft models following the approach used in Stern 290

et al. (2018); Xia et al. (2022); Cai et al. (2023). 291

4

It
is

di cult

is

di cult

is

is

di cult

is

di cult

is

has

has

is

has

di�cult

Speculate

Hypothesis reduction

Verify
LLM

0.7

0.2

0.3

0.3
0.2

0.2

0.2

0.1
0.02

0

0.05

0

2

14

0.04

0

21

0

Posterior (x10-2)
has
is di�cult

Figure 4: Tree attention with hypothesis reduction. Left and
right visualize the attention mask before and after reduction.

Specifically, each extra head consists of two lin-292

ear layers with a SiLU activation in between them.293

The first linear layer has an input and output size294

equivalent to the token embedding size, while the295

second linear layer has an output size equivalent296

to the vocabulary size. A skip connection was also297

introduced before the first linear layer and after the298

SiLU activation.299

To construct the correlation function r, we esti-300

mate the prior distribution of two adjacent tokens301

by p(x,y) := n(x,y)
n and the correlation function302

is defined as follows:303

r(x,y) =
p(x,y)∑

y p(x,y)
∑

x p(x,y)
. (5)304

The correlation can be presented as a sparse matrix305

with a shape of RV×V for storage efficiency.306

For efficient verification of batch-speculated se-307

quences, we leverage the tree attention mechanism308

used in the work of Cai et al. (2023). The strategy309

flattens the tree representation (see Figure 3) for the310

whole set of hypotheses and encodes its structure311

through the attention mask. This method effec-312

tively avoids duplicated computation of the com-313

mon prefix among similar hypotheses. We adopt314

this strategy and convert our pruned tree with the315

same tree attention mechanism. Figure 4 provides316

a visual example of our verification reduction com-317

bined with tree attention, where the left and right318

heatmaps illustrate the mask before and after the319

hypothesis reduction. Note that the attention masks320

in our work are dynamically computed since the321

tree has a dynamic shape. This is significantly dif-322

ferent from the implementation of Cai et al. (2023),323

which uses a static mask designed heuristically.324

4 Results 325

4.1 Experimental Setup 326

Models. We employ the Medusa model (Cai 327

et al., 2023), built upon the Vicuna-7B and Vicuna- 328

13B (Chiang et al., 2023a) as base models. Ad- 329

ditionally, the model is trained on the public 330

ShareGPT dataset to incorporate four additional 331

prediction heads, enabling speculation on a maxi- 332

mum of four additional tokens. To derive the corre- 333

lation function r for SLiM’s posterior estimation, 334

we record the frequency of adjacent tokens in the 335

LMSYS-Chat-1M dataset (Zheng et al., 2023). The 336

resulting r is stored in the sparse format, amounting 337

