
Under review as a conference paper at ICLR 2023

HARDWARE-RESTRICTION-AWARE TRAINING (HRAT)
FOR MEMRISTOR NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Memristor neural network (MNN), which utilizes memristor crossbars for vector-
matrix multiplication, has huge advantages in terms of scalability and energy ef-
ficiency for neuromorphic computing. MNN weights are usually trained offline
and then deployed as memristor conductances through a sequence of program-
ming voltage pulses. Although weight uncertainties caused by process variation
have been addressed in variation-aware training algorithms, efficient design and
training of MNNs have not been systematically explored to date. In this work,
we propose Hardware-Restriction-Aware Training (HRAT), which takes into ac-
count various non-negligible limitations and non-idealities of memristor devices,
circuits, and systems. HRAT considers MNN’s realistic behavior and circuit re-
strictions during offline training, thereby bridging the gap between offline training
and hardware deployment. HRAT uses a new batch normalization (BN) fusing
strategy to align the distortion caused by hardware restrictions between offline
training and hardware inference. This not only improves inference accuracy but
also eliminates the need for dedicated circuitry for BN operations. Furthermore,
most normal scale signals are limited in amplitude due to the restriction of non-
destructive threshold voltage of memristors. To avoid input signal distortion of
memristor crossbars, HRAT dynamically adjusts the input signal magnitude dur-
ing training using a learned scale factor. These scale factors can be incorporated
into the parameters of linear operation together with fused BN, so no additional
signal scaling circuits are required. To evaluate the proposed HRAT methodology,
FC-4 and LeNet-5 on MNIST are firstly trained by HRAT and then deployed in
hardware. Hardware simulations match well with the offline HRAT results. We
also carried out various experiments using VGG-16 on the CIFAR datasets. The
study shows that HRAT leads to high-performance MNNs without device calibra-
tion or on-chip training, thus greatly facilitating commercial MNN deployment.

1 INTRODUCTION

Memristor neural network (MNN) has emerged as an increasingly feasible option to alleviate the
scalability and energy efficiency challenges in neuromorphic computing. While several small-scale
MNNs have been prototyped Li et al. (2018); Yao et al. (2020); Wan et al. (2022), efficient design and
training of MNNs require an in-depth understanding of various restrictions from device, circuit, and
system perspectives. These hardware restrictions include weight uncertainty noise caused by mem-
ristor variability and a limited number of programming pulse cycles to tune memristor conductance
(e.g., 500 in Yao et al. (2020)), weight quantization noise due to limited states of memristor conduc-
tance (e.g., 5- and 4-bit in Yao et al. (2020); Wan et al. (2022)), non-destructive threshold voltage
of memristors Jo et al. (2010), limited output swing of operational amplifiers Karki (2021), and bias
quantization noise from finite-resolution digital-to-analog converters (DACs). These hardware re-
strictions collectively reduce the accuracy of MNN inference. Ignoring these hardware restrictions
during software offline training may result in poor inference or even functional failure.

As a critical step in network training, batch normalization (BN) can accelerate training convergence
Ioffe & Szegedy (2015). The scale and shift operations of BN can be merged into the previous linear
operation (e.g., fully connected or convolutional layer) after training. In this way, the hardware
complexity and cost of MNNs are alleviated, as BN does not require explicit memristor crossbars in

1

Under review as a conference paper at ICLR 2023

on-chip deployment. We envision that the aforementioned hardware restrictions have a significant
impact on BN fusion (also known as BN folding) in MNNs. For example, bias distortion caused by
DACs and the limited output swing of operational amplifiers should be considered during BN fusion.
Although several BN fusing strategies Jacob et al. (2018); Krishnamoorthi (2018); PyTorch (2022);
Wan et al. (2022) have been reported for quantization-aware training, unfortunately, dedicated BN
fusion strategies for MNN training and hardware deployment has so far received little attention. As
a result, it is imperative to develop hardware-restriction-aware BN fusing strategies to align signal
distortion caused by hardware restrictions before and after BN fusion in MNNs.

In this work, we propose a Hardware-Restriction-Aware Training (HRAT) method, which takes into
account various non-negligible restrictions and non-idealities from device, circuit, and system per-
spectives. HRAT considers realistic behavior and hardware restrictions of MNNs during offline
training, thereby bridging the gap between offline training and hardware deployment. The key con-
tributions of this work are summarized as follows:

• We model various hardware restrictions of MNNs and integrate them into training, enabling
hardware-restriction-aware training (HRAT). HRAT uses a new BN fusing strategy to align
the restriction-induced distortion between offline training and hardware inference. This not
only improves inference accuracy but also eliminates the need for dedicated circuitry for
BN operation. To avoid input signal distortion of memristor crossbars, HRAT dynamically
adjusts the signal magnitude during training using a learned scale factor. These scale factors
can be incorporated into the parameters of linear operation together with fused BN, so no
additional signal scaling circuits are required.

• We conduct various experiments on baseline networks (FC-4, LeNet-5, and VGG-16) on
datasets (MNIST, CIFAR-10, and CIFAR-100) to demonstrate the performance of HRAT.
To evaluate the proposed HRAT methodology, FC-4 and LeNet-5 are firstly trained by
HRAT and then deployed in hardware. Hardware simulation results match well with the
offline HRAT results, indicating that HRAT can bridge the gap between offline train-
ing and hardware deployment. To investigate the effectiveness of HRAT on large-scale
networks, we conduct experiments using VGG-16 on the CIFAR datasets. Experimen-
tal results demonstrate that HRAT can lead to state-of-the-art MNNs without performing
prohibitively expensive and time-consuming on-chip retraining, enabling low-cost high-
performance MNNs for large-scale commercialization of neuromorphic systems.

2 RELATED WORK

Variation-aware MNN training. Prior work on MNN offline training has predominately focused
on variation-aware training. Liu et al. (2015) address memristor conductance variability (i.e., weight
uncertainties) by introducing an additional term called “penalty of variation” into the training con-
straints. Then, an upper bound for the variation penalty is estimated and used during training. This
method improves the tolerance of trained weights to memristor variability by applying tighter train-
ing constraints. Zhu et al. (2020) propose statistical training to deal with MNN weight uncertain-
ties. Trained weights are modeled as linear functions of random variables, representing memristor
variability. Subsequent network computations are modified to propagate the effects of weight uncer-
tainties. The effectiveness of statistical training has only been validated on small MNNs. Gao et al.
(2021) propose a variation-aware MNN training framework, which develops an analytical model for
weight uncertainties and uses it as a constraint during training. Yang et al. (2021) propose stochastic-
noise-aware training to inject stochastic noise during training. Stochastic noise includes memristor
programming noise (i.e., memristor conductance variability), thermal noise, shot noise, and random
telegraph noise. Mao et al. (2022) propose defect-aware training to account for the effects of mem-
ristor conductance variability, relaxation, and failure during training. Büchel et al. (2022) address
the issue of memristor conductance variability via adversarial regularization. In order to enhance
the MNN robustness to memristor programming noise, weight space is attacked by adding Gaussian
noise Murray & Edwards (1994) to parameters during training. Wan et al. (2022) propose noise-
resilient training to inject Gaussian noise into MNN weights during the forward pass. In summary,
the aforementioned MNN training methods mainly improve noise immunity to memristor conduc-
tance (i.e., weight) uncertainties and address weight mismatch between offline training and on-chip
deployment. However, other non-negligible MNN hardware restrictions, such as the non-destructive
threshold voltage of memristors, have not been incorporated into training.

