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ABSTRACT

Agents and Language Models (LMs) demonstrate significant advancements in
software engineering, particularly in issue resolution. Current benchmarks can
qualitatively assess the correctness of generated patches. However, they lack
mechanisms for quantitatively evaluating the trajectory, which is important to
reveal the point of improvement. To obtain understanding of issue-resolving
agents’ working processes, we propose SWE-eval, a trajectory-augmented eval-
uation framework. SWE-eval additionally assesses a coding agent’s reasoning
trajectory across three dimensions: (1) Efficiency, measured by resource con-
sumption; (2) Logical Consistency, where Intra-turns measures the logical con-
sistency within a single turn and Inter-turns measures logical consistency across
multiple conversation turns; (3) Tool Utilization, for which we design a metric
Info-gain to assess how much new information the tool provides for solving prob-
lems. Our experiments on three agents and nine LMs demonstrate that SWE-eval
effectively reveals underlying interpretations of agent performance and can guide
development of more effective agents. First, our evaluations show that elevating
trajectory-aware metrics is crucial for enhancing the % Resolved. Second, we
trace divergent agent behaviors to shallow exploration, missing backtracking, and
loop entrapment. We also show that fine-tuning on agents risks overfitting and
scaling LMs improves trajectories. Third, LLM-based evaluations align closely
with expert judgments and exhibit consistent stability, serving as reliable proxies.

1 INTRODUCTION

Language Models (LMs) are increasingly employed in building software engineering agents. The
effectiveness of agents (Wang et al., 2025; Yang et al., 2024b) is rigorously evaluated on standard
benchmarks such as HumanEval (Yadav & Mondal, 2025), MBPP (Austin et al., 2021), and SWE-
bench (Jimenez et al., 2023). Among various benchmarks (Li et al., 2024a;b) that assess coding
agents, SWE-bench and its derivatives (Pan et al., 2025; Kio, 2024; Zhang et al., 2025a; OpenAI,
2024) focus on issue resolution task, which best mirrors complex real-world development. This task
involves taking a issue description and a codebase as input and generating a corresponding patch.

Despite recent progress, most benchmarks measure only patch correctness, overlooking critical
trajectory-aware analysis (i.e., analysis of multi-turn conversation). This gap obscures how solutions
are derived and why they fail, hindering rigorous diagnosis and interpretability. Trajectory evalua-
tion faces three key challenges: (1) trajectories have complex structures, combining long code and
natural language. (2) they involve intricate logic, requiring advanced semantic analysis. (3) agents
use diverse tools and strategies. As a result, simple methods are inadequate for evaluating long,
semantically complex, and varied trajectories.

We present two examples in Figure 1 to illustrate how trajectory analysis reveals specific shortcom-
ings of coding agents. As shown in Figure 1b, SWE-agent (Yang et al., 2024a) reproduces issue first
. But it exhausts turns limitation due to poorly tools utilization, which prevents generation of a final
patch. As for the trajectory shown in Figure 1a, Moatless (aorwall, 2025) repeats the same error
for 12 turns. Despite the Large Language Models (LLMs) explicitly acknowledging, “I realize that
I’m repeatedly making the same mistake,” it fails to self-correct. This persistent, self-acknowledged
erroneous behavior necessitates robust Stuck-in-Loop recovery mechanisms.
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Totally 20 conversations are used to build the dependency.

I’ll run the new script to reproduce the issue to comfirm the error. 

<run>python test_fuentes_tz.py </run>

………….

Budget limit exceeded.

After resolving the dependency issue, I’ll run the script to ensure 

the issue is fixed. <run>python test_fuentes_tz.py </run>

I realize that I'm repeatedly making the same mistake by 

providing identical old and new strings. The issue persists 

because the recursive cleansing isn't properly handling nested 

lists within dictionaries. I'll update the `cleanse_setting()` 

method to improve its recursive handling of nested iterables.

Budget limit exceeded.

………….

Issue: django-12700Issue: pvlib__pvlib-python-1072

The old_str and new_str are the same. 

No changes were made.

TrajectoryTrajectory of Reproduce Issue

Repeat 12 times even when LLM realizes its mistake.

AttributeError: `np.Inf` was removed in the NumPy 2.0 

release. Use `np.inf` instead.

………….

The old_str and new_str are the same. 

No changes were made.

(a) Case of poor logical consistency.

20 turns are used to utilize tools to resolve the dependency conflict.

I will run the new test case to reproduce and confirm the issue. 

