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ABSTRACT

Existing safe imitation learning (safe IL) methods mainly focus on learning safe policies that
are similar to expert ones, but may fail in applications requiring different safety constraints. In
this paper, we propose the Lagrangian Generative Adversarial Imitation Learning (LGAIL)
algorithm, which can adaptively learn safe policies from a single expert dataset under diverse
prescribed safety constraints. To achieve this, we augment GAIL with safety constraints and
then relax it as an unconstrained optimization problem by utilizing a Lagrange multiplier. The
Lagrange multiplier enables explicit consideration of the safety and is dynamically adjusted
to balance the imitation and safety performance during training. Then, we apply a two-stage
optimization framework to solve LGAIL: (1) a discriminator is optimized to measure the
similarity between the agent-generated data and the expert ones; (2) forward reinforcement
learning is employed to improve the similarity while considering safety concerns enabled by
a Lagrange multiplier. Furthermore, theoretical analyses on the convergence and safety of
LGAIL demonstrate its capability of adaptively learning a safe policy given prescribed safety
constraints. At last, extensive experiments in OpenAI Safety Gym conclude the effectiveness
of our approach.

1 INTRODUCTION

Imitation learning (IL), which learns from expert data or expert policies to reproduce an expert policy,
has achieved remarkable successes in various applications such as self-driving (Li et al., 2017; Pan
et al., 2020), navigation (Hussein et al., 2018), and robot locomotion (Yuan & Kitani, 2020). Most of
these algorithms are trained in simulated environments, in which agents are free to make mistakes.
However, when deploying IL in real-world applications, the safety of agents is paramount (Amodei
et al., 2016; Ray et al., 2019; Arora & Doshi, 2021), and safety requirements can dynamically vary
depending on the target application. A policy that is trained without considering safety could generate
improper or even harmful actions, and those actions may destroy the safety of agents, which must be
avoided in safety-critical scenarios (Sinha et al., 2020).

Nevertheless, little attention has been paid to ensuring the safety of agents in IL. Furthermore, existing
several works on safe IL (Zhang & Cho, 2016; Menda et al., 2019; Bhattacharyya et al., 2019; 2020)
lack a direct control over the safe level and thus could not generate policies that satisfy a prescribed
safety requirement. Conducting safe IL from a single expert dataset with a configurable safety
constraint is more realistic because: (1) it is likely that target applications require more stringent
safety constraints compared to expert data (Koschuch et al., 2019; Chia et al., 2022), but it is costly and
laborious to re-collect new expert data; (2) when the safety standards for new tasks are different from
those of expert ones (Phillips & Shikora, 2018), expert data that used to be safe during collection will
not work in new applications; (3) an expert dataset could contain some dangerous information because
even experts could make mistakes and take dangerous actions (Council et al., 2003; Bickmore et al.,
2018; Liu et al., 2020; Lattanzi & Freschi, 2021), resulting in the infeasibility of directly mimicking
expert data without the consideration of safety. For example, in autonomous driving, safe speed limits
in urban and rural areas are distinct (Warner & Åberg, 2008; Seff & Xiao, 2016); forbidden zones in
a robot navigation task can be redesignated under different scenarios (Paternain et al., 2022).

In this paper, we consider the more practical safe IL task, where the agent is required to learn policies
given a prescribed safety constraint possibly different from those of experts. In particular, we are
given an application-specific safety constraint and the cost signal (or constraint violation signal) from
the environment (Achiam et al., 2017; Ray et al., 2019; Stooke et al., 2020; Marchesini et al., 2022)
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in addition to an expert dataset. When the safety constraint for the target application is smaller than
that of expert data, we regard expert data as unsafe, then the aim of safe IL is to reach super-expert
performance regarding the safety. The more realistic task makes it challenging to recover policies that
can concurrently achieve expert-level performance and satisfy prescribed safety needs. Unfortunately,
to the best of our knowledge, the safe IL task described above is of significance but has not been
investigated until now.

To produce policies that can simultaneously achieve expert-level cumulative rewards and satisfy
prescribed safety constraints by imitating expert data, we interpret this safe IL task as a constrained
optimization problem with Constrained Markov Decision Process (CMDP) (Altman, 1999), i.e., the
agent should try to behave as similarly as possible to the expert under safety constraints. Specifically,
we introduce an auxiliary cost constraint to restrict the policy generated by Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016), leading to a constrained minimax problem. To
tackle the difficult inequality constraint, we adopt a Lagrange multiplier to relax the constrained
GAIL problem as an unconstrained one. Then, we propose a new two-stage optimization framework,
abbreviated as LGAIL. Specifically, in the first stage, a discriminator is optimized to better measure
the similarity between the agent-generated state-action pairs and the expert ones. In the second
stage, forward reinforcement learning is employed to improve the similarity while considering safety
concerns via a Lagrange multiplier. To the end, we summarize our contributions as three-fold:

• We formalize a new safe IL task with CMDP, where the agent is required to generate policies that
satisfy prescribed safety constraints utilizing one expert dataset and the cost signal provided by the
environment.

• We develop a safe IL algorithm–LGAIL, a neat yet effective way to tackle the new safe IL task.
Theoretical analyses provide nonasymptotic convergence and safety guarantees of LGAIL, which
indicates the proposed LGAIL can adaptively learn safe policy with given safety constraints.

• We carry out extensive experiments on various robot tasks in the OpenAI Safety Gym (Ray et al.,
2019) to illustrate that LGAIL can work well in the novel safe IL task and can achieve super-expert
performance regarding safety.

2 RELATED WORK

Safe Reinforcement Learning (Safe RL). RL with safety-critical constraints, also known as safe RL,
has received extensive attention recently (Ray et al., 2019; Liu et al., 2021). The most popular way to
deal with safe RL is to convert it into a constrained optimization problem via CMDP (Altman, 1999).
There are two major classes of methods to solve safe RL featured by CMDP, i.e., direct approaches
(Achiam et al., 2017; Yang et al., 2020; Zhang et al., 2020) and indirect approaches (Ray et al., 2019;
Stooke et al., 2020). Constrained Policy Optimization (CPO) (Achiam et al., 2017) is a representative
algorithm of direct methods, in which a policy is optimized under performance improvement objective
and safety constraints. Yang et al. (2020) split the optimization problem in CPO into two steps:
(1) optimize the policy with consideration of only rewards; (2) project the optimized policy into
the nearest safe policy. Two milestones of indirect algorithms are TRPO-Lagrangian and PPO-
Lagrangian (Ray et al., 2019), which use Lagrange multipliers and show outstanding performance
of satisfying constraints. Stooke et al. (2020) improve the Lagrangian methods with PID control to
reduce constraint-violating behaviors. However, above methods cannot guarantee the safety of agents
during training. To achieve training safety, another spectrum of safe RL algorithms is developed
based on Lyapunov functions (Chow et al., 2018; 2019; Jeddi et al., 2021).

Imitation Learning (IL) & Safe Imitation Learning (Safe IL). IL commits to reproducing an
expert policy from expert data or expert policies. In general, IL can be divided into behavioral cloning
(BC) (Bain & Sammut, 1995; Ross et al., 2011) and inverse reinforcement learning (IRL) (Abbeel &
Ng, 2004). The major difference is that the former solves IL in a supervised learning manner, whereas
IRL solves IL from the perspective of RL (Torabi et al., 2018). BC enjoys merits of simpleness but
suffers from the compounding error and often fails to recover an expert policy compared to IRL (see
Hussein et al. (2017) and its reference therein). However, when it comes to safe IL, there is few work.
A class of methods are SafeDAgger (Zhang & Cho, 2016) and EnsembleDAgger (Menda et al., 2019),
which are built on the framework DAGGER (Ross et al., 2011). They measure the difference between
decisions of the learner and the expert while interacting with environments. When the difference goes
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beyond a predefined bound, the expert decision will be executed to ensure the safety of the learner.
However, both algorithms require a safe expert policy, which is difficult to be satisfied in practice.
Based on GAIL, Bhattacharyya et al. (2019; 2020) develop Reward Augmented Imitation Learning
(RAIL) via imposing a fixed large penalty on dangerous state-action pairs.

We consider a more practical task where agents are required to conduct safe IL with prescribed safety
performance. Compared to Zhang & Cho (2016); Menda et al. (2019), we do not demand safe expert
policies to teach the imitator; in contrast to Bhattacharyya et al. (2019; 2020), our algorithm LGAIL
can explicitly control the safety performance by dynamically balancing reward and safety needs via
a Lagrange multiplier. In addition, the considered safe IL task is different from IL from imperfect
demonstration (Wu et al., 2019) that merely considers performance and neglects safety issues, while
LGAIL simultaneously focuses on safety and performance issues.

3 PRELIMINARIES

Constrained Markov Decision Process (CMDP). CMDP (Altman, 1999; Achiam et al., 2017;
Guan et al., 2021) is modeled by (S,A, T ,r, c, d0, γ), where S is state space, A represents action
space, T = T (s′|s, a) is the environment transition dynamics, r : S ×A → R is the reward function,
c : S ×A → R is the cost function, d0 is the safety constraint (or cost limit), and γ is the discount
factor. The reward function r(s, a) is assumed to be bounded, i.e., |r(s, a)| ≤ Rmax, whereas c(s, a)
is assumed to be an indicator function (Ray et al., 2019) such that c(s, a) = 0 if the agent is safe,
c(s, a) = 1 otherwise. We consider the tabular setting here, i.e., both space S and A are finite. Let
πθ(at|st) : S ×A → [0, 1], whose parameter is θ, be a stochastic policy for the agent. Besides,
we assume πθ(a|s) is directly parameterized by θ, i.e., πθ(a|s) = θs,a and θ ∈ Θp := {θs,a ≥
0,
∑
a∈A θs,a = 1,∀s ∈ S}. The cost in CMDP refers to safety, i.e., when we talk about “cost" in

this paper, it indicates that we are focusing on safety. The expected discounted reward is denoted
as V (π, r) = Es0∼ζ [

∑∞
t=0 γ

tr(st, at)], where at ∼ π(at|st), st+1 ∼ T (st+1|st, at), and ζ(s0) is
the probability distribution of the initial state s0. And we define the expected discounted cost as
JC(π) = Es0∼ζ [

∑∞
t=0 γ

tc(st, at)] on the same way. The goal of safe RL defined in Eq. (1) is to find
the optimal policy π∗(at|st) which simultaneously satisfies the cost limit,

π∗ = argmax
π

V (π, r) s.t. JC(π) ≤ d0. (1)

Generative Adversarial Imitation Learning (GAIL). In GAIL, there are no reward functions as
in RL but a discriminator rα(s, a) that is parameterized by α (α ∈ Λ ⊂ Rq , and Λ is assumed to be a
bounded closed set such that ∀α1, α2 ∈ Λ, ∥α1 − α2∥2 ≤ Cα). GAIL is formulated as the following
minimax saddle point optimization (Ho & Ermon, 2016; Guan et al., 2021)

min
θ∈Θp

max
α∈Λ

F (θ, α) := V (πE , rα)− V (πθ, rα)− ψ(α), (2)

where πE stands for expert policies, and ψ(α) is a regularizer.