to 82MB in size. We implement our framework on 338

top of PyTorch (Paszke et al., 2019) and the Hug- 339

gingFace Transformers library (Wolf et al., 2019). 340

Datasets. We evaluate SLiM’s generation ca- 341

pabilities using prompts from six conversational 342

datasets: Vicuna-80 (Chiang et al., 2023b) includes 343

nine different categories of prompts: (CF), cod- 344

ing (CD), knowledge (KL), generic (GN), fermi 345

(FM), roleplay (RP), writing (WT), common sense 346

(CS) and math (MA), and five datasets, each having 347

360 to 1000 prompts: Chatbot Instruction Prompts 348

(CIP) (Palla, 2023), ChatGPT Prompts (CP) (Ope- 349

nAI, 2023a), WebQA (Berant et al., 2013), Alpaca 350

(Taori et al., 2023; Peng et al., 2023), and PIQA 351

(Bisk et al., 2020). 352

Environments. We test the performance on three 353

devices, spanning a spectrum of computation 354

power: Intel(R) Xeon(R) CPU E5-2670 v2 @ 355

2.50GHz with 20 cores, single NVIDIA RTX 4090 356

24GB GPU, and single NVIDIA A100 80GB GPU. 357

Except for the A100, all models undergo testing 358

with 8-bit quantization (Dettmers et al., 2022) to 359

ensure compatibility with RAM constraints. 360

Comparing methods. For a fair comparison, we 361

evaluate SLiM’s performance against other spec- 362

ulative methods that use extra prediction heads to 363

generate hypotheses. All methods utilize the same 364

public models, Vicuna-7B and Vicuna-13B, with 365

the same set of prediction heads trained by Cai 366

et al. (2023). We examined two extremes in spec- 367

ulative methods: block parallel decoding (BPD) 368

(Stern et al., 2018) and Medusa (Cai et al., 2023). 369

BPD opts for a single-sequence speculation per 370

iteration, while Medusa adopts batch speculation, 371

concurrently verifying multiple sequences through 372

an optimized tree attention mechanism. SLiM po- 373

5

1.3x
1.2x

2.1x 2.1x 2.1x 2.1x
2.6x

2.8x

-46%

-72%

Figure 5: Inference acceleration and FLOPs consumptions for prediction-head-based speculative methods on various devices.

Table 3: Inference results of prediction-head based speculative methods on single RTX 4090 GPU across diverse conversational
datasets. Left: real-time accelerations (in tokens per second), with speed-up multipliers relative to the autoregressive decoding.
Right: GFLOPs consumption, with percentage relative to Medusa.

Inference Speed (tokens/s) GFLOPs per token
Dataset CIP CP WebQA Alpaca PIQA Avg. CIP CP WebQA Alpaca PIQA Avg.
Autoregressive Decoding 5.56 5.69 5.66 5.76 5.72 5.68 (1.00x) 27.74 25.89 23.23 24.09 18.45 23.58
BPD (Stern et al., 2018) 8.33 7.97 7.47 8.35 8.39 8.12 (1.43x) 56.26 58.48 61.63 55.3 51.49 56.36
Medusa (Cai et al., 2023) 10.51 9.47 8.85 10.05 10.37 9.91 (1.74x) 401.63 417.53 456.55 454.58 426.89 433.38
SLiM-S 11.13 10.09 9.19 10.46 10.52 10.31 (1.82x) 124.21 134.88 145.10 124.54 126.42 130.46 (30%)

