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Abstract

We propose a new regularization scheme for the optimization of deep learning architectures,
G-TRACER ("Geometric TRACE Ratio"), which promotes generalization by seeking min-
ima with low mean curvature, and which has a sound theoretical basis as an approximation
to a natural gradient-descent based optimization of a generalized variational objective. By
augmenting the loss function with a G-TRACER penalty, which can be interpreted as the
metric trace of the Hessian (the Laplace-Beltrami operator) with respect to the Fisher infor-
mation metric, curvature-regularized optimizers (e.g. SGD-TRACER and Adam-TRACER)
are simple to implement as modifications to existing optimizers and do not require extensive
tuning. We show that the method can be interpreted as penalizing, in the neighborhood of
a minimum, the difference between the mean value of the loss and the value at the mini-
mum, in a way that adjusts for the natural geometry of the parameter space induced by the
KL divergence. We show that the method converges to a neighborhood (depending on the
regularization strength) of a local minimum of the unregularized objective, and demonstrate
promising performance on a number of benchmark computer vision and NLP datasets, with
a particular focus on challenging problems characterized by a low signal-to-noise ratio, or
an absence of natural data augmentations and other regularization schemes.

1 Introduction

Contemporary neural network architectures (e.g. Llama 2: 70B parameters, GPT-4: 1.7T parameters)
are typically overparameterized, with more parameters than constraints (Liu et al., 2022). The fact that
interpolating solutions with no explicit regularization can generalize well to unseen data (Zhang et al., 2016)
(Belkin et al., 2019) is surprising from a classical statistical learning perspective, and there is an emerging
consensus that this phenomenon is due to implicit regularization in which, in very high dimensional settings,
among all interpolating solutions, well-behaved minimum-norm solutions are preferred1 (Curth et al., 2023).
Whether implicit regularization alone suffices is problem-dependent and is influenced, among many other
factors, by the signal-to-noise ratio (Hastie et al., 2022). In practical settings, non-zero weight decay is
typically applied, and explicit regularization is key to obtaining SOTA performance.2

Deep neural networks possess discrete and continuous symmetries (transformations that leave the underlying
function invariant (Kristiadi et al., 2023)) as well as reparameterization invariance with respect to many
common coordinate changes (e.g. BatchNorm (Ioffe & Szegedy, 2015), WeightNorm (Salimans & Kingma,
2016)). There is a large literature relating these characteristics of deep neural networks to the geometry of the
loss surface3 (Liu et al., 2022). Li et al. (2018) show, under mild assumptions, that sufficiently wide networks
have no set-wise local minima that are not global minima. Moreover, solutions to overparameterized neural
networks typically form a high-dimensional manifold (Cooper, 2018) and are characterized by degenerate
Hessians (Sagun et al., 2017), where the bulk of the eigenvalue spectrum is clustered around 0.

The connection between the geometry of the loss surface and generalization has long been the subject of
interest and speculation, dating back to the MDL-based arguments of Hinton & van Camp (1993) and

1Indeed this effect can be observed even in certain linear models in the overparameterized regime p > n (Hastie et al., 2022)
2Weight decay is equivalent ridge regularization, and it can be shown that minimum l2-norm regression is a limiting case of

ridge regression as the ridge penalty goes to 0.
3Viewing the loss, for example, as a hypersurface: {(w, L(w)), w ∈ Rp+1 : w ∈ Θ}
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Hochreiter & Schmidhuber (1997). In particular, the connection between sharpness and generalization is an
intuitively appealing one, in that the sharp local minima of the highly nonlinear, non-convex optimization
problems associated with modern large-scale deep learning architectures are more likely to be brittle and
sensitive to perturbations in the parameters and training data, and thus lead to worse performance on
unseen data. The recent success of the SAM algorithm, which measures sharpness as max∥∆w∥2≤ϵ L(w +
∆w) − L(w) (Foret et al., 2020) has reignited interest in geometrically motivated regularization schemes.
We propose a novel regularization scheme, which implicitly measures Sharpness as Tr(G−1H), where H is
the Hessian of the loss and G can be interpreted as a Fisher Information Matrix, and show that the resulting
scheme penalizes curvature in a principled (intrinsic and approximately coordinate-free) way, admits an
interpretation as a kernel smoothing of the loss surface, and performs competitively on benchmark vision
and NLP datasets.

1.1 Problem setting

In this work, we adopt two complementary perspectives and settings: a probabilistic one in which we view
the neural network weights as random variables (Khan & Rue, 2021), and a point estimation setting in
which the weights are fixed but unknown, and randomness arises from the composition of a deterministic
neural network function and an output distribution (Martens, 2020). In the same way that ridge and lasso
regularization can be derived from probabilistic models and correspond to certain priors (Gaussian and
Laplacian, respectively) we derive results probabilistically and transfer them, by passing, via maximum a
posteriori (MAP) estimation, to the point estimation setting on the underlying deterministic parameter
space.

Our probabilistic setting is as follows: we are given a dataset D = {(xi, yi)n
i=1} consisting of n independent

input variables xi ∈ Rdx with distribution p(x), and corresponding targets (or labels) yi ∈ Rdy with
distribution p(y|x) and treat the parameters w ∈ Θ ⊆ Rp of a deep neural network (DNN) f(·, w) :
Rdx → Rdy as random variables. Given a loss function l(yi, f(xi, w)), our goal is to find a w∗ that
minimizes the expected loss: Ep(x,y)[l(y, f(x, w))]. Writing the finite-sample version of this expected loss as
L(w) =

∑n
i=1 l(yi, f(xi, w)), we can form a generalized posterior distribution (Bissiri et al., 2016) p(w|D) =

p(w) 1
Z exp{−L(w)} over the weights with normalizer Z and prior p(w). This setting generalizes Bayesian

inference (Knoblauch et al., 2019) to the case where the likelihood function is not specified as a conditional
probability, but implicitly through an arbitrary loss function, and provides a coherent way to update prior
beliefs over parameters to posterior beliefs (Bissiri et al., 2016) (Knoblauch et al., 2019). The generalized
posterior coincides with the Bayesian posterior in the special case where the loss is given by a negative
log-likelihood L(w) = − 1

n

∑n
i=1 log p(yi|xi, w).

We will seek to approximate the posterior using a family of distributions indexed by variational parameters,
q(w) ∼ N (w, Σ), by minimizing the KL-divergence between the true and approximate posteriors and casting
the problem as an optimization over the variational parameters ϕ = (µ, Σ). If we measure the dissimilarity
between probability distributions using the KL divergence, the variational parameter space has a natural
geometry induced by the Fisher Information Matrix (FIM):

Fϕ = ∇2
ϕ′DKL[q(w; ϕ), q(w; ϕ′)]|ϕ′=ϕ

= Ew∼q[∇ϕ log q(w; ϕ)T ∇ϕ log q(w; ϕ)]
(1)

which defines a Riemannian metric on ϕ. Since we have deliberately chosen a tractable variational distribu-
tion, we have an explicit expression for the FIM4.

In our point estimation setting, we assume that we have an exponential family output probability distribution
of the form p(y|·) with natural parameters given by the output of a DNN f(x, w) so that p(y|f(x, w)) defines
a conditional distribution (Martens, 2020) (Kunstner et al., 2019). This setting covers the most common
cases of multiclass classification with the cross-entropy loss5 and least-squares regression. In this setting, the
parameter space has as natural geometry induced by log-likelihood Fisher Information Matrix, or equivalently

4This is not, in general, the case for the log-likelihood Fisher Information Matrix
5where the softmax of neural network output is the vector of probabilities for each class (Martens, 2020)
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the Hessian of the KL-divergence, which measures the dissimilarity between probability distributions in an
intrinsic way, independently of parameterization:

F = ∇2
w′DKL[p(y|x, w), p(y|x, w′)]|w′=w

= Ey∼p(y|x,w),x∼p(x)[(∇ log p(y|x, w))(∇ log p(y|x, w))T ]
(2)

As an infinitesimal form of the KL divergence, the log-likelihood FIM defines a metric tensor on the parameter
manifold corresponding to the Fisher-Rao metric(Amari, 1998).

1.2 What is sharpness and why does it hurt generalization?

We first examine various notions of sharpness in the literature and then introduce the sharpness measure
used in this paper.

1.2.1 The sharpness puzzle

Much of the literature on loss surface flatness and generalization has been concerned with measures of
sharpness and flatness that depend on the particular choice of coordinate system. Notable examples include
Keskar et al. (2016), who define ϵ-sharpness as the maximum relative change in loss over a Euclidean norm-
ball:

max
∥∆w∥2≤ϵ

L(w + ∆w)− L(w)
1 + L(w) (3)

and the SAM algorithm (Foret et al., 2020), which uses a similar notion:

max
∥∆w∥2≤ϵ

L(w + ∆w)− L(w) (4)

Since, at such a local minimum of the loss, for a perturbation ∆w, we have:

L(w + ∆w)− L(w) = ∆wT ∇2L(w)∆w + O(∥∆w∥3) (5)

both these measures are essentially equivalent to the spectral norm of the Hessian6, which is not an invariant
quantity. In particular, at any critical point which is a minimum with non-zero Hessian, there exists a
reparameterization that leaves the underlying function of the data unchanged and which makes the spectral
norm arbitrarily large (Dinh et al., 2017). More generally, there has been an extensive literature (Hochreiter
& Schmidhuber, 1997) (Hinton & van Camp, 1993) attempting to characterize the loss-surface Hessian
∇2L(w) and to relate these characteristics to generalization. In many practically relevant cases, multiple
minima are associated with zero (or close to zero) training error, and explicit or implicit regularization is
needed to find solutions with the best generalization error.

Wei & Schwab (2020) show that given a degenerate valley in the loss surface, stochastic gradient descent
(SGD) on average decreases the trace of the Hessian, which is suggestive of a connection between locally flat
minima, overparameterization, and generalization. The parallel works of Sagun et al. (2017) and Chaud-
hari et al. (2016) examine the spectrum of the loss-function Hessian to characterize the landscape of the
loss before and after optimization, and find that overparameterization is associated with the bulk of the
Hessian spectrum lying close to zero and thus to highly degenerate minima. Observing that the clustering
of eigenvalues around 0 corresponds to wide valleys in the loss surface, Chaudhari et al. (2016) propose an
algorithm, Entropy-SGD, which has parallels with this work, and which explicitly introduces an "entropic
term" which explicitly captures the width of the valley in the objective, resulting in a modified objective (to
be maximized) (Dziugaite & Roy, 2017):

logEϵ∼N (0,σ2I)[e−τL(w+ϵ)] (6)

Thus, the loss landscape is smoothed by applying a Gaussian convolution and the resulting minima are
expected to be less sharp.