4 PRESCRIBED SAFETY PERFORMANCE IMITATION LEARNING
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Figure 1: An illustrative example where prescribed safety
performance different from expert data is required.

In this section, we present the proposed
safe IL paradigm, Lagrangian Generative
Adversarial Imitation Learning (LGAIL).
Below, we first formalize the new task
of safe IL with CMDP in Subsection 4.1.
Then, the detailed description of LGAIL
is presented in Subsections 4.2 and 4.3.

4.1 PROBLEM FORMULATION

Motivations. Three significant factors motivate us to study safe IL with prescribed safety perfor-
mance. First, ensuring the safety of agents is paramount in most applications. For example, in some
safety-critical domains such as human-robot interaction or autonomous driving, robots or vehicles
could cause irrevocable human injuries if no special operations are designed for safety. Hence, it
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is of significance to pay attention to safety issues in IL. Second, it is likely that target applications
have different safety requirements from those of expert data due to: (1) the safety level is generally
application-related such that it is probable the target task has a stricter safety level compared to expert
data (Koschuch et al., 2019; Chia et al., 2022); (2) even if under the same safety level, safety standards
could not be static (Phillips & Shikora, 2018). For example, in autonomous driving, the requirements
on safe speed limits in urban and rural areas are distinct (Warner & Åberg, 2008; Seff & Xiao, 2016);
the layout of forbidden zones that serve as one of the safety standards in robot navigation could be
redesigned under different scenarios (Paternain et al., 2022). We give an illustrative example where
prescribed safety performance is required in Figure 1. Last but not least, it is natural that expert
data may contain a portion of dangerous data due to the following two reasons: (1) practical expert
data often come from various sources with distinct qualities (Tangkaratt et al., 2020); (2) even senior
experts could not be immune to mistakes or dangerous decisions (Best, 1992; Culverhouse et al.,
2003). Without explicitly considering safety, it is hard to ensure the prescribed safety of generated
policies with expert data. Therefore, with the three motivations and the dilemma current safe IL
approaches, we aim to solve the safe IL task formalized subsequently.

We characterize the property of expert data with an assumption.
Assumption 1. We have access to a series of expert trajectories, whose safety constraints could be
different from the prescribed one for the imitator.

The expert trajectories are denoted as τE = {τ1E , τ2E , ..., τNE }, and each trajectory τ iE where i ∈
{1, ..., N} is composed of chronological states and actions. These expert trajectories can achieve
high episodic cumulative rewards, and τ iE is sampled from an expert whose safety constraint is
dτEi . We denote the minimum safety constraint of τE as dτEmin = min{dτEi |i = 1, ..., N}. The
prescribed safety constraint for safe IL is d0. As we discussed above, it is probable that d0 for
the target application is smaller than the minimum of expert data such that d0 < dτEmin. Under the
circumstances, the expert can be regarded as unsafe in terms of target tasks.

Naively conducting IL using the expert data without considering the prescribed safety constraint d0
could generate unsafe policies. To make it possible to achieve a safe agent, a reasonable assumption
on the access to the safety information is made below.
Assumption 2. The agent can receive cost signals from the environment.

Assumption 2 is commonly adopted in safe RL Achiam et al. (2017); Ray et al. (2019); Stooke et al.
(2020); Marchesini et al. (2022) and makes sense in reality because safety functions are quite possibly
simpler than reward functions. For example, in autonomous driving, dangerous conditions such as
collisions with pedestrians or cars can be easily identified (Shin & Kim, 2019). Therefore, the task of
interest of this paper is presented as follows:

The task of interest: Given expert trajectories τE in Assumption 1, a prescribed safety
constraint d0, and the cost signal in Assumption 2, we aim to find a policy that can mimic the

expert as much as possible under the prescribed safety constraint.

Although conducting safe IL in this task is arduous, it is worth investigating due to its potential for
practical applications compared to former tasks (Bhattacharyya et al., 2019; 2020; Wu et al., 2019).

4.2 PRESCRIBED SAFETY PERFORMANCE IMITATION LEARNING

In this new task of safe IL, there are two learning objectives. The first one is that the agent should
mimic the expert as much as possible via given expert trajectories when it comes to the episodic
cumulative rewards. The second one is that the agent should behave safely to meet prescribed safety
constraints utilizing the environment feedback. The safety should be considered as a hard constraint
because it represents physical requirement and should not be violated, which motivates us to model
safe IL as constrained optimization, i.e., the agent is supposed to mimic the expert as much as possible
under prescribed safety constraints. Note that it is not a pure IL problem because the agent should
behave unlike the expert in some states due to safety concerns. Thus, we formulate safe IL on the top
of GAIL as a constrained minimax optimization problem,

min
θ∈Θp

max
α∈Λ

F (θ, α) s.t. JC(πθ) ≤ d0. (3)
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Algorithm 1 Lagrangian Generative Adversarial Imitation Learning (LGAIL). The operation on
vectors are element-wise and h2k = hk ⊙ hk.

1: Initialize: Prescribed cost limit d0, m0 = (0, . . . , 0) ∈ Rq+1, v0 = (µ, . . . , µ) ∈ Rq+1
+ ,

θ0 ∈ Θp, and α0
1 ∈ Λ.

2: for t = 0, ..., T − 1 do
3: for k = 1, ...,K do
4: Sample (sEi , a

E
i ) ∼ T̃ πE and (sθti , a

θt
i ) ∼ T̃

πθt

5: hk = −∇̂α̃F (θt, α̃
t
k)

6: vk = ιkvk−1 + (1− ιk)h
2
k

7: mk = βkmk−1 + (1− βk)hk
8: α̃tk+1 = α̃tk − bk · mk√

vk
▷ update α̃ = (α, λ) with the Adam optimizer

9: end for
10: Randomly choose α̃t from {α̃t1, .., α̃tK}
11: θt+1 = TRPO in Eq. (5) ▷ update policy πθ with TRPO
12: end for

In other words, when optimizing the policy, both similarities calculated by the discriminator rα(s, a)
as well as violations of safety constraints should be considered simultaneously.

4.2.1 LAGRANGIAN GENERATIVE ADVERSARIAL IMITATION LEARNING

To solve the safe IL problem, we propose a two-stage optimization framework, LGAIL, whose
pseudo-code is illustrated in Algorithm 1. Directly solving the safe IL task, which is a constrained
optimization problem, is challenging. We employ a Lagrange multiplier to relax the constrained
optimization problem into an unconstrained one (Boyd et al., 2004), i.e., prescribed safety constraints
are converted into penalties. As a result, we augment the policy improvement stage in GAIL with a
Lagrange multiplier. Concretely, the constrained optimization problem in Eq. (3) can be solved by
penalizing violations of safety constraints with a Lagrange multiplier when optimizing the policy to
mimic the expert,

min
θ∈Θp

max
α∈Λ,λ≥0

F (θ, α, λ) := V (πE , rα)− V (πθ, rα) + λ(JC(πθ)− d0)− ψ(α, λ), (4)

where λ is the Lagrange multiplier with λmax ≥ λ ≥ 0, and ψ(α, λ) regularizes both α and λ. Let
α̃ ≜ (α, λ), which means adding the 1-dimension scalar λ to the q-dimension vector α. Hence, we
obtain a (q + 1)-dimension vector α̃. Consequently, we rewrite the object function F (θ, α, λ) as
F (θ, α̃).

This optimizing target contains both rewards and costs, which can help imitate the expert as well
as guarantee safety. There are two stages in LGAIL taking turns to (i) optimize a discriminator to
enhance its ability on judging the quality of state-action pairs, and (ii) improve the performance of
the agent’s policy with the discriminator and safety feedback information enabled by a Lagrange
multiplier. The Lagrange multiplier λ helps balance the competition between improving rewards and
reducing costs, and it is dynamically updated in stage (i). When the current policy is unsafe, λ will
increase so that the penalty on violations of constraints will play a bigger role. On the contrary, λ
would decrease so that the optimization concentrates more on mimicking the expert. Parameters of
the discriminator rα(s, a) and Lagrange multiplier λ are updated with an Adam optimizer in Chen
et al. (2021). As for the policy, it is updated using Trust Region Policy Optimization (TRPO) (Shani
et al., 2020) as follows

πθt+1
(·|s) ∈ argmin

π
(⟨−Q̂πθt

rαt
(s, ·) + λtQ̂

πθt
c (s, ·), π − πθt(·|s)⟩+ η−1

t Bw(π, πθt(·|s))), (5)

where Q̂πθt
rαt

(s, a) and Q̂πθt
c (s, a) are estimated Q-value functions for rewards and costs using GAE

(Schulman et al., 2015b), respectively, and Bw is the Bregman distance (Wu et al., 2009).

4.3 THEORETICAL ANALYSES

In this part, we provide convergence analyses and safety guarantees for LGAIL presented in Al-
gorithm 1. We first give some notations before our proof. Denote g(θ) as the marginal-maximum
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function of F (θ, α, λ), i.e., g(θ) := max
α∈Λ,λ≥0

F (θ, α, λ) = max
α̃

F (θ, α̃). For any fixed θ, we define

α̃∗
θ = argmax

α̃
F (θ, α̃), which means (α, λ)∗θ = argmax

α∈Λ,λ≥0
F (θ, α, λ). Next we have to define the

measure of convergence in our algorithm and present some basic assumptions.
Definition 1. Guan et al. (2021) The output θ̄ of our algorithm achieves ϵ-global convergence if
g(θ̄)− g(θ∗) ≤ ϵ, where θ∗ = argmin

θ
g(θ) and ϵ ∈ (0, 1).

Assumption 3. F (θ, α̃) is uniformly bounded that |F (θ, α̃)| ≤ g∗,∀θ.