sitions itself between these extremes with reduced374

batch speculation. We evaluate two configurations375

of SLiM, denoted as SLiM-S and SLiM-L, which376

have 10 and 20 average hypothesis sequences, re-377

spectively. They reduce computation by roughly378

70% and 40% as compared to Medusa, respectively.379

Metrics. We investigate three important metrics:380

(i) Real-time acceleration: quantified in tokens/s,381

this metric represents the average number of to-382

kens generated per second. (ii) Device-agnostic383

acceleration: measured in tokens/iter, this metric384

reflects the average number of tokens verified or385

generated with each forward call of the base model.386

(iii) Computation consumption per effective token387

generation: denoted as GFLOPs/token, this met-388

ric signifies the average number of floating-point389

operations required to generate a valid token.390

4.2 Generation speed-up experiments391

The key advantage of SLiM is in mitigating com-392

putation burdens without compromising the accu-393

racy of multi-token predictions, making it versatile394

across devices with diverse computation capabil-395

ities. To substantiate this claim, our experiments396

encompassed three distinct devices in Fig. 5. It397

delineates real-time acceleration, token generation398

per iteration, and FLOPs consumption, utilizing399

Vicuna-7B as the base model on the Vicuna-80400

dataset. Notably, on CPUs, SLiM stands out as the401

sole method achieving real-time speed-up, despite402

all approaches showcasing device-agnostic accel-403

eration. The gap between real-time and device-404

agnostic acceleration on CPUs is attributed to the 405

limited parallel computation capability, resulting in 406

significant latency when verifying a large number 407

of batch speculations—offsetting the advantages of 408

multi-token prediction. While BPD incurs lower 409

computation costs, its verification acceptance rate 410

is modest, and Medusa achieves a high acceptance 411

rate at the expense of excessive computation costs. 412

In contrast, as depicted in the middle and right 413

figures, SLiM-S and SLiM-L generate a compa- 414

rable number of tokens while utilizing only 28% 415

and 58% of the computations required by Medusa. 416

These findings underscore the significance of hy- 417

pothesis reduction, especially in applications with 418

constrained computation power. Achieving an op- 419

timal balance between the number of speculations 420

and the verification acceptance rate becomes cru- 421

cial in such scenarios. 422

On GPUs, Medusa and SLiM demonstrate com- 423

parable performance, outperforming BPD due to 424

their batch speculations and efficient parallel verifi- 425

cation. Table 3 zooms in on GPU evaluation for five 426

additional datasets, testing on a single GTX 4090. 427

Notably, SLiM surpasses Medusa with only 30% 428

of the computations. As SLiM introduces a hypoth- 429

esis reduction scheme distinct from Medusa, these 430

results underscore the consistent enhancement the 431

scheme provides across diverse environments in 432

computation and inference speed. 433

We conducted an analysis of various model sizes 434

and prompt categories, and the findings are sum- 435

marized in Table 4. The results indicate improved 436

6

Table 4: Inferences on Vicuna-80 with varying model sizes. Left: real-time accelerations, with speed-up multipliers relative to
autoregressive decoding. Right: FLOPs consumption, with percentage relative to the batch-speculative method Medusa.

Inference speed (Tokens/s) Tokens/iter GFLOPs/token
Model CF CD KL GN FM RP WT CS MA AVG
Vicuna-7B 5.87 6.1 5.96 5.97 6.05 5.99 6.00 5.93 6.15 5.99 1.00 19.61
BPD-7B (Stern et al., 2018) 6.58 9.49 8.02 9.74 8.53 7.79 9.09 8.66 10.37 8.52 (1.42×) 1.75 48.85
Medusa-7B (Cai et al., 2023) 10.6 14.75 11.01 12.83 10.91 10.07 11.79 11.21 14.47 11.63 (1.94×) 2.50 403.91
SLiM-S-7B 11.13 16.68 11.68 13.92 11.95 10.85 12.91 12.26 15.64 12.63 (2.11×) 2.58 113.23 (28%)
SLiM-L-7B 11.23 16.63 11.65 13.84 11.88 10.78 12.82 12.19 15.58 12.59 (2.10×) 2.77 233.76 (58%)
Vicuna-13B 4.4 4.48 4.38 4.31 4.41 4.45 4.4 3.99 3.63 4.32 1.00 37.92
BPD-13B (Stern et al., 2018) 6.23 9.3 6.65 7.51 6.57 6.03 7.21 6.73 7.89 6.98 (1.62×) 1.81 90.01
Medusa-13B (Cai et al., 2023) 8.36 11.41 9.1 9.94 8.77 7.84 9.28 8.75 10.79 9.16 (2.12×) 2.59 695.03
SLiM-S-13B 8.55 11.66 9.55 10.46 9.22 8.09 9.8 8.99 9.92 9.47 (2.19×) 2.64 208.89 (30%)
SLiM-L-13B 8.84 12.9 9.9 11.1 9.56 8.55 10.5 9.61 11.29 10.06 (2.33×) 2.88 427.27 (61%)

