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Abstract

Solving math word problem (MWP) remains a
challenging task, as it requires to understand
both the semantic meanings of the text and
the mathematical logic among quantities, i.e.,
for both semantics modal and quantity modal
learning. Current MWP encoders work in a
uni-modal setting and map the given problem
description to a latent representation, then for
decoding. The generalizability of these MWP
encoders is thus limited because some prob-
lems are semantics-demanding and others are
quantity-demanding. To address this problem,
we propose a Compositional Math Word Prob-
lem Solver (C-MWP) which works in a bi-
modal setting encoding in an interactive way.
Extensive experiments validate the effective-
ness of C-MWP and show its superiority over
state-of-the-art models on public benchmarks.

1 Introduction

The task of math word problem (MWP) solving
aims to map natural language problem descriptions
into executable solution equations to get the correct
answer, which is a sub-area of neuro-symbolic rea-
soning. It requires perceptual abilities such as com-
prehending the question, identifying the quantities
and corresponding attributes, as well as complex
semantics understanding skills like performing log-
ical inference, making comparisons and leveraging
external mathematical knowledge.

While MWP encoders have been sophisticat-
edly designed to understand the natural language
problem description, the difference on understand-
ing diverse types of problems has not been aware
of. Our investigation finds that MWP can gener-
ally be grouped into three categories, “Story Prob-
lem”, “Algebra Problem” and “Knowledge Prob-
lem”. “Story Problem” often includes significant
amount of background information like characters,
objectives and behaviors. “Algebra Problems” in-
volves math notations or is composed of elementary

concepts. “Knowledge Problem” asks for external
knowledge like geometry and number sequence.
Examples of different types of problems are given
in the appendix.

These types of problems can be compositionally
understood at the different level attention to the
semantics modal and quantity modal. However, the
encoders in existing MWP solvers either model
only the semantics modality or utilize quantity
modal priors to refine the MWP encoding (Zhang
et al., 2020; Shen and Jin, 2020). This limitation,
one joint modal cannot do it all, decreases the
generalization of MWP solvers and is what com-
positional learning aims to address. In this work,
we propose to disentangle semantics modal and
quantity modal by compositional learning at the
encoding stage, aiming to improve the general-
ization across different types of problems.

Contributions. Our main contributions are three-
fold. (i) A novel and effective bi-modal approach
is proposed for the first time to enable MWP com-
positional understanding. (ii) A joint reasoning
module with multi-step is designed for our bi-
modal architectures to flexibly incorporate different
modalities. (iii) Extensive experiments and abla-
tive studies on two large-scale MWP benchmarks —
Math23k (Wang et al., 2017) and MAWPS (Koncel-
Kedziorski et al., 2016) show the superiority of the
proposed approach over related works.

2 Our approach

The overview of our proposed model is shown in
Figure 1.

2.1 Compositional Mathematical Encoder

The CMEncoder block consists of an semantic en-
coder, a quantity encoder and a dynamic fusion
block. The semantic encoder aims to extract se-
mantics information from the problem description,
understanding the background and objectives. The
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Figure 1: The overall architecture of the proposed network C-MWP, which is composed of two stacked CMEn-
coders and a decoder (the top part). The CMEncoder block (shown at the bottom) takes the given problem descrip-
tion, and runs in parallel to obtain /,. from the semantic encoder, and H, from the quantity encoder. A dynamic
fusion module incorporates H,. and H, by cross-modal attention. The obtained H is attentively stacked with H.
and H,,. The resulted Hy; is sent to the next CMEncoder block. The final problem representation H ;4 goes to

the decoder for generating the final solution equation.

latter part encodes problems only with quantity-
related graphs, helping the encoder to know the
properties about quantities and relationship be-
tween quantities.

Sematic Encoder. To demonstrate the robust-
ness of our approach, we implemented two dif-
ferent semantic encoders as our backbone.

Firstly, similar to the classic Seq2Seq model, we
encode the problem description W by a bidirec-
tional gated recurrent unit (BiGRU) (Cho et al.,
2014). The outputs of GRU are hidden state vec-
tors of all tokens, H, = {h1, ho, ..., hy, }, where n
is the length of problem W'.

H, = BiGRU(Embed(W)) (1)

where Embeds(W) is the embedding result of tex-
tual description W in semantics modal. Empir-
ically, we find that two stacked CMEncoders as
shown in Figure 1 achieve the best performance.

