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Abstract

Tactile perception is essential for embodied agents to understand physical attributes
of objects that cannot be determined through visual inspection alone. While exist-
ing approaches have made progress in visual and language modalities for physical
understanding, they fail to effectively incorporate tactile information that provides
crucial haptic feedback for real-world interaction. In this paper, we present VTV-
LLM, the first multi-modal large language model for universal Visuo-Tactile Video
(VTV) understanding that bridges the gap between tactile perception and natural
language. To address the challenges of cross-sensor and cross-modal integra-
tion, we contribute VTV150K, a comprehensive dataset comprising 150,000 video
frames from 100 diverse objects captured across three different tactile sensors (Gel-
Sight Mini, DIGIT, and Tac3D), annotated with four fundamental tactile attributes
(hardness, protrusion, elasticity, and friction). We develop a novel three-stage
training paradigm that includes VTV enhancement for robust visuo-tactile repre-
sentation, VTV-text alignment for cross-modal correspondence, and text prompt
finetuning for natural language generation. Our framework enables sophisticated
tactile reasoning capabilities including feature assessment, comparative analysis,
scenario-based decision making and so on. Experimental evaluations demonstrate
that VTV-LLM achieves superior performance in tactile video understanding tasks,
establishing a foundation for more intuitive human-machine interaction in tactile
domains.

1 Introduction

Touch is a fundamental sensory modality that provides humans with physical information unattainable
through vision alone, such as material attributes, surface texture, and compliance. This tactile feedback
enables sophisticated physical reasoning and interaction in our environment [1, 2, 3]. While recent
advances in vision-language models [4, 5, 6, 7, 8] have demonstrated impressive capabilities in visual
reasoning, these models remain fundamentally limited by their inability to perceive tactile attributes,
restricting their effectiveness in scenarios requiring physical interaction and reasoning about material
characteristics that cannot be reliably inferred from visual cues alone.

Visuo-tactile sensors [9], like GelSight [10], DIGIT [11], and Tac3D [12], have emerged as promising
technologies for capturing tactile information, generating image-like representations that encode
physical properties such as pressure distribution, surface geometry, and friction characteristics.
However, there remains a significant challenge in bridging the domain gap between these tactile
representations and natural language understanding. The inherent differences between tactile data
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Among these three videos: a) <video 1>, 
b) <video_2>, c) <video_3>, identify the 
<comparison> <attribute> object after 
describing each one.

Video/Comparison/Attribute
Selection & Filtration

Question: Among these three videos: 
a) <kiwi.mp4>, b) <circuit_board.mp4>, 
c) <golf_ball.mp4>, identify the least protruded
object after describing each one.
Answer: a)…b)…c)… Conclusion: The least 
protruded object is a).

…

…

bark.mp4

avocado.mp4 

…

Tactile Feature Assessment
Question: What are the tactile features of the object presented in the video 
<avocado.mp4> ?
VTV-LLM: It is moderately deformable under force with strong protrusion. It has 
moderate elasticity and moderate friction characteristics.

Tactile Scenario Analysis

Question: Comparing the objects in <avocado.mp4> and <velvet.mp4> , which 
one is more protruded ?
VTV-LLM: The first object.

Surface Feature Distinction

velvet.mp4

Question: Describe these two videos based on their tactile attributes: 
a) <bark.mp4> , b) <velvet.mp4> . Which material would be better for lining the 
inside of a box meant to hold delicate jewelry ?
VTV-LLM: a) It presents a extremely hard and strong protrusion surface with no 
elasticity and strong friction. b) It presents a moderately deformable and no 
protrusion with no elasticity and slight friction. The most suitable object is b) .…

Figure 1: The workflow consists of four key components: (a) Data Collection, which includes
100 diverse objects recorded by 3 different tactile sensors, resulting in 150,000 video frames; (b)
Attribute Annotation, where objects are systematically categorized across 4 static and dynamic tactile
attributes: hardness, protrusion, elasticity, and friction; (c) Template Generation, which generates
10,000 question-answer pairs using structured templates for various comparative analyses; and (d)
Embodied Interaction, demonstrating VTV-LLM’s capability to perform tactile feature assessment,
surface feature distinction, tactile scenario analysis and so on. Through this integrated approach,
VTV-LLM enables multi-modal reasoning about physical attributes that cannot be determined through
visual inspection alone, creating a foundation for more sophisticated human-machine interaction in
tactile understanding domains.

captured across various sensor types further complicates this integration, as each sensor produces
distinct data formats with varying resolutions and physical property encodings.

