
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Code Researcher : DEEP RESEARCH AGENT FOR
LARGE SYSTEMS CODE AND COMMIT HISTORY

Anonymous authors
Paper under double-blind review

Filtered Context Memory

Crash Report

Analysis Trajectory

Write the results of actions to memory

Generate the patch

Filter the contents

of memory

Take multiple

actions to discover

more information

if enough context is
gathered

 then go to step

else reason over the

memory using strategiesCrash Report

Crash Report

Rich development

history

Crash reproducing script

FailureSuccess

Codebase

Global interactions

Large and complex

Crash Report

Noisy

Multiple

stack traces

Ambiguous

Reasoning Strategies

Causal analysis over historic commits

Chasing control and data flow chains

Searching patterns and anti-patterns

Actions

search_code(regex)

search_definition(sym)

search_commits(regex)

Context

Memory

Code

snippets

Past

commits

Symbol

definitions

Analysis

Patch

Synthesis

12

3

4

4

5

Validation

Inputs

Figure 1: Code Researcher conducts deep research over code in three phases: (1) Starting with
the codebase and crash report as input, the ANALYSIS phase performs multi-step reasoning about
semantics, patterns, and commit history of code. It gathers context in a memory. (2) The SYNTHESIS
phase filters the contents of the memory to keep relevant context and generates a patch. (3) The
VALIDATION phase uses external tools to validate the patch.

ABSTRACT

Large Language Model (LLM)-based coding agents have shown promising results
on coding benchmarks, but their effectiveness on systems code remains underex-
plored. Due to the size and complexities of systems code, making changes to a
systems codebase requires researching about many pieces of context, derived from
the large codebase and its massive commit history, before making changes. Inspired
by the recent progress on deep research agents, we design the first deep research
agent for code, called Code Researcher , and apply it to the problem of generating
patches to mitigate crashes reported in systems code. Code Researcher performs
multi-step reasoning about semantics, patterns, and commit history of code to
retrieve all relevant context from the codebase and its commit history. We evaluate
Code Researcher on kBenchSyz (Mathai et al., 2024), a benchmark of Linux kernel
crashes, and show that it significantly outperforms strong baselines, achieving a
crash-resolution rate (CRR) of 48%, compared to 31.5% by SWE-agent (Yang
et al., 2024) and 31% by Agentless (Xia et al., 2024), using OpenAI’s GPT-4o
model. Scaling up sampling budget to 10 trajectories increases Code Researcher’s
CRR to 54%. Code Researcher is also robust to model choices, reaching 67% with
the newer Gemini 2.5-Flash model. Through another experiment on an open-source
multimedia software, we show the generalizability of Code Researcher and also
conduct ablations. Our experiments highlight the importance of global context
gathering and multi-faceted reasoning for large codebases.

1 INTRODUCTION

Automating coding using Large Language Models (LLMs) and LLM-based agents is a very active area
of research. Popular benchmarks like LiveCodeBench (Jain et al., 2024) and SWE-bench (Jimenez
et al., 2024) respectively test coding abilities on standalone competitive coding problems and GitHub
issues over library or application code. Despite the demonstrated progress of coding agents on these
benchmarks, they are yet to scale to complex tasks over an important class of code, systems code.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Systems code powers critical and foundational software like operating systems, networking stacks,
cloud infrastructure and system utilities. Systems codebases have multiple dimensions of complexity.
Firstly, they are very large, with thousands of files and millions of lines of code. Secondly, systems
code often interfaces directly with the hardware and is performance critical. This results in complex
low-level code (involving pointer manipulations, compile-time macros, etc.) in languages like C/C++,
and global interactions between different parts of the codebase for concurrency, memory management,
maintenance of data-structure invariants, etc. Finally, foundational systems codebases have rich
development histories spanning years or even decades, containing contributions by thousands of
developers, which are important references on legacy design decisions and code changes.

We consider the problem of generating patches to mitigate crashes reported in systems code. This is a
uniquely challenging setting, as opposed to the SWE-bench (Jimenez et al., 2024) like setting tackled
by many prior works (Yang et al., 2024; Jain et al., 2025; Ouyang et al., 2025) using LLMs and SLMs
in coding agents. SWE-bench contains human-written issue descriptions from moderately-sized
codebases, which explain the nature of the bug and might indicate which files are likely relevant.
Coding agents (Yang et al., 2024; Wang et al., 2025) are designed to take advantage of this and
quickly navigate the repository to reach the buggy files. In fact, an Agentless (Xia et al., 2024)
approach, which has a simpler, fixed workflow of localizing the files to edit followed by repair,
performs competitively on SWE-bench. These approaches do not expend much efforts in gathering
codebase-wide, global context. In our setting, the bugs are described by stack traces which are devoid
of natural language hints and contain a much larger number of files and functions than an issue
description. Due to the nature of crash reports and the complex global interactions in large systems
codebases, multi-step reasoning and context gathering become important.

Automating such complex tasks in systems codebases requires a different type of agents, agents
that can research about many pieces of context, derived automatically from the large codebase
and its massive commit history, before making changes. Recently, deep research agents have been
developed to solve complex, knowledge-intensive problems that require careful context gathering
and multi-step reasoning, before synthesizing the answer. The agents and techniques have mostly
focused on long-form document generation or complex question-answering over web contents (Shao
et al., 2024; OpenAI, 2025b; Google, 2025a; Perplexity, 2025; Li et al., 2025; Wu et al., 2025b) and
enterprise data (Anthropic, 2025; Microsoft, 2025). Inspired by these advances, we propose the first
deep research agent for code, called Code Researcher, and apply it to the problem of generating
patches for mitigating crashes reported in systems code.

As shown in Figure 1, Code Researcher works in three phases: (1) ANALYSIS: Starting with the
crash report and the codebase, this phase performs multi-step reasoning over semantics, patterns, and
commit history of code. The “Reasoning Strategies” block shows the reasoning strategies used. Each
reasoning step is followed by invocations of tools (labeled “Actions” in Figure 1) to gather context
over the codebase and its commit history. The information gathered is stored in a context memory
and when the agent is able to conclude that it has gathered sufficient context, it moves to the next
phase. (2) SYNTHESIS: The SYNTHESIS phase uses the crash report, the context memory, and the
reasoning trace of the ANALYSIS phase to filter out irrelevant memory contents. Then, it generates
patches, which may edit one or more buggy code snippets from memory, possibly spread across
multiple files. (3) VALIDATION: Finally, the VALIDATION phase checks if the generated patches
prevent the crash from occurring using external tools. A successful patch is presented to the user.

We evaluate the effectiveness of Code Researcher on the kBenchSyz benchmark (Mathai et al.,
2024), containing 279 Linux kernel crashes detected by the Syzkaller fuzzer (Google, 2025b). This
benchmark is challenging because the Linux kernel (Torvalds, 1991) is a canonical example of
a systems codebase with complex low-level code and massive size (75K files and 28M lines of
code), and has rich development history. Code Researcher resolves 48% of crashes using GPT-4o
and 5 sampled patches, significantly outperforming the two strong and popular baselines of SWE-
agent (Yang et al., 2024) (31.5%) and Agentless (Xia et al., 2024) (31%) in the same setting (and
customized for the kernel crash resolution task). A concurrent work, CrashFixer (Mathai et al., 2025),
explores a simpler setting where the agent is provided the ground-truth buggy files to edit (the assisted
setting), whereas, Code Researcher takes only the crash report as input (the unassisted setting).

Code Researcher benefits from scaling inference compute, reaching 54% with pass@10, and is
robust to the choice of model, resolving 67% of crashes with the newer Gemini 2.5-Flash LLM.
It gathers context of high coverage and quality, exploring about 10 files per trajectory compared

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to a much smaller number 1.33 of files explored by SWE-agent. We demonstrate the importance
of causal analysis over historical commits, a novel feature of Code Researcher. To ensure that
the proposed patches do not break existing functionality, we run Linux kernel unit tests on Code
Researcher’s crash-resolving patches. Though expensive to run, this provides additional validation
beyond the crash-reproduction testing in kBenchSyz. We give evidence of the generalizability of
Code Researcher by experimenting on an open-source multimedia software, FFmpeg (FFmpeg, 2025),
where it resolves 7/10 crashes tested. We are making our implementation and all results available in
the supplementary material for review. We plan to make these public upon paper publication.

In summary, we make the following main contributions:
(1) We design the first deep research agent for code, Code Researcher, capable of handling large
systems code and resolving crashes. Recognizing the importance of commit history in systems code,
we equip the agent with a tool to efficiently search over commit histories.
(2) We evaluate Code Researcher on the challenging kBenchSyz benchmark (Mathai et al., 2024)
and achieve a crash resolution rate of 54%, outperforming strong baselines and showing robust
performance across model choices, reaching 67% with the newer Gemini 2.5-Flash model. We also
demonstrate its generalizability through experiments on a multimedia software, FFmpeg.
(3) Through a comprehensive evaluation, we show (i) how our deep research agent outperforms
agents that do not focus on gathering relevant context, (ii) that this advantage persists even if the
existing SOTA agent is given higher inference-time compute, and (iii) that reasoning models improve
performance significantly if given well-researched context. We thoroughly validate Code Researcher’s
crash-resolving patches using the Linux kernel unit test-suite in addition to the validation setup in
kBenchSyz, providing confidence that they do not break existing functionality. Further ablations
show the importance of (i) causal analysis over historical commits and (ii) memory filtering.

2 RELATED WORK

The LLM-powered software development subfield has produced several coding agents (Yang et al.,
2024; Xia et al., 2024; Wang et al., 2025; Zhang et al., 2024; Wadhwa et al., 2024), predominantly
evaluated on SWE-bench (Jimenez et al., 2024). SWE-bench focuses on GitHub issues from small to
medium-sized Python repositories. However, systems code, the focus of our work, presents unique
challenges. We highlight and contrast key related work in this context. A related, but orthogonal line
of exploration is long context reasoning. But it has its own challenges, as discussed in Appendix F.

Coding agents Agents like SWE-agent (Yang et al., 2024) or OpenHands (Wang et al., 2025) use
a single ReAct-style (Yao et al., 2023) loop endowed with shell commands or specialized tools for
file navigation and editing. However, they tend to explore a small number of files per bug, without
gathering and reasoning over the relevant codebase-wide context. AutoCodeRover (Zhang et al.,
2024) uses tools based on program structure to traverse the codebase (albeit limited to Python code).
It performs explicit localization of the functions/classes to edit using these tools, and those are later
repaired. Code Researcher does not explicitly localize the functions to edit; instead it gathers relevant
context for patch generation and decides what to edit in the SYNTHESIS phase. Some recent coding
agents construct a dependency graph of the repository (Ouyang et al., 2025; Chen et al., 2025), which
they then explore using approaches like MCTS (Ma et al., 2025). However, such agents are (1) limited
to Python code and (2) scale very poorly, making it impractical to use on codebases of the scale of
the Linux kernel. Code Researcher instead uses simple and scalable tooling to handle such codebases
easily. Code Researcher is also the first agent to use causal analysis over historical commits; this is
critical to handling subtle bugs introduced by code evolution in long-lived systems codebases.

Deep research agents Deep research is a fast emerging subfield in agentic AI (Microsoft, 2025;
OpenAI, 2025b; Google, 2025a; Perplexity, 2025), to tackle complex, knowledge-intensive tasks, that
can take hours or days even for experts. Academic work so far has focussed on long-form document
generation (Godbole et al., 2024; Shao et al., 2024), scientific literature review (Wu et al., 2025b;
Gottweis et al., 2025), and complex question-answering (Li et al., 2025; Wu et al., 2025a) based
on the web corpus. The key challenges in deep research for such complex tasks include (a) intent
disambiguation, (b) exploring multiple solution paths (breadth of exploration), (c) deep exploration
(iterative tool interactions and reasoning), and (d) grounding (ensuring that the claims in the response
are properly attributed). Most of the aforementioned challenges also apply to our setting. To the best
of our knowledge, our work is the first to design and evaluate a deep research strategy for complex

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

bug resolution in large codebases. Most recently, OpenAI’s Deep Research model has been integrated
with GitHub repos for report generation and QA over codebases (OpenAI, 2025a). However, (a) it
does not support agentic tasks like bug fixing, and (b) their indexing technique does not scale to very
large codebases like the Linux kernel, whereas we use scalable tools for search.

Automated kernel bug detection and repair Prior work for detecting Linux kernel bugs includes
various types of sanitizers, e.g., Kernel Address Sanitizer (KASAN) (Google, 2025a), and the
Syzkaller kernel fuzzer (Google, 2025b), an unsupervised coverage-guided fuzzer that tries to find
inputs to crash the kernel. Code Researcher, complementary to this, generates patches from crash
reports. We use some traditional software engineering concepts like deviant pattern detection (Engler
et al., 2001) and reachability analysis (Nielson et al., 2015), but leverage LLMs to scale to large
codebases. As noted earlier, CrashFixer (Mathai et al., 2025) targets Linux kernel crashes but assumes
that buggy files are known a priori. This assumption is unrealistic for large codebases like the Linux
kernel. In contrast, Code Researcher autonomously locates buggy files using general search tools.