Secondly, pre-trained language models (PLMs)
have been ubiquitous in NLP tasks. We use the
latest push of MWP-BERT (Liang et al., 2022) as
our semantic encoder to obtain H,.. In this case, we
use only one CMEncoder without stacking another
one.

Quantity Encoder. To encode the quantity
modal in the problem W, we feed a graph trans-
former Gqns With Embed, (W),

Hy = Girans(Embedy (W) )

where Embed, (W) is the embedding that repre-
sentation the information in quantity modal from
constructed quantity graphs and order graphs fol-
lowing (Zhang et al., 2020), aiming to capture
the relationship among quantities and contexts.
In the training process, the two encoders with
Embeds (W) and Embed, (W) are updated to ex-
tract the semantics and quantity features, respec-
tively. In this way, semantics and quantity modals
are disentangled, which allivates the issue of “one
joint modal cannot do it all”’. In other words, the
compositionality of the CMEncoder enables the
C-MWP solver to pay different levels of attention
when solving different problems.

Dynamic Fusion. To achieve joint reasoning
over the semantics information and quantity in-
formation, we design a dynamic fusion module to
flexibly incorporate the features from these two
modals. First, we get s and g from the mean pool-
ing of H, and H, respectively. Then, cross-modal



attention is applied between H, and ¢, H, and s:
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where the attention scores a;, b; come from:

a; = Wal tcmh(Wf (Hm H Q))

by = Wy tanh(W} (Hyi || 5))
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where W, W2, W)} and W} are parameter matri-
ces. The cross-modal attention here grounds the
quantity information in the semantics modal, and
vice versa. By applying different weights on dif-
ferent modals, our model is flexible to pay more
or less attention on a certain modal. Finally, the
output of dynamic fusion is:

Hjy = Atty(H,,q) || Atto(Hy,5).  (5)

2.2 Stack Multiple CMEncoders

Human often need to make multiple glimpses to
refine an MWP solution. Similarly, a CMEncoder
can be stacked in multiple steps to refine the under-
standing of an MWP, as shown in Figure 1. Given
the output from the semantic encoder, quantity en-
coder and dynamic fusion module at layer & — 1,
the features are stacked as:

k—1 _
HY Y = ¢, HED 4 ¢, HED  (6)
where the attention weights ¢, and ¢, are:

¢ = W tanh(W2 (HFY || 1Y)

= W} tanh(W2 (HY || HPEY))

(7

where W,,1 W2, W, and W are parameter matri-
ces. The following CMEncoder block takes H (k1)

attn
as input, and outputs H,gk), Hg(k) and H}k), which
can be sent for the update at layer k + 1.
After finishing the K -th step reasoning, we con-
catenate the final HﬁK) and H, sSK) as the final out-
put representation of the input problem:

Hyina = HI || H{F). (8)

Then H f;y, 1s fed to the decoder to generate the
solution tree.

2.3 Decoder

We follow the same implementation as proposed
in (Xie and Sun, 2019). Eventually, the decoder
will output the pre-order traversal sequence of the
solution tree.

Math23k | Math23k* | MAWPS| #E
RNN Based
DNS - 58.1 59.5 3.0M
GTS 75.6 74.3 82.6 72M
Graph2Tree 77.4 75.5 83.7 9.0M
NUMS2T 78.1 - - 7.9M
Multi-E/D 78.4 76.9 - 14.2M
HMS 78.4 - 80.3 9.5M
EEH-G2T 78.5 - 84.8 9.9M
C-MWP (RNN)| 80.3 77.9 84.9 7.6 M
PLM Based
REAL 82.3 80.0 — 110M
BERT-CL 83.2 - - 102M
RPKHS 83.9 82.2 - 102M
MWP-BERT 84.7 82.4 — 110M
Gen&Rank 85.4 84.3 - 610M
MWPtoolkit — 76.9 88.4 110M
C-MWP (PLM)| 86.1 84.5 89.1 |130M

Table 1: Math23k column shows the results when eval-
uating on the public test set of Math23k, while the
Math23k* column shows the result of 5-fold cross vali-
dation on Math23k dataset. The last column #E denotes
the number of parameters in encoders.