Existing research on tactile learning has made progress in representation learning [13, 14, 15, 16,
17, 18], but these approaches often focus either exclusively on static attributes or fail to develop
comprehensive frameworks that integrate both tactile perception and language understanding. Most
critically, they lack the ability to ground tactile perceptions in natural language descriptions and
reasoning, which is essential for human-machine communication about physical properties and
interactions [19, 20]. Additionally, the temporal dimension of tactile interactions, which captures how
surfaces respond to pressing, sliding, and rotational movements, remains underexplored in current
approaches, despite containing crucial information about dynamic material attributes.

To address these challenges, we present VTV-LLM, the first multi-modal large language model
for universal visuo-tactile video understanding. Our approach treats tactile perception as a cross-
modal reasoning problem, where tactile videos are aligned with linguistic descriptions to enable
sophisticated reasoning about physical attributes. As illustrated in Fig. 1(d), VTV-LLM supports a
diverse range of embodied interaction capabilities, from basic tactile feature assessment to complex
comparative analyses and scenario-based decision making. Additionally, we construct the VTV150K
dataset, comprising 150,000 video frames collected from 100 common objects across three different
tactile sensors. We systematically annotate these videos with four fundamental tactile attributes
(hardness, protrusion, elasticity, and friction), creating a structured foundation for tactile reasoning.
To bridge the substantial gap between tactile perception and language understanding, we develop a
three-stage training paradigm: (1) VTV enhancement through optical flow-guided masking to learn
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robust visuo-tactile representations, (2) VTV-text alignment to establish cross-modal correspondence,
and (3) text prompt finetuning to optimize natural language generation about tactile attributes.

Our main contributions can be summarized as follows:

• We introduce VTV-LLM, the first multi-modal large language model capable of universal
visuo-tactile video understanding, enabling sophisticated embodied reasoning through
natural language interaction.

• We contribute VTV150K, a comprehensive dataset of 150,000 visuo-tactile video frames
capturing 100 diverse objects across three tactile sensors, annotated with four fundamental
tactile attributes.

• We develop a novel three-stage training paradigm that effectively bridges the domain gap
between tactile perception and language understanding, providing a valuable reference for
future cross-modal learning efforts.

2 Related Works

Tactile Perception Tactile perception has evolved significantly from early sensors measuring
basic physical properties to sophisticated vision-based systems providing high-resolution contact
information. Visuo-tactile sensors [9] such as GelSight [10], DIGIT [11], and Tac3D [12] have
garnered widespread attention for their ability to capture detailed contact deformations through
elastomeric gels and embedded cameras. These sensors have enabled numerous robotic applications
including material classification [21], shape reconstruction [22, 23], and dexterous manipulation
tasks [24, 14]. Recent research has focused on developing representation learning approaches for
tactile data, progressing from task-specific models [25] to general-purpose representations using self-
supervised techniques like contrastive multi-view coding [21] and masked autoencoders [26]. The
integration of tactile sensing with other modalities has also emerged as a promising direction, with
works like UniTouch [17] dynamically fusing tactile signals with visual and audio data to enhance
cross-sensor knowledge transferability, Yu et al. [15] aligned tactile images with vision-language
models for object property reasoning, and Fu et al. [16] used a touch-vision-language model for
open-vocabulary classification. Unlike prior works, our method processes visuo-tactile video directly
and focuses on sophisticated tactile reasoning.

Self-Supervised Video Representation Learning Self-supervised video representation learning
has emerged as a critical area for developing robust visual features without manual annotations.
VideoMAE [27] pioneered this approach by effectively adapting masked autoencoding strategies to
the video domain, demonstrating significant performance improvements across various benchmark
tasks. Subsequently, VideoMAEv2 [28] enhanced this framework through the introduction of dual
masking mechanisms, which substantially improved computational efficiency while maintaining
representational power. Recent advancements in this field have focused on sophisticated optimiza-
tions along both temporal and spatial dimensions [29, 30, 31, 32], addressing challenges unique to
video understanding such as motion coherence and long-range dependencies. In the tactile domain,
Sparsh [18] explored the ability of different existing self-supervised learning methods to characterize
in tactile video. Feng et al. [13] utilized the tube masking strategy to process the tactile video.
Our method builds upon these foundations by introducing optical flow-guided masking specifically
designed for visuo-tactile videos, which addresses the unique challenges of capturing both spatial
deformation and temporal dynamics in tactile interactions.