Uniform boundedness means F function is upper bounded no matter how the variables θ and α̃
change. And the assumption 3 further guarantees the existence of g(θ).
Assumption 4. The regularizer ψ(α̃) is Lψ-Lipschitz smooth, where Lψ is the Lipschitz constant.
Assumption 5. For any given θ, F (θ, α̃) is µ-strongly concave on α̃, which is usually satisfied by
designing the regularizer ψ(α̃) to be strongly convex in practice.
Assumption 6. (Guan et al., 2021) There are some restrictions on the parameterization of reward
function.

(1) ∀α ∈ Λ, there exists Cr ∈ R such that ∥∇αrα∥∞,2 :=
√∑q

i=1 ∥
∂rα
∂αi

∥2∞ ≤ Cr;
(2) ∀s ∈ S, a ∈ A,∀α1, α2 ∈ Λ, there exists Lr ∈ R such that ∥∇αrα1(s, a) −∇αrα2(s, a)∥2 ≤
Lr∥α1 − α2∥2 .
Assumption 7. (Bhandari et al., 2018) (Ergodicity) The MDP with policy πθ and transition kernel
T̃ (·|s, a) = γT (·|s, a) + (1− γ)ζ(·) is ergodic, which means for some positive constants CM > 0
and 0 < ρ < 1,

sups∈SdTV (P (st ∈ ·|s0 = s), χθ) ≤ CMρ
t,∀t ≥ 0,

where dTV (·, ·) calculates the total variation distance and χθ represents the stationary distribution
generated from T̃ (·|s, a) or T (·|s, a) with policy πθ.
Assumption 8. Estimated derivatives of F (θ, α̃) regarding θ and α̃ are unbiased. And the estimate
of stochastic gradient hk satisfies uniform boundedness: E∥hk∥2 ≤ G.

For the convergence of Adam (Chen et al., 2021), we give some necessary conditions for its parame-
ters:

1. There exists a constant β satisfying 0 ≤ βk ≤ β < 1,∀k.

2. The sequence {ιk} is non-decreasing with 0 < ιk < 1 and limk→∞ ιk ≜ ι > β2.

3. Let χk := bk√
1−ιk

. There exists a sequence {bk} that is non-increasing and an independent
constant C0 such that bk ≤ χk ≤ C0bk.

Theorem 1. (Convergence) When assumptions 1- 8 are satisfied, Adam parameters meet the require-
ments 1-3, and the update stepsize of θ is ηt = 1−γ√

T
, we can get:

1

T

T−1∑
t=0

E[g(θt)]− g(θ∗) ≤ O
(

1

(1− γ)2
√
T

)
+O

(
1

(1− γ)2
√
K

)
.

The full proof of Theorem 1 is presented in Appendix A and we only give a concise proof sketch
below due to space limit:

The proof can be decomposed into two parts. Firstly, α̃tk is updated to α̃t in K iterations using
Adam methods and we can measure the convergence through the term ∥∇α̃F (θt, α̃t)∥2; Secondly,
parameter θ is updated by TRPO when α̃t is already chosen. So eventually we can measure the global
convergence starting from E[g(θt)]− g(θ∗) involving above two parts.

Theorem 1 demonstrates that LGAIL attains ϵ-global convergence with the convergence rate
O( 1

(1−γ)2
√
T
) and convergence complexity TK = Õ( 1

ϵ4 ) when we set T = O( 1
ϵ2 ) and K = O( 1

ϵ2 ).

Remark 1. (Safety) On the one hand, θ∗ satisfies the Karush-Kuhn-Tucker (KKT) condition of the
Lagarange function in Eq. (4) that JC(πθ∗) − d0 − ∂ψ(α,λ)

∂λ ≤ 0. In reality, the term ∂ψ(α,λ)
∂λ is

relatively small so that it can be omitted into JC(πθ∗) ≤ d0. On the other hand, we have measured
the non-asymptotical convergence complexity according to Theorem 1, which means the output policy
θ̄ converges to θ∗ so that the safety can be assumed to be guaranteed.
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Figure 2: Learning curves of LGAIL and the other baselines on Safety Gym benchmarks. Performance
is measured with Cost, Cost Rate, and Return. The x-axis represents time steps of interactions with
the environment. Each algorithm is evaluated with 5 random seeds.

5 EXPERIMENTS

We investigate whether our algorithm LGAIL is able to solve the new safe IL task in this paper,
i.e., whether LGAIL has the ability to produce safety-prescribed expert behaviors from expert data
with the cost signal from the environment. We introduce our experiments from two aspects, setups
(Subsection 5.1) and results (Subsection 5.2).

5.1 SETUPS

In the experiments, we adopt six standard Safety Gym environments (Ray et al., 2019) to demonstrate
the ability of LGAIL. In terms of robots, we use Point, Car, and Doggo; in terms of tasks, Goal and
Button are employed. The level of difficulty of the employed environments is set to 1. More details
on environments and expert data are in Appendix B.

Baselines. The safe IL task in this paper is constructed for the first time, so there are few corre-
sponding baselines to compare. We select one representative IL algorithm, GAIL (Ho & Ermon,
2016), to serve as the baseline. The safe IL algorithm RAIL that imposes a fixed large penalty on
dangerous state-action pairs is employed (Bhattacharyya et al., 2019; 2020). We also construct a
comparable baseline by combing the safe RL method CPO (Achiam et al., 2017) with GAIL and
name it as CGAIL. In addition, we relax the exact problem formulation of LGAIL to compare with
IL algorithms of learning from imperfect data (2IWIL and IC-GAIL) (Wu et al., 2019). Specifically,
we merge 2IWIL and IC-GAIL as 2IWIL/IC-GAIL and conduct experiments with expert trajectories
whose cumulative costs are smaller than the prescribed safety constraint, which is equivalent to GAIL
with safe expert data). More details on RAIL and 2IWIL/IC-GAIL are in Appendix C.

Metrics. To comprehensively measure the performance of all algorithms, three metrics are em-
ployed, i.e., Cost, Cost Rate, and Return. Cost JC(πθ) is the average episodic sum of costs, while
Return JR(πθ) is the average episodic return. Cost Rate is the rate that can be obtained by dividing the
total sum of costs of the whole training process by the total number of agent-environment interactions.
Cost and Cost Rate are related to the safety of the agent: the smaller they are, the safer the agent
is considered. Although both metrics are related to safety, Cost focuses on measuring the current
safety of a policy, while Cost Rate emphasizes the safety of whole training process. Hence, Cost Rate
could be interpreted as a metric for the training safety to some extent. Return is used to evaluate the
performance of mimicking the expert.
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Table 1: Summary of quantitative results. The columns represent the algorithms, while the rows
represent environments and metrics. Each result is averaged over 30 trails of a policy. Cost limits are
presented in brackets under the environment names. Gray color indicates the costs of methods exceed
the cost limit.

Environment LGAIL(ours) GAIL 2IWIL/IC-GAIL RAIL CGAIL

PointGoal1-v0
(Cost Limit:25)

Cost 22.5±4.2 86.5±72.1 63.8±18.5 20.6±6.5 40.4±5.2
Cost Rate 0.026 0.1 0.092 0.023 0.044

Return 10.1±2.0 7.7±4.6 7.6±5.4 9.2±1.2 13.4±2.4

PointButton1-v0
(Cost Limit:60)

Cost 55.2±17.6 110.6±21.7 93.9±18.3 44.8±9.5 96.1±7.5
Cost Rate 0.059 0.119 0.108 0.044 0.089

Return 7.8±3.9 9.6±5.3 10.0±2.8 7.0±2.5 13.2±3.8

CarGoal1-v0
(Cost Limit:25)

Cost 22.0±3.1 39.0±4.1 40.8±6.3 21.5±2.0 39.4±4.9
Cost Rate 0.025 0.07 0.056 0.021 0.046

Return 19.0±1.8 21.6±1.2 21.6±1.0 18.1±1.3 21.7±1.6

CarButton1-v0
(Cost Limit:200)

Cost 193.6±9.9 228.0±9.8 228.6±10.0 104.2±16.8 227.0±9.1
Cost Rate 0.194 0.237 0.232 0.081 0.221

Return 18.8±0.6 19.0±1.1 18.6±1.1 8.1±1.9 18.9±1.0

5.2 RESULTS

In this subsection, we present the experiment results of the proposed algorithm–LGAIL. Learning
curves of four environments are presented in Figure 2, while quantitative results are in Table 1. More
experiment results are deferred to Appendix D. From Figure 2 and Table 1, it is clear that LGAIL
is able to reproduce a safe policy that can satisfy the prescribed safety constraints with comparable
performance in imitating the expert.

Safety. It can be seen that LGAIL can achieve much lower Cost and lower Cost Rate compared to
other baselines except RAIL, meaning the safety has both been improved during training and at the
end of training. Surprisingly, CGAIL, which directly solves the constrained optimization problem
of safe IL, performs poorly and even achieve similar costs to GAIL and 2IWIL/IC-GAIL in some
environments as in (Ray et al., 2019). In contrast, using a large penalty, RAIL satisfies the cost limit
in all environments at the expense of noticeable performance degradation in Return. And it could be
laborious to search a suitable penalty scale for different cost limits and environments. LGAIL is able
to adaptively drive the learning process to generate an agent that can satisfy the prescribed safety
constraint. Compared to GAIL, 2IWIL/IC-GAIL slightly improves the safety measured by Cost and
Cost Rate because 2IWIL/IC-GAIL tries to learn from safe expert data. These results verify that a
portion of unsafe expert data could cause a negative impact on the safety of IL algorithms, but also
indicates that GAIL fails to recover a safe policy from safe expert data, which is further discussed in
the Appendix D.6. Besides, we test the performance of the rollout policy of each algorithm with 100
trajectories in Safexp-PointGoal1-v0. The proportion of trajectories that satisfies the cost limit for
LGAIL, GAIL, 2IWIL/IC-GAIL, RAIL, and CGAIL is 70%, 30%, 31%, 69%, and 40%, respectively.
It is clear that the proportion of safe trajectories of LGAIL during testing is dramatically improved
compared against GAIL, 2IWIL/IC-GAIL, and CGAIL, meaning that LGAIL is much safer than the
others. Besides, based on learning from an expectation of costs, an individual episodes sampled from
the algorithms might exceed the cost limit, which is also observed in experts and Yang et al. (2021).
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Figure 3: Undiscounted Return vs CostRate. From left to right, the tested environments are Safexp-
PointGoal1-v0, Safexp-PointButton1-v0, and Safexp-CarGoal1-v0, respectively.
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Figure 4: Impact of the cost limit on LGAIL with unsafe expert data. In the legend LGAIL_CL{x},
x represents the cost limit d0.