2.4 Training Method

Given the training samples with problem descrip-
tion W and the corresponding solution .S, the main
training objective is to minimize the negative log
probability for predicting S from W, empowered
by the compositionality of the CMEncoders. There-
fore, the overall loss is:

L = Lywp + ||Embeds||, + || Embed||, (9)

where Ly p is the negative log prediction proba-
bility — log p(S | W). The Ly norm of the encoder
embedding matrices is added to the loss function
as regularization terms.

3 Experiments

3.1 Datasets

Math23k (Wang et al., 2017) containing 23,162
Chinese MWPs is collected from several educa-
tional websites. Some previous works choose the
public training/test set in evaluation, while others
use 5-fold cross validation. In this work, we report
the evaluation results on both settings.

MAWPS (Koncel-Kedziorski et al., 2015) is an
MWP dataset owning 2,373 English MWPs.

3.2 Baselines

GTS (Xie and Sun, 2019) proposes a powerful
tree-based decoder. Graph2Tree (Zhang et al.,



Graph | Compositional | Dynamic | Acc(%)
Encoder Structure Fusion
GTS X X X 75.6
Graph2Tree v X X 77.4
v v X 78.1
v X v 78.9
C-MWP v v v 80.3

Table 2: Accuracy among different ablated models.

2020) constructs graphs to extract useful relation-
ships in an MWP. NumS2T (Wu et al., 2021b)
encode quantities with explicit numerical values.
Multi-E/D (Shen and Jin, 2020) proposes to use
multiple decoders in MWP solving. HMS (Lin
et al., 2021) develops a hierarchical word-clause-
problem encoder. EEH-G2T (Wu et al., 2021a)
aims to capture the long-range word relationship
by graph network. REAL (Huang et al., 2021)
proposes a analogical auxiliary learning strategy
by extracting similar MWPs. BERT-CL (Li et al.,
2021) uses contrastive learning with PLMs. RP-
KHS (Yuet al., 2021) performs hierarchical reason-
ing with PLMs. MWP-BERT released a BERT-
based encoder that is continually pre-trained on
MWP corpus. Gen&Rank (Shen et al., 2021)
designs a multi-task learning framework with
encoder-decoder pre-training. MWPtoolkit finds
a RoBERTa-to-RoBERTa model has the best per-
formance in MWP solving.

3.3 Experimental Results

As Table 1 shows, our approach outperforms all
other RNN-based baselines in terms of answer
accuracy and achieves new state-of-the-art. On
Math23k, we outperform the latest RNN-based
push from Wu et al. (2021a) by 1.8%. For the first
time, an RNN-based MWP solver reaches over 80%
answer accuracy on the Math23k dataset. What is
more, the even fewer parameters with the best per-
formance suggest that our model is also memory-
efficient by separating the encoder into two modals.

PLM-based solvers benefit from the pre-training
on a huge amount of corpus and thus achieve great
semantic understanding ability. From a different
point of view, our work aims to effectively and
efficiently integrate semantic and quantity under-
standing. Therefore, by incorporating the MWP-
BERT model as our semantic extractor, the answer
accuracy of C-MWP achieves state-of-the-art per-
formance. It proves the feasibility of combining
PLM-based semantic modal encoder and graph-

Model Overall | Story | Algebra | KNWL
GTS 754 | 75.1 | 82.8 64.3
Graph2Tree 774 | 76.3 89.7 57.1
Multi-E/D 784 | 77.8 | 88.8 61.9
C-MWP (RNN) | 80.3 | 80.0 | 90.0 66.7
MWP-BERT 847 | 856 | 88.8 72.0
C-MWP (PLM)| 861 | 875 | 907 | 72.0

Table 3: The answer accuracy (%) of problems in dif-
ferent types. KNWL stands for the external knowledge
required problems.

based quantity modal encoder, which will be an
interesting inspiration to the community.

Ablative Study of Different Components. In or-
der to evaluate the effectiveness of each component
in C-MWP, we report the model performance af-
ter removing several components. Compared with
Graph2Tree, our compositional structure and dy-
namic fusion module allow the full usage of both
modals and excel in improving performance.
Performance on Different Types of MWP. In or-
der to investigate how our model performs across
various types of MWP, we introduce a new split of
Math23k with regard to three types of problems:
story problems, algebra problems and knowledge
problems. Split details are shown in the appendix.
The evaluation results are presented in Table 3.
Without a compositional manner, Graph2Tree and
Multi-E/D perform better than GTS on story and
algebra testing problems, whereas they perform
worse on knowledge problems. As stated before,
one joint modal cannot do it all. These baselines
work well on some types of problems while hav-
ing weak performance on other types of problems.
Our C-MWP offers a general improvement over all
types of MWPs, which firmly supports our motiva-
tion for alleviating the generalization issue.