Multi-Modal Large Language Models Multimodal Large Language Models (MLLMs) have
transformed AI research by enabling reasoning across textual and visual modalities. Early efforts
integrated LLMs as agents for downstream tasks [33, 34, 35]. Later approaches focused on parameter-
efficient tuning [36, 37] and instruction tuning [38, 39] to align visual semantics with language.
Recent advances have incorporated video processing [40, 41] and diverse sensory inputs [42],
enabling applications in robotics [43, 44]. In our work, we present the first visuo-tactile video large
language model to bridge the gap between tactile perception and natural language.
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3 Methods

In this section, we first introduce VTV150K, a large-scale dataset of video-question-answer pairs
in Sec. 3.1. Subsequently, we present VTV-LLM, the first visuo-tactile video large language model
designed for visuo-tactile video understanding and embodied interaction in Sec. 3.2.

3.1 VTV150K

Overview Visuo-tactile sensor technologies suffer from inadequate standardization and significant
cross-sensor data discrepancies, which substantially impede the transferability of tactile representation
models across different sensing platforms. Existing methods [14, 18, 45, 13] addressing these
challenges exhibit notable limitations, as they either neglect the integration of both static and dynamic
tactile attributes or fail to incorporate comprehensive visuo-tactile video understanding for embodied
interaction.

In this work, we introduce VTV150K, a comprehensive large-scale dataset comprising video-question-
answer pairs collected across three diverse visuo-tactile sensors, as illustrated in Fig. 1(a-c). The
dataset construction methodology encompasses three sequential stages: data collection, attribute
annotation, and template generation. We will delve into the specifics of these stages.

Data Collection To facilitate the grounding of embodied interaction on tactile inputs, we collected
a comprehensive dataset comprising 100 common objects, yielding a total of 150,000 visuo-tactile
video frames, with each video recorded at 20 FPS and a resolution of 320×320 pixels.

As illustrated in Fig. 1(a), we employed multiple visuo-tactile sensors to ensure style diversity:
GelSight mini [10] and DIGIT [11] sensors for capturing high-resolution visuo-tactile information,
and Tac3D [12] for measuring deformation force fields. Due to the relatively low resolution of Tac3D,
we implemented the cubic spline interpolation algorithm [46] to reconstruct more detailed force field
representations.

Data collection was performed manually to address the challenges associated with properly interacting
with irregularly shaped objects. For each object, we systematically captured five visuo-tactile
videos across different regions using various sensors. Our data collection process consisted of three
sequential interactions: (1) normal pressing against the object surface to capture pressure distribution,
(2) rotational movement to acquire shear information, and (3) sliding motion to obtain friction
characteristics. This multi-interaction approach enables comprehensive tactile information extraction
for embodied interaction.

Attribute Annotation To facilitate tactile reasoning, we annotated our dataset across four funda-
mental static and dynamic tactile attributes as shown in Fig. 1(b). Each attribute was categorized
into three distinct levels, with harness classified as highly deformable (28%), moderately deformable
(33%), and extremely hard (39%); protrusion categorized as absent (41%), moderate (26%), or strong
(33%); elasticity measured as none (42%), moderate (30%), or strong (28%); and friction assessed
as slight (32%), moderate (25%), or strong (43%). This structured annotation framework enables
comprehensive tactile attribute analysis for downstream reasoning tasks.

Template Generation Template generation facilitates the creation of question-answer pairs for
model training. We developed multiple problem templates encompassing various reasoning tasks: tac-
tile feature assessment, surface feature distinction, texture optimal selection and so on. To instantiate
these templates, we systematically integrated diverse visuo-tactile video combinations, comparison
operators (e.g., "more", "less", "most", "least"), and attribute selectors to generate a comprehensive
dataset of 10,000 question-answer pairs. As illustrated in Fig. 1(c), our generation process follows a
hierarchical framework: selection, filtration, and structured question formulation with corresponding
ground-truth annotations. For more comprehensive details about attribute annotation and template
generation, please refer to the Supplementary Material ??.