2

Under review as a conference paper at ICLR 2023

BN fusing strategies for quantization-aware training. Several BN fusing strategies have been
proposed for quantization-aware training (Figure 5 in Appendix for details). By incorporating batch
normalization into linear operation (e.g., fully connected layer or convolutional layer), these strate-
gies convert W (i.e., weight of linear operation) into W γ

/√
σ2 + ϵ (i.e., fused weight). Here γ

is a learnable scale factor in BN, σ2 is output variance of linear operation, and ϵ is a small constant
added to prevent the divide by zero error. Wan et al. (2022) implement BN fusion in a straightfor-
ward manner Ioffe & Szegedy (2015). Jacob et al. (2018) introduce fused linear operation at the
current batch scale. During training, the statistics (i.e., mean and variance) of the current batch are
extracted before performing the fused linear operation. Then, these statistics are used to update the
Moving Average (MA) statistics and generate fused weight and bias. In this way, a fused linear oper-
ation is performed using the obtained fused weight and fused bias. Krishnamoorthi (2018) introduce
fused linear operation at the MA scale with a correction for the current batch scale. During train-
ing, the output of fused linear operation is corrected from the MA scale to the current batch scale
by multiplying

√
σ2
B + ϵ

/√
σ2 + ϵ , where σ2

B is the output variance of linear operation extracted
from current batch. Thus, an additional linear operation is required to compute the current batch
statistics, which is used to update the MA statistics and correct the fused scale of linear operation.
PyTorch (2022) introduces fused linear operation at the MA scale with a plain BN and a correction
to the unfused scale. In order to apply a plain BN, the scale of fused linear operation is corrected to
the the unfused scale by multiplying

√
σ2 + ϵ

/
γ . Since the strategies Jacob et al. (2018); Krish-

namoorthi (2018) require two linear operations (i.e., fused linear and linear), they are much more
computationally expensive than PyTorch (2022) whose strategy involves one linear operation.

While these existing BN fusing strategies help align the distortion caused by weight quantization,
the hardware restrictions of MNN systems lead to more aspects of distortion during BN fusion.
For example, since fused bias and outputs of fused linear operation are represented as voltages
in MNNs, effective BN fusion for MNNs needs to ensure that they conform to the limited output
swing of operational amplifiers. Otherwise, voltage saturation and clamping of fused bias or outputs
of fused linear operation will cause distortion and inference degradation. Therefore, a BN fusing
strategy should align the distortion caused by hardware restrictions between training and hardware
inference.

3 MNN HARDWARE DEPLOYMENT AND RESTRICTIONS

An MNN consists of multiple interconnected network layers. The hardware schematic for one layer
is plotted in Figure 1(a), where a memristor crossbar implements a layer of synapses, and each
offline-trained weight is achieved by the difference in memristor conductance between two differen-
tial memristors Prezioso et al. (2015); Li et al. (2018); Yao et al. (2020); Wan et al. (2022), allowing
the realization of positive and negative weight. Each offline-trained bias is downloaded into a register
circuit, which controls a digital-to-analog converter (DAC) for providing a bias voltage to a neuron
summation circuit. The neuron summation circuit and activation circuit work together to generate
an output voltage Krestinskaya et al. (2019). Figure 1(b) shows the measured current-voltage sweep
curve of memristors Yan et al. (2019). Memristors have two distinct modes of operation: a safe op-
eration mode, in which memristor conductance remains unchanged from its previously programmed
value, and a conductance programming mode, in which a series of programming pulse voltages are
applied to a memristor until its conductance approaches its expected value. Since MNNs should run
in the safe operation mode during inference, the input voltage across memristors cannot exceed the
upper voltage limit of its safe operation region, such as 0.2V in Yan et al. (2019). This upper voltage
limit can be viewed as the non-destructive threshold voltage Jo et al. (2010), VTH , below which the
previously programmed memristor conductance (i.e., offline-trained weight) does not change dur-
ing inference. The non-destructive threshold voltage varies with the material, fabrication process,
and physical structure of memristors. To ensure proper inference, the input voltage clamp circuit in
Figure 1(a) should restrict voltages across the memristor crossbar with [−VTH , VTH].

Figure 1(c) shows the schematic of a neuron summation circuit, which consists of transimpedance
amplifiers and fully differential amplifier to convert and scale the current difference (i.e., I+ − I−)
to voltage and then add the DAC generated bias voltage. To avoid the inconvenience caused by
dual power supply, the neuron summation circuit is designed to operate with a single positive power
supply and set the signal ground level of the neuron summation circuit to be at the half of the supply

3

Under review as a conference paper at ICLR 2023

M
-
11

VS1

VI1

VIm

m×n memristor crossbar

ReLU Activation Circuit

Outputs

Rf

M
+

11

I
+

1 I
-
1

S
+
+

-

M
-
m1M

+
m1

M
-
12

VS2

Vbias2

M
+

12

I
+

2 I
-
2

S
+
+

-

M
-
m2M

+
m2

M
-
1n

VSn

Vbiasn

M
+

1n

I
+

n I
-
n

S
+
+

-

M
-
mnM

+
mn

Vo

Vbias

S
+
+

-

I
+ I

-

+
-

+
-

+

-

Vbias

I
+

I
-

VSRf

R1
R2

R2
R1

DAC1

Vbias1

(a) Hardware schematic of a one-layer MNN for forward pass.

This crossbar implements a layer of synapses. Each synapse

consists of two memristors to allow positive and negative weights.

(c) Measured current-voltage sweep curve of

memristor from Yan et al. (2019), whose non-

destructive voltage range is [-0.2V, 0.2V] and

threshold voltage is 0.2V.

(d) The output voltages of amplifier circuits

and DACs are limited between 0V (ground)

and VDD (the supply voltage)

Vin

Vout

Saturation

 safe

operation

region

VDD

Saturation

0

Normal

Operation

Region

VO1 VO2 VOn

In
p

u
t C

la
m

p
 C

ircu
it

Inputs

VM1

VM2 VM3

+
-

R3

R3

R3

R3

VSG

VSG

VSG

VSG

VTH

(b) Neuron summing circuit. All amplifiers and digital-to-analog

converters (DACs) operate from a single supply voltage and have

a limited normal operation region as shown in (d). Thus, node

voltages at VM1, VM2, VM3, Vbias and VS are clamped into [0, VDD].

Register

Vbias1…Vbiasn

VIN1

VINm

(a) Hardware schematic of one MNN layer for forward pass. A
crossbar implements a layer of synapses. Each offline-trained
weight is achieved by two differential memristors.

M
-
11

VS1

VI1

VIm

m×n memristor crossbar

ReLU Activation Circuit

Outputs

Rf

M
+

11

I
+

1 I
-
1

S
+
+

-

M
-
m1M

+
m1

M
-
12

VS2

Vbias2

M
+

12

I
+

2 I
-
2

S
+
+

-

M
-
m2M

+
m2

M
-
1n

VSn

Vbiasn

M
+

1n

I
+

n I
-
n

S
+
+

-

M
-
mnM

+
mn

Vo

Vbias

S
+
+

-

I
+ I

-

+
-

+
-

+

-

Vbias

I
+

I
-

VSRf

R1
R2

R2
R1

DAC1

Vbias1

DAC2 DACn

(a) Hardware schematic of a one-layer MNN for forward pass.