3 DESIGN OF Code Researcher

Large systems codebases, owing to their critical nature, undergo strict code development and review-
ing practices by expert developers. The bugs that still sneak in are subtle and involve violations of
global invariants (e.g., a data structure should be accessed only after acquiring a lock) and coding
conventions (e.g., use of a specific macro to allocate memory), and unintended side effects caused
by past changes. To fix such bugs, an agent needs to gather sufficient context from the codebase
and its commit history, before generating hypotheses about the cause of a bug and attempt to fix it.
With this insight, we design our deep research agent, Code Researcher . As shown in Figure 1, Code
Researcher comprises of three phases: (1) ANALYSIS, (2) SYNTHESIS and (3) VALIDATION. We
present the key details of our design in this section and complement it with implementation details in
Appendix B. We also explain an example trajectory of Code Researcher in Appendix C.

3.1 ANALYSIS PHASE

The ANALYSIS phase of Code Researcher is responsible for performing deep research to understand
the cause of a reported crash. We equip this phase with (a) actions to efficiently search over the
codebase and the commit history and (b) reasoning strategies for code. At each step, the actions taken
so far along with their results are stored in a context memory, which is used to construct the prompt.

3.1.1 ACTIONS TO SEARCH OVER CODEBASE AND COMMIT HISTORY

We support the following actions: (1) search_definition(sym): To search for the definition(s)
of the specified symbol, which can be the name of a function, struct, global constant, union or macro
and so on. It can be optionally passed a file name to limit the search. (2) search_code(regex):
To search the codebase for matches to the specified regular expression. This is a simple yet powerful
tool, which can be used for searching for any coding pattern such as call to a function, dereferences
to a pointer, assignment to a variable and so on. (3) search_commits(regex): To search for
matches to a regular expression over commit messages and diffs associated with the commits. The
regular expression offers expressiveness, e.g., to search for occurrence of a term (“memory leak”) in
the commit messages or coding patterns in code changes (diffs). In addition, the agent can invoke (4)
done to indicate that it has finished the ANALYSIS phase and (5) close_definition(sym):
To remove the definition of a symbol from the memory if the symbol is deemed irrelevant to the task.

3.1.2 REASONING STRATEGIES FOR CODE

We ask the agent to explore the codebase to figure out the root cause of a crash and gather sufficient
context to propose a fix. We induce the following reasoning strategies through prompting to guide
the exploration of the codebase and its commit history. As shown in Figure 1, each reasoning step is
followed by one or more actions. Additionally, we present the agent with a simple scratchpad, where
it can add important discoveries for future reference.

Chasing control and data flow chains The control flow (Nielson et al., 2015) of a code snippet refers
to the functions that are called and the branches in it, including conditional statements, loops, gotos

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and even conditional compilation macros. Given a crash report and some code, the agent is asked to
reason about control flow to understand how execution flows between different functions and how it
leads to the crash. Similarly, data flow (Nielson et al., 2015) refers to how the values of variables
get passed to different functions and how one variable is used to define another. So the agent should
also reason about how data flows in the code. As a result of this reasoning, the agent may invoke
a search_definition(sym) action to search for the definition of sym if it suspects that sym
may have something to do with the buggy behavior and needs more information about sym to confirm
or dispel the suspicion. It can also use other actions as suitable, e.g., search_code(x\s*=) to
look for assignments to a variable named x, with \s* indicating zero or more whitespaces.

Searching for patterns and anti-patterns Traditional software engineering literature thinks of bugs
as anomalies – patterns of code that are deviant (Engler et al., 2001). It follows that, to diagnose
and understand a bug, one can find frequent patterns in the repository and check if a given piece of
code deviates from it. Code Researcher reasons about which behavior is common or “normal” and
which code snippets look anomalous. It can perform a search_code(regex) action to search
for these patterns and anti-patterns using regular expressions. A classic case is checking a pointer
for null value after allocation. If the agent notices a missing null check for ptr, it can perform
search_code(if\s*\(ptr==NULL\)) to search for null checks throughout the codebase on
ptr. Similarly, it can perform search_code(ptr\s*=.*alloc\(.*\)) to search for all
allocations to ptr to verify whether other parts of the codebase typically perform a null check or not.

Causal analysis over historical commits An interesting and challenging aspect of a codebase
that has been in development for a long time, as many foundational systems codebases have, is
the rich history of commits. Because of continuous development, it is likely that a new bug has
some past commits that can prove helpful in understanding or solving it. Indeed, developers often
reference other commits when they come up with patches. Code Researcher reasons about how
the codebase has evolved and how that evolution is related to the crash report. It can issue a
search_commits(regex) action to search over past commit messages and diffs. For instance,
the regular expression handle->size|crypto_fun\(matches commits that add or remove a
handle->size access, or a call to crypto_fun.

Iterative process of deep research As shown in Figure 1, in each reasoning step, Code Researcher
is asked to decide if it has acquired sufficient context to understand and solve the crash. If yes, it
moves to the next phase of synthesizing the patch (Section 3.2). Initially, the context is empty and it
starts its reasoning process by analyzing the contents of the stack trace and the diagnostic information
provided as input. At each step, the agent evaluates the context accrued so far and decides which
lines of exploration to extend by issuing multiple search actions simultaneously.

3.2 SYNTHESIS AND VALIDATION PHASES

The contents of memory and the reasoning trace of the ANALYSIS phase are passed to the SYNTHESIS
phase, along with the crash report. The ANALYSIS phase has the flexibility to follow multiple paths of
inquiry simultaneously. It can thus end up collecting information that does not turn out to be relevant,
which also happens when a human does research on some topic. In large codebases, this irrelevant
information can be quite large and can overwhelm the prompt. Thus, the SYNTHESIS phase first
filters the memory and discards (action, result) pairs that are deemed irrelevant to the task of fixing
the crash. The agent then uses the filtered information to generate a hypothesis about the nature of
the bug and a potential remedy, and the corresponding patch. Finally, in the VALIDATION phase, the
patch is applied to the codebase, and the codebase is compiled. The reproducer program that had
originally caused a crash is run. If the crash is reproduced, the patch is rejected. If not, it is accepted.

4 EXPERIMENTAL SETUP

Benchmarks We use a thoroughly validated, reproducible subset of 200 instances from the
kBenchSyz benchmark (Mathai et al., 2024) of 279 Linux kernel crashes found by the Syzkaller
fuzzer (Google, 2025b). Each instance in the benchmark consists of (1) a reproducer file, containing
the user-space program that triggers the crash, (2) the ground-truth commit that fixed the bug, and (3)
the crash report at the parent commit of the fix commit (we run all tools at this parent commit). To
show generalizability, we also evaluated Code Researcher on 10 recent crashes of an open-source

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

multimedia software, FFmpeg (FFmpeg, 2025). More details about the kBenchSyz benchmark and
the FFmpeg dataset are in Appendix G and Appendix D respectively.

Evaluation metrics We compute Pass@k (P@k) defined as P@k = 1, if applying at least one of the
k candidate patches generated by the tool prevents the crash, or P@k = 0 otherwise. We report (1)
Crash Resolution Rate (CRR) which is average P@k, (2) average recall, i.e., the fraction of files
modified in the ground-truth commit (the ground-truth buggy files) in the set of files edited by the
agent, averaged over the k candidate patches, and (3) the percentage of candidate patches where All,
Any or None of the ground-truth buggy files are edited. When a tool does not produce a patch (e.g.,
it runs out of LLM call budget), the set of edited files is assumed to be empty. All the metrics are
averaged over the 200 instances in the benchmark.

Baselines We evaluate Code Researcher in the unassisted setting (i.e., the ground-truth buggy files
that are part of the fix commits are not divulged to the tool) and compare it against the following
baselines: (1) o1 (OpenAI, 2024b) and GPT-4o (OpenAI, 2024a) in the assisted setting, i.e., we give
the ground-truth files that are part of the fix commits and the crash report as input. We prompt the
model to generate a hypothesis about the crash’s cause and a patch. (2) o1 and GPT-4o in the stack
context setting, where we give the contents of the files mentioned in the crash report as input besides
the crash report. (3) SWE-agent 1.0 (Yang et al., 2024), a SOTA coding agent on the SWE-bench
benchmark, in the unassisted setting. For fairness, we add a Linux kernel-specific example trajectory
and background about the kernel to its prompts. We sample k (for Pass@k) SWE-agent trajectories
independently using a temperature of 0.6. (4) Agentless (Xia et al., 2024), another top coding agent
on the SWE-bench benchmark that uses a fixed workflow of localization followed by repair, in the
unassisted setting. We add background about the kernel to its prompts and sample k (for Pass@k)
patches using the same LLM (GPT-4o) as Code Researcher and SWE-agent. (5) CrashFixer (Mathai
et al., 2025), state-of-the-art agent for Linux kernel crash resolution, in the assisted setting, as it
directly uses the ground-truth files to generate patches. If a patch fails to build or crashes with the
ground-truth reproducer, it iteratively refines it using the respective error messages. We report their
results with the Gemini 1.5-Pro-002 model (v. 2024-09-24) and more recent results with the Gemini
2.5-Pro model (v. 2025-06-17).

Implementation, hyperparameters We employ GPT-4o (v. 2024-08-06) for Code Researcher and
for the competing tools. We also experiment with o1 (v. 2024-12-17) in the SYNTHESIS phase
of Code Researcher, and, to show that Code Researcher’s design is not tied to the OpenAI family
of models, the newer Gemini 2.5-Flash (v. 2025-06-17) for both the ANALYSIS and SYNTHESIS
phases. All our experiments have a context length limit of 50K tokens. In the ANALYSIS phase,
we use a temperature of 0.6 and independently sample k trajectories. For the SYNTHESIS phase,
we sample with increasing temperatures (0, 0.3, 0.6) until the agent produces a correctly-formatted
patch, with a maximum of 3 attempts. We allow all tools a budget of at most max calls LLM calls to
generate a single patch. Please refer to Appendix G for details about the crash reproduction setup,
the prompts, the compute resources and the configurations for Code Researcher and the baselines.

5 EXPERIMENTAL RESULTS

We evaluate Code Researcher across six dimensions. First, we compare its crash resolution ability
against state-of-the-art coding agents and baselines. We then analyze the context gathering capabilities
of different tools by studying (a) whether they are able to find the files that need to be edited, and (b)
the coverage and quality of additional global context gathered. Then, we assess the impact of two
design choices, historical commit analysis and context filtering, on Code Researcher’s performance.
Finally, we further validate Code Researcher’s crash-resolving patches with unit tests and a qualitative
analysis, and show its generalizability to another codebase.

5.1 RQ1: HOW EFFECTIVE ARE DIFFERENT TOOLS AT RESOLVING LINUX KERNEL CRASHES?

Our main results are presented in Table 1, organized by setting, namely, assisted, stack context,
unassisted, and unassisted + test-time scaled (Section 4).

1) The assisted setting baselines show strong performance, but under unrealistic assumptions.
Given the ground-truth buggy files, LLMs like GPT-4o (CRR of 36%) are quite capable of resolving
crashes. A reasoning model like o1 is significantly better (CRR of 51%). Adding iterative feedback

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Crash resolution rate (CRR) for different tools on the kBenchSyz benchmark (200 bugs).
LLMs used by the tools are in parentheses. ∗Results are from Mathai et al. (2025), out of 279 bugs.

Setting Tool Max calls P@k CRR (%)

Assisted
GPT-4o 1 P@5 36.00

o1 1 P@5 51.00
CrashFixer (Gemini 1.5 Pro-002)∗ ≥ 4 P@16 49.22∗

CrashFixer (Gemini 2.5 Pro) ≥ 4 P@16 70.00

Stack context GPT-4o 1 P@5 29.50
o1 1 P@5 40.00

Unassisted
Agentless (GPT-4o) 4 P@5 31.00

SWE-agent (GPT-4o) 15 P@5 31.50
Code Researcher (GPT-4o) 15 P@5 48.00

Code Researcher (GPT-4o + o1) 15 P@5 58.00
Code Researcher (Gemini 2.5-Flash) 15 P@5 67.00

Unassisted
+ Scaled

SWE-agent (GPT-4o) 30 P@5 32.00
Code Researcher (GPT-4o) 30 P@5 47.50

SWE-agent (GPT-4o) 15 P@10 37.50
Code Researcher (GPT-4o) 15 P@10 54.00

from the compiler and the crash reproduction setup, CrashFixer achieves 49.22% CRR with an older
Gemini model and 70% CRR with a newer Gemini reasoning model using P@16 with at least 4 max
calls.