6To second order, max∥∆w∥2≤ϵ
L(w+∆w)−L(w)

1+L(w) ≈ ϵ
||∇2L(w)||2
2(1+L(w))
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Although these arguments have intuitive appeal, these notions of flatness are dependent on arbitrary choices
of parameterization, which can, in general, be used to arbitrarily change the flatness of the loss surface
without changing the underlying function of the input data (Dinh et al., 2017).

1.2.2 Our approach to sharpness

In this work we will implicitly measure sharpness as Tr(G−1H) where H is the loss Hessian, and G can be
interpreted as a Fisher Information Matrix, which, as a Riemannian metric tensor, defines a metric on the
parameter manifold. At a critical point, Tr(G−1H) is the Laplace-Beltrami operator7 which generalizes the
Laplacian to Riemannian manifolds (Lee, 2019) (Kristiadi et al., 2023), and defines an invariant, intrinsic
quantity which, by analogy with Tr(H) in Euclidean space, measures the average deviation from flatness,
adjusting for the curvature of the manifold. Crucially, this notion is not an assumption but rather emerges
naturally from the optimization of a generalized variational objective using the KL-metric. In particular, for
a multivariate Gaussian variational approximation, the trace penalty corresponds to a smoothing of the loss
surface using a kernel estimated online.

1.3 Penalizing sharpness: Sharpness-Aware Minimization

We first give an overview of SAM and its derivation, then highlight its strengths and weaknesses, and the
relevant recent literature.

1.3.1 SAM overview

Despite the intuitive appeal and plausible justifications for flat solutions to be a goal of DNN optimization
algorithms, there have been few unqualified practical successes in exploiting this connection to improve
generalization performance. A notable exception is a recent algorithm, Sharpness Aware Minimization
(SAM) (Foret et al., 2020), which seeks to improve generalization by optimizing a saddle-point problem of
the form:

min
w

max
∥∆w∥≤ρ

L(w + ∆w) (7)

An approximate solution to this problem is obtained by differentiating through the inner maximization, so
that, given an approximate solution ∆w∗ := ρ ∇L(wk)

∥∇L(wk)∥2
to the inner maximization (dual norm) problem:

arg max
∥∆w∥≤ρ

L(w + ∆w) (8)

the gradient of the SAM objective is approximated as follows:

∇w

(
max

∥∆w∥F R≤ϵ
L(w + ∆w)

)
≈∇wL(w + ∆w∗) ≈∇wL(w)|w+∆w∗ (9)

While the method has gained widespread attention, and state-of-the-art performance has been demonstrated
on several benchmark datasets, it remains relatively poorly understood, and the motivation and connection
to sharpness is questionable given that the Euclidean norm-ball isn’t invariant to changes in coordinates.
Given a 1-1 mapping g : Θ′ → Θ we can reparameterize our DNN f(·, w) using the "pullback" g∗(f)(·, ν) :=
f(·, g(ν)) under which, crucially, the underlying prediction function f(·, w) : Rdx → Rdy (and therefore
the loss) itself is invariant, since, for ν = g−1(w), we have f(·, w) = f(·, g(ν)). Under this coordinate
transformation, however, the Hessian at a critical point transforms as (Dinh et al., 2017):

∇2L(ν) = ∇g(ν)T ∇2L∇g(ν) (10)

In particular, Dinh et al. (2017) explicitly show, using layer-wise transformations Tα : (w1, w2) →
(αw1, α−1w2), that deep rectifier feedforward networks possess large numbers of symmetries which can
be exploited to control sharpness without changing the network output. The existence of these symmetries

7Also known as the manifold Laplacian
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in the loss function, under which the geometry of the local loss can be substantially modified (and in partic-
ular, the spectral norm and trace of the Hessian) means that the relationship between the local flatness of
the loss landscape and generalization is a subtle one.

It is instructive to consider the PAC Bayes generalization bound that motivates SAM, the derivation of
which starts from a PAC-Bayesian generalization bound (McAllester, 1999; Dziugaite & Roy, 2017):
Theorem 1. For any distribution D and prior p over the parameters w, with probability 1 − δ over the
choice of the training set S ∼ D, and for any posterior q over the parameters:

Eq[LD(w)] ≤ Eq[LS(w)] +

√
DKL[q, p] + log n

δ

2(n− 1) (11)

where the KL divergence:

DKL[q, p] = Ep(w)

[
log

(
q(w)
p(w)

)]
(12)

defines a statistical distance DKL[q, p] (though not a metric, as it’s symmetric only to second order) on the
space of probability distributions. Assuming an isotropic prior p ∼ N(0, σ2

pI) for some σp, an isotropic
posterior q ∼ N(w, σ2

qI), so that Eq[LD(w)] = Eϵ∼N (0,σ2
q I)[LD(w + ϵ)], applying the covering approach

of Langford & Caruana (2001) to select the best (closest to q in the sense of KL divergence) from a set of
pre-defined data-independent prior distributions satisfying the PAC generalization bound, Foret et al. (2020)
show that the bound in Theorem 1 can be written in the following form:

Eϵ∼N (0,σ2
q I)[LD(w + ϵ)] ≤ Eϵ∼N (0,σ2

q I)[LS(w + ϵ)] + g

(
∥w∥2

2)
ρ2

)
(13)

(for a monotone function g). Then, crucially, one may apply a well-known tail-bound for a chi-square random
variable to bound ∥ϵ∥2, thus bounding the expectation over q (with probability 1− 1/

√
n) by the maximum

value over a Euclidean norm-ball ball. This provides the following generalization bound:
Theorem 2. For any ρ > 0 and any distribution D, with probability 1 − δ over the choice of the training
set S ∼ D,

LD(w) ≤ max
∥ϵ∥2≤ρ

LS(w + ϵ) + g

(
∥w∥2

2)
ρ2

)
(14)

where ρ = σ
√

k

(
1 +

√
ln(n)

k

)
, n = |S|, and k is the number of parameters.

This bound justifies and motivates the SAM objective:

max
∥∆w∥≤ρ

L(w + ∆w) + λ∥w∥2
2 (15)

and resulting algorithm. Although the bound in Theorem 2 suggests that the ridge penalty should vary with
the radius of the perturbation, in practice (Foret et al., 2020) the penalty term is fixed (or simply set to
zero) even when different perturbation radii are searched over. Subsequent refinements of SAM (Kim et al.,
2022b) ignore the ridge penalty term altogether, and the choice of an optimal perturbation radius is what
drives the success of the method. It is not clear, however, why this adversarial parameter-space perturbation
should help generalization more than evaluating (and approximating) the expectation in the very bound
which motivates the SAM procedure in the first place, which would lead instead to an objective (ignoring,
for now, the ridge penalty term) of the following form:

Eϵ∼N (0,σ2I)[LS(w + ϵ)] (16)

Moreover, the worst-case adversarial perturbation used by SAM is likely to be noisier and is also naturally
a significantly looser bound than the expectation-based bound.
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1.3.2 SAM Strengths and weakness and related literature

SAM has shown great promise in some applications, particularly in its robustness to noise, where the per-
formance gains are sometimes dramatic (Baek et al., 2024) (Foret et al., 2020). The method has also
reinvigorated research on flatness-promoting regularizations. There are, however, numerous weaknesses and
open questions, some of which have been addressed in the literature.

1. The Euclidean norm-ball based bound is not invariant to coordinate transformations, so that scale
changes (such as occur, for example, when applying batch-normalization or weight-normalization)
which have no effect on the output of the learned probability distribution, can nevertheless still result
in arbitrary changes to the penalty. More generally, any geometric notion of loss surface flatness
must be independent of arbitrary rescaling of the network parameters.

2. SAM performs poorly for large batch-sizes and the practical benefits of SAM are typically only seen
for very small batch sizes (even though there is nothing in the theory or deviation to suggest this)
(Andriushchenko & Flammarion, 2022).

3. SAM optimizes a loose upper-bound on an expectation in the generalization bound that motivates
the method.

Several attempts have been made to address some of these issues. Kwon et al. (2021) focus on the inner
maximization problem and propose ad hoc linear node-wise rescaling to mitigate the scale dependence of the
method. Kim et al. (2022a) address the Euclidean norm-ball limitation by preconditioning the inner gradient
step with an empirical inverse diagonal Fisher information matrix and demonstrate modest improvements
over SAM on CIFAR-10 and CIFAR-100 datasets. Möllenhoff & Khan (2022) make the connection between
SAM and Bayesian methods and show that SAM can be derived as an optimal relaxation of the Bayes
objective, also demonstrating increased accuracy by improving the variance estimates and applying them to
the inner gradient step.

2 G-TRACER

Motivated by these considerations, we introduce G-TRACER, a general regularization scheme which, given
a base optimizer, consists of simply augmenting the loss with a term that penalizes the trace of the precon-
ditioned Hessian H(w):

LG(w) = L(w) + ρTr(G−1H(w)) (17)

where the preconditioner is the inverse of an exponentially smoothed Fisher Information Matrix F . When
the base optimizer is chosen to be SGD, G-TRACER is given by following general update equations:

w ←− w − α∇w[L(w) + ρTr(G−1H(w))]
G←− (1− β)G + βF

(18)

How is this related to SAM? Whereas SAM is derived from a loose bound on Eq[L(w)] by making the
restrictive assumption that the posterior over the parameters is an isotropic Gaussian: q(w) ∼ N(w, σ2

qI)
and by applying an (in general, loose) tail bound to the resulting expectation Eϵ∼N (0,σ2

q I)[LS(w + ϵ)], our
regularization term is derived by forming a second-order approximation to Eq[L(w)] ≈ L(µ) + 1

2 Tr(ΣH)
where q(w) ∼ N (w, Σ), and the resulting regularization scheme is derived by performing natural gradient
descent on the corresponding variational objective.