This crossbar implements a layer of synapses. Each synapse

consists of two memristors to allow positive and negative weights.

(c) Measured current-voltage sweep curve of

memristor from Yan et al. (2019), whose non-

destructive voltage range is [-0.2V, 0.2V] and

threshold voltage is 0.2V.

(d) The output voltages of amplifier circuits

and DACs are limited between 0V (ground)

and VDD (the supply voltage)

Vin

Vout

Saturation

 safe

operation

region

VDD

Saturation

0

Normal

Operation

Region

VO1 VO2 VOn

In
p

u
t C

la
m

p
 C

ircu
it

Inputs

VM1

VM2 VM3

+
-

R3

R3

R3

R3

VSG

VSG

VSG

VSG

VTH

(b) Neuron circuit schematic. All amplifiers and digital-to-analog

converters (DACs) operate from a single supply voltage and have

a limited normal operation region as shown in (d). Thus, node

voltages at VM1, VM2, VM3, Vbias and VS are clamped into [0, VDD].

(b) Measured current and voltage
sweep curve of memristors Yan et al.
(2019)

M
-
11

VS1

VI1

VIm

m×n memristor crossbar

ReLU Activation Circuit

Outputs

Rf

M
+

11

I
+

1 I
-
1

S
+
+

-

M
-
m1M

+
m1

M
-
12

VS2

Vbias2

M
+

12

I
+

2 I
-
2

S
+
+

-

M
-
m2M

+
m2

M
-
1n

VSn

Vbiasn

M
+

1n

I
+

n I
-
n

S
+
+

-

M
-
mnM

+
mn

Vo

Vbias

S
+
+

-

I
+ I

-

+
-

+
-

+

-

Vbias

I
+

I
-

VSRf

R1
R2

R2
R1

DAC1

Vbias1

DAC2 DACn

(a) Hardware schematic of a one-layer MNN for forward pass.

This crossbar implements a layer of synapses. Each synapse

consists of two memristors to allow positive and negative weights.

(c) Measured current-voltage sweep curve of

memristor from Yan et al. (2019), whose non-

destructive voltage range is [-0.2V, 0.2V] and

threshold voltage is 0.2V.

(d) The output voltages of amplifier circuits

and DACs are limited between 0V (ground)

and VDD (the supply voltage)

Vin

Vout

Saturation

 safe

operation

region

VDD

Saturation

0

Normal

Operation

Region

VO1 VO2 VOn

In
p

u
t C

la
m

p
 C

ircu
it

Inputs

VM1

VM2 VM3

+
-

R3

R3

R3

R3

VSG

VSG

VSG

VSG

VTH

(b) Neuron circuit schematic. All amplifiers and digital-to-analog

converters (DACs) operate from a single supply voltage and have

a limited normal operation region as shown in (d). Thus, node

voltages at VM1, VM2, VM3, Vbias and VS are clamped into [0, VDD].

(c) A neuron summation circuit. It uses resistors and operational am-
plifiers to scale the current difference of differential memristors, and
then adds a bias voltage from a digital-to-analog converter (DAC).

M
-
11

VS1

VI1

VIm

m×n memristor crossbar

ReLU Activation Circuit

Outputs

Rf

M
+

11

I
+

1 I
-
1

S
+
+

-

M
-
m1M

+
m1

M
-
12

VS2

Vbias2

M
+

12

I
+

2 I
-
2

S
+
+

-

M
-
m2M

+
m2

M
-
1n

VSn

Vbiasn

M
+

1n

I
+

n I
-
n

S
+
+

-

M
-
mnM

+
mn

Vo

Vbias

S
+
+

-

I
+ I

-

+
-

+
-

+

-

Vbias

I
+

I
-

VSRf

R1
R2

R2
R1

DAC1

Vbias1

DAC2 DACn

(a) Hardware schematic of a one-layer MNN for forward pass.

This crossbar implements a layer of synapses. Each synapse

consists of two memristors to allow positive and negative weights.

(c) Measured current-voltage sweep curve of

memristor from Yan et al. (2019), whose non-

destructive voltage range is [-0.2V, 0.2V] and

threshold voltage is 0.2V.

(d) The output voltages of amplifier circuits

and DACs are limited between 0V (ground)

and VDD (the supply voltage)

Vin

Vout

Saturation

 safe

operation

region

VDD

Saturation

0

Normal

Operation

Region

VO1 VO2 VOn

In
p

u
t C

la
m

p
 C

ircu
it

Inputs

VM1

VM2 VM3

+
-

R3

R3

R3

R3

VSG

VSG

VSG

VSG

VTH

(b) Neuron circuit schematic. All amplifiers and digital-to-analog

converters (DACs) operate from a single supply voltage and have

a limited normal operation region as shown in (d). Thus, node

voltages at VM1, VM2, VM3, Vbias and VS are clamped into [0, VDD].

(d) Output voltage swing of ampli-
fiers and DACs is limited between 0V
and VDD (the supply voltage).

Figure 1: MNN hardware overview and deployment restrictions.

voltage (i.e., VSG= VDD/2 in Figure 1(c)). In this way, all node voltages are between 0V and
VDD (the supply voltage), and the voltages (VIN1...VINm) in Figure 1(a) will be clamped into
[VSG − VTH , VSG + VTH]. In addition to the memristor threshold voltage restriction described
above, MNN devices, circuits, and systems suffer from the following restrictions and non-idealities:

Weight quantization noise. Offline-trained weight is implemented by memristor conductance in
MNN. Memristor is typically programmed to several conductance states, resulting in limited weight
bitwidth (i.e., 5 bits Yao et al. (2020) and 4 bits Wan et al. (2022)) and weight quantization noise.

Weight uncertainty noise. Due to physical mechanisms (e.g., device relaxation Mao et al. (2022);
Wan et al. (2022)) and a limited number of programming pulse cycles (e.g., 500 in Yao et al.
(2020)), memristor conductance manifests significant variations, leading to considerable mismatch
from offline-trained weight Büchel et al. (2022).

Limited output swing of operational amplifiers and DACs. The outputs of the amplifier or DAC
can only swing within the power supply range (assuming rail-to-rail circuit topologies are used). The
circuit outputs will be clamped at the ground or VDD level when the intended signal values exceed
the output swing range as shown in Figure 1(d). Such hardware restriction should be considered
during training.

Bias quantization noise of finite-resolution DACs. DAC circuits are widely used for bias voltage
generation due to their high precision and great flexibility. The output resolution of a DAC (usually
specified in bits) represents the smallest output increment that can be produced. When bias voltages
are generated by finite-resolution DACs, bias quantization noise potentially degrades the inference
performance.

4

Under review as a conference paper at ICLR 2023

4 HARDWARE-RESTRICTION-AWARE TRAINING (HRAT)

In this section, we present Hardware-Restriction-Aware Training (HRAT), which takes into account
various non-negligible restrictions of memristor devices, circuits, and systems. Figure 2(a) and
2(b) illustrate the HRAT process for a layer without BN and with the proposed BN fusing strategy,
respectively. In HRAT, weight parameters are quantized to mimic the process of using a limited
number of pulse cycles to program memristor conductance; bias parameters are quantized to mimic
bias quantization noise caused by the finite-resolution of DACs; process variation of memristor
devices is mimicked by adding weight uncertainty noise, and the limited output swing of operational
amplifiers and DACs is mimicked by a clamp function. Furthermore, a trainable scale factor s is
added to each layer. In this way, the output signal magnitude of each network layer can be adjusted
to a proper range. Key aspects of HRAT will be described in detail in the following subsections.