2) The stack context setting reveals the difficulty of the practical unassisted setting. The
assumption that an oracle can tell us exactly which files need to be edited is impractical. The gap
between the assisted (idealistic) setting and the practical unassisted setting is highlighted by the simple
but effective stack context setting where models are given the contents of all the files mentioned
in the crash report (truncated to the context length limit). This is a strong baseline because all the
ground-truth buggy files are present in the crash report for 74.50% crashes in our dataset. o1 achieves
a CRR of 40%, which is impressive, but 11% lower than its performance in the assisted setting.

3) Code Researcher consistently outperforms baselines in the unassisted setting. Fixing the LLM
as GPT-4o, Code Researcher achieves a CRR of 48%, significantly outperforming the SWE-agent
and Agentless baselines, both the stack context baselines, and even the assisted GPT-4o baseline.
This indicates that the context gathered by Code Researcher is much more effective than giving file
contents based on the crash report, or using multi-step hierarchical localization (as done by Agentless),
and is even better than directly giving all the contents of the files to be edited. The context gathered
by GPT-4o during ANALYSIS can be better utilized by the reasoning model o1 during SYNTHESIS,
increasing Code Researcher’s CRR to 58%. This further increases to 67% using the newer (albeit
not as advanced as Gemini 2.5-Pro) model, Gemini 2.5-Flash, for both phases, indicating that Code
Researcher’s design is not tied to a specific LLM family.

4) Increasing the number of trajectories helps, while making them longer does not. We examine
how scaling the total inference budget (max calls × num trajectories k) impacts the performance of
Code Researcher and SWE-agent. Doubling the max calls budget, i.e., making the trajectories of
the agents longer, has a negligible effect on the CRR, whereas increasing the number of trajectories
sampled improves SWE-agent’s CRR to 37.50% and Code Researcher (GPT-4o)’s CRR to 54.00%.

5.2 RQ2: DO THE TOOL-EDITED FILES MATCH THOSE MODIFIED IN DEVELOPER FIXES?

The information needed by a developer to fix a crash can be divided into (1) the code to be edited and
(2) additional context. We study (1) here by examining whether tools edit the same files as developers,
and study (2) in the next section. Since buggy files are already provided in the assisted setting, we
focus on the stack context and unassisted settings. Full results appear in Table 2 (Appendix A).

Code Researcher achieves the highest recall across all baselines, editing all ground-truth buggy
files in nearly half of candidate patches and at least one in another ∼ 8%. “Recall” here measures

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Unique files opened (clipped at 50)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

no
rm

al
iz

ed
co

un
t o

f c
ra

sh
es

SWE-agent
CodeResearcher
SWE-agent Avg: 1.9
CodeResearcher Avg: 29.1

Figure 2: Files explored for each crash (summed over 5 trajectories).

the fraction of ground-truth files in those edited, not merely explored, making it notable that Code
Researcher edits on average only 1.1 files while exploring 10 (Section 5.3). Agentless attains recall
comparable to Code Researcher and much higher than SWE-agent, but resolves far fewer crashes.
This contrast underscores the importance of the global context gathered by Code Researcher ,
beyond just the code being edited. Finally, scaling test-time compute (via increasing max calls or
P@k) for Code Researcher and SWE-agent preserves the overlap between edited and ground-truth
files, and using the newer Gemini 2.5-Flash for Code Researcher further improves its overlap.

5.3 RQ3: HOW EFFECTIVE IS CONTEXT GATHERING FOR RESOLVING KERNEL CRASHES?

From Tables 1 and 2, Code Researcher (GPT-4o) significantly outperforms baselines that do not
gather additional context but have high recall. This shows that gathering global context (instead of
just localizing the code to edit) can drastically improve kernel crash resolution. Agentless, which does
not gather any context, performs poorly, while SWE-agent does gather context from the codebase,
yet it performs much worse than Code Researcher . Below, we investigate this further:

1) Coverage of the context gathered: Figure 2 shows the distribution of the number of unique files
read across the 5 trajectories by Code Researcher and SWE-Agent (GPT-4o, P@5, 15 max calls).
Code Researcher performs deep research over the codebase, reading 29.13 unique files across 5
top-level directories on average for each crash. In stark contrast, SWE-agent reads only 1.91 files
on average for each crash. When averaged by trajectory, Code Researcher explores 10 unique files
compared to only 1.33 files explored by SWE-agent.

2) Overlap with developer-referenced context: We use LLM-as-judge to determine the overlap
of the context gathered by Code Researcher (GPT-4o) and SWE-agent with the context mentioned
by the developer in the fix commit message (details in Appendix I). This context overlap is 54.18%
(over candidate patches) for SWE-agent compared to 63.7% for Code Researcher, suggesting that
Code Researcher does a much better job of identifying relevant context that the developer explicitly
relied on when making the fix.

3) Context quality when both edit all the ground-truth modified files: To isolate the impact of the
gathered context, we consider the subset of 90 crashes, where both Code Researcher and SWE-agent
(using the same GPT-4o model) edit all the ground-truth files in at least one candidate patch generated
by each tool. We can thus attribute their success (or failure) on this subset to the context gathered.
Code Researcher resolves 55/90 = 61.10% of crashes in this subset, while SWE-agent resolves
only 34/90 = 37.78% (discounting crash-resolving patches from each tool that do not edit all the
ground-truth files). Taken together, the three observations show that not only does Code Researcher
gather more context than SWE-agent, it also gathers higher quality context.

5.4 RQ4: HOW IMPORTANT ARE HISTORICAL COMMIT ANALYSIS AND CONTEXT FILTERING?

Commit history analysis Code Researcher is the first agent to explicitly leverage the rich devel-
opment history of codebases. In this ablation, we run it without the search_commits action
on the set of 96 bugs that were successfully resolved by Code Researcher (GPT-4o, Pass@5, 15
max calls). Table 3 (Appendix A) shows that removing the search_commits action leads to a
10% drop in the crash resolution rate, and decreases the ability to edit the ground-truth modified
files. This highlights that the search_commits action plays a crucial role in context gathering

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and localization. Notably, for the example in Appendix H, we also observe that Code Researcher
navigates to the same buggy commit that originally introduced the bug being repaired.

Context filtering As mentioned in Section 3.2, the ANALYSIS phase often gathers large amounts of
irrelevant context, especially in big codebases like the Linux kernel. The SYNTHESIS phase filters
this memory before synthesizing a patch. We provide two pieces of evidence for the importance of
this filtering. First, the average memory length (capped at 50K) across all Code Researcher (GPT-4o,
P@5, 15 max calls) trajectories dropped from 21, 557 tokens to 7, 797 tokens after filtering. Since
irrelevant tokens hurt LLM reasoning, this reduction should help performance. Second, in an ablation
on 20 randomly sampled crashes (10 resolved, 10 unresolved), disabling filtering reduced resolved
crashes from 10 to 8, average recall from 0.41 to 0.35, and All/Any/None from 34.0/16.0/50.0 to
29.0/15.0/56.0. This shows the importance of filtering in Code Researcher’s performance.

5.5 RQ5: HOW ROBUST ARE Code Researcher ’S PATCHES?

Kernel unit tests In addition to extensive testing (for 10 minutes on 4 machines with 8 parallel
processes) for crash-resolution per the kBenchSyz setup, we run kernel unit tests to check if the pro-
posed patches break existing functionality. For each of the 116 crashes resolved by Code Researcher
(GPT-4o+o1, P@5, 15 max calls), we selected one crash-resolving patch and ran KUnit (Linux, 2025)
tests on it. For a total of 28 crashes, either KUnit was not present in the kernel source code version on
which the crash was reported or it did not support the required setup. For the remaining 88 crashes,
all the KUnit tests had a status of either PASS or SKIP (some hardware-specific tests are skipped
depending on the machine requirements). On average, only ∼ 13 tests were skipped for a patch while
∼ 210 tests were passed with no unit test failures reported.

Qualitative analysis While perusing the crash-resolving patches, we came across the following
types of patches. Examples for each category (with explanations) are in Listings 1-4, Appendix J.
(1) Accurate patches correctly identify and fix the root cause of the crash, closely resembling
the developer solution. (2) Overspecialized patches successfully prevent the crash but may be
overspecialized. (3) Incomplete patches correctly identify the problem area and approach, but may
not be complete. They provide debugging insights and could accelerate the path to a proper fix. (4)
Inaccurate patches offer a plausible way to resolve the crash, but differ from the developer fix.

5.6 RQ6: DOES Code Researcher GENERALIZE TO OTHER SYSTEMS CODEBASES?

To demonstrate that Code Researcher generalizes with a little effort to other codebases, we experiment
with crash resolution in the FFmpeg (FFmpeg, 2025) codebase, a leading open-source multimedia
framework. We build a small dataset of 10 recent security-related crash vulnerabilities (which
are assigned the top priority) reported by OSS-Fuzz (Google), an automated fuzzing service for
open-source projects. Full details of the codebase, dataset construction, and reproduction steps are
given in Appendix D. We run Code Researcher with the same core prompts as for the Linux kernel.
In the unassisted setting (ANALYSIS with GPT-4o, SYNTHESIS with o1, max calls = 15), Code
Researcher resolves 7 of 10 crashes at Pass@1. It achieves an average recall of 0.78, editing all
the ground-truth files in 7 crashes and none in 2 (excluding one case without a known fix). While
FFmpeg crashes are typically not as complex as Linux kernel crashes, our results show that Code
Researcher’s techniques generalize easily and effectively to other systems codebases.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this work, we extend coding agents to deep research scenarios arising in resolving complex issues
in large systems codebases. We (a) leverage the rich development history in the codebases (commits),
and (b) design effective deep exploration strategies for gathering the rich context often needed to
root-cause and patch code crashes. We establish state-of-the-art results on the latest and challenging
benchmark of Linux kernel crashes, thoroughly validate our results, perform ablations, and show
the generalizability of our approach. Our work currently targets the crash resolution problem, but
there are other equally important problems faced by systems software such as slow response times,
excessive resource usage and flakiness. It remains to be seen if our deep research strategy could be
applied to these scenarios. Deep research for code is a new subfield of agentic AI and we intend to
explore novel usecases and strategies beyond the ones presented in the paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide all the necessary information to reproduce our results. In Section 4, we include details
about our benchmarks and the implementation hyperparameters for Code Researcher and all the other
baselines. In Appendix G, we give details about our subset of the kBenchSyz benchmark, and provide
information about the crash reproduction setup, the unit test setup, compute resources, prompts, and
the implementation of the SWE-agent and Agentless baselines. In Appendix D, we give the complete
steps to recreate our dataset for FFmpeg and reproduce our results. We also present implementation
details for Code Researcher in Appendix B. Finally, we submit a supplementary zip file containing
(a) the full code of our implementation, (b) prompts and config files used for Code Researcher and
the SWE-agent and Agentless baselines, (c) both the datasets we used, (d) the patches produced by
Code Researcher and each baseline, and (e) a README that explains how to reproduce our results.

REFERENCES

Anthropic. Claude takes research to new places, 2025. URL https://www.anthropic.com/
news/research.

ccache. ccache. URL https://github.com/ccache/ccache.

Zhaoling Chen, Xiangru Tang, Gangda Deng, Fang Wu, Jialong Wu, Zhiwei Jiang, Viktor Prasanna,
Arman Cohan, and Xingyao Wang. Locagent: Graph-guided llm agents for code localization.
arXiv preprint arXiv:2503.09089, 2025.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as deviant
behavior: a general approach to inferring errors in systems code. SIGOPS Oper. Syst. Rev.,
35(5):57–72, October 2001. ISSN 0163-5980. doi: 10.1145/502059.502041. URL https:
//doi.org/10.1145/502059.502041.

FFmpeg. Ffmpeg, 2025. URL https://ffmpeg.org/.

Ameya Godbole, Nicholas Monath, Seungyeon Kim, Ankit Singh Rawat, Andrew McCallum, and
Manzil Zaheer. Analysis of plan-based retrieval for grounded text generation. arXiv preprint
arXiv:2408.10490, 2024.

Google. Oss-fuzz | documentation for oss-fuzz. URL https://google.github.io/
oss-fuzz/.

Google. Gemini deep research, 2025a. URL https://gemini.google/overview/
deep-research.

Google. Generative ai | documentation | long context. https://cloud.google.com/
vertex-ai/generative-ai/docs/long-context, 2025b. Accessed: 2025-03-13.

Google. Generative ai | documentation | gemini 2.5 pro. https://cloud.google.com/
vertex-ai/generative-ai/docs/models/gemini/2-5-pro, 2025c. Accessed:
2025-05-16.

