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Abstract

Solving math word problem (MWP) remains a001
challenging task, as it requires to understand002
both the semantic meanings of the text and003
the mathematical logic among quantities, i.e.,004
for both semantics modal and quantity modal005
learning. Current MWP encoders work in a006
uni-modal setting and map the given problem007
description to a latent representation, then for008
decoding. The generalizability of these MWP009
encoders is thus limited because some prob-010
lems are semantics-demanding and others are011
quantity-demanding. To address this problem,012
we propose a Compositional Math Word Prob-013
lem Solver (C-MWP) which works in a bi-014
modal setting encoding in an interactive way.015
Extensive experiments validate the effective-016
ness of C-MWP and show its superiority over017
state-of-the-art models on public benchmarks.018

1 Introduction019

The task of math word problem (MWP) solving020

aims to map natural language problem descriptions021

into executable solution equations to get the correct022

answer, which is a sub-area of neuro-symbolic rea-023

soning. It requires perceptual abilities such as com-024

prehending the question, identifying the quantities025

and corresponding attributes, as well as complex026

semantics understanding skills like performing log-027

ical inference, making comparisons and leveraging028

external mathematical knowledge.029

While MWP encoders have been sophisticat-030

edly designed to understand the natural language031

problem description, the difference on understand-032

ing diverse types of problems has not been aware033

of. Our investigation finds that MWP can gener-034

ally be grouped into three categories, “Story Prob-035

lem”, “Algebra Problem” and “Knowledge Prob-036

lem”. “Story Problem” often includes significant037

amount of background information like characters,038

objectives and behaviors. “Algebra Problems” in-039

volves math notations or is composed of elementary040

concepts. “Knowledge Problem” asks for external 041

knowledge like geometry and number sequence. 042

Examples of different types of problems are given 043

in the appendix. 044

These types of problems can be compositionally 045

understood at the different level attention to the 046

semantics modal and quantity modal. However, the 047

encoders in existing MWP solvers either model 048

only the semantics modality or utilize quantity 049

modal priors to refine the MWP encoding (Zhang 050

et al., 2020; Shen and Jin, 2020). This limitation, 051

one joint modal cannot do it all, decreases the 052

generalization of MWP solvers and is what com- 053

positional learning aims to address. In this work, 054

we propose to disentangle semantics modal and 055

quantity modal by compositional learning at the 056

encoding stage, aiming to improve the general- 057

ization across different types of problems. 058

Contributions. Our main contributions are three- 059

fold. (i) A novel and effective bi-modal approach 060

is proposed for the first time to enable MWP com- 061

positional understanding. (ii) A joint reasoning 062

module with multi-step is designed for our bi- 063

modal architectures to flexibly incorporate different 064

modalities. (iii) Extensive experiments and abla- 065

tive studies on two large-scale MWP benchmarks – 066

Math23k (Wang et al., 2017) and MAWPS (Koncel- 067

Kedziorski et al., 2016) show the superiority of the 068

proposed approach over related works. 069

2 Our approach 070

The overview of our proposed model is shown in 071

Figure 1. 072

2.1 Compositional Mathematical Encoder 073

The CMEncoder block consists of an semantic en- 074

coder, a quantity encoder and a dynamic fusion 075

block. The semantic encoder aims to extract se- 076

mantics information from the problem description, 077

understanding the background and objectives. The 078
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Figure 1: The overall architecture of the proposed network C-MWP, which is composed of two stacked CMEn-
coders and a decoder (the top part). The CMEncoder block (shown at the bottom) takes the given problem descrip-
tion, and runs in parallel to obtain Hr from the semantic encoder, and Hg from the quantity encoder. A dynamic
fusion module incorporates Hr and Hg by cross-modal attention. The obtained Hf is attentively stacked with Hr

and Hg . The resulted Hatt is sent to the next CMEncoder block. The final problem representation Hfinal goes to
the decoder for generating the final solution equation.