The effect is to modify the gradient from a pure descent direction ∇wL(w), by a direction given by
∇wTr(G−1H(w)), which encourages a reduction in the preconditioned Hessian trace. The preconditioner8

G−1 can be viewed as an approximate inverse metric tensor that captures the geometry of the parameter
space and the corresponding penalty term can be interpreted, in the neighbourhood of a critical point, as
an approximate metric trace of the Hessian, or Laplace-Beltrami operator, which measures the difference

8Note that G−1 is a constant in the update equation for w, whereas H ≡ H(w)
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Algorithm 1 SGD-TRACER
Require: αt: Stepsize
Require: β: Exponential smoothing constant for the online Fisher estimate
Require: ρ : Flatness inducing penalty term
Require: δ: Small positive constant

Initialize w0, f0, t = 0
while not converged do

Sample batch B = {(x1, y1), ...(xb, yb)}
wt+1 = wt − αt∇w

[
LB(wt) + ρ (∇wLB(wt))2 · 1/(ft + δ)

]
ft+1 = (1− β)ft + β (∇wLB(wt))2

end while

between the mean value of the loss over a geodesic ball (Lee, 2019) and the value at a minimum, and which
thus promotes flatness. Crucially, flatness is promoted in a coordinate-free way, and the penalty is invariant
to affine coordinate changes, such as the layer-wise scale transformations Tα : (w1, w2)→ (αw1, α−1w2) of
Dinh et al. (2017), and more generally, at critical points, the penalty does not depend on the parameterization
of the neural network f .

The general update equations (18) give rise to a number of possible practical regularization schemes. In
this work, by approximating the Hessian and Fisher Information Matrix by the diagonal empirical Fisher
Information Matrix, and replacing per-example squared gradients with squared minibatch gradients (the so-
called gradient magnitude approximation (Bottou et al., 2016), we arrive at Algorithm 1, SGD-TRACER,
where operations (other than the dot-product) are to be understood elementwise. In this simplified and
restricted form, and as we show in detail in section 2.1, G-TRACER amounts to applying an adaptive
natural-gradient L2-norm penalty since we have:

ρ
(
∇wL(wt)

)2 · 1/ft = ρ||F̃ −1∇wL(wt)||22 (19)

(where F̃ is the diagonal matrix with diagonal given by
√

ft) which can be seen to be a preconditioned
gradient norm, where the preconditioner is given by the square root of the inverse of the diagonal empirical
Fisher (as used in adaptive optimizers such as Adam (Kingma & Ba, 2014)).

It is important to note that, in going from the general update equations 18 to a practical algorithm, many
other choices are possible. The use of the diagonal (mean-field) empirical Fisher and the GM approximation
are well established in the literature and are used in Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011)
and RMSProp. Although these choices are straightforward to implement, scalable, widely used, and deliver
competitive empirical results, a more principled approach with convergence guarantees (Kunstner et al.,
2019) would be to use the Fisher information matrix (or equivalently, in most practically relevant settings,
the Generalized Gauss-Newton (GGN) matrix). Recent advances in approximate second-order methods in
optimization, notably Yao et al. (2020), suggest further avenues for improvement, and we leave investigations
of alternatives, such as the smoothed (Hessian-free) Hessian diagonal sketch used in AdaHessian and KFAC
(Martens & Grosse, 2015b) for future work. In general, there are likely to be significant gains in working
with an approximate GGN matrix as well as in removing the gradient magnitude approximation, though we
leave empirical investigations of these less straightforward alternatives for future work.

2.1 Connections with SAM and gradient norm penalization

The SGD-TRACER penalty can be written as

ρ
(
∇wL(wt)

)2 · 1/ft = ρ||F̃ −1∇wL(wt)||22 (20)

(where F̃ is the diagonal matrix with diagonal given by
√

ft) The connection with sharpness aware op-
timization and its variants can be seen by taking the gradient of the augmented loss associated with the
SGD-TRACER penalty:

LG(wt) = L(wt) + ρ||F̃ −1∇wL(wt)||22 (21)
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and choosing β = 1 in the update equation for ft (corresponding to no smoothing) we have:

∇wLG(wt) = ∇wL(wt) + 2ρF −1H∇wL(wt) (22)

Writing the Hessian-vector product (to second order) as

H∇wL(wt) ≈
∇wL(wt + δ∇wL(wt))−∇wL(wt)

δ
(23)

we get the following expression for the gradient of the penalized loss:

∇wLG(wt) = ∇wL(wt) + 2ρF −1 ∇wL(wt + δ∇wL(wt))−∇wL(wt)
δ

= (I − Γ)∇wL(wt) + Γ∇wL(wt + δ∇wL(wt))
(24)

where Γ := 2 ρ
δ F −1. Following the derivation of SAM and dropping higher-order terms, have the simplifica-

tion: ∇wL(wt + δ∇wL(wt)) ≈∇wL(w)|w=wt+δ∇wL(wt), obtaining:

∇wLG(wt) = (I − Γ)∇wL(wt) + Γ∇wL(w)|w=wt+δ∇wL(wt) (25)

The second term is proportional to F −1∇wL(w)|w=wt+δ∇wL(wt) which is almost identical to the SAM
gradient update (it is, in effect, a natural SAM gradient). In the special case that we choose F = I and
Γ = I we recover effectively the same update as SAM:

∇wLG(wt) = ∇wL(w)|w=wt+δ∇wL(wt) (26)

which is exactly unnormalized SAM9, as used in numerous theoretical works (Agarwala & Dauphin, 2023)
and, commonly, by practitioners10. The corresponding augmented loss has the same solution set as the
squared L2-norm penalty, though the optimization dynamics are, of course, different.

Thus, SAM can be seen as a special case of our more general scheme, corresponding to β = 1 (no smoothing),
approximating an HVP, approximating the gradient of the resulting perturbed loss, and choosing as a
preconditioner the identity matrix, so that the perturbation is not aligned with the natural geometry of
the parameter space. Notably, at a critical point, the normalized SAM update isn’t well defined since
the perturbation is undefined. Whereas the normalized SAM perturbation radius is fixed, as our scheme
approaches a critical point, the inverse Fisher has the effect of increasing the effective penalty in the directions
where the gradient magnitudes are small.

Our scheme therefore also shows how gradient-norm penalties (Zhao et al., 2022) can be derived from
probabilistic principles. In particular, natural-gradient norm penalization can thus be seen as a way to
perform approximate variational inference.

Another complementary perspective on the relationship between a penalty of this form is that the supremum
of the gradient norm of a real-valued locally Lipschitz-continuous function is the Lipschitz constant which
controls the regularity of the function, and in particular bounds the change (in norm) of the output for a
given change in the input (Zhao et al., 2022).

2.2 Derivation sketch

We first sketch the derivation of the general update equations (18) and then show how these lead to SGD-
TRACER (1).

9Note that to recover the the scaled unit-norm perturbation wt + δ
∇wL(wt)

||∇wL(wt)||2
from the original SAM paper would require

a L2-norm gradient penalty: ρ||∇wL(wt)||2, see (Zhao et al., 2022) for a similar derivation
10see Andriushchenko & Flammarion (2022) for a proof of convergence of unnormalized SAM, who show that the normalized

perturbation is not important for generalization
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2.2.1 General update equations

Recall from Section 1.1 that we take a probabilistic approach and treat the parameters w ∈ Θ ⊆ Rp of a
neural network f(·, w) : Rdx → Rdy as random variables. Given a prior over the weights and a loss L(w) we
can form a (generalized) posterior distribution (Bissiri et al., 2016) q(w|D) = p(w) 1

Z exp{−L(w)} over the
weights, with normalizer Z and prior p(w)11.

The posterior is given by the solution to the following generalized variational objective, (Knoblauch et al.,
2019) (Bissiri et al., 2016) (the evidence lower bound (ELBO), which is related to, but more general than
the objective from which SAM is derived) over the space of probability measures P(Θ) on the parameter
space Θ:

q∗(w) = arg min
q∈P(Θ)

{
Eq(w)[L(w)] + ρDKL[q, p]

}
(27)

where ρ is a positive-valued parameter which controls the strength of regularization. We seek an approximate
solution to equation 27 by assuming that the posterior q(w) and prior p(w) belong to multivariate Gaussian
parametric families, so that the posterior has the form q(w) ∼ N (w, Σ), and our optimization problem
becomes:

arg min
ϕ

Eq(w)[L(w)] + ρDKL[q, p] (28)

where12 ϕ = (µ, Σ) and ρ is a positive real-valued parameter.

Since we are optimizing in the space of probability distributions whose parameterizations can be changed
without changing the underlying probability distribution, it is natural to perform gradient descent on our
variational objective using Riemannian gradients corresponding to the Fisher-Rao metric13 (also known as
natural gradient descent (Amari, 1998)). This allows us to derive an algorithm that respects the intrinsic
geometry of the parameter space, and thus derive an algorithm that seeks sharp minima in an approximately
coordinate-independent way. The natural gradient operator in the variational parameter space ϕ = (µ, Σ)
is given by:

∇ϕ = F −1
ϕ ∇ϕ (29)

where the Fisher Information Matrix Fϕ w.r.t. the variational parameters can be computed exactly and is
given by (see Appendix A.1.2):

Fϕ =
[
Σ−1 0

0 1
2 (Σ−1 ⊗Σ−1)

]
We show in Appendix A.1.2 that, assuming an isotropic Gaussian prior, p(w) ∼ N (0, ηI), performing
gradient descent on the objective 28 w.r.t. the natural gradient leads to the following iterative update
equations for the variational parameters(Khan & Rue, 2021) (Zhang et al., 2017):

µ←− µ− αΛ−1
(
Eq[∇wL(w)] + ρ

η
w

)
Λ←− (1− β)Λ + β

(
Eq[∇2

wL(w)]
ρ

+ η−1I

) (30)

where α and β are the learning rates for the mean and precision updates, respectively, and Λ := Σ−1 is
the precision matrix. Approximating the expectations to second order and further simplifying14 leads to the
update equations (see Appendix A.1.2 for a detailed derivation):

µ←− µ− α∇µ[L(µ) + ρTr(Λ−1H(µ))]
Λ←− (1− β)Λ + βH

(31)

11This coincides with the Bayesian posterior in the special case that the loss is the negative log-likelihood L(w) =
− 1

n

∑n

i=1 log p(yi|xi, w)
12We will write, to keep the notation as light as possible, the set of variational parameters as ϕ = (µ, Σ). Depending on the

context, e.g. when we write the gradient ∇ϕ, we will take this to mean ϕ =
[

µ
vec(Σ)

]
13This can be shown to be steepest descent in the KL-metric (Martens, 2020)
14We drop the gradient preconditioner in the update equation for µ for simplicity of exposition, since our focus here is on the

regularizer
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where H = ∇2
µL(µ) is the Hessian.