Return. It is clear that, with little sacrifice in Return, LGAIL obtains a notably safer agent compared
against other baselines except RAIL. Although RAIL achieves lower Cost compared to LGAIL,
RAIL obtains the lowest return among all algorithms, meaning that RAIL fails to imitate the expert.
It is surprising that CGAIL achieves high Return with lower Cost compared to GAIL. In complex
tasks, LGAIL performs slightly worse than GAIL and 2IWIL/IC-GAIL. We think that there are
two possible reasons: (1) to keep safe, the agent in LGAIL should try to avoid and to keep away
from dangerous areas. This means that the agent should travel the long way around, resulting in a
decrease in the rewards of LGAIL in fixed steps. On the contrary, GAIL and 2IWIL/IC-GAIL do not
take safety into consideration, so they can walk across dangerous areas to achieve higher rewards;
(2) LGAIL adaptively seeks a balance between rewards and costs, and adopts a more conservative
exploration strategy, leading to marginal performance degradation. When a policy is unsafe, the
Lagrange multiplier will increase and penalize the policy to ensure safety. Therefore, LGAIL would
take actions that are more conservative when it explores in the environment. In complex environments,
exploration is important for discovering better policies. Although LGAIL might perform marginally
worse than GAIL and CGAIL in complex environments regarding Return, the agent of LGAIL can
achieve the prescribed safety performance, which is paramount in safety-critical environments when
deploying IL algorithms.

Furthermore, we test LGAIL’s ability of generating constraint-satisfied policies, whose results are
shown in Figures 3 and 4. In Figure 4, an extreme case where expert data are unsafe is tested
in environment Safexp-PointGoal1-v0. We employ 15 unsafe expert trajectories, with their Cost
69.5 ± 15.3 and Return 18.1 ± 2.4. In particular, we adjust the cost limit d0 from 10 to 70 to
investigate its impact on safety and reward performance. More results are deferred to Appendix
D.5. From Figure 3, we can see that LGAIL can achieve higher Returns with smaller Cost Rates,
meaning that the total number of safety violations during training is significantly reduced. From the
perspective of Cost, LGAIL is able to obtain a safe agent that satisfies the prescribed safety constraint
with even unsafe expert data, whereas traditional safe IL cannot. Namely, given a fixed d0 no matter
it is large or small before training, LGAIL is able to reproduce a policy such that JC(πθ) ≤ d0. With
the decrease in the cost limit, the performance of the agent after training decreases slightly. Even
if the safety of the agent in LGAIL has been improved dramatically, the performance of LGAIL is
comparable to that of GAIL.

6 CONCLUSION

In this paper, a new but more practical safe IL task is constructed, in which an agent is required to
achieve prescribed safety performance with the cost signal from the environment and a single expert
dataset. To conduct safe IL, we develop a two-stage optimization framework, dubbed LGAIL, which
can successfully imitate the expert and adaptively produce policies that satisfy the prescribed safety
constraint. LGAIL turns the constrained safe IL problem into a corresponding unconstrained one
with a Lagrange multiplier. The effectiveness and performance are illustrated in extensive OpenAI
Safety Gym benchmarks, meaning that our algorithm is able to deal with the new safe IL task. In
addition, the safety of agents during training is also enhanced dramatically compared to the baselines.
Although the training safety of LGAIL is significantly enhanced, LGAIL fails to strictly maintain the
safety of agents during training. A promising future direction would be achieving the training safety
in safe IL.
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REPRODUCIBILITY STATEMENT

We acknowledge the importance of reproducibility for research work and try whatever we can
to ensure the reproducibility of our work. From the theoretical aspect, we clearly explain the
employed assumptions in Subsection 4.3, and the detailed proof of our theorem is presented in
Appendix A. From the empirical aspect, we first introduce the environments used in detail in
Appendix B. Since we are investigating a new safe imitation learning task, there is no existing
data to conduct experiments. Hence, we present how we obtain expert data for this new task in
Appendix B. As for the implementation of our algorithm, details such as hyperparameters are provided
in Appendix C. Finally, we introduce error bars as well as the computing resources in Appendix D.
Our codes and data will be released upon publication.
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A PROOF OF THEOREM

In this part, we present the detailed proof of Theorem 1, which demonstrates LGAIL’s convergence
and safety. First, some necessary lemmas for the analysis are introduced.

A.1 BASIC CONCEPTS

For better derivation, we introduce some basic concepts. Recall the definition of expected discounted
reward:

V (π, r) = E[

∞∑
t=0

γtr(st, at)|s0 ∼ ζ, at ∼ π(·|st), st+1 ∼ T (·|st, at)].

V (π, r) explicitly emphasizes its dependence on the reward function r(s, a), which is important in
GAIL. We also name it as average value function. Besides, V (π, r) can be calculated in a distribution
manner

V (π, r) =
1

1− γ
E(s,a)∼νπ [r(s, a)],

where νπ(s, a) is referred to as the state-action visitation distribution, and it is defined as νπ(s, a) :=
(1− γ)

∑∞
t=0 γ

tP (st = s, at = a). To proceed our analysis, we also need to define the average cost
function in the same way,

JC(π) = E[

∞∑
t=0

γtc(st, at)|s0 ∼ ζ, at ∼ π(·|st), st+1 ∼ T (·|st, at)] =
1

1− γ
E(s,a)∼νπ [c(s, a)].

Note that we do not explicitly stress the cost function c(s, a) in JC(π) because c(s, a) is provided by
the environment as in Assumption 2. As for the accumulated reward, starting from a given state s or
state-action pair (s, a), respectively, we give notations below:

vπθ
rα (s) = E[

∞∑
t=0

γtrα(st, at)|s0 = s, at ∼ πθ(·|st), st+1 ∼ T (·|st, at)]

Qπθ
rα(s, a) = E[

∞∑
t=0

γtrα(st, at)|s0 = s, a0 = a, st+1 ∼ T (·|st, at), at ∼ πθ(·|st)].

In a similar fashion, we specify the accumulated cost starting from a given state or state-action pair
as follows,

vπθ
c (s) = E[

∞∑
t=0

γtc(st, at)|s0 = s, at ∼ πθ(·|st), st+1 ∼ T (·|st, at)]

Qπθ
c (s, a) = E[

∞∑
t=0

γtc(st, at)|s0 = s, a0 = a, st+1 ∼ T (·|st, at), at ∼ πθ(·|st)].

A.2 PROOF SKETCH

To make our proof easier to comprehend, we first provide a proof sketch before we expand our
analysis.

proof sketch. Recalling our two-stage algorithm 1, we can decompose the convergence analysis into
two parts: the Adam-maximization on parameter α̃ and the TRPO-minimization on parameter θ.
Starting from the ϵ-global convergence’s definition 1:

E[g(θt)]−g(θ∗) ≤ E[g(θt)−F (θt, α̃t)]+E[V (πθ∗ , rαt)−V (πθt , rαt)]+λtE[JC(πθt)−JC(πθ∗)].
(6)

The last two terms in inequality 6 are related to parameter θ, whose update follows:∑
s∈S

dπθ∗ (s)E[Bw(πθ∗(·|s), πθ0(·|s))−Bw(πθ∗(·|s), πθT (·|s))].
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Using the optimal condition and making a summation we can get (detailed derivation can refer to
Eq. (14)):

η2tC
2
Q

2
+
∑
s∈S

dπθ∗ (s)Bw(πθ∗(·|s), πθt(·|s))−
∑
s∈S

dπθ∗ (s)E[Bw(πθ∗(·|s), πθt+1(·|s))|Ft]

≥ ηt(1− γ)(V (πθ∗ , rαt)− V (πθt , rαt))− λtηt(1− γ)(JC(πθ∗)− JC(πθt)).

(7)

As for the first term E[g(θt)− F (θt, α̃t)] in inequality 6, it is associated with parameter α updated
by the Adam optimizer. And it can be scaled to 1

2µ∥∇α̃F (θt, α̃t)∥2 using the strong concavity of F
on parameter (which can refer to 15).

So our focus turns to the term ∥∇α̃F (θt, α̃t)∥2. We can bound E∥∇α̃F (θt, α̃t)∥2 ≤ C√
K

by
Lemma 7, where the constant C is presented specifically in the proof of Lemma 7. Combining above
two parts into the original inequality 6 and summing up from t = 0 to T − 1, some terms in the left
side of inequality 7 can be eliminated into∑

s∈S
dπθ∗ (s)E[Bw(πθ∗(·|s), πθ0(·|s))−Bw(πθ∗(·|s), πθT (·|s))].

So finally we can get the average convergence result 1
T

∑T−1
t=0 E[g(θt)]− g(θ∗) ≤ O( 1

(1−γ)2
√
T
) +

O( 1
(1−γ)2

√
K
) as shown in Theorem 1.

And in the following sections, we will give the whole proof.

A.3 CONTINUITY PROPERTIES OF THE OBJECTIVE FUNCTION F (θ, α̃)

We first show the derivatives of F (θ, α̃) on each component and represent them in the following
lemma.
Lemma 1. The derivatives of the optimization problem F (θ, α̃) can be calculated as follows:

∇θF (θ, α̃) =

[
− 1

1− γ
dπθ

(s)Qπθ
rα̃
(s, a) +

λ

1− γ
dπθ

(s)Qπθ
c (s, a)

]
|S|×|A|

, (s, a) ∈ S ×A

∇α̃F (θ, α̃) = (∇αF (θ, α, λ),∇λF (θ, α, λ)),

where dπθ
(s) is the normalized stationary state distribution, and we specify the detailed expression:

∇αF (θ, α, λ)i =
1

1− γ
[
∑
s,a

(νπE
(s, a)− νπθ

(s, a))
∂rα(s, a)

∂αi
]− ∂ψ(α, λ)

∂αi

∇λF (θ, α, λ) = JC(πθ)− d0 −
∂ψ(α, λ)

∂λ
.

Proof. The derivative of F (θ, α̃) regarding θ is

∇θF (θ, α̃) = −∇θV (πθ, rα) + λ∇θJC(πθ).

We need to calculate two derivatives ∇θV (πθ, rα) and ∇θJC(πθ), respectively. Based on the policy
gradient theorem (Sutton et al., 1999), we obtain

∇θV (πθ, rα) =
1

1− γ
∇θE(s,a)∼vπθ

[rα(s, a)] =
1

1− γ

∑
s∈S

dπθ
(s)
∑
a∈A

∇θπθ(a|s)Qπθ
rα(s, a).