latter part encodes problems only with quantity-079

related graphs, helping the encoder to know the080

properties about quantities and relationship be-081

tween quantities.082

Sematic Encoder. To demonstrate the robust-083

ness of our approach, we implemented two dif-084

ferent semantic encoders as our backbone.085

Firstly, similar to the classic Seq2Seq model, we086

encode the problem description W by a bidirec-087

tional gated recurrent unit (BiGRU) (Cho et al.,088

2014). The outputs of GRU are hidden state vec-089

tors of all tokens, Hr = {h1, h2, ..., hn}, where n090

is the length of problem W .091

Hr = BiGRU(Embeds(W )) (1)092

where Embeds(W ) is the embedding result of tex-093

tual description W in semantics modal. Empir-094

ically, we find that two stacked CMEncoders as095

shown in Figure 1 achieve the best performance.096

Secondly, pre-trained language models (PLMs)097

have been ubiquitous in NLP tasks. We use the098

latest push of MWP-BERT (Liang et al., 2022) as099

our semantic encoder to obtain Hr. In this case, we100

use only one CMEncoder without stacking another101

one.102

Quantity Encoder. To encode the quantity 103

modal in the problem W , we feed a graph trans- 104

former Gtrans with Embedq(W ), 105

Hg = Gtrans(Embedq(W )) (2) 106

where Embedq(W ) is the embedding that repre- 107

sentation the information in quantity modal from 108

constructed quantity graphs and order graphs fol- 109

lowing (Zhang et al., 2020), aiming to capture 110

the relationship among quantities and contexts. 111

In the training process, the two encoders with 112

Embeds(W ) and Embedq(W ) are updated to ex- 113

tract the semantics and quantity features, respec- 114

tively. In this way, semantics and quantity modals 115

are disentangled, which allivates the issue of “one 116

joint modal cannot do it all”. In other words, the 117

compositionality of the CMEncoder enables the 118

C-MWP solver to pay different levels of attention 119

when solving different problems. 120

Dynamic Fusion. To achieve joint reasoning 121

over the semantics information and quantity in- 122

formation, we design a dynamic fusion module to 123

flexibly incorporate the features from these two 124

modals. First, we get s and q from the mean pool- 125

ing of Hr and Hg, respectively. Then, cross-modal 126
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attention is applied between Hr and q, Hg and s:127

Att1(Hr, q) = Σn
i=1aiHri

Att2(Hg, s) = Σn
i=1biHgi

(3)128

where the attention scores ai, bi come from:129

ai = W 1
a tanh(W 2

a (Hri

∣∣∣∣ q))

bi = W 1
b tanh(W 2

b (Hgi

∣∣∣∣ s)) (4)130

where W 1
a , W 2

a , W 1
b and W 2

b are parameter matri-131

ces. The cross-modal attention here grounds the132

quantity information in the semantics modal, and133

vice versa. By applying different weights on dif-134

ferent modals, our model is flexible to pay more135

or less attention on a certain modal. Finally, the136

output of dynamic fusion is:137

Hf = Att1(Hr, q)
∣∣∣∣Att2(Hg, s). (5)138

2.2 Stack Multiple CMEncoders139

Human often need to make multiple glimpses to140

refine an MWP solution. Similarly, a CMEncoder141

can be stacked in multiple steps to refine the under-142

standing of an MWP, as shown in Figure 1. Given143

the output from the semantic encoder, quantity en-144

coder and dynamic fusion module at layer k − 1,145

the features are stacked as:146

H
(k−1)
att = crH

(k−1)
r + cgH

(k−1)
g (6)147

where the attention weights cr and cg are:148

cr = W 1
r tanh(W 2

r (H(k−1)
r

∣∣∣∣H(k−1)
f ))

cg = W 1
g tanh(W 2

g (H(k−1)
g

∣∣∣∣H(k−1)
f ))