Fused Bias

Separate

Quant

Output

Clamp

Add Weight Uncertainty Noise

Div

Fused Linear

Input

Add

[-VTH, VTH]

ReLU

Scale

Clamp

Clamp

Clamp
[-VC, VC]

Quant

Factor = s

Weight

Fuse BN

MA fused scale

MA Mean & MA Var

Fused Weight

MA fused scale

Current unfused scale

[-VC, VC] [-VC, VC]

Weight

Quant

Output

Clamp

Add Weight Uncertainty Noise

Bias

Div

Linear

Input

Add

ReLU

Clamp

Clamp

Clamp

Quant

Factor = s

VTH: non-destructive threshold voltage of memristor
VC : maximum allowable positive signal level, = s * VDD/2

[-VTH, VTH]

[-VC, VC]

[-VC, VC]

[-VC, VC]

VDD: supply voltage for MNN s : a learnable scale factor

Batch Norm

yBN

yBN w/o Fused Bias

Update MA Mean & MA Var

y w/o Bias

[0, VC]

[0, VC]

yBN w/o Fused Bias

yBN

Add Bias

y

-VC : minimum allowable negative signal level, = s *(-VDD/2)

[0, VDD/2] [0, VDD/2]

(a) HRAT for a network layer without BN

Fused Bias

Separate

Quant

Output

Clamp

Add Weight Uncertainty Noise

Div

Fused Linear

Input

Add

[-VTH, VTH]

ReLU

Scale

Clamp

Clamp

Clamp
[-VC, VC]

Quant

Factor = s

Weight

Fuse BN

MA fused scale

MA Mean & MA Var

Fused Weight

MA fused scale

Current unfused scale

[-VC, VC] [-VC, VC]

Weight

Quant

Output

Clamp

Add Weight Uncertainty Noise

Bias

Div

Linear

Input

Add

ReLU

Clamp

Clamp

Clamp

Quant

Factor = s

VTH: non-destructive threshold voltage of memristor
VC : maximum allowable positive signal level, = s * VDD/2

[-VTH, VTH]

[-VC, VC]

[-VC, VC]

[-VC, VC]

VDD: supply voltage for MNN s : a learnable scale factor

Batch Norm

yBN

yBN w/o Fused Bias

Update MA Mean & MA Var

y w/o Bias

[0, VC]

[0, VC]

yBN w/o Fused Bias

yBN

Add Bias

y

-VC : minimum allowable negative signal level, = s *(-VDD/2)

[0, VDD/2] [0, VDD/2]

(b) HRAT for a network layer with BN fusion

Figure 2: Hardware-restriction-aware training (HRAT) for MNNs.

4.1 PARAMETER-NOISE-AWARE TRAINING

Instead of training MNNs at full precision, their offline-trained weights are typically quantized to
finite discrete states (i.e., 5 bits Yao et al. (2020) and 4 bits Mao et al. (2022); Wan et al. (2022)).
As described in Appendix A.1, we uniformly quantize weight parameters and symmetrically clamp
the states to a finite number. To model the weight uncertainty and improve the noise robustness of
MNNs, we follow Murray & Edwards (1994); Wan et al. (2022) and inject Gaussian noise to weight
parameters during forward pass. Thus, weight quantization noise and weight uncertainty noise are
added to weight parameters during training. Similarly, due to the limited resolution of DACs, DAC
outputs are linearly quantized. Quantization noise is injected into the bias parameter during training.
To solve the non-differentiation issue of quantization function, we use the Straight-Through Estima-
tor (STE) trick to relax the quantization function of weight and bias parameters. The perception of
weight and bias noise during training is called parameter-noise-aware training, through which the
resulting neural networks are insensitive to MNN deployment restrictions of weight quantization,
weight uncertainty, and bias quantization noise. While other methods may perform better in ad-
dressing parameter noise (e.g., adversarial training Büchel et al. (2022)), simply injecting parameter
noise is more computation efficient and sufficient for maintaining MNN accuracy.

5

Under review as a conference paper at ICLR 2023

4.2 NON-DESTRUCTIVE THRESHOLD VOLTAGE OF MEMRISTORS

During inference, a memristor should operate at or below its non-destructive threshold voltage to
avoid conductance drift. As the threshold voltage is usually low (e.g., 0.1V Yan et al. (2018) , 0.2V
Yan et al. (2019), 0.2V Yao et al. (2020)), the magnitude of most input signals to memristor crossbars
will be chopped by the input clamp circuit in Figure 1(a)), causing significant signal distortion.
Therefore, HRAT clamps the signal magnitude across memristor crossbars to [−VTH , VTH] during
training to correspond to the input clamp circuit in hardware MNNs.

4.3 SIGNAL MAGNITUDE SCALING

Note that all output voltages of operational amplifers and DACs in Figure 1 are restricted between
0 and VDD. By setting the signal ground level VSG=VDD/2 in the neuron summation circuit of
Figure 1(c), the equivalent signal swing range is [− VDD/2 , VDD/2]. Then, by introducing a
learnable scale factor s for each network layer in the proposed HRAT, the equivalent signal swing
range at these hardware nodes is clamped to [− s · VDD/2 , s · VDD/2]. Overall, HRAT divides
output signals of a network layer by a scale factor s and attempts to linearly compresses them within
the output swing of operational amplifiers and DACs. During inference, these scale factors can be
incorporated into the parameters of linear operation together with fused BN, so no additional signal
scaling circuits are required.

4.4 BN FUSING STRATEGY

Training an MNN with or without BN layers makes a big difference. The training process for a
network layer without BN operation is illustrated in Figure 2(a), which takes into account the above
hardware restrictions. Regarding training a network layer with BN operation, we propose a new
BN fusing strategy to align the restriction-induced distortion between offline training and hardware
inference. Referring to PyTorch (2022), this new BN fusing strategy performs one linear operation.
As illustrated in Figure 2(b), the fused weight is first obtained using the MA statistics, and then the
weight quantization noise and weight uncertainty noise are injected into the fused weight. Next, after
performing the fused linear operation, the output is corrected to the unfused scale by multiplying√
σ2 + ϵ

/
γ . Because the corrected output is on the unfused scale, normal BN can be performed to

obtain the result yBN and update the MA statistics. Since the calculation of yBN does not consider
hardware restrictions, yBN is separated into two terms: fused bias bfused and BN result without
fused bias ‘yBN − bfused’. Next, bias quantization noise is added into the bfused. Then, quantized
bfused, ‘yBN − bfused’ and their sum are clamped to the range of [− s · VDD/2 , s · VDD/2],
respectively. After passing a ReLU activation function and dividing a scale factor s, the final output
of HRAT for a network layer is limited to [0, VDD/2].