speed-ups for larger models, highlighting the grow-437

ing significance of speculative decoding in scenar-438

ios where there is more room to trade speed-up for439

computational resources. Furthermore, the analysis440

indicates that acceleration is particularly effective441

for coding and math problems. This observation442

suggests that responses to these types of questions443

may be more amenable to multi-step ahead predic-444

tions than linguistic inquiries, possibly due to their445

formalizable nature.446

4.3 Model analysis447

In this section, we delve into a detailed exploration448

of SLiM’s acceleration capabilities, focusing on449

experiments conducted on the Vicuna-80 dataset.450

Effectiveness of equation 3: How does the corre-451

lation change the posterior estimation? Fig. 6452

visually illustrates the transformation of the poste-453

rior through correlation adjustment in SLiM. In454

this illustrative example, we employ a specific455

prompt: “...Here are some tips to get you started: 1.456

Prioritize tasks:”. The base model predicts ‘Make’457

as the next token, while simultaneously, the pre-458

diction head generates the distribution for the sub-459

sequent token, depicted by the red line in Fig. 6.460

The noticeable misalignment between the red curve461

and the ground-truth distribution (depicted in blue)462

highlights the need for adjustment.463

The correlation function, denoted by the grey464

curve, assigns a high value to ‘Make a’. This465

weight, when multiplied with the posterior, results466

in the adjusted estimation denoted by the dotted467

red curve. Remarkably, the distribution now aligns468

closely with the ground truth, and its prediction of469

‘a’ becomes an accepted outcome. Table 5 provides470

a quantitative record of the accuracy for the top471

1 prediction from the second extra head. The re-472

sults unequivocally demonstrate that the correlation473

function consistently enhances accuracy across all474

categories.475

posterior w/o correlation

posterior w/ correlation
groundtruth posterior

correlation intensity

Figure 6: Posterior estimations with and without correlation
adjustment.

Table 5: Extra-token prediction accuracies with and without
correlation on Vicuna benchmark.

Category CF CD KL GN FM RP WT CS MA AVG

w/ corr. 43% 61% 49% 57% 47% 43% 52% 50% 59% 50%
w/o corr. 52% 66% 59% 66% 54% 50% 61% 60% 66% 59%

When is the correlation is helpful? While corre- 476

lation is a valuable tool for posterior adjustment, as 477

depicted in Fig. 6, it is essential to acknowledge its 478

potential to mislead the prior estimation generated 479

by the prediction heads. To gain a comprehensive 480

understanding of when correlation can provide a 481

positive impact, we conduct an analysis to assess 482

its effectiveness. 483

To this end, we present SLiM’s speed-ups on 484

the Vicuna-80 dataset, utilizing correlation func- 485

tions learned from various numbers of sentences 486

from the LMSYS-Chat-1M dataset (Zheng et al., 487

2023), as illustrated in Fig. 7. Notably, we observe 488

a steady increase in speed-up as the number of 489

prompts grows, reaching saturation at 2.6× when 490

the number exceeds 50,000. This finding under- 491

scores the positive correlation between the number 492

of sequences and the improvement in speed-up, in- 493

dicating that learning from a larger corpus is indeed 494

beneficial. However, the improvement becomes 495

marginal beyond a certain threshold. 496

7

Table 6: Speed-ups vs. number of extra prediction heads.

SLiM Medusa
Extra heads 1 2 3 4 4

Counterfactual 1.78 2.18 2.31 2.29 2.29
Coding 1.88 2.55 2.94 3.28 3.07
Knowledge 1.80 2.24 2.48 2.43 2.39
Generic 1.84 2.42 2.86 2.96 2.76
Fermi 1.78 2.25 2.41 2.43 2.32
Roleplay 1.75 2.12 2.32 2.19 2.23
Writing 1.78 2.32 2.58 2.64 2.49
Common Sense 1.84 2.30 2.51 2.57 2.48
Math 1.89 2.47 2.73 2.92 3.07

Average speed-up 1.81 2.30 2.54 2.58 2.50

FLOPs/token 51.52 109.52 125.49 113.23 403.91

Table 7: Method ablation study.

Batch Hypothesis With Tokens GFLOPs
Model speculation reduction Correlation per iter per token
BPD ✗ ✗ ✗ 1.75 48.85
Medusa ✓ ✗ ✗ 2.50 403.91