As we will see in the full derivation of the method in Appendix A.1.2, the recursion for Λ involving the loss
Hessian is an update equation for the precision15, which is exactly the Fisher Information Matrix Fµ of the
variational distribution q viewed as a function of µ:

Fµ = Ew∼q[∇µ log q(w; µ)T ∇µ log q(w; µ)] = Ew∼q[−∇2
µ log q(w; µ)T ] (32)

and which defines a Riemannian metric on µ.

2.3 MAP estimation and general update equations

So far we have worked in variational parameter space, and we now wish to pass to the underlying parameter
space. We do so by taking the maximum a posteriori (MAP) estimate of the multivariate Gaussian posterior,
which allows us to identify µ and w. We are thus summarizing the multivariate posterior by its mean (and
modal) value. Since we have passed to the underlying parameter space and the update equation for Λ is
used only to compute the preconditioner in the update equation for the mean and not to maintain a full
distribution over the parameters, we denote this smoothed Hessian by G. Our update equation now takes
the form:

w ←− w − α∇w[L(w) + ρTr(G−1H(w))]
G←− (1− β)G + βH

(33)

Finally, we approximate the Hessian H in the update equation for G (equation 33) by the log-likelihood
Fisher Information Matrix (FIM),

F = Ey∼p(y|x,w),x∼p(x)[(∇ log p(y|x, w))(∇ log p(y|x, w))T ]
= Ey∼p(y|x,w),x∼p(x)[−∇2

w log p(y|x, w)]
(34)

which, as the expectation of the negative log-likelihood Hessian under the model’s output distribution16

(Amari, 1998), is known to provide a better local quadratic approximation to L(w) than the Hessian H
(Martens & Sutskever, 2012) when optimizing non-convex objectives. In particular:

M(∆w) = 1
2∆T

wF ∆w + ∇wL(w)T ∆w + L(w) (35)

can be viewed as a convex approximation to the second-order Taylor series of L(w + ∆w) for which the
minimizer is the negative natural gradient −F −1∇wL(w) (Martens, 2020).

We therefore substitute the F for the Hessian H and, in addition to the advantages of positive definiteness
and strong empirical performance, this is a natural identification when the loss is given by the log-loss
l(y, f(x, w)) = − log p(y|x, w)17 where the log-likelihood FIM converges to the Hessian as training error
goes to zero, and where it is equivalent to the Generalized Gauss-Newton matrix (Kunstner et al., 2019)
(Martens, 2020). In particular, by Proposition 1 of Kunstner et al. (2019) (see also Martens (2020)), we
have that, under mild smoothness assumptions (in particular, assuming that the coordinate functions of the
DNN are β-smooth), and assuming p(y|f(x, w)) is an exponential family distribution18:

||∇2L(w)− F||22 < r(w)β (36)

where the residual r(w) =
∑N

n=1 ||∇f log p(yn|f(xn, w))|| goes to zero as the training error goes to zero.

Crucially, the log-likelihood FIM is also the Hessian of the KL divergence, which measures the dissimilarity
between probability distributions in an intrinsic way, independently of parameterization. As an infinitesimal

15We explain later why this is a natural choice
16Whereas H is the expected Hessian under the data distribution
17And for the most practically relevant losses (which are the ones we consider here): cross-entropy (classification), and

squared error (regression), corresponding to exponential family output distributions with natural parameters given by the
output function f(x, w) (Kunstner et al., 2019) (Martens, 2020)

18see (Kunstner et al., 2019) for further details, including how to define the output distribution and loss so the the GGN and
FIM are equivalent
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form of the KL divergence, it defines a metric tensor on the parameter manifold corresponding to the Fisher-
Rao metric(Amari, 1998). The use of the Fisher approximation to the Hessian therefore connects in a natural
way the Riemannian metric on the space of variational parameters Fµ and the approximate Riemannian
metric F in the underlying parameter space of weights Θ.

We show in Appendix A.1.2 that the penalty term ρTr(G−1H) is invariant to affine coordinate transforma-
tions. In the neighborhood of local minima we have approximate invariance to general smooth coordinate
changes, since G−1 is an approximation to the inverse metric on the parameter space Θ which, as a (0,2) ten-
sor transforms in the same way as the Hessian at a critical point, where the Christoffel symbols vanish (Lee,
2019). The penalty can be interpreted, in the neighborhood of local minima, as a coordinate-independent
measure of curvature that correctly accounts for the geometry of the underlying manifold L(w).

Substituting-in the FIM approximation of the Hessian (see Appendix A.1.2 for details, and a discussion of
alternatives) we arrive at the general update equations (18):

w ←− w − α∇w[L(w) + ρTr(G−1H(w))]
G←− (1− β)G + βF

(37)

2.3.1 SGD-TRACER

The Empirical Fisher Information Matrix, given by

F̃ :=
n∑

i=1
∇w log p(yi|xi, w)T ∇w log p(yi|xi, w) (38)

which replaces the FIM’s expectation over the model’s output distribution by an expectation over the train-
ing data, despite lacking the same convergence guarantees, performs competitively in many settings (Kun-
stner et al., 2019). We find in our experiments that the empirical Fisher performs competitively with the
MC approximation to the FIM/GGN (Khan et al., 2018; Kingma & Ba, 2014) and has the advantage of
being straightforward and cheap to compute from already computed gradients (in the case of applying a
G-TRACER regularizer to Adam, the smooth squared gradients are already computed and maintained for
use as a preconditioner). Given the conceptual and computational simplicity of this approach we substitute
the empirical Fisher for the Fisher Information Matrix, as well as for the Hessian in the update equation for
the mean, giving the update equations:

w ←− w − α∇w[L(w) + ρTr(G−1F̃ )]
G←− (1− β)G + βF̃

(39)

Recent advances in approximate second-order methods in optimization, notably Yao et al. (2020), suggest
avenues for improvement, and we leave investigations of alternatives, such as the smoothed (Hessian-free)
Hessian diagonal sketch used in AdaHessian, for future work.

We now make two simplifications. First, we use a mean-field approximation, representing the empirical FIM
by its diagonal:

F̃ ≈ 1
n

n∑
i=1

∇w log p(yi|xi, w)2 (40)

The inverse of the diagonal empirical Fisher, as an approximation to the inverse Fisher Information Matrix,
is used as a gradient preconditioner by the Adam (Kingma & Ba, 2014) and Adagrad (Duchi et al., 2011)
optimizers. Although many other approaches are possible here, of varying degrees of sophistication and
complexity (see KFAC (Martens & Grosse, 2015a), for example), we find that this simple, cheap to compute,
and scalable approach works extremely well.

Secondly, as most current deep learning frameworks do not straightforwardly support access to per-example
gradients, which can in principle be achieved with negligible additional cost (see, for example, BackPACK
(Dangel et al., 2020) second-order Pytorch extensions), for simplicity and efficiency, we use the gradient

11
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magnitude (GM) approximation (Bottou et al., 2016), as used in standard optimizers Adam and RMSprop,
replacing the sum of squared gradients with the square of summed gradients:

1
n

n∑
i=1

[∇w log p(yi|xi, w)]2 ≈
[

1
n

n∑
i=1

∇w log p(yi|xi, w)
]2

(41)

and we write the resulting FIM diagonal as ∇wL(w)2. Finally, it is standard practice to (Martens, 2020)
to add Tikhonov regularization or damping via a small positive real constant δ when using 2nd-order opti-
mization methods, and, passing to mini-batches, we end up with Algorithm 1 (with elementwise ops):

wt+1 = wt − αt∇w

[
LB(wt) + ρ (∇wLB(wt))2 · 1/(ft + δ)

]
ft+1 = (1− β)ft + β (∇wLB(wt))2

(42)

in which the usual stochastic gradient update is modified with a term which penalizes the trace of the ratio
of the the empirical FIM and an exponentially weighted average the of the empirical FIM. By augmenting
the loss with a TRACER term and maintaining a smoothed squared-gradient estimate, in principle, any
optimization scheme can be modified in the same way. In our experiments, we use SGD with momentum
for vision tasks and Adam-TRACER (Adam with a G-TRACER penalty) for NLP tasks, based on standard
practice in each problem domain.

3 How does G-TRACER penalize sharpness?

We first examine, in a simplified setting, the interplay between the penalty parameter ρ and the variance of
the perturbation over which the loss is smoothed by convolution with a Gaussian kernel. We then show that,
when the expectation (or convolution) is approximated to second order, the result has a direct correspondence
with the Laplace-Beltrami operator, which establishes a rigorous link to flatness. We then show, by passing
to the underlying weight space, how the final form of the regularizer also admits an interpretation as a
flatness inducing penalty in the log-likelihood FIM-induced geometry of the underlying parameter space.
Finally, we examine links between gradient norm penalties, SAM and SGD-TRACER.

3.1 ρ determines generalized variance of the Gaussian kernel smoothing

Starting with equation 28 and ignoring for simplicity the contribution from the prior term, which would
correspond to a ridge-regularization term under the assumption p(w) ∼ N (0, σpI), we have the following
objective, which we seek to minimize over w:

Eq(w)[L(w)]− ρH(q) (43)

where H(q) = Eq(w)[− log q(w)] is the entropy of q. For the choice q(w) ∼ N (µ, σ2I), the optimization
problem associated with the variational objective becomes (absorbing some constants into ρ):

arg min
q

Eq[L(w)]− ρH(q) = arg min
w,σ2

Eq[L(w)] + ρ log 1
σ2 (44)

so that we can see that ρ determines the variance of Gaussian perturbation over which the loss is averaged.
More generally, choosing q ∼ N (w, Σ) leads to the following variational objective:

arg min
q

Eq[L(w)]− ρH(q) = arg min
w,Σ

Eq[L(w)] + ρ log 1
det(Σ) (45)

so that large values of ρ will correspond to distributions with larger volume, since for x ∼ N (0, Σ), x lies
within the ellipsoid xT Σ−1x = χ2(α) with probability 1− α, with the volume of the ellipsoid proportional
to det(Σ) 1

2 (Anderson, 2003). The regularization parameter ρ thus controls the generalized variance det(Σ)
of the Gaussian kernel which is used to smooth the loss when calculating the expectation Eq(w)[L(w)].