5 BASELINE NETWORK ARCHITECTURES AND EXPERIMENTAL SETUP

We choose a four-layer fully connected NN (FC-4), LeNet-5 LeCun et al. (1998), and VGG-16
Simonyan & Zisserman (2015), as our baseline architectures. We design the miniature model FC-4
for rapid verification of the proposed HRAT algorithm. FC-4 consists of three hidden layers and
one classification layer. The three hidden layers have 512, 128, and 32 nodes respectively. LeNet-
5 and VGG-16 are implemented from the original papers, only slightly different to accommodate
different datasets. For experiments on the CIFAR datasets, the number of features in the hidden
layers of LeNet-5 is increased by a factor of 5. For fast convergence and better performance, we
also implement batch normalization (BN) layers in each baseline model. Features are normalized
via BN except for the fully connected layers in VGG-16. The default supply voltage of MNNs
is 3V. Memristor behaviors (e.g., the non-destructive threshold voltage of 0.2V and conductance
tuning range of [2µS, 20µS]) are obtained from the experimental results Yao et al. (2020). Offline
weights are initialized and limited to the range of [-1,1]. After HRAT, offline-trained weights are
transformed to the memristor conductance values for hardware deployment. Weight noise follows
a Gaussian distribution and is generated according to the weight range, for example, std=0.1 means
that the standard deviation of weight noise is equal to 10% of the entire weight range. We use 40
test runs to statistically measure the inference performance of these baseline architectures.

6

Under review as a conference paper at ICLR 2023

6 EXPERIMENTAL RESULTS AND DISCUSSION

6.1 FC-4 AND LENET-5 ON MNIST

Figure 3(a) plots the mean inference accuracy of FC-4 on MNIST for several combinations of weight
noise and weight bitwidth. An inference accuracy of 98.60% is obtained using the software bench-
mark models (i.e., floating-point or 8-bit quantized weights without MNN hardware restrictions).
Mean accuracies of 96.05% and 97.82% are achieved for HRAT without and with signal strength
scaling, respectively. The 1.77% accuracy difference reflects the importance of performing signal
magnitude scaling in HRAT. If on-chip retraining is performed after HRAT, the mean accuracy rises
from 97.82% to 98.40%, which is very close to the software benchmark result (i.e., 98.60%). Al-
though on-chip retraining has been demonstrated in small-scale MNNs Li et al. (2018); Wang et al.
(2019); Yao et al. (2020) to recover the accuracy drop caused by hardware non-idealities, such ap-
proaches require complex analog backpropagation learning circuitry Krestinskaya et al. (2018a;b),
making them unsuitable for cost-effective hardware implementation. Figure 3(b) plots the standard
deviation (std) of inference accuracy for FC-4 on MNIST. HRAT results in an average variance of in-
ference accuracy of 0.39, which drops to 0.07 after performing on-chip retraining. Figure 3(c) plots
the mean inference accuracy of LeNet-5 on MNIST for several combinations of power supply volt-
age VDD and memristor threshold voltage VTH , assuming zero weight noise and 8-bit quantized
weights. Thanks to signal magnitude scaling, HRAT is insensitive to the choice of power supply
voltage and memristor threshold voltage, and hence achieves a mean accuracy of 98.84%. Figure
3(d) shows very close inference accuracy of FC-4 and LeNet-5 models on MNIST with HRAT.

(a) Mean inference accuracy of FC-4 on MNIST (b) Inference variance of MNN FC-4 on MNIST

(c) Mean inference accuracy of MNN LeNet-5 on
MNIST for several combinations of VDD and VTH

(d) Approximate inference accuracy of FC-4 and
LeNet-5 models on MNIST with HRAT

Figure 3: Inference performance of MNN FC-4 and LeNet-5 models on MNIST.

7

Under review as a conference paper at ICLR 2023

To validate the proposed HRAT, offline trained FC-4 and LeNet-5 models are implemented in hard-
ware circuits and simulated using the Cadence Spectre tool. Fully-connected layers are implemented
according to Figure 1(a) (Figure 6 in Appendix for details). For convolutional layers, each filter
kernel is implemented by a sub-circuit similar to a fully-connected layer. The filter sub-circuit is in-
stantiated multiple times, so all neuron convolutions of a layer are computed simultaneously. ReLU
activation and max pooling are also implemented by dedicated analog circuits. BN fused weights
and biases, along with scale parameters obtained from HRAT are transformed to memristor con-
ductance values, DAC outputs, and amplifier gains in these analog circuits. To reduce hardware
simulation time, we use a macro model of operational amplifiers to capture realistic behaviors, such
as limited output swings, finite voltage gain, limited bandwidth, etc. Then, output voltages of each
neuron obtained from hardware circuit simulations are compared with their corresponding offline
HRAT results. We find hardware simulation matches with offline HRAT. (Appendix A.4 for details)

6.2 VGG-16 ON CIFAR DATASETS

Figure 4(a) plots the mean inference accuracy of VGG-16 on CIFAR-100 for several combinations
of weight noise and weight bitwidth. The software benchmark models (i.e., floating-point weights
or 8-bit quantized weights) achieve inference accuracies of 68.59% and 66.27%, respectively. Note
that software benchmark models are not affected by hardware non-idealities. At a weight noise level
of std = 0.025, HRAT with 6-bit quantized weight leads to the highest accuracy of 62.85%. When
the weight noise level is std = 0.05, HRAT with 4-bit quantized weight leads to the highest accuracy
of 57.94%, which is only 8.33% lower than the software benchmark model (i.e., 66.27%). Note
std=0.05 means that the standard deviation of Gaussian weight noise is equal to 5% of the entire
weight range, this weight noise level is significant. These results demonstrate that HRAT is robust
to weight noise disturbance. Figure 4(a) also reveals that, for a given weight noise level, there is
an optimal weight bitwidth to balance the trade-off between noise immunity and expressiveness of
MNN. Lower bitwidth means higher quantization noise is injected into weight during training, thus
exhibiting stronger noise immunity during inference. However, lower bitwidth is not always better,
because the expressive power of the model is limited Yoon et al. (2022). This explains why the
optimal weight bitwidth in Figure 4(a) tends to be lower at stronger noise levels. Furthermore, Figure
4(a) shows that if the signal magnitude scaling is not performed in HRAT, training cannot converge
at all. Compared to Figure 3(a), where a 1.77% drop in accuracy for FC-4 trained by HRAT without
signal magnitude scaling, we can see that signal magnitude scaling is more critical and indispensable
in large-scale MNNs. As shown in Figure 4(a), if VGG-16 is retrained on-chip after HRAT, the
best accuracy rises to 65.93% and 65.88% for the weight noise levels of std=0.025 and std=0.05,
respectively. Both accuracies are close to the software benchmark result (i.e., 66.27%). Figure
4(a) also shows that the optimal weight bitwidth for on-chip retraining is 8. This is because on-chip
retraining is done individually for each deployed MNN, instead of statistically like HRAT. Therefore,
for each VGG-16 model under on-chip retraining, weight uncertainty caused by memristor variations
becomes deterministic rather than stochastic. As a result, when training a model with deterministic
weight uncertainty, the higher the weight bitwidth, the better the retraining result.

Figure 4(b) plots the variance of inference accuracy for VGG-16 on CIFAR-100. As lower bitwidth
is more robust to noise disturbance, HRAT with lower bitwidth leads to less variance in inference
accuracy. For HRAT with on-chip retraining, since retraining is performed individually with deter-
ministic weight uncertainty, higher bitwidth results in less variance in inference accuracy.