<terminal>python test_fuentes_tz.py </terminal>

………….

Budget limit exceeded.

After using tools to resolve the dependency conflict, I’ll generate 

a successful patch to resolve the issue. <write>…</write>

Issue: pvlib__pvlib-python-1072

Trajectory

AttributeError: `np.Inf` was removed in the NumPy 2.0 

release. Use `np.inf` instead.

………….

(b) Case of poor tool utilization.

Figure 1: Look into the trajectory of unresolved issues. (a) Dependency conflict are identified while
testing newly generated test cases. (b) Get stuck in a loop despite recognizing mistakes.

To address these limitations, we introduce SWE-eval, a trajectory-augmented evaluation framework,
which goes beyond Patch Correctness. As illustrated in Figure 2, we evaluate three trajectory-
aware dimensions: (1) Efficiency: we track # Tokens and # Turns to quantify resource usage and
interaction cost; (2) Logical Consistency: we introduce a rule-based % Stuck-in-Loop detector with
two LLM-based checks. Inter-turn tests each response against the task specification. Intra-turn
detects contradictions within a single response; (3) Tool Utilization: we use rule-based % Tool Suc.
to measure call reliability, and LLM-based Info-gain to estimate the marginal information added by
each turn, isolating the contribution of tool interactions. Together, these metrics provide a multi-
granular diagnosis of causal factors, explaining why reasoning succeeds or fails.

Experiments with three agents and nine LMs show that SWE-eval effectively reveals the mechanisms
underlying success and failure in agentic issue resolution. By comparing resolved and unresolved
trajectories, we find that success is associated with fewer turns, reduced Stuck-in-Loop, and im-
proved % Tool Suc., Info-gain, Inter-turns, and Intra-turns. Comparative analysis delineates distinct
failure modes: SWE-agent exhibits shallow exploration; OpenHands lacks backtracking, limiting
error recovery; Moatless is prone to loop entrapment. LMs evaluation shows systematic effects:
OpenHands-specific fine-tuning overfits tool schemas and reduces SWE-agent tool use (from 31.84
to 22.20); scaling increases resolution rates (from 2.68% to 31.7%) and lowers Stuck-in-Loop in-
cidence (from 53.85% to 8.79%). Furthermore, we validate the reliability (ICC up to 0.81 against
experts) and and consistency (Mean diff up to 0.07) of LLM-based evaluations. Finally, we present
a Django-12700 case study exposing repetitive error loops and oversized patches, underscoring the
need for trajectory-aware evaluation to advance robust agent design.

Our main contributions are summarized as follows: (1) We introduce SWE-eval, a trajectory-
augmented evaluation framework that moves beyond patch correctness. SWE-eval extends evalua-
tion along three trajectory-aware dimensions: Efficiency, Logical Consistency, and Tool Utilization.
(2) We perform a quantitative evaluation of three agents and nine LMs, providing both performance
scores and the corresponding rationale. Our analysis uncovers the mechanisms driving performance
differences, and highlights unresolved failure modes that indicate potential directions for future im-
provement. (3) We show that SWE-eval show strong alignment with human ratings, displaying a
reasonable distribution. The scores are stable and consistent through repeated evaluations.

2 SWE-EVAL

2.1 TASK DEFINITION

Evaluating Trajectory and Patch We evaluate trajectory from three critical aspects: Efficiency,
Tool Utilization, and Logical Consistency. Efficiency involves analysis of resource consumption
throughout the agent’s operation. Tool utilization quantifies how effectively each tool invocation

2
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Query

Tool Calling 1

Turn 1

…
…

Info-gain

①Efficiency (Tokens, Turns) ② Logical Consistency

③ Tool Utilization

Tool Success Rate

Tool Result 1

Tool Calling 2

Turn 2

Tool Result 2

Tool Calling 3

Turn 3

Tool Result m

Submit

Turn m+1

Tool Result m

Inter-turns Conflict

Turn m

Tool Result m-1

Tool Calling m

Turn n

Tool Result n-1

Tool Calling n

Conflict?

Intra-turns  Correctness

Tool Calling 1Query
Consistent?

Tool Calling m
Successful?

Tool Result [1…i-1]

Tool Result [1…i]

QueryMore

Confident?

Trajectory

Query

Tool 

Calling 1

Tool 

Result 1

Tool 

Calling 2

Tool 

Result m

Submit

…

{   "role": "assistant",
"content": "You are a helpful assistant that can interact with a computer to solve tasks.