3.2 VTV-LLM

Overview VTV-LLM aims to serve as a multi-modal framework capable of integrating visual-
tactile video data with large language models to facilitate tactile reasoning for embodied interaction.
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Figure 2: (a) VTV-LLM framework: A multi-modal system integrating visual-tactile video data
with large language models to facilitate tactile reasoning for embodied interaction; (b) Multi-Stage
Training: It consists of VTV enhancement, alignment between visuo-tactile video and text, and
prompt-based finetuning to generate accurate tactile descriptions.

As illustrated in Fig. 2(a), VTV-LLM formulates tactile perception as a cross-modal approach to
question answering and descriptive generation. By leveraging the rich sensory information inherent
in visuo-tactile video data, VTV-LLM enhances understanding in scenarios traditionally challenging
for standard vision-only models, particularly in applications requiring tactile attribute inference.

At the core of VTV-LLM lies a (Qwen 2.5 [4, 5]) that synthesizes complex multi-modal information
from visuo-tactile videos, utilizing world knowledge to generate coherent, human-readable descrip-
tions of tactile attributes. In general, a visuo-tactile video can be mathematically represented as a
sequence of frames V = {It}Tt=0, where each frame It captures both visual and tactile information at
timestamp t. Initially, high-dimensional features FV TV are extracted from V using a VTV encoder
based on ViT-base architecture [47] adapted from VideoMAE [27, 28]:

FV TV = fenc(V ) = ViT
(
{Patch(It) + TE(t)}Tt=0

)
, (1)

where Patch(·) denotes the patch embedding operation and TE(t) represents temporal embeddings.
These features are then processed through a visual projector fV−proj consisting of two linear layers
with a GELU activation function [48] in between to produce the visual embedding EV :

EV = fV−proj(FV TV ) = W2 · GELU(W1 · FV TV + b1) + b2, (2)

where W1,W2 are learnable weight matrices and b1, b2 are bias terms. Concurrently, the textual
prompt is tokenized and processed through LLM’s text projector to produce text embedding ET .
For effective multi-modal reasoning, we introduce special tokens <video_start>, <video>, and
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Figure 3: Training pipeline of VTV enhancement.

<video_end> to denote the beginning, content and end of the visuo-tactile video in the input sequence.
These tokens serve as anchors for the model to properly align visual information with textual
understanding during the inference process.

Given these aligned representations, the large language model fLLM performs reasoning to generate
a response A describing tactile attributes:

A = fLLM (EV , ET ) = Qwen(Concat([EV ;ET ])). (3)

Given the complexity of integrating visuo-tactile information with language representations, we
implement a staged training approach to develop our framework. As shown in Fig. 2(b), VTV-LLM
adopts a three-stage training paradigm encompassing VTV enhancement, VTV-text alignment, and
text prompt finetuning. This structured progression enables the model to first learn robust tactile-
visual representations, then align them with textual descriptions, and finally optimize response
generation, enhancing VTV-LLM’s capability for cross-modal understanding and tactile reasoning.
In the following, we describe each of these stages in detail.

VTV Enhancement Existing multi-modal LLMs predominantly process natural images via un-
modified Vision Transformer (ViT) encoders [47]. However, our research addresses visuo-tactile
inputs, which exhibit fundamentally different characteristics from natural images, thus necessitating
specialized fine-tuning to extract meaningful representations.

Furthermore, the temporal nature of our video data introduces challenges not present in static
images. Unlike images, videos possess an inherent time dimension characterized by temporal
redundancy and inter-frame correlations, requiring robust video representation methodologies. While
VideoMAE [27, 28] offers a powerful masked video autoencoder with an asymmetric encoder-decoder
architecture utilizing tube masking, this approach assumes minimal motion across large frame regions.
This assumption proves problematic for visuo-tactile videos, which typically exhibit significant
motion patterns. Direct application of tube masking to such inputs risks substantial information
leakage, wherein the model can trivially reconstruct masked segments using visible tokens from
temporally adjacent frames, which is a critical concern in masked video pre-training. To address
these limitations, we propose a novel training pipeline specifically designed for visuo-tactile video
representation, as illustrated in Fig. 3.