4 Conclusion and Future Work

The semantic meaning and quantity information
are important intrinsic properties of a math word
problem. Aiming at dealing with uni-modal bias
and achieve better generalization, we make the first
attempt to propose a compositional MWP solver, C-
MWP. Multi-step reasoning and specified training
methods are leveraged to enhance the learn-from-
components ability of the model. As the method
proposed in this paper could be applied in a broader
range of neuro-symbolic learning problems, we
will keep exploring the adaptiveness of this compo-
sitional encoding method.
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Appendix

Related Work

Compositional Learning in NLP. Modeling
compositionality in language has been a long-
standing issue (Wong and Wang, 2007) in NLP
community. One common practice is to perform
disentanglement over language representations at
different levels (Welch et al., 2020).. They usu-
ally focus on atomic semantics units like character,
word and phrase. As logic form annotations natu-
rally own compositional features, compositionality
is incorporated in generating correct logic contents.
Therefore, the compositionality is often injected
into traditional semantic parsing tasks(Chen et al.,
2020; Yang et al., 2022) where the goals during
training can be decomposed and then reorganized
as a novel goal.

Our work firstly tries to inject compositional
prior into MWP encoding. It is worth noting that
MWP solving owns the same well-organized logic
form annotations as machine reasoning, which nat-
urally requires compositionality.

Math Word Problem Solving. Earlier MWP
solvers parse problem descriptions semantically,
and learn templates for generating answers (Koncel-
Kedziorski et al., 2015). Recent works (Wang
et al., 2017; Xie and Sun, 2019; Li et al., 2019;
Zhang et al., 2020; Shen and Jin, 2020; Wu et al.,
2021b,a; Lin et al., 2021; Liang and Zhang, 2021;
Jie et al., 2022) focus on employing the encoder-
decoder framework (e.g., sequence-to-sequence,
sequence-to-tree, graph-to-tree) to translate MWP
texts into equations based on traditional RNN struc-
ture. There are also new settings (Amini et al.,
2019; Miao et al., 2020) introduced to extend MWP
solving in equation group generation and diagnos-
ing awareness of external knowledge. Nowadays,
many researchers build strong MWP solvers upon
pre-trained language models (PLMs) (Huang et al.,
2021; Li et al., 2021; Yu et al., 2021; Shen et al.,
2021; Lan et al., 2022) and have achieved great per-
formance. Differently, our work lays the ground-
work of feature extraction of quantity modal, which
is orthogonal to those works.

In this work, we not only propose an explicit
compositional encoding module with a multi-step
design, but also incorporate detailed analysis to
verify its compositional learning ability, to jointly
leverage semantic and quantity information to
achieve effective MWP understanding.

Implementation Details

We train our model on an NVIDIA RTX 2080T1
GPU, all implementation ! of training and testing
is coded in Python with Pytorch framework. For
our RNN-based model, 2 CMEncoders are stacked
and only 1 CMEncoder is used in the PLM-based
model. The size of hidden dimensions in encoders
and decoders are set to 512 and 768 for RNN-solver
and PLM-solver, respectively. Each GCN block has
2 GraphConv layers and each GNN encoder has
4 heads of GCN blocks. During training, Adam
optimizer is applied with the initial learning rates
of 0.001/0.00003 for RNN/PLM, which would be
halved every 30 epochs. During testing, we use a
5-beam search to get reasonable solutions. We also
apply Gaussian noise with mean O and variance
1 on the embedding result during training. This
simple operation can help models to learn more
robust parameters. Through grid search at 0.1 level,
the noise is multiplied by 0.2 to achieve the best
performance.

Hyper-Parameter Tuning

In general, we apply grid-search with manually de-
signed search space and use answer accuracy as the
evaluation metric to select the hyper-parameters.
For the number of stacked encoders, the search
space is {1, 2, 3,4} and we finally use 2. For the
weight of Ly normalization loss, we choose weight
1 from {0.01,0.1,1,5,10}. The weight of ran-
dom noise 0.2 is selected from 0.1 level by grid
search with range 0 to 1. We also tune the beam
size of beam search from {3, 4,5, 6, 7} and choose
5. The dropout probability 0.5 is selected from
{0.1,0.3,0.5,0.7}. Initial learning rate 0.001 is se-
lected from {0.01,0.001,0.0001}. For the hidden
size and embedding size in encoder, we select 256
from {64, 128, 256, 512}.