12
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3.2 Tr(G−1H) regularization is curvature regularization and thus promotes flatness

We show how G-TRACER promotes flatness from three complementary perspectives, corresponding to the
three forms of the update equations, in decreasing order of generality. First, we consider the variational
update equations (31), corresponding to the variational parameter space, in which we view the neural network
parameters as random variables. Second, we examine the parameter-space general update equations (18)
relating to the underlying weight space, in which the randomness arises from the output distribution of the
neural network. Third, we highlight the connections between gradient norm regularization, SAM, and the
final simplified SGD-TRACER formulation (1) from a parameter-space perspective.

3.2.1 Variational parameter space sharpness

We first examine curvature regularization from the perspective of the variational parameter space. In this
probabilistic setting, the parameters of the neural network are random variables. The geometric trace penalty
arises by modeling the posterior over the parameters as a multivariate Gaussian: q(w) ∼ N (µ, Σ), and then
performing natural gradient descent on the variational objective (55) resulting in the update equations 31:

µ←− µ− α∇µ[L(µ) + ρTr(Λ−1H(µ))]
Λ←− (1− β)Λ + βH

(46)

The Fisher Information Matrix Fµ of q, viewed as a function of the variational mean parameter19 µ, can be
computed exactly, and is given by:

Fµ = Eq

[
−∇2

µ log q
]

= Λ (47)
(see Appendix A.1.2 for details). Thus the penalty term Tr(Λ−1H(µ)) ∝ Tr(F −1

µ H(µ)) = TrFµ(H), where
TrFµ is the metric trace20 (Lee, 2019) of the Hessian, and which, at a critical point, is exactly the Laplacian
∆ (also known as the Laplace-Beltrami operator (Lee, 2019) Kristiadi et al. (2023)), a fundamental operator
in differential geometry and analysis, which measures curvature in an intrinsic, coordinate independent way,
correcting for the underlying geometry of the manifold21. In the neighborhood of a local minimum µ∗ of
L (in particular), it can be interpreted as the difference between the mean value of L over a (geodesic) ball
centered at µ∗ and L(µ∗), due to the following mean-value property for smooth functions over geodesic balls
Br(µ) (Gray & Willmore, 1982) (Loustau, 2015):

1
vol(Br(µ∗))

∫
Br(µ∗)

L(µ)dV − L(µ∗) = ∆L(µ∗)
2(n + 2) r2 +O(r4) (48)

so that we have the following asymptotic expression for the value of the Laplacian at µ∗:

∆L(µ∗) = lim
r→0

2(n + 2)
r2

1
vol(Br(µ∗))

∫
Br(µ∗)

L(µ)− u(µ∗)dV (49)

Since, at a minimum µ∗ of L(µ), Tr(F −1
µ∗ H) = ∆L(µ∗) ≥ 0, penalizing Tr(F −1

µ H) has the effect of forcing
the values of L(µ) in a neighborhood of a minimum to be closer to the value at the minimum.

3.2.2 Underlying parameter-space sharpness

From the perspective of the underlying parameter space Θ (the weight space), the general update equations
(equation 18) consist of the G-TRACER penalty ρTr(G−1H) (which is affine invariant, as well as invariant

19Σ is a constant in the update equation for µ
20The metric induces canonical or musical isomorphisms ♯ and ♭ between the tangent and cotangent bundles. The metric

trace of a symmetric 2-tensor H is TrFµ H = TrH♯

21An alternative viewpoint, complementary to the one we take here, is an extrinsic one, where we consider the loss surface in
graph coordinates as a hypersurface embedded in ambient Euclidean space Rp+1: {(w, L(w)), w ∈ Rp+1 : w ∈ Θ}. In Euclidean
space, the Hessian is the matrix of the shape operator (or the second fundamental form (Lee, 2019)). The eigenvalues of the
Hessian correspond to the principal curvatures, and the mean curvature is the mean of the principal curvatures (or equivalently,
the Hessian trace). The Euclidean metric on Rp+1 then induces a pullback metric on the embedded submanifold, G, and at a
critical point, the matrix of the shape operator in a Riemannian manifold is given by G−1H with corresponding mean curvature
Tr(G−1H) (Kristiadi et al., 2023).
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to all diffeomorphic coordinate transformations at critical points), where G is an exponentially smoothed
log-likelihood FIM. G captures the local geometry of the loss surface L(w) and, in the neighborhood of
critical points, the G-TRACER penalty, as an approximate metric trace w.r.t. G, can be interpreted as a
measure of sharpness on the weight space. The choice β = 1 in the update equation (corresponding to no
smoothing) for G corresponds to the case where ρTr(G−1H) is exactly log-likelihood FIM-preconditioned
Hessian trace.

3.3 Preconditioned gradient norm penalty

The final simplified form of the udpate equations, SGD-TRACER, amounts to an adaptive preconditioned
gradient norm penalty that can be seen as a generalization of SAM. The penalty has the form:

ρ
(
∇wL(wt)

)2 · 1/ft = ρ||F̃ −1∇wL(wt)||22 (50)

(where F̃ is the diagonal matrix with diagonal given by
√

ft) and the resulting gradient update, after a
number of simplifications and approximations (see section 2.1), has the form:

∇wLG(wt) = (I − Γ)∇wL(wt) + Γ∇wL(w)|w=wt+δ∇wL(wt) (51)

where Γ := 2 ρ
δ F −1 and which strongly resembles a natural-gradient SAM update. As a gradient norm

penalty, the approach can also be seen, from a functional analytic perspective, as controlling the Lipschitz
constant and thus promoting regularity. Our method thus shows how natural gradient norm penalties can
be derived from general probabilistic principles.

4 Results

While the original SAM paper (Foret et al., 2020) and subsequent papers Kwon et al. (2021) (Kim et al.,
2022a) largely focus on standard benchmark problems and show marginal improvements in many settings, the
most striking and practically relevant improvements concern the performance gains in the more challenging
noisy-label settings. The CIFAR-10 and CIFAR-100 benchmarks are extremely well understood, and good
training schedules, data augmentations, and architecture choices have all been found over an extremely large
number of trials run by the community over many years. The effect size of augmentations is often large (10%
accuracy gains, or more) compared to post-augmentation gains exhibited by SAM (typically on the order of
1%).

Given our focus on delivering material performance gains in challenging settings, we examine the performance
of our algorithm on especially challenging variants of standard benchmarks as they are a good model for the
kinds of real-world applications that most require general-purpose regularizations. For example, we apply our
method to noisy variants (with up to 50% label noise) of CIFAR-100, with and without data augmentations,
first using a standard ResNet architecture and then on a vision transformer architecture (ViT). The ViT is
trained from scratch (no pre-training), which is extremely challenging, since the convolution’s inductive bias
of spatial locality is lost in moving to a transformer architecture. We are thus using variants on standard
benchmarks as a model for general settings, such as financial time-series forecasting, in which low effective
sample size, extremely low signal-noise ratio, extreme nonstationarity, and a general lack of symmetries
(financial time series exhibit neither up-down symmetry nor time-reversal symmetry) which give rise to data
augmentations, all contrive to make generalization very difficult.

Finally, we show encouraging results on challenging subtasks from one of the most challenging NLP bench-
marks, SuperGlue, using the BERT transformer architecture.

4.1 Vision: CIFAR-100, challenging variants

We first examine a variant on a standard benchmark in computer vision, CIFAR-100. We compare SGD,
SAM and SGD-TRACER using none of the standard regularizations (no data augmentation, no weight-decay)
and a standard training protocol (200 epochs, initial learning rate set to 0.1, cosine learning-rate decay).
Furthermore, we randomly flip 50% of the labels so that 50% of the examples are incorrectly labeled.
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The noisy label case is of primary interest and relevance in our setting, and relates to both SAM and G-
TRACER type schemes which provide robustness w.r.t. weight perturbation since noise can be transferred
to the weights. To see this, consider the single-layer case with weight matrix W and input x, where we
have L(W + ∆W , x) = L(W , x + ∆x) for the choice ∆W = W ∆x

||x||2
2

xT (indeed, there are infinitely many
solutions to the underlying matrix equation), so that input noise robustness corresponds to robustness in
weight-space. This type of construction can be generalized to deeper architectures (Seong et al., 2018).
Methods like G-TRACER and SAM which are robust to weight perturbations are for this reason expected
to be robust to noise. Indeed, the most convincing and striking results in the original SAM paper concern
robustness to label noise.

4.1.1 CIFAR-100 baseline with augmentation, consistency check

As a baseline and to establish consistency with other results in the literature and in order to demonstrate
empirically that our training procedure is such that our models are well-trained, we apply the basic standard
data-augmentations (rescaling, random cropping and flipping) together with a ResNet-20 architecture to the
CIFAR-100 benchmark.

Table 1: CIFAR-100: ResNet20, accuracy (standard error)
with aug

SGD 70.02% (0.36)
SAM 70.33% (0.22)
SGD-TRACER 70.71% (0.36)

The exact experimental setting for the vision tasks (unless otherwise indicated) follows standard practice
and is as follows: SGD with weight decay/ridge penalty 5 × 10−4, momentum 0.9, initial learning rate 0.1,
200 episodes, cosine learning rate decay to 0, batch size 128, global clip-norm= 1.0. The search spaces
for the SAM and G-TRACER penalties ρ were chosen by first running on a logarithmic grid of 10 values
[1×10−5, . . . , 1×104] and then refining the range based on in-sample convergence, in order to span the space
of plausible regularization strengths. These results are in line with (in fact, competitive with) the results in
(Möllenhoff & Khan, 2022) (Kwon et al., 2021). 22

4.1.2 CIFAR-100 50% noise, no regularization

Having established the baseline, we now consider the challenging setting where we randomly flip 50% of the
labels and drop all augmentations (we simply rescale the inputs), and use no weight decay. The results in
Table 2 show that GTRACER significantly improves upon SAM in this challenging setting. In Figure 1 we
highlight the results for the same problem over different values of the regularization parameter ρ. In Figure
2 we compare the training curves on this problem.