SLiM-S ✗ ✗ ✓ 1.97 44.37
SLiM-S ✓ ✓ ✗ 2.26 124.18
SLiM-S ✓ ✓ ✓ 2.58 113.23

To determine when correlation may be detrimen-497

tal, we compare the results with hypothesis reduc-498

tion that uses conditional independent predictions499

(i.e., r = 1 in equation 3), yielding a speed-up500

of 2.26×. Consequently, we identify 2,000 as the501

threshold prompt number that demarcates the re-502

gions into helpful (depicted in green) and harmful503

(depicted in red) in the figure. This insight suggests504

that sufficient sentences are necessary for construct-505

ing an effective correlation function.506

How many heads do we need? Moving forward,507

we delve into an analysis of speed-up concerning508

the number of prediction heads in Table 6. The509

results show a higher speed-up with more heads.510

However, the most efficient computation occurs511

when having only one extra head, and the effi-512

ciency diminishes as we increase the number of513

heads. This observation prompts considerations for514

selecting a proper number of heads for resource-515

constrained devices.516

4.4 Method ablation517

We conducted a comprehensive study on various518

SLiM variants to understand the impact of different519

components on speed-ups. Three key factors were520

considered: (i) whether to speculate multiple se-521

quences, (ii) whether to adopt hypothesis reduction,522

and (iii) whether to use correlation or rely on pre-523

diction heads alone for estimating posteriors in the524

reduction stage. Furthermore, average results for525

BPD and Medusa on the entire Vicuna-80 dataset526

are presented in Table 7, where BPD and Medusa527

100 101 102 103 104 105 106

Number of sentences

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

To
ke

ns
/it

er

2000

Figure 7: Speed-ups vs. the amount of corpus used for correla-
tion training. The green region represents the cases where the
resulting r is better than conditional independent predictions.

denote specific configurations of SLiM with partic- 528

ular choices for these factors. 529

The results reveal that batch speculation provides 530

the most significant acceleration boost, with all 531

configurations exceeding 2.2× speed-ups, whereas 532

configurations without batch speculation exhibit 533

speed-ups below 2.0×. However, batch speculation 534

introduces a substantial increase in computations. 535

The second-to-last row demonstrates that hypothe- 536

sis reduction alone reduces computations to 30%, 537

corresponding to approximately 2.2× the computa- 538

tion required for a single speculation, at the expense 539

of 10% reduction in speed-up. The final row fur- 540

ther illustrates that correlation not only maintains 541

a similar level of computation but also enhances 542

speed-ups. Notably, even for single speculation, the 543

correlation alone yields a non-negligible speed-up, 544

corroborating the evidence in Table 5. 545

5 Conclusions 546

In this work, we introduced SLiM, a speculative 547

decoding enhancement framework designed to al- 548

leviate the computational burden associated with 549

token verification. Our method leverages sequence 550

posterior estimation as a lightweight verifier by in- 551

corporating bigram information. Starting with an 552

exponentially large speculative set, we judiciously 553

eliminate most speculations with low posteriors. 554

Subsequently, only the sequences in the reduced 555

hypothesis set are verified using the LLM. This ap- 556

proach allows SLiM to speculate fewer sequences 557

while validating more tokens. 558

Empirically, our results demonstrate that SLiM’s 559

acceleration surpasses alternative methods lack- 560

ing this augmentation across diverse devices. On 561

an RTX 4090, SLiM achieves a notable 1.8-2.3× 562

speed-up across various conversational datasets. 563

8

6 Limitations564

While SLiM presents a significant improvement565

in terms of reduced computational requirements566

and enhanced speed-ups compared to conventional567

speculative decodings, there are still two primary568

challenges that warrant attention:569

• Computation consumption: Despite its advan-570

tages, SLiM’s computation remains higher571

than the autoregressive method. In sce-572

narios where power is a critical constraint,573

SLiM may still underperform the baseline.574

Achieving optimal trade-offs between reduced575

FLOPs and increased speed-up compared to576

autoregressive methods may require an ag-577

gressive and extremely accurate hypothesis578

reduction strategy.579

• Prediction head efficiency: Although SLiM’s580

approach is relatively straightforward, it ne-581

cessitates additional training of prediction582

heads. Our empirical results indicate that583

prediction heads are less accurate when pre-584

dicting tokens for further steps and therefore585

may require more complex heads to be trained.586

Addressing this challenge involves designing587

efficient heads with minimal capacity while588

maintaining high predictive accuracy.589

These challenges underscore potential areas for590

further research and optimization to enhance the591

overall effectiveness of SLiM in various applica-592

tion scenarios.593

References594

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy595
Liang. 2013. Semantic parsing on freebase from596
question-answer pairs. In Proceedings of the 2013597
conference on empirical methods in natural language598
processing, pages 1533–1544.599