For any entry θs,a, ∇θV (πθ, rα)|s,a = 1
1−γ

∂E(s,a)∼vπθ
[rα(s,a)]

∂θs,a
= 1

1−γ dπθ
(s)Qπθ

rα(s, a). In a similar
manner, we get

∇θJC(πθ) =
1

1− γ
∇θE(s,a)∼vπθ

[c(s, a)] =
1

1− γ

∑
s∈S

dπθ
(s)
∑
a∈A

∇θπθ(a|s)Qπθ
c (s, a)

∇θJC(πθ)|s,a =
1

1− γ

∂E(s,a)∼vπθ
[c(s, a)]

∂θs,a
=

1

1− γ
dπθ

(s)Qπθ
c (s, a).
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Hence,

∇θF (θ, α̃) =

[
− 1

1− γ
dπθ

(s)Qπθ
rα̃
(s, a) +

λ

1− γ
dπθ

(s)Qπθ
c (s, a)

]
|S|×|A|

,∀(s, a) ∈ S ×A.

As for the derivatives of F (θ, α̃) on each component of α̃, we can calculate in a direct way.

Lemma 2. (Xu et al. (2020), Lemma 3) The state-action distribution νπθ
is Cν-Lipschitz smooth on

parameter θ, i.e., given any θ1, θ2 ∈ Θp:

∥νπθ1
− νπθ2

∥TV ≤ Cν∥θ1 − θ2∥2,

where Cν =

√
|A|
2 (1 + ⌈logρ C−1

M ⌉+ (1− ρ)−1).

Lemma 3. F (θ, α̃) is Lipschitz smooth on both parameters θ and α̃:

∥∇θF (θ1, α̃1)−∇θF (θ2, α̃2)∥2 ≤ L11∥θ1 − θ2∥2 + L12∥α̃1 − α̃2∥2
∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃2)∥2 ≤ L21∥θ1 − θ2∥2 + L22∥α̃1 − α̃2∥2,

where L21 =
2Cν

√
C2

r+1

1−γ and L22 = (
2
√
qLr

1−γ + Lψ).

For the derivation of L11 and L12, we refer readers to Guan et al. (2021) with consideration of a new
term λ(JC(πθ)− d0). During our derivation, only L21 and L22 are employed. Hence, we present
how to derive L21 and L22.

Proof. We prove the second inequality in the following way:

∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃2)∥2
= ∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃1) +∇α̃F (θ2, α̃1)−∇α̃F (θ2, α̃2)∥2
≤ ∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃1)∥2 + ∥∇α̃F (θ2, α̃1)−∇α̃F (θ2, α̃2)∥2

We denote T1 = ∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃1)∥2 and T2 = ∥∇α̃F (θ2, α̃1)−∇α̃F (θ2, α̃2)∥2.

Upper-bound of T1:

We first consider the derivative on the i-th component of α:

|(∇αF (θ1, α1, λ1)−∇αF (θ2, α1, λ1))i|

= |(∇αV (πE , rα1
)−∇αV (πθ1 , rα1

)− ∂ψ(α1, λ1)

∂α
− (∇αV (πE , rα1

)−∇αV (πθ2 , rα1
)− ∂ψ(α1, λ1)

∂α
))i|

= |(∇αV (πθ2 , rα1)−∇αV (πθ1 , rα1))i|

=
1

1− γ
|
∑
s,a

(νπθ1
(s, a)− νπθ2

(s, a))(∇αrα1)i|

≤ 1

1− γ
|
∑
s,a

(νπθ1
(s, a)− νπθ2

(s, a))|∥(∇αrα1
)i∥∞

≤
∥νπθ1

− νπθ2
∥1∥∂rα∂αi

∥∞
1− γ

≤
2Cν∥θ1 − θ2∥2∥∂rα∂αi

∥∞
1− γ

,

where the last inequality is due to: ∥νπθ1
− νπθ2

∥1 = 2∥νπθ1
− νπθ2

∥TV ≤ 2Cν∥θ1 − θ2∥2.
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Next, the derivative on the Lagrange multiplier λ:
|∇λF (θ1, α1, λ1)−∇λF (θ2, α1, λ1)|

= |JC(πθ1)− JC(πθ2)|

=
1

1− γ
|
∑
s,a

(νπθ1
(s, a)− νπθ2

(s, a))c(s, a)|

≤ 1

1− γ
|
∑
s,a

(νπθ1
− νπθ2

)|

≤
∥νπθ1

− νπθ2
∥1

1− γ

≤ 2Cν∥θ1 − θ2∥2
1− γ

.

Hence, we have
∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃1)∥2

=

√√√√ q∑
i=1

|(∇αF (θ1, α1, λ1)−∇αF (θ2, α1, λ1))i|2 + |∇λF (θ1, α1, λ1)−∇λF (θ2, α1, λ1)|2

≤ 2Cν∥θ1 − θ2∥2
1− γ

√√√√ q∑
i=1

∥∂rα
∂αi

∥2∞ + 1

≤
2Cν

√
C2
r + 1

1− γ
∥θ1 − θ2∥2.

Upper-bound of T2: Similarly, we start from component-wise derivative of α̃:
|(∇α̃F (θ2, α̃1)−∇α̃F (θ2, α̃2))i|

= |(∇αF (θ2, α1, λ1)−∇αF (θ2, α2, λ2),∇λF (θ2, α1, λ1)−∇λF (θ2, α2, λ2))i|

= |( 1

1− γ

∑
s,a

νπE
(s, a)(∇αrα1(s, a)−∇αrα2(s, a))−

1

1− γ

∑
s,a

νπθ2
(s, a)(∇αrα1(s, a)−∇αrα2(s, a))

− (
∂ψ(α1, λ1)

∂α
− ∂ψ(α2, λ2)

∂α
),−(

∂ψ(α1, λ1)

∂λ
− ∂ψ(α2, λ2)

∂λ
))i|

As a result, the 2-norm is bounded as follows:
∥∇α̃F (θ2, α̃1)−∇α̃F (θ2, α̃2)∥2

=

√√√√q+1∑
i=1

|(∇α̃F (θ2, α̃1)−∇α̃F (θ2, α̃2))i|2

≤ 1

1− γ
(

√√√√ q∑
i=1

|
∑
s,a

νπE
(s, a)(∇αrα1

(s, a)−∇αrα2
(s, a))i|2

+

√√√√ q∑
i=1

|
∑
s,a

νπθ2
(s, a)(∇αrα1

(s, a)−∇αrα2
(s, a))i|2)

+

√√√√ q∑
i=1

(
∂ψ(α1, λ1)

∂α
− ∂ψ(α2, λ2)

∂α
)2 + (

∂ψ(α1, λ1)

∂λ
− ∂ψ(α2, λ2)

∂λ
)2

(i)

≤
2
√
qLr

1− γ
∥α1 − α2∥2 + Lψ∥α̃1 − α̃2∥2

≤ (
2
√
qLr

1− γ
+ Lψ)∥α̃1 − α̃2∥2
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where (i) follows from:|(∇αrα1
(s, a) − ∇αrα2

(s, a))i| ≤ ∥∇αrα1
(s, a) − ∇αrα2

(s, a)∥2 ≤
Lr∥α1 − α2∥2 and the last term is the expression of ∥∇α̃ψ(α̃1)−∇α̃ψ(α̃2)∥2. With upper-bounds
of T1 and T2, we have

∥∇α̃F (θ1, α̃1)−∇α̃F (θ2, α̃2)∥2 ≤ L21∥θ1 − θ2∥2 + L22∥α̃1 − α̃2∥2,

where L21 =
2Cν

√
C2

r+1

1−γ and L22 = (
2
√
qLr

1−γ + Lψ).

A.4 PROOF OF CONVERGENCE OF ADAM

For better presentation, we define some notations (Chen et al., 2021):

1. Select a constant ι′ > 0 that satisfies β2 < ι′ < ι. Define δ := β2/ι′ < 1 and C1 =∏N
j=1(

ιj
ι′ ), in which N stands for the maximal index j that ιj < ι′.

2. Let ∆k = α̃k+1 − α̃k, v̂k = ιkvk−1 + (1− ιk)σ
2
k where σ2

k = Ek[h
2
k], and ξ̂k = bk√

v̂k
.

3. For the positive vector ξ̂k, we define the weighted norm as ∥vk∥2ξ̂k = ⟨vk, ξ̂kvk⟩ =∑q+1
i=1 ξ̂k,i|vk,i|2.

Lemma 4. (Chen et al. (2021), Lemma 33) Let Mk = E[−⟨∇α̃F (θt, α̃k),∆k⟩+ L22∥∆k∥2], and
χk = bk/

√
1− ιk. Then ∀K ≥ 1, we have:

K∑
k=1

Mk ≤ C3E[

K∑
k=1

χk∥
√
1− ιkhk√

vk
∥2]− 1− β

2
E[

K∑
k=1

∥∇α̃F (θt, α̃k)∥2ξ̂k ],

where C3 = C0√
C1(1−

√
δ)
(
C2

0χ1L22

C1(1−
√
δ)2

+ 2( β/(1−β)√
C1(1−δ)ι1

+ 1)2G).

Lemma 5. (Chen et al. (2021), Lemma 35)The following estimate is hold:

E[

K∑
k=1

χk

∥∥∥∥√1− ιkhk√
vk

∥∥∥∥2] ≤ C0(q + 1)[χ1 log(1 +
G2

µ(q + 1)
) +

1

ι1

K∑
k=1

bk
√
1− ιk].

Lemma 6. (Chen et al. (2021), Lemma 36) We assume αt is randomly chosen from {αt1, ..., αtK}
and add them up with equal probabilities 1/K. Then, we obtain

1

K
E

K∑
k=1

∥∇α̃F (θt, α̃
t
k)∥2 ≤

C0

√
G2 + µ(q + 1)

KbK
E[

K∑
k=1

∥∇α̃F (θt, α̃
t
k)∥2ξ̂k ].

Lemma 7. When the parameters satisfy all requirements 1, 2, and 3, Adam is convergent and:

E∥∇α̃F (θt, α̃t)∥2 ≤ C√
K
,

where

C =
2C0

√
G2 + µ(q + 1)

b(1− β)
[2g∗ + C3C0(q + 1)b(

1√
ι
log(1 +

G2

µ(q + 1)
) +

√
ι

1− ι
)].

Proof. According to the Lipschitz smoothness of F (θ, α̃), we have

F (θt, α̃
t
k) ≤ F (θt, α̃

t
k+1) + ⟨−∇α̃F (θt, α̃

t
k), α̃

t
k+1 − α̃tk⟩+

L22

2
∥α̃tk+1 − α̃tk∥2.