Table 2: CIFAR 100: ResNet20, no weight-decay, 50% noise, accuracy (standard error)
no aug

SGD 17.5% (2.41)
SAM 34.63% (1.85)
SGD-TRACER 47.55% (1.51)

22As a further consistency check with practice, follow the training protocol (stepwise learning rate decay over 200 episodes, with
learning rates [.1, .02, .004, .0008] at [0, 60, 120, 160]) in https://github.com/weiaicunzai/pytorch-cifar100/tree/master?
tab=readme-ov-file with larger architectures, eg ResNet-18 (11M parameters), and match the expected results for SGD,
and see similar improvements vs SGD (75.8% accuracy vs 75.1% accuracy) and SAM (75.3% accuracy, ρ = .05).
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Figure 1: CIFAR 100: ResNet20, no weight-decay, 50% noise, accuracy vs regularization strength.
GTRACER dominates the baseline and SAM across a wide range of regularization strengths.

Figure 2: CIFAR 100: ResNet20, 50% noise, test-accuracy training curves. On a standard 200 epoch training
protocol with cosine learning-rate decay, SGD-TRACER converges to a solution that generalizes materially
better than SGD and SAM

4.1.3 CIFAR-100 results with weight decay

We next run SGD-TRACER on CIFAR-100 with and without label noise, with and without augmentation,
with random label flipping and with a standard ridge penalty of 5 × 10−4. The results in Table 3 show
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that SGD-TRACER performs consistently well, with a particularly strong advantage in the presence of noise
and/or without additional regularization in the form of data augmentation.

Table 3: CIFAR-100: ResNet20, accuracy (standard error)
no aug with aug 50% noise & no aug

SGD 51.43 % (0.41) 70.02% (0.36) 21.96% (0.36)
SAM 58.98 % (0.52) 70.33% (0.22) 49.89% (0.32)
SGD-TRACER 63.47% (0.32) 70.71% (0.36) 51.62% (0.18)

4.1.4 ViT, no pretaining

We now turn to transformer architectures and use the Keras ViTTiny16 vision transformer architecture from
the KerasCV library (Wood et al., 2022). We apply the standard augmentations as above with initial learning
rate 1 × 10−4, and batch size 256. We use this task to investigate the potential for further boosting the
performance of G-TRACER by mitigating the gradient magnitude approximation, by splitting each batch
into 4 sub-batches, computing squared gradients on each sub-batch and aggregating. 23 For fairness we
also compute the SAM gradient on 4 sub-batches and average (as explored in Foret et al. (2020)). We see
that this batch splitting delivers strong results for G-TRACER and suggests that moving to per-example
gradients could significantly strengthen empirical results. We see that, despite the considerable challenge in

Table 4: CIFAR-100: ViT, accuracy (standard error)
with aug

SGD 37.7 % (0.71)
SAM 38.2 % (0.52)
SAM batch-split 38.7 % (0.44)
SGD-TRACER 39.1 % (0.32)
SGD-TRACER batch-split 41.6 % (0.28)

losing the inductive bias of locality which drives the success of CNNs on vision tasks, SGD-TRACER is able
to deliver a 10% performance boost to the naive SGD solution.

4.2 NLP

For NLP tasks we use the Huggingface Bert-base-uncased (Devlin et al., 2018) checkpoint together with
Adam-TRACER with max sequence length 256 and batch size 8. We fine-tune using Adam-TRACER, using
a standard protocol of 5 epochs with initial learning rate 2 × 10−5 and decay the learning rate using a
linear schedule, with final learning rate 1× 10−5. The search ranges for the SAM and G-TRACER penalty
parameters are chosen as in the vision experiments. Each run is repeated 20 times. We choose 3 distinct
fine-tuning tasks24:

• BoolQ: boolean question answering (Clark et al., 2019)

• WiC: Words in Context (Pilehvar & Camacho-Collados, 2018)

• RTE: Recognizing Textual Entailment (Wang et al., 2020)

and we see that Adam with a G-TRACER performs competitively, and has the additional property of
producing more stable results across runs (as reflected in the standard errors). Note that in this setting, the
extensive pre-training (Devlin et al., 2018) combined with fine-tuning acts as a strong regularizer and that
the relative performance gains we see from using a G-TRACER are smaller than those we observe in the
ViT setting without pretraining.

23Using tools such as (Dangel et al., 2020) would allow per-example squared gradients to be calculated.
24All of which have been included in the challenging SuperGlue benchmark
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Table 5: NLP tasks BERT base-uncased results, accuracy (standard error)
BOOLQ WIC RTE

Adam 73.84% (0.14) 69.36% (0.08) 69.18% (0.33)
SAM 73.95% (0.13) 69.06% (0.07) 69.54% (0.28)
Adam-TRACER 75.09% (0.04) 70.01% (0.06) 70.13% (0.18)

5 Conclusion

Motivated by the notable empirical success of SAM, a prior that flat (in expectation, and in an intrinsic,
geometric sense) minima should generalize better than sharp minima, and noting the connections between
the generalized Bayes objective and SAM, we have derived a new algorithm that is simple to implement
and understand, cheap to evaluate, provably convergent, naturally scale-independent (and approximately
coordinate-free) and which shows promising performance on standard benchmarks in vision and NLP, and
across transformer and convolutional architectures. Performance is notably strong for challenging low signal-
to-noise ratio and large batch problems, and in settings where other regularizations (data augmentations,
tailored learning rate schedules, weight decay) are not used. Crucially, the algorithm is straightforwardly
derived from an approximate natural gradient optimization of an ELBO-type objective and does not rely on
the use of small batch sizes (or "m-sharpness" (Foret et al., 2020)) or other poorly understood (and frequently
expensive to compute) heuristics.

A Appendix

A.1 G-TRACER detailed derivation

We begin our exposition with a background on generalized variational posteriors and then derive the G-
TRACER regularizer by performing natural gradient variational inference.

A.1.1 Generalized variational posterior

Our starting point is similar to that of SAM, but uses a more general objective, which arises in the variational
optimization of a generalized posterior distribution, q, over the space of probability measures P(Θ) on the
parameter space Θ given by (Bissiri et al., 2016):

q∗(w) = arg min
q∈P(Θ)

{
Eq(w)[L(w)] + DKL[q, p]

}
(52)

for which, when Z =
∫

Θ exp {−
∑n

i=1 l(w, xi)}π(θ)dθ <∞, the solution is given by the generalized posterior:

q∗(w) ∝ p(w)
N∏

i=1
exp{−l(w, xi)} (53)

The terms exp{−l(w, xi)} are to be interpreted as quasi-likelihoods, and for the particular choice l(w, xi) =
− log p(xi|w), we recover the standard Bayesian posterior. As this infinite dimensional optimization is in
general intractable, it is usual to assume that the posterior belongs to a parametric family Q ⊂ P:

q∗(w) = arg min
q∈Q(Θ)

{
Eq(w)[L(w)] + DKL[q, p]

}
(54)

which, for the choice l(w, xi) = − log p(xi|w), is the same objective (up to a constant factor) as the evidence
lower bound (ELBO) used in variational Bayes.

In practice, it is often found that tempering the KL divergence term by a positive factor ρ < 1 produces
optimal performance, giving rise to:

q∗(w) = arg min
q∈Q(Θ)

{
Eq(w)[L(w)] + ρDKL[q, p]

}
(55)
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A.1.2 Derivation of the TRACER flatness-inducing regularizer

Following Khan & Rue (2021) and Zhang et al. (2017), we make the assumption q(w) ∼ N (µ, Σ) and seek
to optimize the variational objective in equation 55 w.r.t. the variational parameters ϕ = (µ, Σ) 25 using
natural gradient descent. This allows us to derive an algorithm that respects the intrinsic geometry of the
parameter space, and thus derive an algorithm that seeks sharp minima in an approximately coordinate-
independent way.

Thus our objective is to minimize:

L(ϕ) := Eq(w)[L(w)] + ρDKL[q, p] (56)

w.r.t. ϕ where ρ is a positive real-valued regularization parameter.

Natural gradient overview

We first introduce and motivate the natural gradient. The negative gradient corresponds to the steepest
descent direction in the Euclidean metric:

−∇ϕL

∥∇ϕL∥
= lim

ϵ→ 0

1
ϵ

argmin
∆ϕ:∥∆ϕ∥2<ϵ

L(ϕ + ∆ϕ) (57)

and thus depends on the chosen coordinates ϕ. In contrast, the so-called natural gradient update corresponds
to steepest descent in the KL-divergence metric:

−F −1∇ϕL

∥∇ϕL∥
= lim

ϵ→ 0

1
ϵ

argmin
∆ϕ:DKL[qϕ,qϕ+∆ϕ]<ϵ

L(ϕ + ∆ϕ) (58)

where F is the FIM:

F := Eqϕ(w)
[
∇ϕ log qϕ(w)T ∇ϕ log qϕ(w)

]
= Eqϕ(w)

[
−∇2

ϕ log qϕ(w)
]

(59)

which defines a Riemannian metric on the variational parameter manifold. Expanding to second order in a
small neighborhood of ϕ we have:

DKL[qϕ, qϕ+∆ϕ] = Eqϕ(w)

[
−∆ϕT ∇ϕ log qϕ(w)− 1

2∆ϕT ∇2
ϕ log qϕ(w)∆ϕ

]
+ O(||∆ϕ||3) (60)

and since:
Eqϕ(w)∇ϕ log qϕ(w) = Eqϕ(w)

[
∇ϕqϕ(w)

qϕ(w)

]
= ∇ϕEqϕ(w)[1] = 0 (61)

the FIM (under certain regularity conditions) can be seen to be the Hessian (or curvature) of the K-L
divergence:

DKL[qϕ, qϕ+∆ϕ] = −1
2∆ϕTEqϕ(w)

[
∇2

ϕ log qϕ(w)
]

∆ϕ + O(||∆ϕ||3) = 1
2∆ϕT F∆ϕ + O(||∆ϕ||3) (62)

Natural gradient update

It turns out that the update equations have a particularly simple form when qϕ(w) is parameterized as
ϕ = (µ, Λ−1), and the following proposition gives expressions for the natural gradient vectors of our objective
(56) w.r.t. the mean and precision (for proof see Appendix A.5):
Proposition 1. For a probability distribution with pdf qϕ(w) ∼ N (µ, Λ−1) with the parameterization ϕ =
(µ, Λ−1), the natural gradients of L w.r.t. µ and Λ of are given by:

∇̃µL = ΣEq[∇wL(w) + ρ∇wp(w)]
∇̃ΛL = −Eq[∇2

wL(w)− ρ∇2
wp(w)] + ρΣ−1 (63)