Google. Kasan, 2025a. URL https://github.com/google/kernel-sanitizers/
blob/master/KASAN.md.

Google. Syzkaller, 2025b. URL https://github.com/google/syzkaller/.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom
Myaskovsky, Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist.
arXiv preprint arXiv:2502.18864, 2025.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

10

https://www.anthropic.com/news/research
https://www.anthropic.com/news/research
https://github.com/ccache/ccache
https://doi.org/10.1145/502059.502041
https://doi.org/10.1145/502059.502041
https://ffmpeg.org/
https://google.github.io/oss-fuzz/
https://google.github.io/oss-fuzz/
https://gemini.google/overview/deep-research
https://gemini.google/overview/deep-research
https://cloud.google.com/vertex-ai/generative-ai/docs/long-context
https://cloud.google.com/vertex-ai/generative-ai/docs/long-context
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro
https://github.com/google/kernel-sanitizers/blob/master/KASAN.md
https://github.com/google/kernel-sanitizers/blob/master/KASAN.md
https://github.com/google/syzkaller/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Naman Jain, Jaskirat Singh, Manish Shetty, Tianjun Zhang, Liang Zheng, Koushik Sen, and Ion
Stoica. R2e-gym: Procedural environment generation and hybrid verifiers for scaling open-
weights SWE agents. In Second Conference on Language Modeling, 2025. URL https:
//openreview.net/forum?id=7evvwwdo3z.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025.

Linux. Kunit - linux kernel unit testing, 2025. URL https://www.kernel.org/doc/html/
latest/dev-tools/kunit/index.html.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li. Alibaba ling-
maagent: Improving automated issue resolution via comprehensive repository exploration. In
Proceedings of the 33rd ACM International Conference on the Foundations of Software Engineer-
ing, pp. 238–249, 2025.

Alex Mathai, Chenxi Huang, Petros Maniatis, Aleksandr Nogikh, Franjo Ivančić, Junfeng Yang, and
Baishakhi Ray. Kgym: A platform and dataset to benchmark large language models on linux
kernel crash resolution. Advances in Neural Information Processing Systems, 37:78053–78078,
2024.

Alex Mathai, Chenxi Huang, Suwei Ma, Jihwan Kim, Hailie Mitchell, Aleksandr Nogikh, Petros
Maniatis, Franjo Ivančić, Junfeng Yang, and Baishakhi Ray. Crashfixer: A crash resolution agent
for the linux kernel. arXiv preprint arXiv:2504.20412, 2025.

Microsoft. Introducing researcher and analyst in microsoft 365 copilot, 2025. URL
https://www.microsoft.com/en-us/microsoft-365/blog/2025/03/25/
introducing-researcher-and-analyst-in-microsoft-365-copilot/.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis. springer,
2015.

OpenAI. Introducing openai o1-preview, 2024a. URL https://openai.com/index/
hello-gpt-4o/.

OpenAI. Introducing openai o1-preview, 2024b. URL https://openai.com/index/
introducing-openai-o1-preview/.

OpenAI. Openai deep research integration with github,
2025a. URL https://help.openai.com/en/articles/
11145903-connecting-github-to-chatgpt-deep-research.

OpenAI. Introducing deep research, 2025b. URL https://openai.com/index/
introducing-deep-research/.

11

https://openreview.net/forum?id=7evvwwdo3z
https://openreview.net/forum?id=7evvwwdo3z
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html
https://www.kernel.org/doc/html/latest/dev-tools/kunit/index.html
https://www.microsoft.com/en-us/microsoft-365/blog/2025/03/25/introducing-researcher-and-analyst-in-microsoft-365-copilot/
https://www.microsoft.com/en-us/microsoft-365/blog/2025/03/25/introducing-researcher-and-analyst-in-microsoft-365-copilot/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/
https://help.openai.com/en/articles/11145903-connecting-github-to-chatgpt-deep-research
https://help.openai.com/en/articles/11145903-connecting-github-to-chatgpt-deep-research
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei Han,
Hongming Zhang, and Dong Yu. Repograph: Enhancing AI software engineering with repository-
level code graph. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=dw9VUsSHGB.

Perplexity. Introducing perplexity deep research, 2025. URL https://www.perplexity.ai/
de/hub/blog/introducing-perplexity-deep-research.

Yijia Shao, Yucheng Jiang, Theodore A Kanell, Peter Xu, Omar Khattab, and Monica S Lam.
Assisting in writing wikipedia-like articles from scratch with large language models. arXiv preprint
arXiv:2402.14207, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Linus Torvalds. Linux, 1991. URL https://github.com/torvalds/linux.

universal-ctags. ctags. URL https://github.com/universal-ctags/ctags.

Nalin Wadhwa, Atharv Sonwane, Daman Arora, Abhav Mehrotra, Saiteja Utpala, Ramakrishna B
Bairi, Aditya Kanade, and Nagarajan Natarajan. MASAI: Modular architecture for software-
engineering AI agents. In NeurIPS 2024 Workshop on Open-World Agents, 2024. URL https:
//openreview.net/forum?id=NSINt8lLYB.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI software developers
as generalist agents. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=OJd3ayDDoF.

Junde Wu, Jiayuan Zhu, and Yuyuan Liu. Agentic reasoning: Reasoning llms with tools for the deep
research. arXiv preprint arXiv:2502.04644, 2025a.

Weiqi Wu, Shen Huang, Yong Jiang, Pengjun Xie, Fei Huang, and Hai Zhao. Unfolding the
headline: Iterative self-questioning for news retrieval and timeline summarization. arXiv preprint
arXiv:2501.00888, 2025b.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, pp. 1592–1604, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680384.
URL https://doi.org/10.1145/3650212.3680384.

12

https://openreview.net/forum?id=dw9VUsSHGB
https://www.perplexity.ai/de/hub/blog/introducing-perplexity-deep-research
https://www.perplexity.ai/de/hub/blog/introducing-perplexity-deep-research
https://github.com/torvalds/linux
https://github.com/universal-ctags/ctags
https://openreview.net/forum?id=NSINt8lLYB
https://openreview.net/forum?id=NSINt8lLYB
https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2407.01489
https://doi.org/10.1145/3650212.3680384

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTAL RESULTS

Table of results for Section 5.2 Table 2 shows results that examine whether the tools edit the same
files as developers.

Table 2: Average recall and All/Any/None percentages (metrics defined in Section 4) for different
tools. LLMs used by the tools are in parentheses.

Setting Tool Max
calls P@k Avg.

Recall
All/Any/None

(%)

Stack context GPT-4o 1 P@5 0.46 42.5/7.8/49.7
o1 1 P@5 0.43 39.7/7.7/52.6

Unassisted
Agentless (GPT-4o) 4 P@5 0.49 46.4/7.7/45.9

SWE-agent (GPT-4o) 15 P@5 0.37 35.1/5.6/59.3
Code Researcher (GPT-4o) 15 P@5 0.51 48.2/7.8/44.0

Code Researcher (GPT-4o + o1) 15 P@5 0.53 49.9/7.6/42.4
Code Researcher (Gemini 2.5-Flash) 15 P@5 0.56 52.1/9.7/38.2

Unassisted
+ Scaled

SWE-agent (GPT-4o) 30 P@5 0.40 37.9/6.4/55.7
Code Researcher (GPT-4o) 30 P@5 0.53 49.5/8.0/42.5

SWE-agent (GPT-4o) 15 P@10 0.36 34.3/5.5/60.2
Code Researcher (GPT-4o) 15 P@10 0.51 47.8/7.5/44.7

Table of results for Section 5.4 Table 3 shows the results for the search_commits ablation on
the set of 96 bugs that were successfully resolved by Code Researcher (GPT-4o, Pass@5, 15 max
calls).

Table 3: Importance of causal analysis of past commits on 96 bugs resolved by Code Researcher .

Tool Max
Calls P@k CRR(%) Avg.

Recall All/Any/None(%)

Code Researcher (GPT-4o) 15 P@5 48.00 0.51 48.2/7.8/44.0
W/O search_commits 15 P@5 38.00 0.33 32.6/2.4/65.0

1 We do this ablation only on the 96 bugs resolved by Code Researcher (GPT-4o, Pass@5, 15 max calls).

11 4452

SWE-agent
CodeResearcher

Figure 3: Overlap of crashes resolved by SWE-agent and Code Researcher (both at GPT-4o, P@5,
15 max calls)

Subset analysis of the crashes resolved by Code Researcher and SWE-agent Figure 3 shows a
venn diagram of the crashes resolved by Code Researcher and SWE-agent in the same configuration
(GPT-4o,P@5,15 max calls). It shows that Code Researcher is able to solve most of the crashes that
SWE-agent resolves, while also resolving a significant number of additional crashes.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B Code Researcher IMPLEMENTATION DETAILS

The full implementation can be found in the cresearcher folder in the supplementary material.
We explain a few key points here.

Context memory Code Researcher stores all the context collected so far in a context memory.
The memory contains a mapping of file path to a list of symbol definitions (further containing fields
like symbol name, start position, end position, body, etc.). It also has search queries and results,
storing a list of (query, results) pairs where results is itself a list of results. Please see the definition
of the class GlobalCtxAgentState in the file cresearcher/utils/types.py in our
supplementary material. In Figure 6 (Appendix C), the context shown provides an example of the
memory. We use the memory to form the prompt for each step.

Prompts The system and user prompts for the ANALYSIS and SYNTHESIS phases (for both filtering
and patch generation) are provided in the prompts folder of our supplementary material. They use
a prompt_preamble and prompt_analysis_examples that vary based on the codebase
(e.g., Linux kernel or FFmpeg). Those can be found in the files config/kBenchSyz.yaml
and config/ffmpeg.yaml respectively in our supplementary material. We use the con-
text memory to form the prompt for each step. We show all the open symbol definitions
(results of search_definition actions), however we only show the results of queries
(search_code and search_commits) from the previous step instead of showing them for
all past steps. This is because the results of these queries typically have lower signal to noise
ratio and commits can be quite large so they threaten to overwhelm the context. The conver-
sation trajectory is also passed to the LLM, but in case it exceeds our limit of 50K, we re-
move intermediate messages as necessary (i.e., the first message containing the crash report
and the last message are always kept, and intermediate messages are included as much as pos-
sible). In the filtering step (please see generateGlobalCtxAgentSelectionPrompt in
cresearcher/globalContext.py in the supplementary), we prioritize fitting symbol defini-
tions first before we try fitting other search queries and results into our context length limit.

Implementation of the search actions We implement the search_definition(sym) action
using the ctags (universal-ctags) tool to generate (and read) an index file of language objects found
in source files for programming languages. The index file is constructed once at the start of Code
Researcher’s run, usually taking a few minutes for the Linux kernel codebase, and is used throughout
the ANALYSIS trajectory. Whenever we show a symbol definition in the prompt, for each line of code
that is mentioned in the crash report, we additionally add an annotation (as a C-style comment at the
end of the line) saying that this line is important. For search_code(regex), we use the git
grep -E command to search over all the tracked files in the codebase and show 2 lines of context
before and after each matching line. Finally, for search_commits(regex), we use the git
log -E -G and git log -E -grep commands to search over historical commits matching in
the code changes and commit messages, respectively. The message and patch of each relevant commit
are returned as output, truncated to a maximum of 100 lines. Each action can return a maximum of 5
results. To make these searches over an extremely large repository faster, we progressively search
over the files of the symbol definitions present in context memory, then those mentioned in the crash
report, then those in the kernel subsystems of the bug, and finally all the files in the codebase. This
prioritization strategy allows us to use a timeout of 60 seconds for the git log commands (which
usually take the longest time) while still getting relevant results in a large number of cases.

Scalability of search tooling We now give some experimental evidence to substantiate our point
in Section 2 that existing coding agents that construct repository dependency graphs, like LocA-
gent (Chen et al., 2025), RepoGraph (Ouyang et al., 2025) and Lingma Agent (Ma et al., 2025), scale
poorly to large codebases.

We ran the LocAgent and RepoGraph graph constructions for the sympy repository from SWE-bench
that contains ∼ 433K lines of Python code. LocAgent took 764 seconds. RepoGraph errored out after
44.3 seconds and the progress bar showed 20/1584 [00:24<31:42, 1.22s/it], indicating
that it would have taken another 30 minutes to complete. In contrast, constructing the ctags index
used by Code Researcher doesn’t require any dependency analysis and took 0.76 seconds for the
same repository.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Given the times above and the fact that the Linux kernel has ∼ 28M lines of code, even if one were
to change their tools to support multiple languages, it would be infeasible to construct dependency
graphs in reasonable time. On the other hand, constructing the ctags index for the Linux kernel
takes only 74 seconds.