The effect of DAC resolution on HRAT is simulated and depicted in Figure 4(c) and 4(d), where the
performance of software benchmark models is also plotted for comparison. Both figures demonstrate
that the use of finite-resolution of DACs has a big impact on inference. If an ideal DAC (i.e.,
infinitely small resolution) is used to generate bias, an increase in weight noise reduces the inference
accuracy. For a fixed weight noise level, the reduction in DAC resolution significantly deteriorates
inference. Figure 4(e) shows that very close results can be obtained using 14-bit or ideal DACs (i.e.,
infinitely small resolution) for bias generation. To maintain high inference accuracy, DAC resolution
for VGG-16 on CIFAR-10 and CIFAR-100 needs to be no lower than 9 or 12 bits, respectively.

To investigate the effect of using learnable scale factors on HRAT, Figure 4(f) plots the inference
accuracy curves of VGG-16 over 500 epochs on CIFAR-100. Compared with simulation curves
using fixed scale factors in HRAT, the learnable scale factors help VGG-16 to converge with 2.42%
and 4.71% higher accuracy for ideal DACs and 11-bit DACs, respectively.

8

Under review as a conference paper at ICLR 2023

(a) Mean accuracy of VGG-16 on CIFAR-100 (b) Inference variance of VGG-16 on CIFAR-100

(c) VGG-16 accuracy vs. bitwidth on CIFAR-10 (d) VGG-16 accuracy vs. bitwidth on CIFAR-100

(e) Effect of DAC resolution on HRAT

Ideal DAC for Bias Generation 11-bit DAC for Bias Generation

(f) Effect of a learnable scale factor s on HRAT

Figure 4: Inference performance of MNN VGG-16 models on CIFAR datasets.

7 CONCLUSION

We propose hardware-restriction-aware training (HRAT) for memristor neural networks (MNNs)
to consider non-negligible hardware restrictions. HRAT integrates various hardware restrictions,
adopts a new BN fusing strategy, and dynamically adjusts signal magnitude to avoid distortion. The
simulation results of MNN hardware implementation match well with HRAT results, validating that
HRAT successfully mimics the realistic behavior and hardware restrictions of MNNs during offline
training. Experimental results also demonstrate that HRAT can lead to state-of-the-art MNNs with-
out performing prohibitively expensive and time-consuming on-chip retraining, enabling low-cost
high-performance MNNs for large-scale commercialization of neuromorphic computing systems.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Julian Büchel, Fynn Faber, and Dylan R Muir. Network insensitivity to parameter noise via adver-
sarial regularization. In ICLR, 2022.

Di Gao, Grace Li Zhang, Xunzhao Yin, Bing Li, Ulf Schlichtmann, and Cheng Zhuo. Reli-
able memristor-based neuromorphic design using variation-and defect-aware training. In 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya, Pinaki Mazumder, and Wei
Lu. Nanoscale memristor device as synapse in neuromorphic systems. Nano letters, 10(4):1297–
1301, 2010.

Jim Karki. Understanding operational amplifier specifications. Technical report, Texas Instruments,
July 2021.

Olga Krestinskaya, Khaled Nabil Salama, and Alex Pappachen James. Analog backpropagation
learning circuits for memristive crossbar neural networks. In 2018 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–5. IEEE, 2018a.

Olga Krestinskaya, Khaled Nabil Salama, and Alex Pappachen James. Learning in memristive neu-
ral network architectures using analog backpropagation circuits. IEEE Transactions on Circuits
and Systems I: Regular Papers, 66(2):719–732, 2018b.

Olga Krestinskaya, Alex Pappachen James, and Leon Ong Chua. Neuromemristive circuits for edge
computing: A review. IEEE transactions on neural networks and learning systems, 31(1):4–23,
2019.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao Jiang, Eric Montgomery,
Peng Lin, Zhongrui Wang, et al. Efficient and self-adaptive in-situ learning in multilayer memris-
tor neural networks. Nature communications, 9(1):1–8, 2018.

Beiye Liu, Hai Li, Yiran Chen, Xin Li, Qing Wu, and Tingwen Huang. Vortex: Variation-aware
training for memristor x-bar. In Proceedings of the 52nd Annual Design Automation Conference,
pp. 1–6, 2015.

Ruibin Mao, Bo Wen, Mingrui Jiang, Jiezhi Chen, and Can Li. Experimentally-validated crossbar
model for defect-aware training of neural networks. IEEE Transactions on Circuits and Systems
II: Express Briefs, 69(5):2468–2472, 2022.

Alan F Murray and Peter J Edwards. Enhanced mlp performance and fault tolerance resulting from
synaptic weight noise during training. IEEE Transactions on neural networks, 5(5):792–802,
1994.

Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, Gina C Adam, Konstantin K Likharev, and
Dmitri B Strukov. Training and operation of an integrated neuromorphic network based on metal-
oxide memristors. Nature, 521(7550):61–64, 2015.

PyTorch. Pytorch qat module. https://github.com/pytorch/pytorch/blob/mast
er/torch/nn/intrinsic/qat/modules/conv_fused.py, 2022. Accessed: 2022-
09-22.

10

https://github.com/pytorch/pytorch/blob/master/torch/nn/intrinsic/qat/modules/conv_fused.py
https://github.com/pytorch/pytorch/blob/master/torch/nn/intrinsic/qat/modules/conv_fused.py

Under review as a conference paper at ICLR 2023

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2015.

Weier Wan, Rajkumar Kubendran, Clemens Schaefer, Sukru Burc Eryilmaz, Wenqiang Zhang,
Dabin Wu, Stephen Deiss, Priyanka Raina, He Qian, Bin Gao, et al. A compute-in-memory
chip based on resistive random-access memory. Nature, 608(7923):504–512, 2022.

Zhongrui Wang, Can Li, Peng Lin, Mingyi Rao, Yongyang Nie, Wenhao Song, Qinru Qiu, Yunning
Li, Peng Yan, John Paul Strachan, et al. In situ training of feed-forward and recurrent convolu-
tional memristor networks. Nature Machine Intelligence, 1(9):434–442, 2019.

Xiaobing Yan, Lei Zhang, Huawei Chen, Xiaoyan Li, Jingjuan Wang, Qi Liu, Chao Lu, Jingsheng
Chen, Huaqiang Wu, and Peng Zhou. Graphene oxide quantum dots memristors with progres-
sive conduction tuning for artificial synaptic learning. Advanced Functional Materials, 114(28):
1803728, 2018.

Xiaobing Yan, Hui Li, Lei Zhang, Chao Lu, Jianhui Zhao, Zhenyu Zhou, Hong Wang, Jingjuan
Wang, Xiaoyan Li, Yifei Pei, et al. Density effects of graphene oxide quantum dots on character-
istics of zr0. 5hf0. 5o2 film memristors. Applied Physics Letters, 114(16):162906, 2019.

Xiaoxuan Yang, Syrine Belakaria, Biresh Kumar Joardar, Huanrui Yang, Janardhan Rao Doppa,
Partha Pratim Pande, Krishnendu Chakrabarty, and Hai Helen Li. Multi-objective optimization of
reram crossbars for robust dnn inferencing under stochastic noise. In 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2021.

Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, J Joshua Yang,
and He Qian. Fully hardware-implemented memristor convolutional neural network. Nature, 577
(7792):641–646, 2020.