Given the visuo-tactile video sequence V = {It ∈ RH×W×C}Tt=0, where each frame It encodes
both visual and tactile information at timestamp t with spatial dimensions H ×W and C channels,
we propose selecting the middle frame as the keyframe. This selection is motivated by empirical
observations that the middle frame typically exhibits the maximum contact surface area, facilitating
more robust optical flow warping in subsequent processing stages. For keyframe mask initialization,
conventional binarization approaches [49] significantly degrade the spatial continuity of object
surfaces, compromising the fidelity of the reconstructed tactile information. Therefore, we introduce
a Gaussian mixture model [50] to obtain the keyframe mask. For the keyframe Ik, we formulate a
probabilistic mask using localized Gaussian functions. We select a set of N = ⌈α·HW/β2⌉ sampling
points {pi}Ni=1 distributed across the frame, where α ∈ (0, 1) controls density and β is the sampling

grid size. Each point pi generates a Gaussian kernel Gi(x, y) = exp
(
− (x−pix )

2+(y−piy )
2

2λ2

)
with

scale parameter λ. The final keyframe mask is defined as M ′
k = min

(
1,
∑N

i=1 Gi

)
, creating
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a continuous-valued mask that preserves spatial structure while enabling controlled sparsity for
subsequent processing.

Additionally, we employ dense motion estimation across the visuo-tactile video V using the RAFT
architecture [51]. We compute bidirectional optical flow fields between consecutive frames to capture
the continuous deformation patterns throughout the interaction process. For each adjacent frame pair,
we define the forward flow field Ot→t+1 = RAFT(It, It+1). Each flow field Ot→t+1 ∈ RH×W×2

encodes pixel-wise displacement vectors (ux,y, vx,y) for every spatial location (x, y), mapping
positions from frame It to their corresponding locations in frame It+1. The complete set of optical
flows Φ for the sequence is formulated as:

Φ =

k−1⋃
t=0

{Ot→t+1} ∪
T⋃

t=k+1

{Ot→t−1}. (4)

This bidirectional flow representation tracks visuo-tactile features throughout the interaction, support-
ing warping operations and masked frame generation. We apply spatial normalization before flow
computation to ensure scale invariance across different sequences.

After that, we utilize the backward warping [52, 53] to generate the temporal consistent masking map
based on the keyframe and mask the corresponding video frames. The masked visuo-tactile frames
Vm = {Mt}Tt=0 are fed into the VTV encoder-decoder architecture for reconstruction using the mean
squared error loss [27, 28]. We also incorporate an attribute classifier to predict tactile attributes
(hardness, protrusion, elasticity, and friction) using the cross-entropy loss [54]. Our total loss function
combines both the reconstruction loss and the attribute classification loss, enabling simultaneous
optimization of visuo-tactile reconstruction quality and tactile attribute classification accuracy.

VTV-Text Alignment In the VTV-text alignment stage, we focus on establishing cross-modal
alignment between video and language representations. With the pretrained VTV Encoder from stage
1, we introduce both V-Projector and T-Projector modules while keeping the Large Language Model
frozen. This stage leverages our initial constructed VTV150K dataset to bridge the representational
gap between visual and textual modalities. The V-Projector maps video embeddings from the VTV
Encoder into the language model’s embedding space, while the T-Projector processes corresponding
text prompt representations. By training these projection modules exclusively while freezing other
components, we establish foundational cross-modal understanding, enabling the model to associate
visual content with appropriate textual descriptions. This alignment is critical for downstream video
understanding and description tasks as it creates a shared semantic space between the video frames
and natural language.

Text Prompt Finetuning In the text prompt finetuning stage, we enhance the model’s capacity to
respond accurately to textual prompts about video content by implementing supervised fine-tuning
across multiple components. The V-Projector, and T-Projector are jointly fine-tuned along with the
LLM. Unlike previous stages where the LLM remained frozen, this stage employs parameter-efficient
techniques [37, 36] to fine-tune the language model using 10,000 newly generated question-answer
pairs. These pairs are created using the same template generation approach as our VTV150K dataset,
featuring diverse video understanding tasks. By generating new data rather than reusing subsets, we
significantly increase training diversity and model robustness. This end-to-end optimization enables
the model to generate more coherent, accurate, and contextually relevant responses to text prompts
about video content. The supervised nature of this phase significantly improves the model’s ability
to comprehend complex video scenes and produce natural language descriptions that align with
human expectations. This final stage integrates the previously aligned representations into a cohesive
multi-modal understanding system, culminating in enhanced video-language capabilities.