Stella Biderman, Hailey Schoelkopf, Quentin Gregory600
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-601
lahan, Mohammad Aflah Khan, Shivanshu Purohit,602
USVSN Sai Prashanth, Edward Raff, et al. 2023.603
Pythia: A suite for analyzing large language models604
across training and scaling. In Proceedings of the In-605
ternational Conference on Machine Learning, pages606
2397–2430.607

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,608
et al. 2020. PIQA: Reasoning about physical com-609
monsense in natural language. In Proceedings of610
the AAAI Conference on Artificial Intelligence, vol-611
ume 34, pages 7432–7439.612

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, 613
and Tri Dao. 2023. Medusa: Simple framework for 614
accelerating llm generation with multiple decoding 615
heads. 616

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 617
Jean-Baptiste Lespiau, Laurent Sifre, and John 618
Jumper. 2023. Accelerating large language model 619
decoding with speculative sampling. arXiv preprint 620
arXiv:2302.01318. 621

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 622
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 623
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 624
Stoica, and Eric P. Xing. 2023a. Vicuna: An open- 625
source chatbot impressing GPT-4 with 90%* Chat- 626
GPT quality. 627

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 628
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 629
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 630
Stoica, and Eric P. Xing. 2023b. Vicuna: An open- 631
source chatbot impressing gpt-4 with 90% chatgpt 632
quality. 633

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 634
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multi- 635
plication for transformers at scale. arXiv preprint 636
arXiv:2208.07339. 637

Charlie Frogner and Tomaso Poggio. 2019. Fast and 638
flexible inference of joint distributions from their 639
marginals. In International Conference on Machine 640
Learning, pages 2002–2011. PMLR. 641

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 642
2023. Breaking the sequential dependency of llm 643
inference using lookahead decoding. 644

Joao Gante. 2023. Assisted generation: a new direction 645
toward low-latency text generation. 646

Xinyang Geng and Hao Liu. 2023. OpenLLaMA: An 647
open reproduction of LLaMA. 648

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and 649
Luke Zettlemoyer. 2019. Mask-predict: Parallel 650
decoding of conditional masked language models. 651
arXiv preprint arXiv:1904.09324. 652

Jiatao Gu, James Bradbury, Caiming Xiong, Vic- 653
tor OK Li, and Richard Socher. 2017. Non- 654
autoregressive neural machine translation. arXiv 655
preprint arXiv:1711.02281. 656

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev- 657
enshtein transformer. Advances in Neural Informa- 658
tion Processing Systems, 32. 659

Junliang Guo, Linli Xu, and Enhong Chen. 2020. 660
Jointly masked sequence-to-sequence model for non- 661
autoregressive neural machine translation. In Pro- 662
ceedings of the 58th Annual Meeting of the Associa- 663
tion for Computational Linguistics, pages 376–385. 664

9

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https: //lmsys.org/blog/2023-03-30-vicuna
https: //lmsys.org/blog/2023-03-30-vicuna
https: //lmsys.org/blog/2023-03-30-vicuna
https: //lmsys.org/blog/2023-03-30-vicuna
https: //lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://huggingface.co/blog/assisted-generation
https://huggingface.co/blog/assisted-generation
https://huggingface.co/blog/assisted-generation
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama
https://github.com/openlm-research/open_llama

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,665
and Noah A Smith. 2020. Deep encoder, shallow666
decoder: Reevaluating non-autoregressive machine667
translation. arXiv preprint arXiv:2006.10369.668

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong,669
Minwoo Kang, Ruohan Yan, Hasan Genc, Grace670
Dinh, Qijing Huang, Kurt Keutzer, Michael W Ma-671
honey, et al. 2023a. Full stack optimization of672
transformer inference: a survey. arXiv preprint673
arXiv:2302.14017.674

Sehoon Kim, Karttikeya Mangalam, Jitendra Malik,675
Michael W Mahoney, Amir Gholami, and Kurt676
Keutzer. 2023b. Big little transformer decoder. arXiv677
preprint arXiv:2302.07863.678