Taking expectation and summing up from k = 1 to K, we can get F (θt, α̃t1) ≤ E[F (θt, α̃
t
K+1)] +∑K

k=1Mk. According to the definition of g(θ), we further have,

F (θt, α̃
t
1) ≤ g(θt) +

K∑
k=1

Mk.
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Hence, we can get:

E∥∇α̃F (θt, α̃t)∥2

=
1

K
E

K∑
k=1

∥∇α̃F (θt, α̃
t
k)∥2

(i)

≤
C0

√
G2 + µ(q + 1)

KbK
E[

K∑
k=1

∥∇α̃F (θt, α̃
t
k)∥2ξ̂k ]

(ii)

≤
2C0

√
G2 + µ(q + 1)

KbK(1− β)
(C3E[

K∑
k=1

χk∥
√
1− ιkhk√

vk
∥2]−

K∑
k=1

Mk)

(iii)

≤
2C0

√
G2 + µ(q + 1)

KbK(1− β)
{C3C0(q + 1)[χ1 log(1 +

G2

µ(q + 1)
) +

1

ι1

K∑
k=1

bk
√
1− ιk] + 2g∗},

where (i) and (ii) follow from Lemmas 6 and 4, respectively, and (iii) is due to Lemma 5. Then we
take bk = b√

K
, βk = β, and ιk = 1− ι

K which satisfies δ = β
1− ι

K
< 1 and ιk ≥ 1

4 . So we can get:

E∥∇α̃F (θt, α̃t)∥2 ≤ C√
K
,

where

C =
2C0

√
G2 + µ(q + 1)

b(1− β)
[2g∗ + C3C0(q + 1)b(

1√
ι
log(1 +

G2

µ(q + 1)
) +

√
ι

1− ι
)].

A.5 LEMMAS ON CONVERGENCE OF TRPO

Lemma 8. For estimated Q-value and Qc functions, they are upper bounded:

∥ − Q̂
πθt
rαt

(s, ·) + λQ̂
πθt
c (s, ·)∥∞ ≤ CQ.

Proof. For any state-action pair (s, a), the estimated Q-value for reward is bounded by Rmax

1−γ because
of its calculating iteration (Guan et al., 2021) and the estimated Q-value for cost is bounded by 1

1−γ
in the same sense. Hence,

∥ − Q̂
πθt
rαt

(s, ·) + λQ̂
πθt
c (s, ·)∥∞ ≤ Rmax + λmax

1− γ
≜ CQ.

Lemma 9. For any policy π, π′, and any reward function rα, the following equations hold:

(1− γ)(V (π, rα)− V (π′, rα)) =
∑
s∈S

dπ′(s)⟨−Qπrα(s, ·), π
′(·|s)− π(·|s)⟩ (8)

(1− γ)(JC(π
′)− JC(π)) =

∑
s∈S

dπ′(s)⟨Qπc (s, ·), π′(·|s)− π(·|s)⟩. (9)

Proof. Eq. (8) is a simplified case of Lemma 11 in Guan et al. (2021) when the regularized multiplier
is chosen to be zero. Here, we only present the detailed proof of Eq. (9).

For any state s ∈ S:
⟨Qπc (s, ·), π′(·|s)⟩

≜
∑
a

π′(a|s)Qπc (s, a)

=
∑
a

π′(a|s)

(
c(s, a) + γ

∑
s′

T (s′|s, a)vπc (s′)

)
= Tπ

′
vπc (s),

(10)
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where T π′
is the Bellman operator.

Combing with the fact that ⟨Qπc (s, ·), π(·|s)⟩ =
∑
aQ

π
c (s, a)π(a|s) = vπc (s), we obtain:

⟨Qπc (s, ·), π′(·|s)− π(·|s)⟩ = Tπ
′
vπc (s)− vπc (s). (11)

Besides, for any state s, vπc = cπ + γT πvπc , which can be written as (I− γT π)vπc = cπ . Hence,

vπ
′

c − vπc = (I− γT π′
)−1cπ

′
− (I− γT π′

)−1(I− γT π′
)vπc

= (I− γT π′
)−1(cπ

′
+ γT π′

vπc − vπc )

= (I− γT π′
)−1(Tπ

′
vπc − vπc ).

Multiplying both side by the state visitation distribution dζ,π′ = (1− γ)ζ(I− γT π′
)−1, we get:

ζ(vπ
′

c − vπc ) =
1

1− γ
dζ,π′(Tπ

′
vπc − vπc ). (12)

Combining Eq. (10) with (12), we have
JC(π

′)− JC(π)

=
∑
s

ζ(s)(vπ
′

c (s)− vπc (s))

=
1

1− γ

∑
s

dζ,π′(s)(Tπ
′
vπc (s)− vπc (s))

=
1

1− γ

∑
s

dπ′(s)⟨Qπc (s, ·), π′(·|s)− π(·|s)⟩.

Multiplying both side by fractor 1− γ and we can get the second equality.

A.6 PROOF OF THEOREM 1

We restate Theorem 1 here for better understanding.
Theorem. 1 (Convergence) When assumptions 1- 8 are satisfied, parameters meet the requirements
1- 3, and the update stepsize of θ is ηt = 1−γ√

T
, we can get:

1

T

T−1∑
t=0

E[g(θt)]− g(θ∗) ≤ O
(

1

(1− γ)2
√
T

)
+O

(
1

(1− γ)2
√
K

)
.

Proof. The parameter θt+1 is updated according to the following law

πθt+1(·|s) ∈ argmin
π∈Θp

(
〈
−Q̂πθt

rαt
(s, ·) + λtQ̂

πθt
c (s, ·), π − πθt(·|s)

〉
+ η−1

t Bw(π, πθt(·|s))).

Based on the optimal condition, we have
⟨−Q̂πθt

rαt
(s, ·) + λtQ̂

πθt
c (s, ·) + η−1

t (∇w(πθt+1
(·|s))−∇w(πθt(·|s))), π − πθt+1

(·|s)⟩ ≥ 0

holds for any π.

Let π = πθ∗(·|s) in the above inequality, then
0 ≤ ηt⟨−Q̂

πθt
rαt

(s, ·) + λtQ̂
πθt
c (s, ·), πθ∗(·|s)− πθt(·|s)⟩

+ ηt⟨−Q̂
πθt
rαt

(s, ·) + λtQ̂
πθt
c (s, ·), πθt(·|s)− πθt+1(·|s)⟩

+ ⟨∇w(πθt+1
(·|s))−∇w(πθt(·|s)), πθ∗(·|s)− πθt+1

(·|s)⟩
≤ ηt⟨−Q̂

πθt
rαt

(s, ·) + λtQ̂
πθt
c (s, ·), πθ∗(·|s)− πθt(·|s)⟩

+
η2t ∥ − Q̂

πθt
rαt

(s, ·) + λtQ̂
πθt
c (s, ·)∥2∞

2
+

∥πθt(·|s)− πθt+1(·|s)∥21
2

+Bw(πθ∗(·|s), πθt(·|s))−Bw(πθ∗(·|s), πθt+1
(·|s))−Bw(πθt+1

(·|s), πθt(·|s))
(i)

≤ ηt⟨−Q̂
πθt
rαt

(s, ·) + λtQ̂
πθt
c (s, ·), πθ∗(·|s)− πθt(·|s)⟩+

η2tC
2
Q

2
+Bw(πθ∗(·|s), πθt(·|s))−Bw(πθ∗(·|s), πθt+1

(·|s)),

(13)
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where (i) is due to Lemma 8 and the following relationship:
∥πθt(·|s)− πθt+1

(·|s)∥21
2

= 2δ(πθt(·|s), πθt+1(·|s))

≤ KL(πθt(·|s)||πθt+1(·|s))
= Bw(πθt(·|s), πθt+1

(·|s)).
We take a conditional expectation on Ft = σ(θ0, θ1, ..., θt) over inequality 13 and obtain:

0 ≤ηt⟨−Q
πθt
rαt

(s, ·) + λtQ̂
πθt
c (s, ·), πθ∗(·|s)− πθt(·|s)⟩+

η2tC
2
Q

2
+Bw(πθ∗(·|s), πθt(·|s))−E[Bw(πθ∗(·|s), πθt+1(·|s))|Ft].

For any s ∈ S , the above inequality holds. Hence, we take a summation on the distribution s ∼ dπθ∗

and have
η2tC

2
Q

2
+
∑
s∈S

dπθ∗ (s)Bw(πθ∗(·|s), πθt(·|s))−
∑
s∈S

dπθ∗ (s)E[Bw(πθ∗(·|s), πθt+1
(·|s))|Ft]

≥ −ηt
∑
s∈S

dπθ∗ (s)⟨−Q
πθt
rαt

(s, ·) + λtQ
πθt
c (s, ·), πθ∗(·|s)− πθt(·|s)⟩

(i)
= ηt(1− γ)(V (πθ∗ , rαt

)− V (πθt , rαt
))− λtηt(1− γ)(JC(πθ∗)− JC(πθt)),

(14)

where (i) follows from Lemma 9.

Next we proceed our proof as follows:
E[g(θt)]− g(θ∗)

= E[g(θt)− F (θt, α̃t)] +E[F (θt, α̃t)− g(θ∗)]

≤ E[g(θt)− F (θt, α̃t)] +E[F (θt, α̃t)− F (θ∗, α̃t)]

= E[g(θt)− F (θt, α̃t)] +E[V (πθ∗ , rαt)− V (πθt , rαt)] + λtE[JC(πθt)− JC(πθ∗)]

≤ E[g(θt)− F (θt, α̃t)] +
1

ηt(1− γ)

∑
s∈S

dπθ∗ (s)Bw(πθ∗(·|s), πθt(·|s))

− 1

ηt(1− γ)

∑
s∈S

dπθ∗ (s)E[Bw(πθ∗(·|s), πθt+1
(·|s))|Ft] +

ηtC
2
Q

2(1− γ)

Considering the fact that F (θ, α) is µ-strongly concave on α̃, we have
F (θt, α̃

∗(θt))− F (θt, α̃t)

≤ ⟨∇α̃F (θt, α̃), α̃
∗(θt)− α̃t⟩ −

µ

2
∥α̃∗(θt)− α̃t∥2

≤ 1

2µ
∥∇α̃F (θt, α̃t)∥2 +

µ

2
∥α̃∗(θt)− α̃t∥2 −

µ

2
∥α̃∗(θt)− α̃t∥2

=
1

2µ
∥∇α̃F (θt, α̃t)∥2.