(7)149

where W 1
r , W 2

r , W 1
g and W 2

g are parameter matri-150

ces. The following CMEncoder block takes H(k−1)
attn151

as input, and outputs H(k)
r , H(k)

g and H
(k)
f , which152

can be sent for the update at layer k + 1.153

After finishing the K-th step reasoning, we con-154

catenate the final H(K)
r and H

(K)
g as the final out-155

put representation of the input problem:156

Hfinal = H(K)
r

∣∣∣∣H(K)
g . (8)157

Then Hfinal is fed to the decoder to generate the158

solution tree.159

2.3 Decoder160

We follow the same implementation as proposed161

in (Xie and Sun, 2019). Eventually, the decoder162

will output the pre-order traversal sequence of the163

solution tree.164

Math23k Math23k∗ MAWPS #E
RNN Based

DNS - 58.1 59.5 3.0M

GTS 75.6 74.3 82.6 7.2M

Graph2Tree 77.4 75.5 83.7 9.0M

NUMS2T 78.1 - - 7.9M

Multi-E/D 78.4 76.9 - 14.2M

HMS 78.4 - 80.3 9.5M

EEH-G2T 78.5 − 84.8 9.9M

C-MWP (RNN) 80.3 77.9 84.9 7.6M

PLM Based
REAL 82.3 80.0 − 110M

BERT-CL 83.2 − − 102M

RPKHS 83.9 82.2 − 102M

MWP-BERT 84.7 82.4 − 110M

Gen&Rank 85.4 84.3 − 610M

MWPtoolkit − 76.9 88.4 110M

C-MWP (PLM) 86.1 84.5 89.1 130M

Table 1: Math23k column shows the results when eval-
uating on the public test set of Math23k, while the
Math23k∗ column shows the result of 5-fold cross vali-
dation on Math23k dataset. The last column #E denotes
the number of parameters in encoders.

2.4 Training Method 165

Given the training samples with problem descrip- 166

tion W and the corresponding solution S, the main 167

training objective is to minimize the negative log 168

probability for predicting S from W , empowered 169

by the compositionality of the CMEncoders. There- 170

fore, the overall loss is: 171

L = LMWP +
∣∣∣∣Embeds

∣∣∣∣
2

+
∣∣∣∣Embedq

∣∣∣∣
2

(9) 172

where LMWP is the negative log prediction proba- 173

bility− log p(S |W ). The L2 norm of the encoder 174

embedding matrices is added to the loss function 175

as regularization terms. 176

3 Experiments 177

3.1 Datasets 178

Math23k (Wang et al., 2017) containing 23,162 179

Chinese MWPs is collected from several educa- 180

tional websites. Some previous works choose the 181

public training/test set in evaluation, while others 182

use 5-fold cross validation. In this work, we report 183

the evaluation results on both settings. 184

MAWPS (Koncel-Kedziorski et al., 2015) is an 185

MWP dataset owning 2,373 English MWPs. 186

3.2 Baselines 187

GTS (Xie and Sun, 2019) proposes a powerful 188

tree-based decoder. Graph2Tree (Zhang et al., 189

3



Graph
Encoder

Compositional
Structure

Dynamic
Fusion

Acc(%)

GTS 7 7 7 75.6

Graph2Tree X 7 7 77.4

X X 7 78.1

X 7 X 78.9

C-MWP X X X 80.3

Table 2: Accuracy among different ablated models.