C EXAMPLE OF AGENT TRAJECTORY

In this section, we show an example ANALYSIS trajectory generated by Code Researcher while
solving a kernel crash from the dataset1. We explain the example here and provide the complete
trajectory for reference in Figures 4-10 of Appendix E. The truncated crash report that initiates the
investigation of the example is shown in Figure 4.

The trajectory begins in Figure 5. Code Researcher identifies a warning in smsusb_term_device
related to __flush_work and forms an initial hypothesis about workqueue synchronization issues.
The agent then explores the codebase by examining the __flush_work implementation and
analyzing the smsusb_stop_streaming function’s synchronous URB cancellation pattern in
Figure 6, while also searching for relevant commit history to identify potential race conditions.

In Figures 7–9, Code Researcher traces prior fixes for related bugs in smsusb_term_device,
inspects synchronization behavior in cancel_work_sync and __cancel_work_timer. It un-
covers a critical misstep where work item initialization via INIT_WORK in smsusb_onresponse
can be bypassed, resulting in NULL work->func pointers that explain the observed warning.

Finally, in Figure 10, Code Researcher confirms the root cause: though smsusb_onresponse
correctly initializes work structures with INIT_WORK, it is not sufficient. If
smsusb_stop_streaming is called before any URB completion occurs, the system at-
tempts to cancel uninitialized work items, triggering warnings in __flush_work when it
encounters NULL function pointers.

D FFMPEG: EXPERIMENTAL DETAILS

Background FFmpeg is a leading open-source multimedia framework that supports decoding,
encoding, transcoding, muxing, demuxing, streaming, filtering, and playback of virtually all existing
media formats. Since it needs to handle a wide range of formats, from very old to the cutting edge,
low-level data manipulation is common in the codebase. As of May 2025, FFmpeg has ∼ 4.8K files
and ∼ 1.46M lines of code, primarily in C / C++, with some handwritten assembly for performance.

Dataset We use vulnerabilities discovered by the OSS-Fuzz service (Google) that runs fuzzers on
various open source projects and creates alerts for the bugs detected. We focus on security issues,
which are assigned the top priority by OSS-Fuzz. These include heap-based buffer overflows, stack-
based buffer overflows, use-after-frees, etc. We build a small dataset of 10 FFmpeg crashes, taking
the 11 most recent crashes (as of May 14, 2025) that have been verified as fixed and skipping 1 that
we could not validate. 2 We use the instructions recommended by OSS-Fuzz for building FFmpeg
and testing whether a crash reproduces. 3 The dataset contains the commit at which OSS-Fuzz
found the crash, a reproducer file that triggered the crash, and the crash report that we generated by
reproducing the crash (the crash reports found by OSS-Fuzz are not publicly visible). We make the
dataset available in the data/ffmpeg folder in our supplementary material.

Reproduction To run Code Researcher on these crashes, we keep the same core prompts (which can
be found in the prompts folder in the supplementary material), adding a one-paragraph preamble
about FFmpeg and replacing the few-shot examples for the Linux kernel with corresponding ones
for FFmpeg. The preamble and few-shot examples are in the file config/ffmpeg.yaml in our

1Bug in syzkaller: https://syzkaller.appspot.com/bug?id=
35dd38010e383ee37d27b39f6b50eb25b4c92dd2

2https://issues.oss-fuzz.com/issues?q=project:ffmpeg%20type:
vulnerability%20status:verified&s=modified_time:desc&p=1

3https://google.github.io/oss-fuzz/advanced-topics/reproducing/

15

https://syzkaller.appspot.com/bug?id=35dd38010e383ee37d27b39f6b50eb25b4c92dd2
https://syzkaller.appspot.com/bug?id=35dd38010e383ee37d27b39f6b50eb25b4c92dd2
https://issues.oss-fuzz.com/issues?q=project:ffmpeg%20type:vulnerability%20status:verified&s=modified_time:desc&p=1
https://issues.oss-fuzz.com/issues?q=project:ffmpeg%20type:vulnerability%20status:verified&s=modified_time:desc&p=1
https://google.github.io/oss-fuzz/advanced-topics/reproducing/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

supplementary material. The README also contains instructions for running Code Researcher on an
FFmpeg crash.

E EXAMPLE AGENT TRAJECTORY: FIGURES

smsusb:smsusb_probe: board id=7, interface number 0

------------[cut here]------------

WARNING:

CPU: 0 PID: 9 at kernel/workqueue.c:3182 __flush_work+0x95c/0xbf0 kernel/workqueue.c:3182

Call Trace:

 <TASK>

 __cancel_work_timer+0x3e6/0x580 kernel/workqueue.c:3276

 smsusb_stop_streaming drivers/media/usb/siano/smsusb.c:182 [inline]

 smsusb_term_device+0xef/0x300 drivers/media/usb/siano/smsusb.c:344

 smsusb_init_device+0xb60/0xd10 drivers/media/usb/siano/smsusb.c:419

 smsusb_probe+0x5b1/0x10c0 drivers/media/usb/siano/smsusb.c:567

 usb_probe_interface+0x307/0x930 drivers/usb/core/driver.c:396

…
worker_thread+0x687/0x1110 kernel/workqueue.c:2552

kthread+0x33a/0x430 kernel/kthread.c:379

ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308

 </TASK>

Figure 4: Crash report of the kernel crash example discussed in Appendix C.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The results of actions are added to memory

You are analyzing a kernel crash report. Your task is to explore the repository using available tools

and gather enough context to completely understand all possible root causes of the crash and how to

fix it.

STEP 0 of 9

BUG TITLE : WARNING in smsusb_term_device

CRASH REPORT:

{crash_report}

AVAILABLE ACTIONS (write one action per line with no formatting inside <actions> tags):

<actions>

close_definition(filePath, symbolName, startLine)
Close a definition that is not relevant to the bug (e.g. debug functions like dump_stack)

search_definition(filePath, symbolName)
Open the definition of a specified symbol, which can be a function name, a struct name, a constant,

a union or a macro

search_definition(symbolName)
Open the definition of a symbol when you don't know its file path. Use this to search for the

definition of symbols whose file you don't know.

search_code("regex pattern")
Search through all tracked files in the repository using git grep with regex pattern. Shows 2 context

lines before and after each match, limited to 5 matches total.

done End exploration because you have gathered enough context to

understand the bug and propose a fix. You must only take this action if you are satisfied with the

justification you provided in the thoughts section. If unsure, continue exploring. You should also

write your justification after this action inside <justification></justification> tags. (followed by

justification in <justification> tags)

</actions>

You should examine the evidence and write your thoughts about the current state… Focus on

gathering all the relevant context and understanding the bug step-by-step, through careful reasoning

steps.

The crash report indicates a warning in the `smsusb_term_device` function. The warning is triggered

during a call to `__flush_work` in `kernel/workqueue.c`.

…

The issue appears to be related to the handling of work items, possibly involving improper

synchronization or misuse of workqueues. To understand the root cause, I need to examine the

`smsusb_term_device` function and the `smsusb_stop_streaming` function to see how work

items are managed and flushed. Additionally, I should explore how `__flush_work` is used and

what could lead to the warning in this context.

<actions>
search_definition("drivers/media/usb/siano/smsusb.c", "smsusb_term_device")
search_definition("drivers/media/usb/siano/smsusb.c", "smsusb_stop_streaming")
search_code("__flush_work")
</actions>

Figure 5: Code Researcher trajectory for the crash described in Figure 4 and discussed in Appendix C:
Step 0 of 9

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The contents from the memory are added to prompt

From the definitions, `smsusb_stop_streaming` iterates over an array of URBs, cancelling each

work item synchronously. This synchronous cancellation could be problematic if there's a race

condition or if the workqueue is not in a proper state when the function is called.

To understand the root cause, I need to investigate how `cancel_work_sync` is used in

conjunction with work items and what specific conditions in `__flush_work` might lead to the

warning…. Additionally, I should search for past commits related to `smsusb_term_device`,

`smsusb_stop_streaming`, and workqueue handling to see if there have been any recent changes

or known issues. …

<actions>
search_definition("cancel_work_sync")
search_commits("smsusb_term_device")
search_commits("smsusb_stop_streaming")
search_commits("cancel_work_sync")
</actions>

STEP 1 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_code("__flush_work")
Results:

include/linux/workqueue.h=447=extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
include/linux/workqueue.h-448-
include/linux/workqueue.h:449:extern void __flush_workqueue(struct workqueue_struct *wq);
include/linux/workqueue.h-450-extern void drain_workqueue(struct workqueue_struct *wq);
include/linux/workqueue.h-451-

===

include/linux/workqueue.h=575=extern void __warn_flushing_systemwide_wq(void)
--
include/linux/workqueue.h-615- if (0) \
include/linux/workqueue.h-616- __warn_flushing_systemwide_wq(); \
include/linux/workqueue.h:617: __flush_workqueue(system_wq); \
include/linux/workqueue.h-618-})
include/linux/workqueue.h-619-

(… more results of this query are not shown in this figure due to space constraints)

CURRENTLY OPEN DEFINITIONS:

File: drivers/media/usb/siano/smsusb.c
Symbol: smsusb_term_device Lines 337 to 355
 ```c
337| static void smsusb_term_device(…)
338|{
… ( we show the complete definition in the actual prompt )

355| }
```

File: drivers/media/usb/siano/smsusb.c
Symbol: smsusb_stop_streaming
Lines 176 to 189
```c
176| static void smsusb_stop_streaming(…)
177|{
… ( we show the complete definition in the actual prompt )

189| }
```

The results of actions are added to memory

Figure 6: Code Researcher trajectory for the crash described in Figure 4 and discussed in Appendix C:
Step 1 of 9

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The results of actions are added to memory

<actions>
search_definition("__cancel_work_timer")
search_definition("kernel/workqueue.c", "__flush_work")
</actions>

STEP 2 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_commits("smsusb_term_device")
Results:
Commit message:

commit 31e0456de5be379b10fea0fa94a681057114a96e

Author: Alan Stern <stern@rowland.harvard.edu>

Date: Tue May 7 12:39:47 2019 -0400

media: usb: siano: Fix general protection fault in smsusb…

Patch:

diff --git a/drivers/media/usb/siano/smsusb.c b/drivers/media/usb/siano/smsusb.c
@@ -400,6 +400,7 @@ static int smsusb_init_device(struct usb_interface *intf, int board_id)
(… we provide the complete commit in the prompt truncated at 100 Lines)

===

Commit message:

786baecfe78f8e25547c628b48a60fc8e5636056

Author: Mauro Carvalho Chehab <mchehab@kernel.org>

Date: Thu Jun 14 16:35:56 2012 -0300

[media] dvb-usb: move it to drivers/media/usb/dvb-usb…

Patch:

diff --git a/drivers/media/usb/siano/smsusb.c b/drivers/media/usb/siano/smsusb.c
(… we provide the complete commit in the prompt truncated to 100 Lines)

(… more results of this and other search_commit query are not shown in this figure due to space constraints)

CURRENTLY OPEN DEFINITIONS:

(… the previously opened definitions of `smsusb_term_device` and `smsusb_stop_streaming` are still shown
here in the prompt, but not shown in this figure to save space)

File: kernel/workqueue.c Symbol: cancel_work_sync Lines 3310 to 3313
```c
3310| bool cancel_work_sync(struct work_struct *work)
3311| {
3312| return __cancel_work_timer(work, false);
3313| }
```

The commit history reveals some interesting points:

1. There was a fix for a general protection fault in the `smsusb` driver related to endpoint initialization, which

suggests that endpoint management might have been problematic in the past.

2. A past commit addresses use-after-free bugs caused by `do_submit_urb()`, which is relevant since improper

URB management could lead to synchronization issues.

3. Changes to `cancel_work_sync` function suggest potential race conditions or synchronization problems

involving work items.

The definition of `cancel_work_sync` is straightforward, but I need to examine `__cancel_work_timer`

The contents from the memory are added to prompt

Figure 7: Code Researcher trajectory for the crash described in Figure 4 and discussed in Appendix C:
Step 2 of 9

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

STEP 3 of 9

CURRENTLY OPEN DEFINITIONS:

(… The previously opened definitions of `smsusb_term_device`, `smsusb_stop_streaming` and
`cancel_work_sync` are still shown here in the prompt)

File: kernel/workqueue.c Symbol: __cancel_work_timer Lines 3228 to 3290

```c
3228| static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3229| {
… ( we show the complete definition in the actual prompt )

3290| }
```

File: kernel/workqueue.c Symbol: __flush_work Lines 3175 to 3195
```c
3175| static bool __flush_work(struct work_struct *work, bool from_cancel)
3176| {
… ( we show the complete definition in the actual prompt )

3195| }
```

The fact that `__flush_work` is called within `__cancel_work_timer` when the workqueue is online indicates

that the warning could be triggered if `work->func` is NULL at this point.