4 Experiments

4.1 Setup

Our experiments utilize the proposed VTV150K dataset for both training and evaluation protocols.
The training process follows our three-stage paradigm: Stage 1 employs multi-sensor visuo-tactile
videos with their corresponding attribute annotations for representation learning. For Stage 2 and 3,
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Question: Among these three videos: a) <a.mp4> , b) <b.mp4> , c) <c.mp4> , identify the softest object after describing 
each one.
VTV-LLM: a) It presents a extremely hard and strong protrusion surface with no elasticity and strong friction. b) It presents a 
highly deformable and moderate protrusion surface with moderate elasticity and friction. c) It presents a extremely hard and 
no protrusion surface with no elasticity and slight friction. The softest object is b) .

Surface Optimality Identification

…

a.mp4 (circuit_board) 

b.mp4 (kiwi) 

c.mp4 (iron_ruler) 

…

…

Object Sensation Correlation
Question: Among these three videos: a) <a.mp4> , b) <b.mp4> , c) <c.mp4> , identify the softest object after describing 
each one. You have tactile videos of three different objects: a) <a.mp4> , b) <b.mp4> , c) <c.mp4> . Assign each video (a, b, 
c) to one of these objects listed alphabetically: 1) an iron ruler, 2) a kiwi, 3) a circuit board.
VTV-LLM: a) is a circuit board, b) is a kiwi and c) is an iron ruler.

Tactile Scenario Analysis
Question: Describe these three videos based on their tactile attributes: a) <a.mp4> , b) <b.mp4> , c) <c.mp4> . Which object 
would be better for scraping ice off a windshield?
VTV-LLM: a) … b) … c)… The most suitable object is c).

Figure 4: Several task examples from the proposed VTV150K along with predictions from VTV-
LLM.

Table 1: Performance comparison of VTV-LLM-7B against seven state-of-the-art methods on the
VTV150K dataset. The evaluation covers different tasks, with results reported in percentages (%)
and the boldface indicates the best performance.

Models Hardness Protrusion Elasticity Friction Combined SFD SOI OSC TSA Average

GPT-4o [55] 34.7 32.6 32.6 18.7 2.1 40.9 38.4 16.6 36.0 28.0
Gemini-2.5-Pro-Exp [56] 36.2 34.7 39.1 21.0 4.3 42.6 29.4 18.5 40.0 29.5

LLaVA-OneVision-7B [57] 27.5 32.6 26.0 20.2 0.7 40.9 28.2 11.7 30.0 24.2
LLaVA-Video-Qwen2-7B [58] 30.4 29.7 28.9 18.1 2.1 33.6 29.4 17.2 36.0 25.0

InternVL2.5-VL-8B [59] 18.1 23.9 21.0 13.7 0.0 24.5 17.9 11.1 24.0 17.1
VideoLLaMA3-7B [41] 15.2 21.7 14.4 10.8 0.0 11.4 12.8 7.4 20.0 12.6
Qwen2.5-VL-7B [60] 25.3 28.9 17.3 15.9 1.4 22.9 28.2 16.0 30.0 20.6

VTV-LLM-7B (Ours) 73.9 75.0 67.3 56.5 35.6 71.3 57.6 43.2 64.0 60.4

we utilize two independently generated sets of 10,000 question-answer pairs to prevent data leakage
between stages. To evaluate model performance, we create a separate test set comprising 600 question-
answer pairs for novel objects not present in the training data, ensuring comprehensive coverage
across various tactile reasoning tasks. Our LLM backbone is based on Qwen 2.5 [4, 5], experimenting
with three model variants (3B, 7B, and 14B parameters). All experiments are conducted on 4 NVIDIA
RTX 6000 Ada GPUs. Additional implementation details and hyperparameter configurations are
provided in the Supplementary Material ??.

4.2 Results

To verify the effectiveness of our VTV-LLM, we compare it against two strong proprietary models,
such as GPT-4o [55] and Gemini-2.5-Pro-Exp [56], as well as five open-source video-based VLMs,
including LLaVA-OneVision-7B [57], LLaVA-Video-Qwen2-7B [58], InternVL2.5-VL-8B [59],
VideoLLaMA3-7B [41] and Qwen2.5-VL-7B [60]. Since most of the video-based VLM models have
parameters around 7B, we only use the VTV-LLM-7B model for fair comparison. To guarantee the
robustness of the experimental results, we report the average results of the triplicate test with random
seeds.