2020) constructs graphs to extract useful relation-190

ships in an MWP. NumS2T (Wu et al., 2021b)191

encode quantities with explicit numerical values.192

Multi-E/D (Shen and Jin, 2020) proposes to use193

multiple decoders in MWP solving. HMS (Lin194

et al., 2021) develops a hierarchical word-clause-195

problem encoder. EEH-G2T (Wu et al., 2021a)196

aims to capture the long-range word relationship197

by graph network. REAL (Huang et al., 2021)198

proposes a analogical auxiliary learning strategy199

by extracting similar MWPs. BERT-CL (Li et al.,200

2021) uses contrastive learning with PLMs. RP-201

KHS (Yu et al., 2021) performs hierarchical reason-202

ing with PLMs. MWP-BERT released a BERT-203

based encoder that is continually pre-trained on204

MWP corpus. Gen&Rank (Shen et al., 2021)205

designs a multi-task learning framework with206

encoder-decoder pre-training. MWPtoolkit finds207

a RoBERTa-to-RoBERTa model has the best per-208

formance in MWP solving.209

3.3 Experimental Results210

As Table 1 shows, our approach outperforms all211

other RNN-based baselines in terms of answer212

accuracy and achieves new state-of-the-art. On213

Math23k, we outperform the latest RNN-based214

push from Wu et al. (2021a) by 1.8%. For the first215

time, an RNN-based MWP solver reaches over 80%216

answer accuracy on the Math23k dataset. What is217

more, the even fewer parameters with the best per-218

formance suggest that our model is also memory-219

efficient by separating the encoder into two modals.220

PLM-based solvers benefit from the pre-training221

on a huge amount of corpus and thus achieve great222

semantic understanding ability. From a different223

point of view, our work aims to effectively and224

efficiently integrate semantic and quantity under-225

standing. Therefore, by incorporating the MWP-226

BERT model as our semantic extractor, the answer227

accuracy of C-MWP achieves state-of-the-art per-228

formance. It proves the feasibility of combining229

PLM-based semantic modal encoder and graph-230

Model Overall Story Algebra KNWL
GTS 75.4 75.1 82.8 64.3

Graph2Tree 77.4 76.3 89.7 57.1
Multi-E/D 78.4 77.8 88.8 61.9

C-MWP (RNN) 80.3 80.0 90.0 66.7
MWP-BERT 84.7 85.6 88.8 72.0

C-MWP (PLM) 86.1 87.5 90.7 72.0

Table 3: The answer accuracy (%) of problems in dif-
ferent types. KNWL stands for the external knowledge
required problems.

based quantity modal encoder, which will be an 231

interesting inspiration to the community. 232

Ablative Study of Different Components. In or- 233

der to evaluate the effectiveness of each component 234

in C-MWP, we report the model performance af- 235

ter removing several components. Compared with 236

Graph2Tree, our compositional structure and dy- 237

namic fusion module allow the full usage of both 238

modals and excel in improving performance. 239

Performance on Different Types of MWP. In or- 240

der to investigate how our model performs across 241

various types of MWP, we introduce a new split of 242

Math23k with regard to three types of problems: 243

story problems, algebra problems and knowledge 244

problems. Split details are shown in the appendix. 245

The evaluation results are presented in Table 3. 246

Without a compositional manner, Graph2Tree and 247

Multi-E/D perform better than GTS on story and 248

algebra testing problems, whereas they perform 249

worse on knowledge problems. As stated before, 250

one joint modal cannot do it all. These baselines 251

work well on some types of problems while hav- 252

ing weak performance on other types of problems. 253

Our C-MWP offers a general improvement over all 254

types of MWPs, which firmly supports our motiva- 255

tion for alleviating the generalization issue. 256

4 Conclusion and Future Work 257

The semantic meaning and quantity information 258

are important intrinsic properties of a math word 259

problem. Aiming at dealing with uni-modal bias 260

and achieve better generalization, we make the first 261

attempt to propose a compositional MWP solver, C- 262

MWP. Multi-step reasoning and specified training 263

methods are leveraged to enhance the learn-from- 264

components ability of the model. As the method 265

proposed in this paper could be applied in a broader 266

range of neuro-symbolic learning problems, we 267

will keep exploring the adaptiveness of this compo- 268

sitional encoding method. 269
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Appendix378