The root cause of the warning likely involves improper initialization or handling of work items, specifically ensuring

that the function pointer is set before the work item is queued or flushed. This could be due to a bug in how work

items are initialized or how they are managed in the `smsusb_stop_streaming` function.

To confirm this hypothesis, I need to verify how the work items (`dev->surbs[i].wq`) are initialized and assigned

their function pointers…

<actions>
search_code("INIT_WORK")
search_commits("work->func")
search_commits("smsusb_device_t")
</actions>

The results of actions are added to memory

The contents from the memory are added to prompt

Figure 8: Code Researcher trajectory for the crash described in Figure 4 and discussed in Appendix C:
Step 3 of 9

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

STEP 4 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_code("INIT_WORK")
Results:

drivers/media/usb/siano/smsusb.c=86=static void smsusb_onresponse(struct urb *urb)
--
drivers/media/usb/siano/smsusb.c-144-
drivers/media/usb/siano/smsusb.c-145-exit_and_resubmit:
drivers/media/usb/siano/smsusb.c:146: INIT_WORK(&surb->wq, do_submit_urb);
drivers/media/usb/siano/smsusb.c-147- schedule_work(&surb->wq);
drivers/media/usb/siano/smsusb.c-148-}
===
kernel/workqueue.c=520=static inline void debug_work_deactivate(struct work_struct *work)
--
kernel/workqueue.c-523-}
kernel/workqueue.c-524-
kernel/workqueue.c:525:void __init_work(struct work_struct *work, int onstack)
kernel/workqueue.c-526-{
kernel/workqueue.c-527- if (onstack)

(… more results of this query are not shown in this figure due to space constraints)

Query: search_commits("work->func")
Results:

Commit message:

commit c76feb0d5dfdb90b70fa820bb3181142bb01e980

Author: Paul E. McKenney paulmck@kernel.org

 workqueue: Make show_pwq() use run-length encoding …

(… we provide the complete commit in the prompt
truncated to 100 Lines)

(… we show the top 5 commits matching the query, not
shown here due to space constraints)

Query: search_commits("smsusb_device_t")
Results:

Commit message:

commit dd47fbd40e6ea6884e295e13a2e50b0894258fdf

Author: Mauro Carvalho Chehab mchehab@kernel.org

 [media] smsusb: don't sleep while atomic…

(… we provide the complete commit in the prompt
truncated to 100 Lines)

(… we show the top 5 commits matching the query, not
shown here due to space constraints)

The results of actions are added to memory

The contents from the memory are added to prompt

The search results show that the work items (`dev->surbs[i].wq`) are initialized using `INIT_WORK(&surb-
>wq, do_submit_urb)` in the `smsusb_onresponse` function. The function pointer `do_submit_urb` is

assigned during initialization. This means that if the work items are not properly initialized or if the initialization

logic is bypassed, the function pointer `work->func` could be NULL, leading to the warning observed in

`__flush_work`….

I should verify the sequence of operations leading to the initialization of work items and their cancellation. …

<actions>
search_code("smsusb_onresponse")
search_commits("smsusb_onresponse")
search_commits("smsusb_stop_streaming")
search_commits("race condition")
</actions>

(…the previously opened definitions are still shown here in the prompt, not included in this figure to save space)

Figure 9: Code Researcher trajectory for the crash described in Figure 4 and discussed in Appendix C:
Step 4 of 9

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

STEP 5 of 9

PREVIOUS SEARCHES AND RESULTS:

Query: search_code("smsusb_onresponse")
Results:

drivers/media/usb/siano/smsusb.c=63=static int smsusb_submit_urb(struct smsusb_device_t *dev,
--
drivers/media/usb/siano/smsusb.c-66-/*
drivers/media/usb/siano/smsusb.c-67- * Completing URB's callback handler - bottom half (process context)
drivers/media/usb/siano/smsusb.c:68: * submits the URB prepared on smsusb_onresponse()
drivers/media/usb/siano/smsusb.c-69- */
drivers/media/usb/siano/smsusb.c-70-static void do_submit_urb(struct work_struct *work)
===
drivers/media/usb/siano/smsusb.c-84- * @param urb pointer to a completing urb object
drivers/media/usb/siano/smsusb.c-85- */
drivers/media/usb/siano/smsusb.c:86:static void smsusb_onresponse(struct urb *urb)
drivers/media/usb/siano/smsusb.c-87-{
drivers/media/usb/siano/smsusb.c-88- struct smsusb_urb_t *surb = (struct smsusb_urb_t *) urb->context;

(… more results of this query are not shown in this figure due to space constraints)

Query: search_commits("smsusb_onresponse")
Results:

Commit message:

dd47fbd40e6ea6884e295e13a2e50b0894258fdf

Author: Mauro Carvalho Chehab <mchehab@kernel.org>

[media] smsusb: don't sleep while atomic …

(… we provide the complete commit in the prompt
truncated at 100 Lines)

(… we show the top 5 commits matching the query, not
shown here due to space constraints)

Query: search_commits("smsusb_stop_streaming")
Results:

No matches found

Query: search_commits(“race condition")
Results:

Commit message:

1d40329736907587ac5995d2d4b3263759ff84e3

Author: Qu Wenruo wqu@suse.com

btrfs: scrub: remove unused path inside scrub_stripe()…

(… we provide the complete commit in the prompt
truncated at 100 Lines)

(… we show the top 5 commits matching the query, not
shown here due to space constraints)

The contents from the memory are added to prompt

The `smsusb_onresponse` function is called as a callback for URB completion, and it initializes the work

structure with `INIT_WORK(&surb->wq, do_submit_urb)`. … However, if `smsusb_stop_streaming` is

called before any URB completes, the work items might be canceled without being initialized, leading to the

warning observed in `__flush_work`.

To fix the bug, I need to ensure that work items are only canceled after they have been initialized. This might

involve adding checks to ensure URB completion has occurred or modifying the logic to handle uninitialized work

items gracefully during cancellation.

I believe I have gathered enough context to understand the bug and propose a fix. The sequence of initialization and

cancellation of work items is clear, and the potential for uninitialized work items leading to warnings is evident.

<actions>
done
</actions>

(…The previously opened definitions are still shown here
in the prompt, not included in this figure to save space)

The results of actions are added to memory

Figure 10: Code Researcher trajectory for the crash described in Figure 4 and discussed in Ap-
pendix C: Step 5 of 9 ANALYSIS phase

F ADDITIONAL RELATED WORK: LONG CONTEXT REASONING

Support for increasing context length sizes in LLMs has been an active area of research (Team
et al., 2024; Guo et al., 2023), opening up the possibility of feeding the entire repository into an
LLM’s context and generating a patch. But there are a few complications. First, note that the Linux
kernel has over 75K files and 28 Million lines of code. In contrast, state of the art models today

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(e.g., Gemini 2.5 Pro) support at most 2M tokens in the context window (Google, 2025b;c), roughly
corresponding to around 100K lines of code (Google, 2025b). Second, long-context models do not
robustly make use of the information in context. They often get “lost in the middle” (Liu et al., 2024),
performing highest when relevant information occurs at the beginning or end of the input context,
and significantly worse when they must access relevant information in the middle of long contexts.
Li et al. (2024) found that long-context LLMs struggle with processing long, context-rich sequences
and reasoning over multiple pieces of information (which is important for any automated software
development task).

G EXPERIMENTAL SETUP: ADDITIONAL DETAILS

Dataset details We use the kBenchSyz dataset containing 279 instances from Mathai et al.
(2024). The dataset is publicly available at https://github.com/Alex-Mathai-98/
kGym-Kernel-Playground and is under an MIT License. We validated the 279 instances
(i.e., the reproducers and the ground-truth fixes), and ruled out 9 instances for which we could not
run the kernel at the parent commit, 27 for which the kernel at the parent commit did not crash,
and 43 where the kernel still crashed after applying the fix. So, for our experiments, we use the
remaining 200 instances that we successfully validated. For reproducibility, we use the crash reports
generated during our validation instead of the crash reports originally present in kBenchSyz. The
subset of 200 instances that we were able to reproduce (containing the bug ids and the crash reports
from our reproduction run) is available in the file data/kBenchSyz/200_subset.json in the
supplementary material.

Sampling details In the SYNTHESIS phase, we ask the agent to generate a hypothesis and patch
in the following format. It has to write the hypothesis inside <hypothesis> tags and the patch
inside <patch> tags. The content inside the <patch> tags is a list of <symbol> tags covering
all the symbols whose definitions the agent wants to change in its patch. With each tag, the agent has
to provide file, name and start line attributes and inside each tag, it has to rewrite the
complete definition of the symbol (after making the desired changes). We use successively higher
temperatures (0, 0.3, 0.6) until the agent gives a correctly formatted patch. For o1, since its API
does not support a temperature parameter, we sample the desired number of patches by setting the n
parameter (number of completions) in the OpenAI Chat Completions API.

FFmpeg details Please refer to Appendix D for complete details about our experiments on the
FFmpeg dataset.

Crash reproduction setup Our setup for building the Linux kernel and running it on reproducer
files is built on top of the kGym platform (MIT Licensed, publicly available at https://github.
com/Alex-Mathai-98/kGym-Kernel-Gym) (Mathai et al., 2024) and has a couple of major
modifications. First, while kGym runs only on the Google Cloud platform, our setup can run locally
on any machine and uses cloud storage for preserving compiled kernels, crash reports, etc. Second,
we use ccache (ccache) for caching build files generated during kernel compilation and our own
logic for caching git checkouts.

kGym has a distributed setup featuring five workers - kBuilder, kReproducer, kScheduler, kDash-
board and kmq. (1) kBuilder takes as input a source commit, a kernel config, and (optionally) a
patch. It checks out the kernel at the source commit, applies the patch, compiles the kernel and
uploads the build artifacts (kernel image, vmlinux binary, etc.) to cloud storage. (2) kReproducer
takes as input the build artifacts and a reproducer file and runs the kernel on the reproducer while
monitoring for crashes. To handle non-deterministic bugs, we launch 4 VMs in parallel, each of
which runs the reproducer. Each VM further runs multiple processes where system calls can execute
in parallel so concurrency bugs can also be reproduced. If any of these VMs crash within 10 minutes
or if kReproducer loses connection to the VMs, we say that the kernel crashes on the reproducer. It
then uploads the crash reports to cloud storage. (3) kScheduler serves an API where we can send
reproduction jobs with the source commit, config, reproducer and (optionally) patch. It communicates
with kBuilder and kReproducer through the message queue kmq and orchestrates the overall flow of
build with kBuilder followed by reproduction with kReproducer . (4) Finally, kDashboard displays
each job’s logs and results in a web UI.

23

https://github.com/Alex-Mathai-98/kGym-Kernel-Playground
https://github.com/Alex-Mathai-98/kGym-Kernel-Playground
https://github.com/Alex-Mathai-98/kGym-Kernel-Gym
https://github.com/Alex-Mathai-98/kGym-Kernel-Gym

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

KUnit testing details For each of the 116 crashes resolved by Code Researcher (GPT-4o+o1, P@5,
15 max calls), we selected one crash-resolving patch and ran KUnit (Linux, 2025) tests on it. For 13
crashes, KUnit was not present in the kernel source code version on which the crash was reported.
For another 15 crashes, KUnit was present but did not support the CLI arguments for running tests in
QEMU (required as our host kernel is different from the test kernel). From the remaining 88 crashes,
all the KUnit tests had a status of either PASS or SKIP (some hardware-specific tests are skipped
depending on the machine requirements). On average, only ∼ 13 tests were skipped for a patch while
∼ 210 tests were passed. Due to a bug in the KUnit test-suite at the parent of the fix commit for 4
crashes, the example_skip_test and example_mark_skipped_test tests, which should
have been skipped, were run. Similarly, for 2 crashes, due to a bug in KUnit4, hw_breakpoint
tests, that should have been skipped, were run. We ignore the results of these tests as they are not
relevant to the correctness of the patches being tested.

Compute resources We setup 10 replicas of the distributed setup (containing 5 workers) described
above. Each machine was equipped with an AMD EPYC 7V13 Processor running at 2.50 GHz, had
24 cores and 220 GB RAM. For one evaluation run on our dataset of 200 instances for any tool in the
P@5 setting (i.e., for evaluating 1000 patches on whether they prevent a crash or not), we divided the
instances among the 10 replicas, and the overall time ranged from 10 to 15 hours.

Code Researcher Prompts The system and user prompts for the ANALYSIS and SYNTHESIS
phases (for both filtering and patch generation) are provided in the prompts folder of our sup-
plementary material. They use a prompt_preamble and prompt_analysis_examples
that vary based on the codebase (e.g., Linux kernel or FFmpeg). Those can be found in the files
config/kBenchSyz.yaml and config/ffmpeg.yaml respectively in our supplementary
material.