<uploaded_files>
/testbed
</uploaded_files>
I‘ve uploaded a python code repository in the directory /testbed. Consider the following PR 
description:
<pr_description>
……
</pr_description>
Can you help me implement the necessary changes to the repository so that the requirements 
specified in the <pr_description> are met? 
I’ve already taken care of all changes to any of the test files described in the 
<pr_description>. This means you DON‘T have to modify the testing logic or any of the tests 
in any way!
Your task is to make the minimal changes to non-tests files in the /testbed directory to 
ensure the <pr_description> is satisfied. 
Follow these steps to resolve the issue:
……"}

{   "role": "assistant",
"content": "Let me analyze the problem and propose a solution:

1. Understanding the Issue:
- The error occurs in `temperature.fuentes()` when given timezone-aware datetime indices、-
The root cause is that `np.diff()` on tz-aware indices returns Timedelta objects in 
pandas>=1.0.0 - This fails when trying to convert to float directly
- The function works with tz-naive indices which return nanoseconds (int64)
2. Key Code Section:
The problematic line is converting datetime differences to 
hours:\n```python\ntimedelta_hours = np.diff(poa_global.index).astype(float) / 1e9 / 60 / 
60\n```
3. Proposed Solution:
We need to modify this to handle both tz-naive and tz-aware indices. For tz-aware indices, 
we can:
- Option 1: Use pandas' built-in Timedelta.total_seconds() method
- Option 2: Explicitly convert to nanoseconds first Option 2 is more robust as it works 
consistently across pandas versions and handles both tz-naive and tz-aware cases similarly 
to the original implementation.
4. Implementation Steps:
First, let's locate the temperature.py file in the repository:",

"action": "str_replace_editor view /testbed"}

{   "role": "tool",
"content": "OBSERVATION:\nHere's the files and directories up to 2 levels deep in /testbed, excluding 

hidden items:\n/testbed\n/testbed/MANIFEST.in\n/testbed/readthedocs.yml\n/testbed/paper
/testbed/paper/paper.bib\n/testbed/paper/codemeta.json
……"}

{ "role": "assistant",
"content": "I found the relevant file at `/testbed/pvlib/temperature.py`. Let's examine the 

`fuentes` function in this file to understand the current implementation and identify the exact line 
referenced in the PR description.
……",

"action": "str_replace_editor view /testbed/pvlib/temperature.py"}

{   "role": "assistant",
"content": "Exit due to cost limit"}

{ "role": "tool",
"content": "OBSERVATION:

<NOTE>This file is too large to display entirely. Showing abbreviated version. Please use 
`str_replace_editor view` with the `view_range` parameter to show selected lines next.</NOTE>
1 \"\"\" The ``temperature`` module contains functions for modeling temperature of
2 PV modules and cells. \"\"\"
3 import numpy as np
<IMPORTANT><NOTE>The above file has been abbreviated. Please use `str_replace editor view` with 
`view_range` to look at relevant files in detail.</NOTE></IMPORTANT>"}

Stuck-in-Loop

Turn m

Tool Result m-1

Tool Calling m

Turn n

Tool Result n-1

Tool Calling n

Same?

Figure 2: SWE-eval, a trajectory-augmented evaluation framework for issue resolution. Beyond
accessing patch correctness, SWE-eval conducts trajectory-augmented evaluation along three addi-
tional dimensions: Efficiency, Logical Consistency, and Tool Utilization.

advances the agent towards the final solution. Logical Consistency involves evaluating the validity
of individual reasoning steps and the coherence of the overall sequence.

2.2 TRAJECTORY EVALUATION

Trajectory-aware metrics are designed to find the reason of unresolved issue. As shown in Fig-
ure 2, SWE-eval is a trajectory-augmented multidimensional evaluation framework for agent-driven
GitHub issue resolution. While prior work has largely focused on assessing patch correctness, SWE-
eval advances the evaluation frontier by conducting trajectory-level assessment along three addi-
tional dimensions: Efficiency, Logical Consistency and Tool Utilization. The detailed description of
each dimension is provided in the following subsections.

Efficiency The evaluation of efficiency aims to quantify the resources consumed by the agent
while solving a task. In software engineering contexts, an ideal agent should not only successfully
complete the task but also do so in the most economical way. This directly relates to its deployment
cost and practical viability in real-world scenarios.