25We will write, to keep the notation as light as possible, the set of variational parameters as ϕ = {µ, Σ}. Depending on the

context, e.g. when we write the gradient ∇ϕ, we will take this to mean ϕ =
[

µ
vec(Σ)

]
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Assuming an isotropic Gaussian prior, p(w) ∼ N (0, ηI), performing gradient descent w.r.t. this natural
gradient then leads to the following iterative update equations:

µ←− µ− αΛ−1
(
Eq[∇wL(w)] + ρ

η
w

)
Λ←− (1− β)Λ + β

(
Eq[∇2

wL(w)]
ρ

+ η−1I

) (64)

where α and β are the learning rates for the mean and precision updates, respectively. We work with each
of these update equations in turn. Starting with the update equation for the mean µ, the key observation
is that the expectation Eq[∇wL(w)] is taken with respect to the distribution q(w), which is an exponential
moving average of the expected Hessian Eq[∇2

wL(w)]. This updating happens naturally as a consequence
of taking natural gradient steps, and leads to an approximately coordinate-free algorithm in the sequel.
Applying Bonnet’s theorem (Khan & Rue, 2021) and forming the second-order approximation to the loss we
obtain:

Eq[∇wL(w)] = ∇µEq[L(w)] ≈∇µEq[L(µ) + 1
2(w − µ)T ∇2

wL(w)|w=µ(w − µ)] (65)

We also have:

Eq[(w − µ)T ∇2
wL(w)|w=µ(w − µ)] = Eq[Tr

(
(w − µ)T ∇2

wL(w)|w=µ(w − µ)
)
] = Tr(ΣH) (66)

where H is the Hessian ∇2
wL(w). We therefore have that:

Eq[∇wL(w)] ≈∇µ[L(µ) + 1
2Tr(ΣH)] (67)

Choosing the prior variance η to be infinite and thus ignoring terms involving η in both update equations
(corresponding to an improper prior, and so consistent with the discussion above), leads to the following
update for the mean:

µ←− µ + αΛ
(

∇µ[L(µ) + 1
2Tr(ΣH)]

)
(68)

Thus, in order to blur the loss with multivariate Gaussian noise in a way that aligns with the intrinsic
geometry of the parameter space, we can (to second order) augment the loss with a term involving the trace
of the Hessian. Considering now the update equation for the precision, we can use Price’s theorem (Khan
& Rue, 2021) together with a Taylor expansion to get, to second order Eq[∇2

wL(w)] ≈ ∇2
wL(w)|w=µ (see

Appendix A.3 for details), which leads to

Λ←− (1− β)Λ + β

(
∇2

wL(w)|w=µ

ρ

)
(69)

We next substitute, as is common in the literature using approximate second order approximation (Martens,
2020), the log-likelihood Fisher Information Matrix F for the Hessian in the update equation for the precision,
where:

F = ∇2
w′DKL[p(y|x, w), p(y|x, w′)]|w′=w

= Ey∼p(y|x,w),x∼p(x)[(∇ log p(y|x, w))(∇ log p(y|x, w))T ]
(70)

We pass to the underlying parameter space by taking the maximum a posteriori (MAP) estimate, write
the update in terms of G := ρΛ, absorbing constants into ρ and α, and write the iteration in terms of the
parameter w, and thus obtain the general update equations 18:

w ←− w − α
(
∇w[L(w) + ρTr(G−1H)]

)
G←− (1− β)G + βF

(71)

Crucially, the penalty term ρTr(G−1H) can be seen to be invariant to affine coordinate transformations.
Indeed, under an affine coordinate transformation with Jacobian J , we have H → JT H

′
J and G→ JT G

′
J

so that:

Tr
(
G−1H

)
= Tr

(
J−1G′−1JT −1

JT H ′J)
)

= Tr
(
J−1G′−1H ′J)

)
= Tr

(
G′−1H ′) (72)
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More generally, given a smooth coordinate change defined by a diffemorphism Φ : Rp → Rp and Jacobian
J(w), then, given sufficiently rapid exponential decay in the update equation for the Fisher, subject to Φ
having sufficient regularity, the penalty term is readily seen to be approximately coordinate free. Crucially, in
the neighborhood of a minimum, where the Hessian and G transform as (0,2) tensors we also have invariance
to general coordinate transformations (Kristiadi et al., 2023).

Although the evaluation of the GGN matrix, in particular the matrix multiplications involving the Jacobians
Jf , can be relatively costly, the FIM can be expressed as an expectation of outer products of gradients w.r.t.
the output distribution p(y|x, w):

1
n

n∑
i=1

Ep(y|xi,w)
[
∇w log p(y|xi, w)T ∇w log p(y|xi, w)

]
≈ 1

n

n∑
i=1

∇w log p(x̃i|xi, w)T ∇w log p(ỹi|xi, w)

(73)
which, following Martens (2020), can be estimated using a single Monte Carlo sample from the output
distribution: ỹ ∼ p(y|xi, w). Using this (biased) Fisher approximation in our setting thus requires gradients
to be calculated through an expectation ∇wEp(y|x,w)[L(w; y)], approximated using a Monte Carlo sample
from the model’s output distribution. Since the expectation is taken w.r.t. a distribution which depends on
w, it is necessary to reparameterize so that the discrete Monte Carlo sample is expressed as the deterministic
transformation of a gw(z) (depending on w) of a sample z ∼ hθ(z) from a distribution not depending on w, so
that Ep(y|x,w)[L(w; y)] = Ez∼hθ(z)[L(w; gw(z)]. In the discrete case (corresponding to classification), since
the argmax function is non-differentiable, the standard approach is the Gumbel-Softmax reparameterization
(Jang et al., 2016), which uses the softmax function as a continuous relaxation of the argmax function
together with i.i.d. samples distributed as Gumbel(0,1).

It is important to note that this approach is different from simply evaluating log p(y|x, w) on the training
labels, a widely used approximation known as the empirical Fisher F̃ :

F̃ :=
n∑

i=1
∇w log p(yi|xi, w)T ∇w log p(yi|xi, w) (74)

This, despite lacking the same convergence guarantees, performs competitively in many settings (Kunstner
et al., 2019). We find in our experiments that the empirical Fisher performs competitively with the MC
approximation to the GGN (Khan et al., 2018; Kingma & Ba, 2014) and has the advantage of being straight-
forward and cheap to compute from already computed gradients (in the case of Adam-TRACER, the smooth
squared gradients are already computed and maintained for use as a preconditioner). Given the conceptual
and computational simplicity of this approach we substitute the empirical Fisher for the Fisher Information
Matrix, as well as for the Hessian in the update equation for the mean, giving the update equations:

w ←− w − α∇w[L(w) + ρTr(G−1F̃ )]
G←− (1− β)G + βF̃

(75)

Recent advances in approximate second-order methods in optimization, notably Yao et al. (2020), suggest
avenues for improvement, and we leave investigations of alternatives, such as the smoothed (Hessian-free)
Hessian diagonal sketch used in AdaHessian, for future work.

We now make two simplifications. First, we use a mean-field approximation, representing the FIM by its
diagonal, as is done in Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011) and RMSProp thus:

Fdiag ≈
1
n

n∑
i=1

∇w log p(yi|xi, w)2 (76)

Secondly, it is standard practice to (Martens, 2020) to add Tikhonov regularization or damping via a small
positive real constant δ when using 2nd-order optimization methods, giving in this case the preconditioner:
(Fe + δI)−1. In fact this would arise naturally in our setup by choosing η to be non-zero, in which case we
would simply have δ := ρ

η . From an optimization perspective, it is justified by recognizing that the local
quadratic model from which the second-order update is ultimately derived is a second-order approximation
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to the KL divergence and is thus only valid locally. For directions corresponding to small eigenvalues,
parameter updates can lie outside the region where the approximation is reasonable (Martens, 2020). This
is true, a fortiori, when diagonal approximations are used, as is the case here. As our emphasis here is on
geometric regularization, we drop the preconditioner entirely by choosing δ to be sufficiently large that the
preconditioner is equal to the identity (up to a constant, which is absorbed into the learning rate).

Finally, as most current deep learning frameworks do not straightforwardly support access to per-example
gradients, which can in principle be achieved with negligible additional cost (see, for example, BackPACK
Dangel et al. (2020) second-order Pytorch extensions), for simplicity and efficiency, we use the gradient
magnitude (GM) approximation (Bottou et al., 2016), as used in standard optimizers such as Adam, Adagrad,
and RMSprop, replacing the sum of squared gradients with the square of summed gradients:

1
n

n∑
i=1

[∇w log p(yi|xi, w)]2 ≈
[

1
n

n∑
i=1

∇w log p(yi|xi, w)
]2

(77)

The theoretical justification for this is given in Theorem 1 of (Khan et al., 2018) who show that the sum
of squared gradients is close to the squared sum of gradients if the batch and population estimates are
sufficiently close.

Writing the resulting FIM diagonal as (∇wL(w))2, and using stochastic gradient updates computed on on
minibatches B of the data, ∇wLB(w), we finally end up with the following update (Algorithm 1):

wt+1 = wt − αt∇w

[
LB(wt) + ρ (∇wLB(wt))2 · 1/(ft + δ)

]
ft+1 = (1− β)ft + β (∇wLB(wt))2

(78)

We show in Appendix A.6 that the algorithm converges to a neighborhood of a local minimum of L(w) of
size O(ρ2). We note in passing that, in this simplest form (after applying the gradient magnitude approx-
imation), the update equations amount to regularizing with a (scale-adjusted) gradient norm. In principle
(particularly for the large batch case) we would expect to see significant improvements by moving to per-
gradient calculations (which are theoretically no more expensive to compute but require additional work
under most current autodiff frameworks).