Yaniv Leviathan, Matan Kalman, and Yossi Matias.679
2023. Fast inference from transformers via spec-680
ulative decoding. In International Conference on681
Machine Learning, pages 19274–19286. PMLR.682

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei683
Wang, and Tie-Yan Liu. 2019. Hint-based training684
for non-autoregressive machine translation. arXiv685
preprint arXiv:1909.06708.686

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-687
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.688
2023. Online speculative decoding. arXiv preprint689
arXiv:2310.07177.690

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao691
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuom-692
ing Chen, Daiyaan Arfeen, Reyna Abhyankar, and693
Zhihao Jia. 2023. Specinfer: Accelerating generative694
llm serving with speculative inference and token tree695
verification. arXiv preprint arXiv:2305.09781.696

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang,697
and Yu Wang. 2023. Skeleton-of-Thought: Large698
language models can do parallel decoding. arXiv699
preprint arXiv:2307.15337.700

OpenAI. 2023a. ChatGPT.701

OpenAI. 2023b. GPT-4 technical report. arXiv preprint702
arXiv:2303.08774.703

Alessandro Palla. 2023. chatbot instruction prompts.704

Adam Paszke, Sam Gross, Francisco Massa, Adam705
Lerer, James Bradbury, Gregory Chanan, Trevor706
Killeen, Zeming Lin, Natalia Gimelshein, Luca707
Antiga, et al. 2019. Pytorch: An imperative style,708
high-performance deep learning library. Advances in709
neural information processing systems, 32.710

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-711
ley, and Jianfeng Gao. 2023. Instruction tuning with712
gpt-4. arXiv preprint arXiv:2304.03277.713

Gabriel Peyré, Marco Cuturi, et al. 2019. Computa-714
tional optimal transport: With applications to data715
science. Foundations and Trends in Machine Learn-716
ing, 11(5-6):355–607.717

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, 718
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler. 719
2022. Confident adaptive language modeling. Ad- 720
vances in Neural Information Processing Systems, 721
35:17456–17472. 722

Thibault Séjourné, Jean Feydy, François-Xavier Vialard, 723
Alain Trouvé, and Gabriel Peyré. 2019. Sinkhorn 724
divergences for unbalanced optimal transport. arXiv 725
preprint arXiv:1910.12958. 726

Chenze Shao, Jinchao Zhang, Yang Feng, Fandong 727
Meng, and Jie Zhou. 2020. Minimizing the bag- 728
of-ngrams difference for non-autoregressive neural 729
machine translation. In Proceedings of the AAAI con- 730
ference on artificial intelligence, volume 34, pages 731
198–205. 732

Benjamin Spector and Chris Re. 2023. Accelerating llm 733
inference with staged speculative decoding. arXiv 734
preprint arXiv:2308.04623. 735

Mitchell Stern, William Chan, Jamie Kiros, and Jakob 736
Uszkoreit. 2019. Insertion transformer: Flexible se- 737
quence generation via insertion operations. In In- 738
ternational Conference on Machine Learning, pages 739
5976–5985. PMLR. 740

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. 741
2018. Blockwise parallel decoding for deep autore- 742
gressive models. Advances in Neural Information 743
Processing Systems, 31. 744

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 745
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 746
, and Tatsunori B. Hashimoto. 2023. alpaca: An 747
instruction-following llama model. 748

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 749
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 750
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 751
Azhar, et al. 2023a. LLaMA: Open and effi- 752
cient foundation language models. arXiv preprint 753
arXiv:2302.13971. 754

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 755
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 756
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 757
Bhosale, et al. 2023b. Llama 2: Open founda- 758
tion and fine-tuned chat models. arXiv preprint 759
arXiv:2307.09288. 760

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang 761
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive 762
machine translation with auxiliary regularization. In 763
Proceedings of the AAAI conference on artificial in- 764
telligence, volume 33, pages 5377–5384. 765

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang 766
Lin, Jun Xie, and Xu Sun. 2019. Imitation learning 767
for non-autoregressive neural machine translation. 768
arXiv preprint arXiv:1906.02041. 769