(1) The number of tokens (# Tokens) is directly counted from the official interface. This method
ensures accuracy and reproducibility due to the interface’s authoritative nature. Different Large
Language Models (LLMs) tokenize text in different ways.

(2) The number of tokens (# Turns) is defined as the numbers of interaction cycle. While the initial
input query originates from a user, all subsequent input messages are autonomously generated by
the agent itself. Each turn i consists of an input query qi to the LLM and its response ri. The initial
query q1 packages the system prompt and task description. For i > 1, qi provides the result of
the preceding tool invocation. Each response ri issues exactly one tool call to enable deterministic
execution. To formalize sequential interactions, we define turn context ti as follows:

ti = qi + ri (1)

Logical Consistency Evaluating the logical consistency of a trajectory is intended to analyze
whether the agent’s “chain of thought” is coherent and rational. An agent that ultimately solves
a problem through a process fraught with contradictions or inefficient loops demonstrates an unsta-
ble and less interpretable solution strategy. Such an agent may exhibit unpredictable behavior when
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faced with novel problems. This dimension, therefore, reflects the robustness and reliability of the
agent’s reasoning capabilities.

(1) The percentage of Stuck-in-Loop (% Stuck-in-Loop) is percentage of continuous repetitions of
identical actions, which is frequently observed in open-source LMs (Pan et al., 2025). Quantifying
this phenomenon therefore helps assess a model’s interaction stability and task execution capabili-
ties. We define a Stuck-in-Loop state when identical response text appears at least three times across
turns. We detect it with a hash-based counter: the key is the exact LLM response string ri and the
value is its occurrence count. This captures cross-turn repetition, including non-consecutive repeats.

(2) Inter-turns Conflict (Inter-turns) measure whether a turn maintains consistency with all prior
information, ensuring no contradictions. We define S(tn; tm) as the LLM’s assessed consistency
between tn and tm:

Inter-turnsi = S(ti,
i−1∑
m=1

tm) (2)

(3) Intra-turns Correctness (Intra-turns) evaluates response rationality to follow user instructions
within a turn. At turn i, the LLM outputs response ri to query qi. We use the subsequent user
feedback qi+1 as implicit supervision to assess the correctness of ri. C(qi, ri|qi+1) denotes the
Judge LLM’s confidence score for response ri effectively satisfying query qi, given feedback qi+1.
Formally, this Intra-turn evaluation is expressed as:

Intra-turnsi = C(qi, ri | qi+1) (3)

Tool Utilization In software engineering tasks, coding agents heavily rely on interactions with
external tools (e.g., compilers, file systems, debuggers) to perceive the state of the environment
and execute modifications. Therefore, tool utilization is not only a key measure of their behavioral
effectiveness but also a direct reflection of their core ability to understand tool semantics, formulate
effective plans, and engage in meaningful interactions with the environment.

(1) Tool Call Success Rate (% Tool Suc.) reflects the agent’s ability to interact with environment,
understand tool semantics. We let success(qi) return 1 if the tool call in turn i is executed without
runtime errors and produces a valid result. Let Q = {q1, ..., qk} be the set of all tool invocations
result in trajectory. % Tool Suc. is formally defined as:

Rsuccess =

∑k
i=1 success(qi), qi ∈ Q

|Q|
(4)

(2) Information Gain (Info-gain) evaluates the utility of each tool invocation within a query reso-
lution process. To quantify its individual contribution, Info-gain directly assesses the incremental
knowledge a tool call contributes. Minimal Info-gain suggests redundancy or limited utility, high-
lighting areas for optimization. Formally, the initial user query is represented by q̂. G(tm, q̂|tn)
denotes the LLM’s assessed information gain in accurately answering question q̂ by incorporating
the new context tm, relative to relying solely on context tn. We define

∑i
m=1 tm as all content from

turn 1 to turn i. Specifically, Info-gaini is formally expressed as:

Info-gaini = G(ti, q̂ |
i−1∑
m=1

tm) (5)

LLM-as-a-Judge We use LLMs in Inter-turns, Intra-turns, and Info-gain for two key reasons: (1)
LLMs provide both quantitative scores and qualitative explanations, which are crucial for identifying
issues in the SWE-eval trajectory analysis. (2) LLMs are well-suited for addressing challenges in
trajectory evaluation, such as complex structures, intricate logic, and diverse agent strategies.