Related Work379

Compositional Learning in NLP. Modeling380

compositionality in language has been a long-381

standing issue (Wong and Wang, 2007) in NLP382

community. One common practice is to perform383

disentanglement over language representations at384

different levels (Welch et al., 2020).. They usu-385

ally focus on atomic semantics units like character,386

word and phrase. As logic form annotations natu-387

rally own compositional features, compositionality388

is incorporated in generating correct logic contents.389

Therefore, the compositionality is often injected390

into traditional semantic parsing tasks(Chen et al.,391

2020; Yang et al., 2022) where the goals during392

training can be decomposed and then reorganized393

as a novel goal.394

Our work firstly tries to inject compositional395

prior into MWP encoding. It is worth noting that396

MWP solving owns the same well-organized logic397

form annotations as machine reasoning, which nat-398

urally requires compositionality.399

Math Word Problem Solving. Earlier MWP400

solvers parse problem descriptions semantically,401

and learn templates for generating answers (Koncel-402

Kedziorski et al., 2015). Recent works (Wang403

et al., 2017; Xie and Sun, 2019; Li et al., 2019;404

Zhang et al., 2020; Shen and Jin, 2020; Wu et al.,405

2021b,a; Lin et al., 2021; Liang and Zhang, 2021;406

Jie et al., 2022) focus on employing the encoder-407

decoder framework (e.g., sequence-to-sequence,408

sequence-to-tree, graph-to-tree) to translate MWP409

texts into equations based on traditional RNN struc-410

ture. There are also new settings (Amini et al.,411

2019; Miao et al., 2020) introduced to extend MWP412

solving in equation group generation and diagnos-413

ing awareness of external knowledge. Nowadays,414

many researchers build strong MWP solvers upon415

pre-trained language models (PLMs) (Huang et al.,416

2021; Li et al., 2021; Yu et al., 2021; Shen et al.,417

2021; Lan et al., 2022) and have achieved great per-418

formance. Differently, our work lays the ground-419

work of feature extraction of quantity modal, which420

is orthogonal to those works.421

In this work, we not only propose an explicit422

compositional encoding module with a multi-step423

design, but also incorporate detailed analysis to424

verify its compositional learning ability, to jointly425

leverage semantic and quantity information to426

achieve effective MWP understanding.427

Implementation Details 428

We train our model on an NVIDIA RTX 2080Ti 429

GPU, all implementation 1 of training and testing 430

is coded in Python with Pytorch framework. For 431

our RNN-based model, 2 CMEncoders are stacked 432

and only 1 CMEncoder is used in the PLM-based 433

model. The size of hidden dimensions in encoders 434

and decoders are set to 512 and 768 for RNN-solver 435

and PLM-solver, respectively. Each GCN block has 436

2 GraphConv layers and each GNN encoder has 437

4 heads of GCN blocks. During training, Adam 438

optimizer is applied with the initial learning rates 439

of 0.001/0.00003 for RNN/PLM, which would be 440

halved every 30 epochs. During testing, we use a 441

5-beam search to get reasonable solutions. We also 442

apply Gaussian noise with mean 0 and variance 443

1 on the embedding result during training. This 444

simple operation can help models to learn more 445

robust parameters. Through grid search at 0.1 level, 446

the noise is multiplied by 0.2 to achieve the best 447

performance. 448

Hyper-Parameter Tuning 449

In general, we apply grid-search with manually de- 450

signed search space and use answer accuracy as the 451

evaluation metric to select the hyper-parameters. 452

For the number of stacked encoders, the search 453

space is {1, 2, 3, 4} and we finally use 2. For the 454

weight of L2 normalization loss, we choose weight 455

1 from {0.01, 0.1, 1, 5, 10}. The weight of ran- 456

dom noise 0.2 is selected from 0.1 level by grid 457

search with range 0 to 1. We also tune the beam 458

size of beam search from {3, 4, 5, 6, 7} and choose 459

5. The dropout probability 0.5 is selected from 460

{0.1, 0.3, 0.5, 0.7}. Initial learning rate 0.001 is se- 461

lected from {0.01, 0.001, 0.0001}. For the hidden 462

size and embedding size in encoder, we select 256 463

from {64, 128, 256, 512}. 464

Variance and Significance Evaluation 465

We evaluated our solver with 5-fold cross- 466

validation and found that the accuracy of our 467

RNN-based C-MWP (0.779%±0.028) is signifi- 468

cantly higher than Graph2Tree (0.755%±0.016) 469

(p<0.01), and the accuracy of our PLM-based C- 470

MWP (0.845%±0.21) is significantly higher than 471

vanilla MWP-BERT (0.824%±0.016) (p<0.01). 472

1We will release all the materials including code and data
after this paper is published.
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Text : 348 teddy bears are sold for $23 each. There are 
total 470 teddy bears in a store and the remaining 

teddy bears are sold for $17 each. How much did the 
store earn after selling all the teddy bears?

Equation: 348×23 + 470 − 348 ×17

Quantities:
[348, teddy bears, sold]; [$20, each];

[470, teddy bears, total]; [$17, remaining].

Semantics:
Some teddy bears have been sold at a price;
The left part will be sold at a different price;
The goal is to compute the expect income.

Text : 2 times A is the same as 3 times B. B equals 28.
Compute A.