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and 770
Kyunghyun Cho. 2019. Non-monotonic sequential 771
text generation. In International Conference on Ma- 772
chine Learning, pages 6716–6726. PMLR. 773

10

https://chat.openai.com
http://arxiv.org/abs/2303.08774
https: //hugging face.co/datasets/alespalla/chatbot_ instruction_prompts
https://github. com/tatsu-lab/stanford_alpaca
https://github. com/tatsu-lab/stanford_alpaca
https://github. com/tatsu-lab/stanford_alpaca

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien774
Chaumond, Clement Delangue, Anthony Moi, Pier-775
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,776
et al. 2019. Huggingface’s transformers: State-of-777
the-art natural language processing. arXiv preprint778
arXiv:1910.03771.779

Heming Xia, Tao Ge, Si-Qing Chen, Furu Wei, and780
Zhifang Sui. 2022. Speculative decoding: Lossless781
speedup of autoregressive translation.782

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin783
Jiang, Linjun Yang, Rangan Majumder, and Furu784
Wei. 2023. Inference with reference: Lossless ac-785
celeration of large language models. arXiv preprint786
arXiv:2304.04487.787

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle788
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,789
Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonzalez,790
Ion Stoica, and Hao Zhang. 2023. Lmsys-chat-1m:791
A large-scale real-world llm conversation dataset.792

11

http://arxiv.org/abs/2309.11998
http://arxiv.org/abs/2309.11998
http://arxiv.org/abs/2309.11998

Supplementary Material793

A Proof of Theorem 1794

Proof of Theorem 1. Since p is a probability distribution, it satisfies
∫
p(x1:m)dx1 . . . dxm = 1. Coupling795

this with the objective, we obtain the Lagrangian of the objective by796

L =

∫
p(x1:m) c(x1, . . . ,xm)dx1 . . . dxm797

+ KL

(
p(x1:m)||

m∏
i=1

pi(xi)

)
+ λ

(∫
p(x1:m)dx1 . . . dxm − 1

)
798

=

∫
p(x1:m) c(x1, . . . ,xm)dx1 . . . dxm +

∫
p(x1:m) log

(
p(x1:m)∏m
i=1 pi(xi)

)
dx1 . . . dxm799

+ λ

(∫
p(x1:m)dx1 . . . dxm − 1

)
.800

Setting the derivative of L w.r.t. p(x1:m) to zero for every x1:m, we get801

c(x1:m) + log

(
p(x1:m)∏m
i=1 pi(xi)

)
+ 1 + λ = 0,802

⇒ p∗(x1:m) ∝
m∏
i=1

pi(xi)× exp (−c(x1:m)) =
m∏
i=1

pi(xi)×
m−1∏
j=1

r(xj ,xj+1).803

804

B Additional Experiments805

We exhaustively explore different configurations of SLiM, considering various combinations of the806

top-k predictions in the heads. We plot the average accepted tokens with and without correlation and807

hypothesis reduction on the generic category prompt of Vicuna-80. The green points without hypothesis808

reduction exhibit the least efficiency in terms of the trade-off between the number of accepted hypotheses809

and efficiency. They are followed by hypothesis reduction without using correlation, with comparable810

pareto boundaries that require more careful tuning when hypothesis reduction is not utilized. Meanwhile,811

configurations with correlation in hypothesis, represented by red points, achieve optimal efficiency,812

outperforming speed-ups compared to Medusa.813

12

0 5 10 15 20 25 30 35 40
Number of hypothesis sequences

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Av
er

ag
e

ac
ce

pt
ed

 to
ke

ns

SLIM

Medusa

Block Parallel Decoding
w/o hypothesis reduction
w/ correlation
w/o correlation

Figure 8: Average accepted tokens for various numbers of hypothesis sequences. The black line denotes the Pareto efficiency
achieved by SLiM.

13

	Introduction
	Related Works
	Method
	Background
	SLiM: Speculate Less and Validate More
	Implementation

	Results
	Experimental Setup
	Generation speed-up experiments
	Model analysis
	Method ablation

	Conclusions
	Limitations
	Proof of Theorem 1
	Additional Experiments