Our first experiment focuses on tactile feature assessment, which evaluates the model’s ability to
perceive and describe physical sensory attributes of objects in visuo-tactile videos. As illustrated in
Fig. 1(d), when presented with a visuo-tactile video and a question prompt, VTV-LLM generates
descriptions of the four key tactile attributes. The results presented in Tab. 1 demonstrate that our
method consistently outperforms all baseline models across both individual attribute and combined
attribute settings. The performance gap is particularly notable in the combined attribute setting, which
we attribute to our three-stage training paradigm that effectively bridges the domain gap between
tactile perception and natural language understanding.

In addition, we conduct high-level tactile reasoning experiments, including surface feature distinction
(SFD), surface optimality identification (SOI), object sensation correlation (OSC), and tactile scenario
analysis (TSA). SFD involves comparing tactile qualities between objects to determine relative
differences, SOI entails analyzing multiple surfaces to determine which exhibits the highest degree
of a particular quality, OSC aims at relating tactile perceptual information to the identity of a
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Figure 5: Performance comparison of VTV-LLM on the different parameters.

Table 2: Ablation study on VTV encoder settings
using the VTV-LLM-7B model.

Settings SFD SOI OSC TSA Average

VideoMAE (w/o train) 37.5 29.7 8.5 16.0 22.9
VideoMAE (w/ train) 52.4 46.1 28.3 38.0 41.2

Ours (w/o cls) 62.2 48.7 40.1 55.0 51.5
Ours 71.3 57.6 43.2 64.0 59.0

Table 3: Ablation study on three-stage training
paradigm settings using the VTV-LLM-7B model.

Settings SFD SOI OSC TSA Average

w/o stage 2 58.1 50.0 35.2 60.0 50.8
w/o stage 3 50.8 42.3 29.0 52.0 43.5

Same dataset 61.4 53.8 33.9 58.0 51.7
Ours 71.3 57.6 43.2 64.0 59.0

particular real-world object, and TSA addresses applying haptic knowledge to real-world situations
that require physical reasoning. It is worth noting that the TSA task is not included in the training set.
The qualitative results presented in Fig. 1(d) and Fig. 4 demonstrate that VTV-LLM can generate
reasonable outputs. The quantitative experimental results in Tab. 1 further confirm that VTV-LLM
achieves superior performance across these complex reasoning tasks, highlighting its potential for
embodied interaction.

4.3 Ablation Studies

LLM Backbone To examine the effect of model scale on visuo-tactile understanding, we compare
different parameter sizes of our LLM backbone. Fig. 5 shows performance results for VTV-LLM
using three Qwen 2.5 variants (3B, 7B, and 14B parameters). We observe consistent performance
improvements with increasing model size. This improvement is most significant for complex
reasoning tasks like TSA, indicating larger models better integrate cross-modal information. However,
larger models also require substantially more computation time during inference.

VTV Encoder We conduct an ablation study on our VTV encoder design as shown in Tab. 2.
Baseline VideoMAE [27, 28] without training achieves only 22.9% average performance, while
training with our VTV150K dataset improves it to 41.2%. Our method without the attribute classifier
reaches 51.5%, showing the effectiveness of our optical flow-guided masking strategy. The full
method with the attribute classifier further improves to 59.0%, confirming that joint reconstruction
and attribute classification significantly enhances tactile understanding.

Three-Stage Training Paradigm Tab. 3 validates our three-stage training paradigm through
ablation studies. Removing stage 2 (VTV-text alignment) drops average performance to 50.8%,
while omitting stage 3 (text prompt finetuning) causes a steeper decline to 43.5%. Using identical
datasets across stages also underperforms at 51.7%, confirming that independent datasets for each
stage significantly improve model robustness.
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5 Conclusion

In this work, we presented VTV-LLM, the first multi-modal large language model for universal visuo-
tactile video understanding. We contributed VTV150K, a comprehensive dataset of visuo-tactile
videos across multiple sensors, and developed a novel three-stage training paradigm that effectively
bridges the gap between tactile perception and natural language. Experimental results demonstrate
that VTV-LLM consistently outperforms state-of-the-art methods across various tactile reasoning
tasks, establishing a foundation for more intuitive human-machine interaction in embodied domains.
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
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• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all used assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper introduces the new dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper describes the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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