SWE-agent details We use SWE-agent (Yang et al., 2024) as one of our baselines. The codebase
is publicly available at https://github.com/SWE-agent/SWE-agent/tree/main and
is under the MIT License. We use version 1.0.1 of SWE-agent, and add a Linux kernel-specific
example trajectory and background about the Linux kernel to its prompts. We provide the complete
configuration file (including all prompts and the example trajectory) in the SWE-agent folder of
our supplementary material.

Agentless details We adopt Agentless (Xia et al., 2024) as one of our baselines. The codebase
is publicly available at https://github.com/OpenAutoCoder/Agentless and is under
MIT License. The default Agentless pipeline consists of the following steps: (i) retrieval of two sets
of relevant files (via an LLM and via embeddings), (ii) identification of candidate edit locations, (iii)
generation of multiple patch candidates, and (iv) ranking of patches using test executions. In our
implementation, we fix the temperature at 0.1 for all stages of the pipeline and sample 5 candidate
patches in the third stage of patch generation. For scalability reasons, we omit the embedding-based
retrieval step and ranking is immaterial in our setting since we use Pass@5. Although the original
implementation could not be directly reused, since it is designed specifically for Python codebases,
we reimplemented the stages of the pipeline for our usecase, incorporating kernel-specific prompts at
each step.

Rationale for omitting embedding-based retrieval To estimate the computational overhead, we
randomly sampled 1, 000 .c and .h files from the Linux kernel and computed the average number
of chunks per file. Extrapolating to the entire codebase, we estimate approximately 781, 889 chunks.
With the text-embedding-3-small model (used by Agentless), each embedding call requires
on average ∼ 0.5 seconds. This implies a total embedding time of roughly 108 hours for a single
kernel snapshot, making this step infeasible in our setting.

All prompts used for the Agentless stages in our experiments are included in the Agentless folder
of the supplementary material.

4See https://groups.google.com/g/kunit-dev/c/ahWFBJsIA2U and https://www.
spinics.net/lists/kernel/msg5128827.html.

24

https://github.com/SWE-agent/SWE-agent/tree/main
https://github.com/OpenAutoCoder/Agentless
https://groups.google.com/g/kunit-dev/c/ahWFBJsIA2U
https://www.spinics.net/lists/kernel/msg5128827.html
https://www.spinics.net/lists/kernel/msg5128827.html

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H EXAMPLE SHOWING THE IMPORTANCE OF CAUSAL ANALYSIS OVER
HISTORICAL COMMITS

Figures 11–13: Illustration of Code Researcher analyzing and repairing a real-world memory leak
bug5 from the kBenchSyz dataset (the complete trajectory of Code Researcher is truncated and only
the relevant parts are shown due to space constraints). Figure 11 shows the developer’s original com-
mit, including the fix and a "Fixes:" tag that references the buggy commit where the issue originated:
commit 6679f4c5e5a6 —highlighted in yellow. This section is shown in the orange box . The
developer’s fix is available at the following link6. Figure 12 displays a subset of actions taken by Code
Researcher in the ANALYSIS phase, specifically several search_commits steps (green box),
which reveal how the agent retrieves both the buggy commit and other related commits that involve
memory management. These retrieved historical commits provide guidance in the SYNTHESIS phase.
Figure 13 presents the patch and analysis synthesized by Code Researcher (blue box) during the
SYNTHESIS phase, which correctly identifies the missing deallocation and inserts the appropriate
kfree(bt_const_extended) call. Notably, Code Researcher successfully navigates to the
same buggy commit identified by the developer’s "Fixes:" tag, demonstrating its ability to infer
causality and leverage prior commits to localize and fix bugs.

<patch>
static struct gs_can *gs_make_candev(unsigned int channel,
 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended->dbrp_inc);
 dev->can.data_bittiming_const = &dev->data_bt_const;
+
+ kfree(bt_const_extended);
 }

 SET_NETDEV_DEV(netdev, &intf->dev);
</patch>

commit 50d34a0
author Marc Kleine-Budde
Fixes 6679f4c5e5a6 ("can: gs_usb: add extended bt_const feature")

…The information must be read with an USB control message. The memory for this message is allocated but

not free()ed (in the non error case). This patch adds the missing free.

Developer commit

message and patch

Figure 11: Developer commit message and patch.

5Bug in Syzbot dashboard: https://syzkaller.appspot.com/bug?id=
92a742e993c8b9e769f8502a0497c88c0afa78af.

6Developer’s fix commit: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=50d34a0d151dc7abbdbec781bd7f09f2b3cbf01a.

25

https://syzkaller.appspot.com/bug?id=92a742e993c8b9e769f8502a0497c88c0afa78af
https://syzkaller.appspot.com/bug?id=92a742e993c8b9e769f8502a0497c88c0afa78af
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=50d34a0d151dc7abbdbec781bd7f09f2b3cbf01a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=50d34a0d151dc7abbdbec781bd7f09f2b3cbf01a

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Actions taken by Code Researcher

search_commits("bt_const_extended|memory leak")

commit 6679f4c5e5a6
Author: Peter Fink

can: gs_usb: add extended bt_const feature

… phase to reach maximum performance at higher speeds. …

<patch>
static struct gs_can *gs_make_candev(unsigned int channel,
 struct net_device *netdev;
 int rc;
 struct gs_device_bt_const *bt_const;
+ struct gs_device_bt_const_extended *bt_const_extended; u32 feature;
 bt_const = kmalloc(sizeof(*bt_const), GFP_KERNEL);
</patch>

 search_commits(“kfree|memory management”)

commit 5cda3ee5
Author: Marc Kleine-Budde
Date: Sun Jun 4 14:03:42 2017 +0200

can: gs_usb: fix memory leak in gs_cmd_reset()

This patch adds the missing kfree() in gs_cmd_reset() to free the memory that is not used anymore after

usb_control_msg().

<patch>
static int gs_cmd_reset(struct gs_usb *gsusb, struct gs_can *gsdev)
 sizeof(*dm),
 1000);
+ kfree(dm);
+
 return rc;
}
</patch>

Figure 12: Code Researcher actions (search_commits in green box).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The crash report indicates a memory leak in the gs_usb_probe function… The search results and past commits

provide examples of similar memory management issues …The patch should add a kfree call

for bt_const_extended after its data has been used to populate the data_bt_const fields in

the gs_make_candev function.

 <patch>
static struct gs_can *gs_make_candev(unsigned int channel,
 dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended->dbrp_inc);

 dev->can.data_bittiming_const = &dev->data_bt_const;
+
+ kfree(bt_const_extended); // Free the allocated memory for bt_const_extended
 }

 SET_NETDEV_DEV(netdev, &intf->dev);
</patch>

Analysis and patch

by Code Researcher

Figure 13: Code Researcher patch and analysis.

I LLM-AS-JUDGE EVALUATION OF OVERLAP BETWEEN DEVELOPER COMMIT
AND TOOL-GATHERED CONTEXT

We use LLM-as-judge to analyze the context gathered by Code Researcher and SWE-agent to
determine the overlap of context in their trajectory with the context mentioned by the developer in the
ground-truth fix commit message. We first identify code symbols mentioned in the commit message
for a given bug b, which we denote as s∗b . Then for each candidate patch i, we find the overlap of
s∗b with the symbols whose definitions are seen in its trajectory. We denote this overlap by sb,i. We
define symbol ratio SR for each candidate patch as

SRb,i =
|sb,i|
|s∗b |

.

We consider patch i to have overlapping symbol context with the developer commit if SRb,i ≥ 0.33.
We label all candidate patches with this criterion. As mentioned in Section 5.3 (2), we find that
SWE-agent has 54.18% overlapping symbol context patches, while Code Researcher has 63.7%
overlapping symbol context patches. This indicates that Code Researcher is more effective at
identifying relevant context.

Additionally, we also measure the impact of finding relevant context on the crash resolution rate
(CRR) as:

P (patch resolves crash | overlapping symbol context) = 0.309,

P (patch resolves crash | non-overlapping symbol context) = 0.116.

This suggests that patches with overlapping symbol context have a significantly higher probability of
resolving crashes than patches without.

In addition to symbols, we also identify commit IDs mentioned in the commit message for a given
bug b which we denote as c∗b . Then for each candidate patch i, we find the overlap of c∗b with the
commits retrieved in its trajectory, denoted as cb,i. We note that c∗b is typically a small number, with a
maximum value of 3 in our dataset of 200 bugs. Therefore, instead of a ratio, we label patch i to have
overlapping commit context when all the commits in c∗b are present in cb,i (i.e., |cb,i|

|c∗b |
= 1). We find

that 30.8% of patches produced by Code Researcher have overlapping commit context (recall that
SWE-agent does not search over commit IDs). Further, we find that overlapping commit context also
has a positive impact on CRR:

P (patch resolves crash | overlapping commit context) = 0.315,

P (patch resolves crash | non-overlapping commit context) = 0.205.

Overall, these results bring out the utility of effective context retrieval.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

J QUALITATIVE EVALUATION AND EXAMPLES

Example A: jfs_dmap.c boundary check. Listing 17 compares the developer’s ground-truth
patch with the patch generated by Code Researcher. Both fixes add a lower-bound check on
bmp->db_agl2size alongside the existing upper-bound check; the only difference is the ordering
of the two disjuncts in the if condition, an immaterial variation in this case. This illustrates the class
of Accurate patches.

Listing 1: Semantically equivalent patch produced by Code Researcher for the jfs_dmap.c crash.

1 --- a/fs/jfs/jfs_dmap.c /* developer */
2 +++ b/fs/jfs/jfs_dmap.c
3 @@ -193,7 +193,8 @@ int dbMount(struct inode *ipbmap)
4 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
5 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
6 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
7 - if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) {
8 + if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
9 + bmp->db_agl2size < 0) {

10 err = -EINVAL;
11 goto err_release_metapage;
12 }
13

14 --- a/fs/jfs/jfs_dmap.c /* generated */
15 +++ b/fs/jfs/jfs_dmap.c
16 @@ -193,7 +193,7 @@ int dbMount(struct inode *ipbmap)
17 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
18 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
19 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
20 - if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG) {
21 + if (bmp->db_agl2size < 0 || bmp->db_agl2size > L2MAXL2SIZE

- L2MAXAG) {↪→

22 err = -EINVAL;
23 goto err_release_metapage;
24 }

Example B: hci_h5.c null-check addition. In Listing 28, both the developer and Code Re-
searcher address an unsafe access to hu->serdev->dev, but the generated patch goes beyond the
developer’s fix. While the developer simply guards the power management calls with a null check,
Code Researcher adds an else branch that logs an error and returns -ENODEV. This reflects a
conservative design that prevents execution in the event of a null pointer, even though the surrounding
kernel code may already guarantee that hu->serdev is non-null. Such overspecialization can be
seen as a benign deviation: the patch is functionally correct and improves robustness, but at the risk
of silently diverging from upstream assumptions. This illustrates the class of overspecialized patches.

Listing 2: Overspecialized patch generated for hci_h5.c.

1 --- a/drivers/bluetooth/hci_h5.c /* developer */
2 +++ b/drivers/bluetooth/hci_h5.c
3 @@ -587,9 +587,11 @@ static int h5_recv(...)
4 count -= processed;
5 }
6

7 - pm_runtime_get(&hu->serdev->dev);
8 - pm_runtime_mark_last_busy(&hu->serdev->dev);
9 - pm_runtime_put_autosuspend(&hu->serdev->dev);

7Example A in Syzkaller: https://syzkaller.appspot.com/bug?id=
5eb8a5d29d77f8a364cf3270bf9625eb4d4ffc52

8Example B in Syzkaller: https://syzkaller.appspot.com/bug?id=
1bc76a5779300075e3466a0e2abcd753df212779

28

https://syzkaller.appspot.com/bug?id=5eb8a5d29d77f8a364cf3270bf9625eb4d4ffc52
https://syzkaller.appspot.com/bug?id=5eb8a5d29d77f8a364cf3270bf9625eb4d4ffc52
https://syzkaller.appspot.com/bug?id=1bc76a5779300075e3466a0e2abcd753df212779
https://syzkaller.appspot.com/bug?id=1bc76a5779300075e3466a0e2abcd753df212779

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

10 + if (hu->serdev) {
11 + pm_runtime_get(&hu->serdev->dev);
12 + pm_runtime_mark_last_busy(&hu->serdev->dev);
13 + pm_runtime_put_autosuspend(&hu->serdev->dev);
14 + }
15

16 return 0;
17 }
18

19

20 --- a/drivers/bluetooth/hci_h5.c /* generated */
21 +++ b/drivers/bluetooth/hci_h5.c
22 @@ -587,9 +587,14 @@ static int h5_recv(...)
23 count -= processed;
24 }
25

26 - pm_runtime_get(&hu->serdev->dev);
27 - pm_runtime_mark_last_busy(&hu->serdev->dev);
28 - pm_runtime_put_autosuspend(&hu->serdev->dev);
29 + if (hu->serdev) {
30 + pm_runtime_get(&hu->serdev->dev);
31 + pm_runtime_mark_last_busy(&hu->serdev->dev);
32 + pm_runtime_put_autosuspend(&hu->serdev->dev);
33 + } else {
34 + bt_dev_err(hu->hdev, "serdev is not initialized");
35 + return -ENODEV;
36 + }
37

38 return 0;
39 }

Example C: ns.cRCU read lock insertion. In Listing 39 both the developer and Code Researcher
address the unsafe traversal of a radix tree without proper RCU synchronization. The developer
applies a comprehensive fix, wrapping all relevant radix_tree_for_each_slot iterations with
rcu_read_lock() and rcu_read_unlock() across multiple functions. In contrast, Code
Researcher focuses only on the ctrl_cmd_new_lookup() function, inserting the necessary
locking primitives in that scope alone. While this partial patch is not directly mergeable due to
its incompleteness, it demonstrates an accurate understanding of the underlying concurrency issue
and correctly applies the mitigation in the context it modifies. As such, it exemplifies the class of
incomplete patches, offering concrete insight into the nature and location of the bug, and accelerating
the path toward a complete and upstreamable fix.