Equation: 28×3 ÷ 2

Quantities:
[2, times]; [3, times]; [28, equals].

Semantics:
2 times A equals 3 times B; B equals 28.

Story Problem:

Algebra Problem:

Text : In order to make 5 pipes of length 2 meters and 
diameter 0.2 meters (ignoring inside or outside), how 

much metal sheet is required?
Equation: 𝜋×0.2×2×5

Quantities:
[5, pipes]; [2, length]; [0.2, diameter].

Semantics:
5 pipes of length 2 and diameter 0.2 meter;
Pipe is open and do not have bottom area;
Surface area equals 𝜋×diameter×𝑙𝑒𝑛𝑔𝑡ℎ;

Compute total surface area of pipes;

Knowledge Problem:

Figure 2: Examples of different types of problems in MWP solving.

Figure 3: Keywords for “Story” and “Knowledge” problems. Problems that do not fall into “Story” and “Knowl-
edge” are labeled as “Algebra” problems.
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The starting price of a taxi is 

6 yuan, it costs additional 1.2 

yuan per kilometer after 3 

kilometers, how much yuan 

should someone pay if he/

she take a taxi for 5 

kilometers?

某地出租车收费标准
为：起步价为6元，3千
米后每千米加收1.2元，
某人乘坐出租车5千米，

则应付款多少元?

Problem (Chinese) Problem (English)

+

6 *

1.2 5

Graph2Tree Multi-E/D C-MWP (Ours)

+

6 *

3 5

+

6 *

-
1.2

5 3

Some salt water weighs 200 

grams, and the weight of salt 

accounts for 20% of the 

water. After adding some 

water, the weight of salt 

accounts for 10% of the 

water. How many grams of 

water were added?

一种盐水重200克，盐的
重量占盐水的20%，加了
一些水后，盐的重量占
盐水重量的10%．加了多

少克水？

-

200 /

* 200

20% 10%

-

200 /

*200

20% 10%

-

200/

200

*

10%

20%

Figure 4: Case study from Math23k

Overall Story Algebra Knowledge

train 21,162 17,546 2,595 957
val 1,000 817 133 50
test 1,000 842 116 42

Table 4: Statistics of different types of problems in
Math23k.

Case Study473

Figure 4 shows generated solutions of two selected474

problems by Graph2Tree (Zhang et al., 2020),475

Multi-E/D (Shen and Jin, 2020) and our proposed476

C-MWP (RNN-Based). The first problem has 4477

quantities and they are all useful, which means478

that it requires sufficient problem understanding479

and mathematical reasoning to generate the right480

answer. Both Graph2Tree and Multi-E/D which di-481

rectly connect semantics modal and quantity modal482

fail to extract clear representations of the problem,483

finally resulting in unreasonable solutions which484

only contain 3 quantities. For the second problem,485

although Graph2Tree and Multi-E/D utilize all 3486

quantities in the problem description, they still fail487

to generate a plausible solution. These two cases488

show that our proposed encoder is able to extract489

more comprehensive representations from problem490

descriptions, eventually guiding the decoder to gen-491

erate the correct solutions.492

MWPs in Different Categories493

Figure 2 shows the MWP examples of “Story Prob-494

lem”, “Algebra Problem” and “Knowledge Prob-495

lem”. “Story Problem” often includes a signifi- 496

cant amount of background information like char- 497

acters, objectives and behaviors. “Algebra Prob- 498

lems” involves math notations or is composed of 499

elementary concepts. “Knowledge Problem” asks 500

for external knowledge like geometry and number 501

sequence. The category of each problem is deter- 502

mined based on keywords. The keywords of “Story” 503

and “Knowledge” problems are listed in Figure 3. 504

Other problems that do not fall into “Story” and 505

“Knowledge” are labeled as “Algebra” problems. 506

The statistics of these problems are shown in Table 507

4. 508

Limitations 509

Explainability Most current MWP solvers are 510

only able to generate solutions. In our work, al- 511

though we achieved better generalization ability, 512

it is still hard to explain how the model solves 513

MWPs both correctly or incorrectly. These auto- 514

mated solvers would be much more helpful for tu- 515

toring students if they could explain their equation 516

solutions by generating reasoning steps. 517
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