Jaehong Yoon, Geon Park, Wonyong Jeong, and Sung Ju Hwang. Bitwidth heterogeneous federated
learning with progressive weight dequantization. arXiv preprint arXiv:2202.11453, 2022.

Ying Zhu, Grace Li Zhang, Tianchen Wang, Bing Li, Yiyu Shi, Tsung-Yi Ho, and Ulf Schlichtmann.
Statistical training for neuromorphic computing using memristor-based crossbars considering pro-
cess variations and noise. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1590–1593. IEEE, 2020.

A APPENDIX

A.1 WEIGHT QUANTIZATION

To simplify the conductance programming of memristor crossbars, weights are quantized into a
finite number of states. Low-precision weight makes the model insensitive to deployment noise.
Lower bitwidth means higher quantization noise is injected to weight during training. Because
weight quantization is deterministic, only uncertainty noise causes weight distortion after on-chip
deployment. Lower bitwidth does not always lead to better results, since it limits the representative
power of neural networks.

In this work, we uniformly quantize weights using the following quantization function:

Q(W ; bw) = Cbw(⌊
W

∆
⌉∆) (1)

where ∆ is a trainable parameter of the quantization function to denote the quantization step size, ⌊·⌉
denotes the rounding operation, bw is a given bitwidth, and Cbw(·) clamps quantized values into the
range of [−(2bw−1 − 1) ·∆, (2bw−1 − 1) ·∆]. Due to the non-differentiation of rounding operation,
weight and quantization function cannot be trained through gradient-based optimizers. To address
this issue, Eq. (1) is converted into a differentiable form:

Q(W ; bw) = Cbw((
W

∆
+ δrounding) ·∆) (2)

11

Under review as a conference paper at ICLR 2023

where the rounding noise δrounding = ⌊W
∆ ⌉ − W

∆ . We assume that δrounding is an independent
noise, so the gradient of the non-differential δrounding is not calculated during back-propagation.
This method is also known as the Straight-Through Estimator (STE) trick. Thus, the gradient of W
and ∆ is obtained through the back-propagation algorithm. Therefore, we can easily train memristor
neural networks with gradient-based optimizers.

A.2 EXISTING BN FUSING STRATEGIES

A linear layer with BN is expressed as:

y = Wx+ b (3)

and

yBN = γ
y − µB√
σ2
B + ϵ

+ β (4)

Where x is the input, W is the weight parameter, b is the bias term, γ is the learnable scale factor
of BN, β is the bias term of BN, µB is mean output of the current batch, and σ2

B is the variance of
the current batch. During inference, MA statistics µ and σ2 are used for normalization. For full
precision software models, BN is fused into the linear operation via combining (3) and (4). Then,
the inference can be calculated with fused parameters (fused weight and fused bias) as:

yBN =
γ√

σ2 + ϵ
Wx+ β +

γ√
σ2 + ϵ

(b− µ) (5)

where the fused weight Wfused = γ√
σ2+ϵ

W , and the fused bias bfused = β + γ√
σ2+ϵ

(b− µ).

During training, existing BN fusing strategies are illustrated in Figure 5. Figure 5(a) shows that
instead of fusing BN during training, BN is fused during deployment according to Eq. (5). Wan
et al. (2022) train their MNN in this way. Figure 5(b) 5(c) 5(d) illustrate the training schemes for
quantization-aware training (QAT). They assume that the quantization effect of fused bias can be
ignored, so only consider the distortion caused by the fused weight quantization. During inference,
only fused linear operation needs to be performed using fused weight and bias obtained from the
MA statistics.

Fused Weight

Input

Fuse BN

Fused Linear

Mean & Var

Quant

Linear

Weight & Bias

Fused Bias

Add

Output

Current fused scale

Current fused scale

Current fused scale

y

yBN

yBN w/o Fused Bias

Update MA
Mean & MA Var

Fuse BN

Fused Linear

Input

Mean & Var

Quant

Linear

Weight & Bias

Add

Output

Update MA
Mean & MA Var

Fused Weight

Scale

MA fused scale

Current fused scale

Fused Bias

MA fused scale

Current fused scale

yBN w/o Fused Bias

y

yBN w/o Fused Bias

yBN

Input

Fused Linear

Fused weight

Quant

Weight

Output

Fuse BN

Add

Scale

 Bias

MA fused scale

MA fused scale

Current unfused scale

MA Mean
& MA Var

y w/o Fused Bias

yBN w/o Fused Bias

y

yBN

Update MA
Mean & MA Var

Input

Linear

Weight

y

Output
yBN

Quant

AddBias

Batch Norm

Batch Norm

(a) W/o fusing BN

Fused Weight

Input

Fuse BN

Fused Linear

Mean & Var

Quant

Linear

Weight & Bias

Fused Bias

Add

Output

Current fused scale

Current fused scale

Current fused scale

y

yBN

yBN w/o Fused Bias

Update MA
Mean & MA Var

Fuse BN

Fused Linear

Input

Mean & Var

Quant

Linear

Weight & Bias

Add

Output

Update MA
Mean & MA Var

Fused Weight

Scale

MA fused scale

Current fused scale

Fused Bias

MA fused scale

Current fused scale

yBN w/o Fused Bias

y

yBN w/o Fused Bias

yBN

Input

Fused Linear

Fused Weight

Quant

Weight

Output

Fuse BN

Add

Scale

 Bias

MA fused scale

MA fused scale

Current unfused scale

MA Mean
& MA Var

y w/o Fused Bias

yBN w/o Fused Bias

y

yBN

Update MA
Mean & MA Var

Input

Linear

Weight

y

Output
yBN

Quant

AddBias

Batch Norm

Batch Norm

(b) Jacob et al. (2018)

Fused Weight

Input

Fuse BN

Fused Linear

Mean & Var

Quant

Linear

Weight & Bias

Fused Bias

Add

Output

Current fused scale

Current fused scale

Current fused scale

y

yBN

yBN w/o Fused Bias

Update MA
Mean & MA Var

Fuse BN

Fused Linear

Input

Mean & Var

Quant

Linear

Weight & Bias

Add

Output

Update MA
Mean & MA Var

Fused Weight

Scale

MA fused scale

Current fused scale

Fused Bias

MA fused scale

Current fused scale

yBN w/o Fused Bias

y

yBN w/o Fused Bias

yBN

Input

Fused Linear

Fused Weight

Quant

Weight

Output

Fuse BN

Add

Scale

 Bias

MA fused scale

MA fused scale

Current unfused scale

MA Mean
& MA Var

y w/o Fused Bias

yBN w/o Fused Bias

y

yBN

Update MA
Mean & MA Var

Input

Linear

Weight

y

Output
yBN

Quant

AddBias

Batch Norm

Batch Norm

(c) Krishnamoorthi (2018)

Fused Weight

Input

Fuse BN

Fused Linear

Mean & Var

Quant

Linear

Weight & Bias

Fused Bias

Add

Output

Current fused scale

Current fused scale

Current fused scale

y

yBN

yBN w/o Fused Bias

Update MA
Mean & MA Var

Fuse BN

Fused Linear

Input

Mean & Var

Quant

Linear

Weight & Bias

Add

Output

Update MA
Mean & MA Var

Fused Weight

Scale

MA fused scale

Current fused scale

Fused Bias

MA fused scale

Current fused scale

yBN w/o Fused Bias

y

yBN w/o Fused Bias

yBN

Input

Fused Linear

Fused Weight

Quant

Weight

Output

Fuse BN

Add

Scale

 Bias

MA fused scale

MA fused scale

Current unfused scale

MA Mean
& MA Var

y w/o Bias

yBN w/o Fused Bias

y

yBN

Update MA
Mean & MA Var

Input

Linear

Weight

y

Output
yBN

Quant

AddBias

Batch Norm

Batch Norm

(d) PyTorch

Figure 5: Existing BN fusing strategies in literature.