(15)

We select ηt = 1−γ√
T

and make a summation:

1

T

T−1∑
t=0

E[g(θt)]− g(θ∗)

(i)

≤ 1

(1− γ)2
√
T

∑
s∈S

dπθ∗ (s)E[Bw(πθ∗(·|s), πθ0(·|s))−Bw(πθ∗(·|s), πθT (·|s))]

+
C

2µ
√
K

+
C2
Q

2
√
T

(ii)

≤ C

2µ
√
K

+
(1− γ)2C2

Q + 2 log |A|
2(1− γ)2

√
T

(iii)

≤ O
(

1

(1− γ)2
√
T

)
+O

(
1

(1− γ)2
√
K

)
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where (i) follows from Lemma 7, (ii) is due to 0 ≤ Bw(π1, π2) ≤ log |A|, and (iii) is because
CQ = O

(
1

(1−γ)2

)
and the definition of C and C3.

B ENVIRONMENT AND EXPERT DATA

In this section, we introduce the OpenAI Safety Gym benchmarks (Ray et al., 2019) used in our
experiments and give details on how to generate expert data.

(a) Safexp-PointGoal1-v0 (b) Safexp-CarGoal1-v0 (c) Safexp-DoggoGoal1-v0

(d) Safexp-PointButton1-v0 (e) Safexp-CarButton1-v0 (f) Safexp-DoggoButton1-v0

Figure 5: Screenshots of the OpenAI Safety Gym environments. In Safexp-PointGoal1-v0, the red
Point should navigate to the green cylinder while avoiding the purple hazards on the floor.

B.1 ENVIRONMENT OVERVIEW

OpenAI Safety Gym (Ray et al., 2019) is a highly configurable environment, which supports users to
construct desired environments with different robots, tasks, constraints, and observation spaces. In
general, tasks in Safety Gym demand the robot to navigate dangerous environments including hazards
and vases. There are three optional robots, i.e., Point, Car, and Doggo, while three task options are
offered, i.e., Goal, Button, and Push. Constraints such as hazards and vases can be selected and
placed into the environment. The information that an agent could receive may come from standard
robot sensors, velocity sensors, and lidars. Furthermore, the level of difficulty of the man-made
environment can be adjusted by increasing or decreasing the number of constraints. Generally, Safety
Gym is such a huge system that it cannot be explained in detail due to the various configurable
choices available.

Therefore, to give an intuitive understanding of the environments, we introduce a standard Safety
Gym environment–Safexp-PointGoal1-v0, which is shown in Figure 5. As can be interpreted from
its name, the robot in this environment is Point (the red object in Figure 5(a)), a small robot with
two actuators, one for turning and the other for moving forward/backward; the task is Goal, which
means that the robot should move to a goal position as depicted by the green area in Figure 5(a); the
number “1” after the task Goal represents the difficulty level of this task. In terms of constraints,
there are several hazards (purple circles on the floor in Figure 5(a)) that are randomly placed during
the environment initialization. When the robot steps into a hazardous area, the cost indicator ct will
be 1; otherwise, ct = 0 at each step. One episode will end after 1,000 steps. During the 1,000 steps,
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if the goal has been achieved, a new goal will be randomly placed on the map. For more details on
the Safety Gym, we refer the readers to Ray et al. (2019).

B.2 ENVIRONMENT SPECIFICATIONS

The specifications of the tested environments are listed in Table 2.

Table 2: Specifications of the OpenAI Safety Gym Benchmarks.
Environment State Space Action Space Max-Step
Safexp-PointGoal1-v0 60 2 1000
Safexp-PointButton1-v0 76 2 1000
Safexp-CarGoal1-v0 72 2 1000
Safexp-CarButton1-v0 88 2 1000
Safexp-DoggoGoal1-v0 104 12 1000
Safexp-DoggoButton1-v0 120 12 1000

B.3 EXPERT DATA

Here, we demonstrate how to generate the expert data. First, we use the safe RL algorithm TRPO-
Lagrangian implementation (Trust Region Policy Optimization Lagrangian) in Ray et al. (2019) to
train an agent with a prescribed cost limit. After training, an agent, which can achieve high cumulative
rewards and satisfy the cost limit, is obtained. This agent can be regarded as a safe expert when its
prescribed cost limit is the same as that of the target application, and we can get a series of expert
data by executing this policy in the Safety Gym environments. Although this agent is considered to
be safe in most cases, some trajectories sampled from it could be unsafe, i.e., the Cost of a trajectory
is larger than cost limit, due to dynamically changing environments. This means that safe experts
may still make mistakes and take dangerous actions, which is consistent with one of the motivations
Best (1992); Culverhouse et al. (2003).

As a result, we can sample both safe trajectories and unsafe trajectories using such a safe expert.
With consideration of the fact that practical expert data may come from a variety of sources, we also
generate the data with multiple expert policies. In particular, for every Safety Gym environment, we
use TRPO-Lagrangian to train three safe experts from scratch separately. Default hyper-parameters
in Ray et al. (2019) are adopted and the cost limit for each environment are listed in Table 3. After
training, we construct 10 safe expert trajectories and 5 unsafe expert trajectories by sampling from
each expert. Both states and actions of the expert are recorded sequentially and a trajectory contains
1, 000 states and actions. Since there are three experts, we obtain a total number of 45 expert
trajectories for each environment, in which 30 trajectories are safe and the other 15 trajectories are
unsafe. The 45 expert trajectories are what we use for IL, and no labels are provided to indicate
whether one expert trajectory is safe or not during imitating.

Table 3: Cost limits for training safe experts.
Environment Cost Limit d0
Safexp-PointGoal1-v0 25
Safexp-PointButton1-v0 60
Safexp-CarGoal1-v0 25
Safexp-CarButton1-v0 200
Safexp-DoggoGoal1-v0 60
Safexp-DoggoButton1-v0 250

C IMPLEMENTATION DETAILS

We implement LGAIL based on two open source codes, OpenAI Baselines (Dhariwal et al., 2017) and
Safety Starter Agents (Ray et al., 2019). Following Dhariwal et al. (2017), we use the RL algorithm
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a) to serve as the generator. We adopt
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the discriminator from OpenAI Baselines to replace the reward that is fed back from environments in
Safety Starter Agents. Two separate neural networks are constructed to represent the policy πθ(s, a)
and discriminator rα(s, a). Then the loss function for updating discriminator is as follows

max
α

ÊτE∼πE
[log rα(s, a)] + Êτθ∼πθ

[log(1− rα(s, a))], (16)

where τE and τθ are expert trajectories and agent trajectories, respectively. Besides, during training,
the Lagrange multiplier λ is dynamically updated to ensure the agent satisfy safety constraints
according to,

max
λ

Êτθ (λ(JC(πθ)− d0)). (17)

For the optimization of the policy, the rapid variation of λ may affect the training stability. Hence, we
adopt a technique (Stooke et al., 2020) to regulate the policy improvement process

Êτθ∼πθ
[

1

1 + λ
(Qπθ

rα(s, a)− λQπθ
c (s, a))]− βH(πθ), (18)

in which Qπθ
rα(s̄, ā) = Êτθ [− log(rα(s, a))|s0 = s̄, a0 = ā] and Qπθ

c (s, a) = Êτθ [c(s, a))|s0 =
s̄, a0 = ā]. Two independent neural networks are adopted to maintain accurate approximation of
Q-values for the reward and cost. Finally, we present the number of expert trajectories and the
complete hyper-parameters used for imitation learning in Table 4 and Table 5.

We want to discuss a little bit more about one of the baselines, 2IWIL/IC-GAIL (Wu et al., 2019), i.e.,
algorithms of learning from imperfect demonstration. The basic problem for learning from imperfect
demonstration is that expert data could be sampled from experts with different qualities (Wu et al.,
2019). Note that the quality here stands for the performance of the expert. In other words, some expert
data are sampled from optimal policies while others are sampled from sub-optimal policies. The
expert data sampled from sub-optimal policies could mislead the imitator to sub-optimal performance.
Besides, only a small portion of expert data is labeled with confidence scores. If the confidence score
conf(s, a) = 1, then the state-action pair (s, a) is sampled from optimal policies. On the contrary,
conf(s, a) = 0 means that (s, a) is sampled from sub-optimal policies. Essentially, the aim of their
solutions, 2IWIL and IC-GAIL, is to find all the state-action pairs that are sampled from optimal
policies and learn from these optimal data without distractions of sub-optimal data (Wu et al., 2019).
Therefore, in our experiments, we conduct imitation learning from safe expert data, which is the
ultimate form of 2IWIL and IC-GAIL.

Another algorithm CGAIL is a direct extension of CPO (Achiam et al., 2017) to the IL setting, where
the reward is replaced with the output of a discriminator. As for RAIL, it bears some resemblance to
our algorithm LGAIL. The core difference is that LGAIL explicitly considers the prescribed safety
constraint and dynamically adjust the weight of costs while RAIL only imposes a large fixed penalty
on dangerous state-action pairs. In addition, LGAIL is guaranteed to achieve a safe policy, while
RAIL usually needs to search a proper penalty to balance safety and reward issues. For example, it is
necessary to finetune the scale of penalty for RAIL given a new environment or a prescribed cost
limit, which could be arduous. In contrast, LGAIL can automatically adapts to different environments
and prescribed cost limits. In all experiments, we set the penalty scale for RAIL to 5.

Table 4: Number of expert trajectories. We abbreviate trajectories as Trajs.
Environment Total Expert Trajs Safe Expert Trajs Unsafe Expert Trajs
Safexp-PointGoal1-v0 45 30 15
Safexp-PointButton1-v0 45 30 15
Safexp-CarGoal1-v0 45 30 15
Safexp-CarButton1-v0 45 30 15
Safexp-DoggoGoal1-v0 45 30 15
Safexp-DoggoButton1-v0 45 30 15

D ADDITIONAL EXPERIMENTS

We present more experimental results (including the quantitative results) in different environments
with various configurations here to further validate the proposed algorithm–LGAIL.
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Table 5: Hyper-parameters in experiments.
Hyper-parameters Value
Common parameters

Network size (Except the discriminator network) (256,256)
Network size (Discriminator network) (100,100)
Activation tanh
Batch size 3,000
Optimizer Adam
Generator network update times 1
Discriminator network update times 1

Common parameters for TRPO
Generalized Advantage Estimation Gamma 0.99
Generalized Advantage Estimation Lambda 0.97
Maximum KL 0.01
Learning rate (Value network) 1× 10−3

Value iteration 80
Policy entropy 0.0

Discriminator parameters
Learning rate (Discriminator network) 3× 10−4

Discriminator entropy 1× 10−3

Penalty parameters
Initial penalty 1
Penalty learning rate 5× 10−2

D.1 COMPUTING RESOURCES

We use CPUs to run our experiments. The model name of the CPU is Intel(R) Xeon(R) Gold 6146
CPU @ 3.20GHz. The computation time for each environment is provided in Table 6.