A.2 Multivariate Gaussian Fisher Information Matrix

For a multivariate Gaussian with pdf:

q(x; µ, Σ) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(x− µ)T Σ−1(x− µ)
)

the Fisher Information Matrix with respect to the mean vector µ is given by:

I(µ) = E

[(
∂ log q(x; µ, Σ)

∂µ

) (
∂ log q(x; µ, Σ)

∂µ

)T
]

First, we compute the partial derivative of the log-likelihood with respect to µ:

∂ log q(x; µ, Σ)
∂µ

= Σ−1(x− µ)

The Fisher Information Matrix with respect to µ is then:

I(µ) = E
[
Σ−1(x− µ)(x− µ)T Σ−1]

Given that x ∼ N (µ, Σ), the expected value E[(x− µ)(x− µ)T ] = Σ. Therefore:

I(µ) = Σ−1ΣΣ−1 = Σ−1
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The Fisher Information Matrix with respect to the covariance matrix Σ is more complex and involves the
derivatives of the log-likelihood function with respect to Σ. The partial derivative of the log-likelihood with
respect to Σ is:

∂ log q(x; µ, Σ)
∂Σ = 1

2
(
Σ−1(x− µ)(x− µ)T Σ−1 −Σ−1)

The Fisher Information Matrix with respect to Σ is given by:

I(Σ) = E

[(
∂ log q(x; µ, Σ)

∂Σ

) (
∂ log q(x; µ, Σ)

∂Σ

)T
]

which can be written as:
I(Σ)ijkl = 1

2(Σ−1)ik(Σ−1)jl + 1
2(Σ−1)il(Σ−1)jk

This can also be written using the Kronecker product and vectorization as:

I(Σ) = 1
2(Σ−1 ⊗Σ−1)

Combined Fisher Information Matrix

For both µ and Σ, the combined Fisher Information Matrix can be represented as a block matrix:

I(ϕ) =
[
I(µ) 0

0 I(Σ)

]
where ϕ = (µ, vec(Σ)).

In summary, the Fisher Information Matrix for a multivariate Gaussian with mean µ and covariance Σ is:

I(θ) =
[
Σ−1 0

0 1
2 (Σ−1 ⊗Σ−1)

]

A.3 Approximate expected Hessian

Lemma 1. To second order, we can approximate the expected Hessian w.r.t. a multivariate Gaussian with
pdf: q(x) ∼ N (µ, Λ−1) by its value at the mean:

Eq[∇2
wL(w)] ≈∇2

wL(w)|w=µ (79)

Proof. Following Khan & Rue (2021), by Price’s theorem: ∇ΣEq[L(w)] = 1
2Eq[∇2

wL(w)], we have:

Eq[∇2
wL(w)] = 2∇2

Λ−1Eq[L(w)] (80)

expanding the r.h.s. to second order using a Taylor series, this is equivalent to:

2∇2
Λ−1Eq[(w − µ)T ∇2

wL(w)|w=µ(w − µ)] (81)

Finally, noting that Eq[(w − µ)T ∇2
wL(w)|w=µ(w − µ)] = Tr

[ 1
2 Λ−1∇2

wL(w)|w=µ

]
, we have, to second

order:
Eq[∇2

wL(w)] ≈ 2∇2
Λ−1Tr

[
1
2Λ−1∇2

wL(w)|w=µ

]
= ∇2

wL(w)|w=µ (82)
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A.4 Objective function gradient

Lemma 2. The gradient of the objective 56 towards ϕ′ =
[

µ
vec(Σ)

]
is given by:

∇µL = Eq[∇wL(w)− ρ∇w log p(w)] (83)

∇ΣL = 1
2Eq[∇2

wL(w)− ρ∇2
w log p(w)]− ρ

2Σ−1 (84)

Proof. We will make use of Bonnet’s and Price’s theorems (Khan & Rue, 2021), which, given an expectation
w.r.t. a multivariate Gaussian and twice-differentiability of L, allows us to interchange expectations and
gradients as follows:

∇µEq[L(w)] = Eq[∇wL(w)]

∇ΣEq[L(w)] = 1
2Eq[∇2

wL(w)]
(85)

Taking the negative gradient of the objective w.r.t. to µ, and applying Bonnet’s theorem, and the fact that
the expectation of the score is 0, we have:

∇µ (Eq[L(w)] + ρDKL[q(w), p(w)]) = Eq[∇wL(w)]− ρEq [∇w log p(w)] (86)

Taking the gradient w.r.t. Σ, and applying Price’s theorem, we have:

∇Σ (Eq[L(w)] + ρDKL[q(w), p(w)]) = 1
2Eq

[
∇2

wL(w) + ρ∇2
w log q(w)− ρ∇2

w log p(w)
]

(87)

and since:

Eq

[
∇2

w log q(w)
]

= −1
2Eq

[
∇2

w

(
log |Σ|+ (w − µ)T Σ−1(w − µ)

)]
= −Σ−1 (88)

We obtain
∇µL = Eq[∇wL(w)− ρ∇w log p(w)] (89)

∇ΣL = 1
2Eq[∇2

wL(w)− ρ∇2
w log p(w)]− ρ

2Σ−1 (90)

A.5 Objective function natural gradient

Proposition 2. The natural gradients of the objective 56 w.r.t. the parameters ϕ = (µ, Λ) of q(x) ∼
N (µ, Λ−1) are given by:

∇̃µL = ΣEq[∇wL(w) + ρ∇w log p(w)] (91)

∇̃ΛL = −Eq[∇2
wL(w)− ρ∇2

wp(w)] + ρΛ (92)

Proof. By Lemma 2, the gradients ∇ϕ′ of the objective L(ϕ) w.r.t. ϕ′ =
[

µ
vec(Σ)

]
are given by:

∇µL = Eq[∇wL(w)− ρ∇w log p(w)]

∇ΣL = 1
2Eq[∇2

wL(w)− ρ∇2
w log p(w)]− ρ

2Σ−1 (93)

The Fisher Information Matrix is given by equation A.2:

F = Eqϕ

[
−∇2

ϕ log qϕ

]
=

[
Σ−1 0

0 1
2 Σ−1 ⊗Σ−1

]
(94)
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and therefore
F −1∇ϕL(ϕ) =

[
Σ 0
0 2Σ⊗Σ

] [
∇µL

vec(∇ΛL)

]
=

[
Σ∇µL

vec(2Σ∇ΛLΣ)

]
(95)

where we used the identities (BT ⊗A)vec(X) = vec(AXB) and (A⊗B)−1 = A−1 ⊗B−1. The gradient
∇̃µL then follows immediately from the definition of the natural gradient operator. Using the chain rule for
matrix derivatives we have that:

∇ΛL = −Λ∇ΣΛ (96)

Since vec(2Σ∇ΛLΣ) = vec(−2∇ΣL), we have the required updates.

A.6 Convergence analysis

With T (wt) :=
〈

(∇wL(wt))2
, (f + δ)−1

t

〉
, as ρ −→ 0, the iterates wt+1 = wt − αt∇w [L(wt) + ρ∇wT (wt)]

will converge to those of SGD. For ρ > 0, the algorithm is biased away from a pure descent direction, and
convergence then depends on the magnitude of ρ. The key assumption in the following convergence proof is
that ∥ρ∇wT (wt)∥2

2 ≤ κ∥∇wL(wt)∥2
2+ζ, which controls the bias. This follows from the standard assumption

of twice-differentiability of L(w) and the Lipschitz continuity of ∇wL(wt), which imply that the Hessian
has a bounded spectral norm:

∥ρ∇wT (wt)∥2
2 ≤ 4ρ2∥∇2

wL(wt)∥2
2∥(f + δ)−1

t ∥
2
2

≤ 4
(ρ

δ

)2
C2p

(97)

so that ζ depends on the Lipschitz constant C and the ratio ρ
δ .

Theorem 3. Let T (wt) :=
〈

(∇wL(wt))2
, f

−1
t

〉
, and assume the objective (loss) L : Rp −→ R is Lipschitz

continuous, twice differentiable, and has Lipschitz-continuous gradient. Let us assume, following Bottou et al.
(2016) and Ajalloeian & Stich (2021) that we have a stochastic direction g(wt, ξt) which has the following
properties, ∀t:

E [g(wt, ξt)] = ∇wL + ρ∇wT (wt) (98)

and further assuming that there exist M , MG such that, ∀t,

E
[
∥g(wt, ξt)∥2]

≤M + MG∥∇wL + ρ∇wT (wt)∥2 (99)

and the following bound on the bias:

∥ρ∇wT (wt)∥2 ≤ κ∥∇wL(wt)∥2
2 + ζ (100)

then the iteration:

wt+1 = wt − αt∇w [L(wt) + ρ∇wT (wt)]
f t+1 = (1− β)f t + β (∇wL(wt))2 (101)

converges to a neighborhood of a stationary point with ∥∇L(w)∥2
2 = O(ζ).

Proof. By the Lipschitz continuity of the objective function we have the quadratic bound:

L(y) ≤ L(x) + ⟨∇wL(x), y − x⟩+ C

2 ∥y − x∥2 (102)

By the quadratic upper bound, the iterates generated by the algorithm satisfy:

L(wt+1)− L(wt) ≤ −αt⟨∇wL(wt), g(wk, ξk)⟩+ 1
2α2

t C∥g(wk, ξk)∥2
2 (103)
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Taking expectations and applying the variance bound we have:

EL(wt+1)− L(wt)

≤ −αt∥∇wL(wt)∥2 − αtρ∇wL(wt)T ∇wT (wt) + 1
2α2

t CE
[
∥g(wk, ξk)∥2

2
]

= −αt∥∇wL(wt)∥2 − αtρ∇wL(wt)T ∇wT (wt) + 1
2α2

t C
[
M + MG∥∇wL(x) + ρ∇wT (wt)∥2

2
]

= −αt∥∇wL(wt)∥2 − αt(1− αCMG)ρ∇wL(wt)T ∇wT (wt) + 1
2α2

t CM + 1
2α2

t CMG

(
∥∇wL(x)∥2

2 + ρ∥∇wT (wt)∥2
2
)

(104)
So that, choosing αt < 1

CMG
and applying the bound on ∥∇wT (wt)∥ we have:

EL(wt+1)− L(wt) ≤ −
1
2αt∥∇wL(wt)∥2 + 1

2α2
t CM + 1

2αt∥ρ∇wT (wt)∥2
2

≤ −1
2αt(1− κ)∥∇wL(wt)∥2 + 1

2α2
t CM + αt

2 ζ

(105)

Taking the total expectation, for a fixed α, we then have:

Linf − L(w1) ≤ E [L(wK+1)]− L(w1) ≤ −1
2α(1− κ)

K∑
t=1
∥∇wL(wt)∥2 + 1

2Kα2CM + Kα

2 ζ (106)

Finally, we have that:

1
K

K∑
t=1
∥∇wL(wt)∥2 = αCM

1− κ
+ 2F (w1)− Finf

Kα(1− κ)
K→∞−−−−→ αCM

1− κ
+ ζ

1− κ
(107)
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