12

Under review as a conference paper at ICLR 2023

A.3 FORMULATIONS OF HRAT

A.3.1 TRAINING WITHOUT BN

As illustrated in Fig. 2(a), training a fully-connected layer without BN is expressed as:

y =
ReLU(CVc

(CVc
((Q(W ; bw) +Wnoise)CVTH

(x)) +Q(b)))

s
(6)

where CVc(·) clamps input to the scaled signal range of [−Vc, Vc], Vc = s · VDD/2 , Wnoise is
generated from a Gaussian distribution to model memristor variations, s is a learnable scale factor.
Q(b) quantizes b according to the bitwidth of DAC and the scaled signal range of [−Vc, Vc]. In fact,
we use uniform noise instead of quantization noise to introduce randomness.

After training, weight is divided by s to obtain scaled weight. Since a memristor usually has a certain
conductance range to tune (e.g., [2µS, 20µS] Yao et al. (2020)), scaled weight is transformed to a
memristor conductance by multiplying a converting factor sc as:

Wdeploy = sc ·
Q(W ; bw)

s
(7)

Bias is divided by s to fuse the scale factor.

bdeploy =
Q(b)

s
(8)

Then, we can program Wdeploy to memristor crossbars and program bdeploy to DACs. Since weight
is transformed to the memristor conductance range, an additional signal amplification factor 1/sc
should be taken into account. Therefore, the inference is expressed as:

y = ReLU(CVDD/2 (CVDD/2 (1/sc · (Wdeploy +Wnoise)CVTH
(x)) + bdeploy)) (9)

A.3.2 TRAINING WITH THE PROPOSED BN FUSING STRATEGY

Figure 2(b) shows a fully-connected layer trained with the proposed BN fusing strategy. Deployment
noise is applied on fused weight, through introducing a factor γ√

σ2+ϵ
, we fuse weight as:

Wfused =
γ√

σ2 + ϵ
·W (10)

In order to apply a normal BN after fused linear operation, we correct the output to original scale
by dividing γ√

σ2+ϵ
, and then the bias term is added to the output of original scale. Before applying

BN, we have:
y = Q(Wfused; bw) +Wnoise)CVTH

(x) +Q(b) (11)

The result yBN is obtained by applying a normal BN according to Eq. (4). The above steps only
address fused weight, other hardware restrictions are still not integrated. In order to quantize fused
bias and clamp the output range, we separate yBN to fused bias bfused and ȳBN .

bfused = β +
γ√

σ2 + ϵ
(b− µ) (12)

ȳBN = yBN − bfused (13)

Then, other hardware restrictions are applied based on the illustration in Figure 2(b). After training,
the BN and s are fused into previous linear operation. So we have

Wdeploy = sc ·
Q(γ√

σ2+ϵ
W ; bw)

s
(14)

bdeploy =
Q(bfused)

s
(15)

Finally, we can perform hardware deployment, similar to the steps in Section A.3.1.

13

Under review as a conference paper at ICLR 2023

A.4 CIRCUIT SIMULATION RESULTS

Figure 6 shows the hardware operation of a fully-connected layer. The input signal is clamped to
avoid excessive voltage across memristors. Linear operation is executed via a memristor crossbar,
where weights are programmed into memristor conductance values. The output of linear operation,
along with bias voltages from DACs, are passed to a neuron summation circuit and activation circuit
for processing. Table 1 summarizes the difference in results between offline HRAT and hardware
circuit simulation for all nodes across all layers of LeNet-5. The second column lists the number of
outputs at each layer. We use the MNIST dataset with an input dimension of 28 × 28 × 1 for this
experiment. Hence, the output dimension of the first convolutional layer is 24 × 24 × 6. The last
three columns summarize the maximum, mean, and standard deviation of the error values for each
network layer. It demonstrates that circuit simulation results closely match the offline HRAT results.

Linear operation via a memristor crossbar,
where weight are programmed into

memristor conductance with uncertainties

Bias voltages
from DACs

Output

Input

Neuron summation Circuit

[VSG-VTH, VSG+VTH]

ReLU Activation Circuit

Input Clamp Circuit

[0, VDD]

[0, VDD]

[VDD/2, VDD]

Figure 6: Schematic of a fully-connected layer for memristor neural network.

Table 1: All-layer output comparison of LeNet-5 between offline HRAT and hardware simulation.

network layer # of outputs Maximum Error Mean error Error variance std
conv. layer 1 3456 1.40× 10−3 1.24× 10−4 1.85× 10−4

conv. layer 2 1024 3.56× 10−3 3.97× 10−4 5.82× 10−4

fc layer 1 120 2.29× 10−3 3.33× 10−4 5.15× 10−4

fc layer 2 84 4.10× 10−3 7.83× 10−4 1.07× 10−3

fc layer 3 10 8.00× 10−2 1.59× 10−2 2.73× 10−2

A.5 SIMULATION RESULTS OF VGG-16 ON CIFAR DATASETS

Table 2 lists the mean inference accuracy of VGG-16 on CIFAR datasets, when four weight noise
levels (std=0, std=0.025, std=0.5, and std=0.075) are present. VGG-16 is either trained by HRAT,
or by HRAT followed by on-chip retraining. The optimal weight bitwidth is selected to report
the highest inference accuracy for each case. The inference accuracy of HRAT slowly drops as
the weight noise level increases. At a strong weight noise level (std=0.05), HRAT achieves a high
accuracy of 87.24% for CIFAR-10 dataset. If on-chip retraining is applied after HRAT, the inference
accuracy is close to the baseline (i.e., weight noise std=0) results.

Table 2: Performance comparison among various weight noise levels for VGG-16 on CIFAR
datasets, assuming very high-resolution DACs are used for bias generation.

CIFAR-10 CIFAR-100
Weight Noise (std) HRAT HRAT+retrain Diff HRAT HRAT+retrain Diff

0.0 (baseline) 91.48 91.48 0.0 66.27 66.27 0.0
0.025 90.33 91.30 0.97 62.85 65.93 3.08
0.05 87.24 90.72 3.48 57.94 65.88 7.94
0.075 84.70 90.70 6.00 55.64 66.10 10.46

14

	Introduction
	Related Work
	MNN hardware deployment and restrictions
	Hardware-Restriction-Aware Training (HRAT)
	Parameter-noise-aware training
	Non-destructive threshold voltage of memristors
	Signal magnitude scaling
	BN fusing strategy

	Baseline Network Architectures and Experimental Setup
	Experimental Results and Discussion
	FC-4 and LeNet-5 on MNIST
	VGG-16 on CIFAR datasets

	Conclusion
	Appendix
	Weight quantization
	Existing BN fusing strategies
	Formulations of HRAT
	Training without BN
	Training with the proposed BN fusing strategy

	Circuit simulation results
	Simulation results of VGG-16 on CIFAR datasets