Variance and Significance Evaluation

We evaluated our solver with 5-fold cross-
validation and found that the accuracy of our
RNN-based C-MWP (0.779%+0.028) is signifi-
cantly higher than Graph2Tree (0.755%=0.016)
(p<0.01), and the accuracy of our PLM-based C-
MWP (0.845%=0.21) is significantly higher than
vanilla MWP-BERT (0.824%=+0.016) (p<0.01).

"We will release all the materials including code and data
after this paper is published.



Story Problem:

Quantities:
[348, teddy bears, sold]; [$20, each];
Text : 348 teddy bears are sold for $23 each. There are [470, teddy bears, total]; [$17, remaining].
total 470 teddy bears in a store and the remaining ST _.{ Equation: 348x23 + (470 — 348)x17

teddy bears are sold for $17 each. How much did the

store earn after selling all the teddy bears? Some teddy bears have been sold at a price;

The left part will be sold at a different price;
The goal is to compute the expect income.

Algebra Problem: Quantities:

T - ; [2, times]; [3, times]; [28, equals].
Text : 2 times A is the same as 3 times B. B equals 28. Ll Equation: 28x3 = 2
Compute A.

Semantics:
2 times A equals 3 times B; B equals 28.

Knowledge Problem: Quantities:
[5, pipes]; [2, length]; [0.2, diameter].

Text : In order to make 5 pipes of length 2 meters and
diameter 0.2 meters (ignoring inside or outside), how |
much metal sheet is required?

Semantics: .
) ; % Equation: mx0.2X2x5
5 pipes of length 2 and diameter 0.2 meter; quation:

Pipe is open and do not have bottom area;
Surface area equals mxdiameterxlength;
Compute total surface area of pipes;

Figure 2: Examples of different types of problems in MWP solving.
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Figure 3: Keywords for “Story” and “Knowledge” problems. Problems that do not fall into “Story” and “Knowl-
edge” are labeled as “Algebra” problems.



Problem (Chinese)
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N S N6, 3T
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Figure 4: Case study from Math23k

Overall| Story |Algebra|Knowledge
train| 21,162 {17,546| 2,595 957
val | 1,000 | 817 133 50
test | 1,000 | 842 116 42

Table 4: Statistics of different types of problems in
Math23k.

Case Study

Figure 4 shows generated solutions of two selected
problems by Graph2Tree (Zhang et al., 2020),
Multi-E/D (Shen and Jin, 2020) and our proposed
C-MWP (RNN-Based). The first problem has 4
quantities and they are all useful, which means
that it requires sufficient problem understanding
and mathematical reasoning to generate the right
answer. Both Graph2Tree and Multi-E/D which di-
rectly connect semantics modal and quantity modal
fail to extract clear representations of the problem,
finally resulting in unreasonable solutions which
only contain 3 quantities. For the second problem,
although Graph2Tree and Multi-E/D utilize all 3
quantities in the problem description, they still fail
to generate a plausible solution. These two cases
show that our proposed encoder is able to extract
more comprehensive representations from problem
descriptions, eventually guiding the decoder to gen-
erate the correct solutions.

MWPs in Different Categories

Figure 2 shows the MWP examples of “Story Prob-
lem”, “Algebra Problem” and “Knowledge Prob-

LR

lem”. “Story Problem” often includes a signifi-
cant amount of background information like char-
acters, objectives and behaviors. “Algebra Prob-
lems” involves math notations or is composed of
elementary concepts. “Knowledge Problem” asks
for external knowledge like geometry and number
sequence. The category of each problem is deter-
mined based on keywords. The keywords of “Story”
and “Knowledge” problems are listed in Figure 3.
Other problems that do not fall into “Story” and
“Knowledge” are labeled as “Algebra” problems.
The statistics of these problems are shown in Table
4.

Limitations

Explainability Most current MWP solvers are
only able to generate solutions. In our work, al-
though we achieved better generalization ability,
it is still hard to explain how the model solves
MWPs both correctly or incorrectly. These auto-
mated solvers would be much more helpful for tu-
toring students if they could explain their equation
solutions by generating reasoning steps.