Listing 3: Developer and plausible patches for ns.c.

1 --- a/net/qrtr/ns.c /* developer */
2 +++ b/net/qrtr/ns.c
3 @@ -193,12 +193,13 @@ static int announce_servers(struct

sockaddr_qrtr *sq)↪→

4 struct qrtr_server *srv;
5 struct qrtr_node *node;
6 void __rcu **slot;
7 - int ret;
8 + int ret = 0;
9

10 node = node_get(qrtr_ns.local_node);
11 if (!node)
12 return 0;
13

9Example C in Syzkaller: https://syzkaller.appspot.com/bug?id=
07c9d71dc1a215b19c6a245c68f502bc57dbdb83

29

https://syzkaller.appspot.com/bug?id=07c9d71dc1a215b19c6a245c68f502bc57dbdb83
https://syzkaller.appspot.com/bug?id=07c9d71dc1a215b19c6a245c68f502bc57dbdb83

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

14 + rcu_read_lock();
15 /* Announce the list of servers registered in this

node */↪→

16 radix_tree_for_each_slot(slot, &node->servers, &iter,
0) {↪→

17 srv = radix_tree_deref_slot(slot);
18 @@ -206,11 +207,14 @@ static int announce_servers(struct

sockaddr_qrtr *sq)↪→

19 ret = service_announce_new(sq, srv);
20 if (ret < 0) {
21 pr_err("failed to announce new

service\n");↪→

22 - return ret;
23 + goto err_out;
24 }
25 }
26

27 - return 0;
28 +err_out:
29 + rcu_read_unlock();
30 +
31 + return ret;
32 }
33

34 static struct qrtr_server *server_add(unsigned int service,
35 @@ -335,7 +339,7 @@ static int ctrl_cmd_bye(struct

sockaddr_qrtr *from)↪→

36 struct qrtr_node *node;
37 void __rcu **slot;
38 struct kvec iv;
39 - int ret;
40 + int ret = 0;
41

42 iv.iov_base = &pkt;
43 iv.iov_len = sizeof(pkt);
44 @@ -344,11 +348,13 @@ static int ctrl_cmd_bye(struct

sockaddr_qrtr *from)↪→

45 if (!node)
46 return 0;
47

48 + rcu_read_lock();
49 /* Advertise removal of this client to all servers of

remote node */↪→

50 radix_tree_for_each_slot(slot, &node->servers, &iter,
0) {↪→

51 srv = radix_tree_deref_slot(slot);
52 server_del(node, srv->port);
53 }
54 + rcu_read_unlock();
55

56 /* Advertise the removal of this client to all local
servers */↪→

57 local_node = node_get(qrtr_ns.local_node);
58 @@ -359,6 +365,7 @@ static int ctrl_cmd_bye(struct

sockaddr_qrtr *from)↪→

59 pkt.cmd = cpu_to_le32(QRTR_TYPE_BYE);
60 pkt.client.node = cpu_to_le32(from->sq_node);
61

62 + rcu_read_lock();

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

63 radix_tree_for_each_slot(slot, &local_node->servers,
&iter, 0) {↪→

64 srv = radix_tree_deref_slot(slot);
65

66 @@ -372,11 +379,14 @@ static int ctrl_cmd_bye(struct
sockaddr_qrtr *from)↪→

67 ret = kernel_sendmsg(qrtr_ns.sock, &msg, &iv,
1, sizeof(pkt));↪→

68 if (ret < 0) {
69 pr_err("failed to send bye cmd\n");
70 - return ret;
71 + goto err_out;
72 }
73 }
74

75 - return 0;
76 +err_out:
77 + rcu_read_unlock();
78 +
79 + return ret;
80 }
81

82 static int ctrl_cmd_del_client(struct sockaddr_qrtr *from,
83 @@ -394,7 +404,7 @@ static int ctrl_cmd_del_client(struct

sockaddr_qrtr *from,↪→

84 struct list_head *li;
85 void __rcu **slot;
86 struct kvec iv;
87 - int ret;
88 + int ret = 0;
89

90 iv.iov_base = &pkt;
91 iv.iov_len = sizeof(pkt);
92 @@ -434,6 +444,7 @@ static int ctrl_cmd_del_client(struct

sockaddr_qrtr *from,↪→

93 pkt.client.node = cpu_to_le32(node_id);
94 pkt.client.port = cpu_to_le32(port);
95

96 + rcu_read_lock();
97 radix_tree_for_each_slot(slot, &local_node->servers,

&iter, 0) {↪→

98 srv = radix_tree_deref_slot(slot);
99

100 @@ -447,11 +458,14 @@ static int ctrl_cmd_del_client(struct
sockaddr_qrtr *from,↪→

101 ret = kernel_sendmsg(qrtr_ns.sock, &msg, &iv,
1, sizeof(pkt));↪→

102 if (ret < 0) {
103 pr_err("failed to send del client

cmd\n");↪→

104 - return ret;
105 + goto err_out;
106 }
107 }
108

109 - return 0;
110 +err_out:
111 + rcu_read_unlock();
112 +
113 + return ret;

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

114 }
115

116 static int ctrl_cmd_new_server(struct sockaddr_qrtr *from,
117 @@ -554,6 +568,7 @@ static int ctrl_cmd_new_lookup(struct

sockaddr_qrtr *from,↪→

118 filter.service = service;
119 filter.instance = instance;
120

121 + rcu_read_lock();
122 radix_tree_for_each_slot(node_slot, &nodes, &node_iter,

0) {↪→

123 node = radix_tree_deref_slot(node_slot);
124

125 @@ -568,6 +583,7 @@ static int ctrl_cmd_new_lookup(struct
sockaddr_qrtr *from,↪→

126 lookup_notify(from, srv, true);
127 }
128 }
129 + rcu_read_unlock();
130

131 /* Empty notification, to indicate end of listing */
132 lookup_notify(from, NULL, true);
133

134

135 --- a/net/qrtr/ns.c /* generated */
136 +++ b/net/qrtr/ns.c
137 @@ -554,6 +554,7 @@ static int ctrl_cmd_new_lookup(struct

sockaddr_qrtr *from,↪→

138 filter.service = service;
139 filter.instance = instance;
140

141 + rcu_read_lock(); // Add RCU read lock
142 radix_tree_for_each_slot(node_slot, &nodes, &node_iter,

0) {↪→

143 node = radix_tree_deref_slot(node_slot);
144

145 @@ -568,6 +569,7 @@ static int ctrl_cmd_new_lookup(struct
sockaddr_qrtr *from,↪→

146 lookup_notify(from, srv, true);
147 }
148 }
149 + rcu_read_unlock(); // Add RCU read unlock
150

151 /* Empty notification, to indicate end of listing */
152 lookup_notify(from, NULL, true);

Example D: qrtr.c port validation. In Listing 410, the developer replaces idr_alloc()
with idr_alloc_u32() to avoid casting the (possibly large) u32 port number to int. By
contrast, Code Researcher adds defensive checks that reject ports with port < 0, both in
qrtr_port_assign and __qrtr_bind. This patch resolves the crash, but rejects certain
port numbers rather than handling them, so is not equivalent to the developer patch and is inac-
curate. But the incoming value originates from __u32 sq_port, and special constants like
QRTR_PORT_CTRL (defined as 0xfffffffeu) are valid and widely used in the subsystem.

Listing 4: Developer and inaccurate patches for qrtr.c.
1 --- a/net/qrtr/qrtr.c /* developer */
2 +++ b/net/qrtr/qrtr.c

10Example D in Syzkaller: https://syzkaller.appspot.com/bug?id=
ca2299cf11b3e3d3d0f44ac479410a14eecbd326

32

https://syzkaller.appspot.com/bug?id=ca2299cf11b3e3d3d0f44ac479410a14eecbd326
https://syzkaller.appspot.com/bug?id=ca2299cf11b3e3d3d0f44ac479410a14eecbd326

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

3 @@ -692,23 +692,25 @@ static void qrtr_port_remove(struct
qrtr_sock *ipc)↪→

4 */
5 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
6 {
7 + u32 min_port;
8 int rc;
9

10 mutex_lock(&qrtr_port_lock);
11 if (!*port) {
12 - rc = idr_alloc(&qrtr_ports, ipc,
13 - QRTR_MIN_EPH_SOCKET,

QRTR_MAX_EPH_SOCKET + 1,↪→

14 - GFP_ATOMIC);
15 - if (rc >= 0)
16 - *port = rc;
17 + min_port = QRTR_MIN_EPH_SOCKET;
18 + rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port,

QRTR_MAX_EPH_SOCKET, GFP_ATOMIC);↪→

19 + if (!rc)
20 + *port = min_port;
21 } else if (*port < QRTR_MIN_EPH_SOCKET &&

!capable(CAP_NET_ADMIN)) {↪→

22 rc = -EACCES;
23 } else if (*port == QRTR_PORT_CTRL) {
24 - rc = idr_alloc(&qrtr_ports, ipc, 0, 1,

GFP_ATOMIC);↪→

25 + min_port = 0;
26 + rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port,

0, GFP_ATOMIC);↪→

27 } else {
28 - rc = idr_alloc(&qrtr_ports, ipc, *port, *port

+ 1, GFP_ATOMIC);↪→

29 - if (rc >= 0)
30 - *port = rc;
31 + min_port = *port;
32 + rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port,

*port, GFP_ATOMIC);↪→

33 + if (!rc)
34 + *port = min_port;
35 }
36 mutex_unlock(&qrtr_port_lock);
37

38 --- a/net/qrtr/qrtr.c /* generated */
39 +++ b/net/qrtr/qrtr.c
40 @@ -695,7 +695,9 @@ static int qrtr_port_assign(struct

qrtr_sock *ipc, int *port)↪→

41 int rc;
42

43 mutex_lock(&qrtr_port_lock);
44 - if (!*port) {
45 + if (*port < 0) {
46 + rc = -EINVAL;
47 + } else if (!*port) {
48 rc = idr_alloc(&qrtr_ports, ipc,
49 QRTR_MIN_EPH_SOCKET,

QRTR_MAX_EPH_SOCKET + 1,↪→

50 GFP_ATOMIC);
51 @@ -759,6 +761,9 @@ static int __qrtr_bind(struct socket *sock,
52 return 0;

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

53

54 port = addr->sq_port;
55 + if (port < 0)
56 + return -EINVAL;
57 +
58 rc = qrtr_port_assign(ipc, &port);
59 if (rc)
60 return rc;

34

	Introduction
	Related work
	Design of Code Researcher
	Analysis phase
	Actions to search over codebase and commit history
	Reasoning strategies for code

	Synthesis and Validation phases

	Experimental setup
	Experimental results
	RQ1: How effective are different tools at resolving Linux kernel crashes?
	RQ2: Do the tool-edited files match those modified in developer fixes?
	RQ3: How effective is context gathering for resolving kernel crashes?
	RQ4: How important are historical commit analysis and context filtering?
	RQ5: How robust are Code Researcher's patches?
	RQ6: Does Code Researcher generalize to other systems codebases?

	Conclusions, limitations, and future work
	Additional experimental results
	Code Researcher implementation details
	Example of agent trajectory
	FFmpeg: experimental details
	Example agent trajectory: figures
	Additional related work: long context reasoning
	Experimental setup: additional details
	Example showing the importance of causal analysis over historical commits
	LLM-as-Judge evaluation of overlap between developer commit and tool-gathered context
	Qualitative evaluation and examples