Table 6: Computation time.
Environment Time
Safexp-PointGoal1-v0 about 4 hours
Safexp-PointButton1-v0 about 4 hours
Safexp-CarGoal1-v0 about 13 hours
Safexp-CarButton1-v0 about 20 hours
Safexp-DoggoGoal1-v0 about 14 hours
Safexp-DoggoButton1-v0 about 20 hours

D.2 EXPERIMENTS ON DOGGO TASKS

The learning curves in Safexp-DoggoGoal1-v0 and Safexp-DoggoButton1-v0 are presented in Fig-
ure 6, and quantitative results of these two environments are listed in Table 7. Even in these complex
environments, the proposed algorithm LGAIL can still mimic the expert under the prescribed safety
constraint.

The phenomenon that LGAIL performs slightly worse than the other baselines except RAIL regrading
Return has been discussed in the paper. For Safexp-DoggoButton1-v0, the phenomenon that LGAIL
did not reduce the cost is because the Cost of LGAIL is lower than the cost limit d0 = 250. According
to our algorithm, the Lagrange multiplier will be zero if the current policy satisfies the cost limit.
In other words, LGAIL focuses on improving rewards when the policy is safe. Hence, the learning
curve of LGAIL in Safexp-DoggoButton1-v0 is reasonable. To demonstrate that LGAIL is able to
reduce costs, we also conduct new experiments with lower cost limit d0 = 200. The learning curves
of LGAIL in Safexp-DoggoButton1-v0 with cost limit d0 = 200 are presented in Figure 7.
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(b) Safexp-DoggoButton1-v0

2IWIL/IC-GAIL CGAIL GAIL LGAIL RAIL Cost Limit Expert

Figure 6: Learning curves in Safexp-DoggoGoal1-v0 and Safexp-DoggoButton1-v0. Performance is
measured with Cost, Cost Rate, and Return. The x-axis represents time steps of interactions with the
environment. Each algorithm is evaluated with 3 random seeds.
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Figure 7: Learning curves in Safexp-DoggoButton1-v0 with different cost limits.

Table 7: Summary of quantitative results. The columns represent the algorithms, while the rows
represent environments and metrics. Each result is averaged over 30 trails of a policy.

Environment LGAIL GAIL 2IWIL/IC-GAIL CGAIL RAIL

DoggoGoal1-v0
Cost 56.3±2.6 79.4±1.9 75.2±3.3 76.9±0.7 25.6±1.4

Cost Rate 0.06 0.098 0.095 0.094 0.032
Return 6.6±1.2 11.3±0.5 10.4±0.3 11.3±0.4 1.8±0.5

DoggoButton1-v0
Cost 245.8±6.1 243.6±1.9 241.6±2.4 245.0±4.0 107.7±4.4

Cost Rate 0.225 0.227 0.218 0.227 0.09
Return 7.5±0.1 7.8±0.1 7.2±0.5 7.8±0.3 1.1±0.1

D.3 EXPERT PERFORMANCE

The performance of the expert data is presented in Table 8. As we discussed above, we sample 10
trajectories from each expert. Besides, during sampling, we select trajectories according to specific
reward or safety desires. The performance of expert data in Table 8 is calculated from the sampled
data. However, Safety Gym is a dynamically changing environment such that it is not enough to
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Table 8: Performance of the expert data.
Environment Cost Return

Safexp-PointGoal1-v0
Safe 8.0±8.29 19.5±2.8

Unsafe 64.9±13.3 18.9±2.7
Mixed 27.0±28.7 19.3±2.8

Safexp-PointButton1-v0
Safe 26.6±15.0 20.1±4.2

Unsafe 164.8±49.3 19.0±3.0
Mixed 72.7±72.1 19.8±4.0

Safexp-CarGoal1-v0
Safe 6.7±7.9 25.9±4.0

Unsafe 82.6±36.90 22.6±3.2
Mixed 32.0±42.1 24.8±4.1

Safexp-CarButton1-v0
Safe 139.2±41.7 23.8±5.4

Unsafe 310.5±40.9 24.3±4.0
Mixed 196.3±90.8 24.0±5.0

Safexp-DoggoGoal1-v0
Safe 24.9±12.4 21.0±3.7

Unsafe 121.6±26.5 20.4±2.8
Mixed 57.2±49.1 20.8±3.5

Safexp-DoggoButton1-v0
Safe 172.9±61.6 15.5±5.8

Unsafe 349.3±35.0 14.4±3.6
Mixed 231.7±99.3 15.1±5.2

Table 9: Performance of the expert that is evaluated with 100 trajectories.
Environment Cost Return

Safexp-PointGoal1-v0
Expert 1 27.8±18.5 15.6±3.2
Expert 2 12.5±18.9 13.4±7.7
Expert 3 26.1±27.9 17.9±4.6

Safexp-PointButton1-v0
Expert 1 54.8±40.2 13.4±5.3
Expert 2 46.7±55.1 11.8±8.5
Expert 3 70.6±56.7 13.9±6.4

Safexp-CarGoal1-v0
Expert 1 28.4±29.3 21.8±6.3
Expert 2 20.7±25.9 21.6±7.6
Expert 3 24.5±26.2 21.4±8.3

Safexp-CarButton1-v0
Expert 1 220.4±87.6 17.6±5.8
Expert 2 220.0±117.9 19.8±7.1
Expert 3 197.1±85.0 20.2±7.6

Safexp-DoggoGoal1-v0
Expert 1 54.2±45.2 15.0±5.8
Expert 2 56.6±46.1 22.8±4.3
Expert 3 57.2±42.2 18.1±5.1

Safexp-DoggoButton1-v0
Expert 1 218.0±95.1 9.5±5.2
Expert 2 243.4±115.9 11.5±4.6
Expert 3 256.8±107.4 13.0±6.4

evaluate an expert with only 10 trajectories. Hence, we also provide the performance of experts in
Table 9, which is evaluated with 100 trajectories. As we can see from Table 9, the variance of an
expert is relatively high. So even we test an expert with 100 trajectories, the performance of an expert
could vary if we retest it. In the learning curves, we plot the expert performance rather than the
performance of expert data because the former is fairer.
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Figure 8: Learning curves of LGAIL and the other baselines on Level 2 tasks. Performance is
measured with Cost, Cost Rate, and Return. The x-axis represents time steps of interactions with the
environment. Each algorithm is evaluated with 5 random seeds.

D.4 EXPERIMENTS ON “LEVEL 2” TASKS

We conduct experiments on “level 2" tasks (Safexp-PointGoal2-v0 and Safexp-PointButton2-v0) to
demonstrate the performance of LGAIL against other baselines. The learning curves are presented
in Figure 8. In more complex environments, performance degradation is observed for experts
and IL algorithms. However, experiment results show that LGAIL can work effectively in these
complex environments, i.e., LGAIL is able to achieve the same level of performance regarding Return
compared with the other baselines (GAIL, 2IWIL/IC-GAIL, CGAIL) and simultaneously satisfy the
cost limit. Although RAIL could also return safe policies, RAIL performs pretty poorly in terms of
Return.

D.5 IMPACT OF COST LIMITS

In the paper, we carry out experiments to investigate the impact of cost limit on LGAIL’s performance
with unsafe expert data. We only present the results using Safexp-PointGoal1-v0 in the paper. Here,
more experiments in other environments are given, which are shown in Figure 9. We can see that
LGAIL is able to obtain a policy that satisfies the prescribed cost limit.

D.6 GAIL WITH PURELY SAFE EXPERT DATA

It is worthy of investigating why GAIL could not reproduce safe policies with safe expert data.
We conduct experiments to test the impact of the amount of expert data and the diversity of expert
data on the safety performance of GAIL. Concretely, in environments Safexp-PointGoal1-v0 and
Safexp-PointButton1-v0, we train GAIL with different numbers of expert trajectories (including
10, 30, 100, 300, and 1000 trajectories). These expert data are sampled from a single expert. Each
trajectory contains 1,000 state-action pairs. Hence, it means that one million state-action pairs are
provided when we use 1000 trajectories to train GAIL, which is a huge amount of data. Besides, we
also use safe expert data that are sampled from three independent experts to train an agent. For the
experiments that use data sampled from a mixture of expert policies, we evaluate the performance of
GAIL against different numbers of expert trajectories (300, 900, and 1500). The learning curves are
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Figure 9: Impact of constraint limit on LGAIL with unsafe expert data. In the legend LGAIL_CL{x},
x represents the cost limit d0.

presented in Figure 10. Results are shown in Figure 10. From Figure 10, it is clear that: (1) GAIL
usually fails to recover a safe policy even with abundant safe expert data; (2) increasing the number
of expert data does not help improve the performance of GAIL in terms of both rewards and costs;
(3) GAIL performs worse with expert data that are sampled from multiple experts. In practice, expert
data are often collected from various sources.

In our opinion, there are three possible reasons: (1) The safe expert data are unbalanced. We think
that expert data contain more information on how to achieve rewards compared to the information on
how to be safe. Every safe expert trajectory achieves high rewards but low costs, which means that
rewards are dense while costs are sparse. As a result, GAIL is likely to mainly develop the ability to
accomplish tasks but neglecting the connotative ability to be safe. (2) GAIL could not adapt well to
dynamic environments due to the poor generalization ability. GAIL employs RL algorithms to serve
as the generator, and RL algorithms often struggle with generalization problems. Hence, GAIL is
likely to generalize poorly in dynamic environments such that the recovered policy could be unsafe.
(3) Expert data sampled from a mixture of expert policies could provide opposite information about
safety. Different experts have their own preferences, which may mislead the agent to dangerous
actions. In contrast, our algorithm LGAIL explicitly considers safety issues during imitating and
regards them as constraints to regulate the IL process. This explicit modeling enables LGAIL to
generate safer policies.
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(a) Safexp-PointGoal1-v0 (safe expert data sampled from three experts)
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(b) Safexp-PointGoal1-v0 (safe expert data sampled from one expert)
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(c) Safexp-PointButton1-v0 (safe expert data sampled from three experts)
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(d) Safexp-PointButton1-v0 (safe expert data sampled from one expert)

Figure 10: Impact of the number of expert trajectories on GAIL with safe expert data. In the legend
GAILTraj{x}, x represents the number of expert trajectories.
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