To ensure a robust and reliable evaluation, we employed three distinct LLMs to independently gen-
erate both the primary score, G/C/S, and its corresponding rationale. This multi-LLM approach
was specifically chosen to mitigate inherent biases and idiosyncratic preferences often present in
individual models. Subsequently, we aggregated these outputs by averaging the generated score and
synthesizing the rationales, thereby enhancing objectivity. See Appendix C.2 for a full prompt.
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2.3 PATCH LAYER EVALUATION

Patch Correctness (1) Patch Apply Rate (% Apply) indicates the percentage of generated patches
that are syntactically correct and can be successfully applied to the codebase without errors (Jimenez
et al., 2023). A low apply rate reveals problems in code syntax generation and structural correctness.

(2) Patch Resolved Rate (% Resolved) measures the proportion of patches successfully passes all
tests (Jimenez et al., 2023), which reflects the ability of producing functionally correct patches.

3 EXPERIMENT SETUP

Agents We conduct experiments using three representative agents. These include the general-
purpose coding agent OpenHands (Wang et al., 2025) (paired with the CodeAct agent (Wang
et al., 2024)), Moatless which integrates Monte Carlo Tree Search with a self-improvement mecha-
nism (aorwall, 2025), and agent specifically designed for issue-resolution tasks: SWE-agent (Yang
et al., 2024a). We limit the number of LM calls to 30 per instance to balance computational effi-
ciency and correctness.

LMs We present the performance of 2 LLMs and 7 Small Language Models (SLMs) that span
different size and functional categories, as shown in Appendix C.1. By including general, reason,
code, and fine-tuned models, we aim to compare different kinds LMs.

Benchmark Experimental results for SWE-bench-Lite and SWE-bench-Verified are presented in
the main text to prioritize our core findings. SWE-bench-Lite comprises 300 instances, specifically
chosen to enable rapid evaluation cycles. SWE-bench-Verified (OpenAI, 2024) was introduced by
OpenAI to improve the robustness and reliability of the SWE-bench evaluation, containing a subset
of 500 samples that 93 professional human annotators verified to be non-problematic (Yu et al.,
2025). The distribution of different type of issues in SWE-bench-Lite are measured in the Appendix
G.1. Evaluations on other benchmarks are provided in the Appendix H.

4 EXPERIMENT RESULTS

In this section, we report and analyze the experimental results to answer the following research
questions (RQs):

• RQ1: Does SWE-eval correlate with problem-solving success? This research question
accesses whether SWE-eval reliably separates resolved from unresolved instances. Clear
separation would provide diagnostic report and actionable guidance.

• RQ2: How effective does SWE-eval expose the limitations of agents? We test whether
SWE-eval consistently surfaces failure modes and distinguishes strengths and weaknesses
across systems.

• RQ3: How reliable and consistent is SWE-eval? This research question investigates
whether LLM-based metrics align with human judgment. It also examines the consistency
of results across multiple measurements, as well as the reasonableness of the distribution.

4.1 RQ1: DOES SWE-EVAL CORRELATE WITH PROBLEM-SOLVING SUCCESS?

We test whether trajectory-aware metrics predict % Resolved. To avoid model assumptions, we use
a model-agnostic comparison. We split instances into resolved and unresolved and compare their
statistics. In Table 1, green denotes metrics with better values for resolved than for unresolved
instances. This assesses separability without training a classifier. (1) Efficiency. Resolved instances
require fewer # Turns and less compute, suggesting success aligns with efficient resource use. (2)
Logical consistency. Resolved trajectories show lower % Stuck-in-Loop and higher Inter-turns and
Intra-turns. The largest effects are the drop in % Stuck-in-Loop and the rise in Intra-turns, consistent
with more coherent, efficient progress. (3) Tool utilization. Resolved instances use tools more
effectively: higher % Tool Suc. indicates more successful invocations, and larger Info-gain shows

5
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Table 1: Comparison between resolved and unresolved instances

Benchmark Agent Resolved Efficiency Consistency Tool Utilization
# Tokens # Turns % Stuck-in-Loop Inter-turns Intra-turns % Tool Suc. Info-gain

SWE-bench Lite

SWE-agent ✓ 44950.00 6.12 0.00 72.39 62.47 53.06 62.47
✗ 31361.78 4.97 0.00 69.30 59.77 52.40 59.77

OpenHands ✓ 273969.07 15.28 2.47 74.81 70.77 59.03 70.77
✗ 543793.22 22.82 7.34 74.90 69.56 53.27 69.56

Moatless ✓ 227417.85 20.00 12.20 76.63 75.46 71.49 75.46
✗ 372810.27 26.91 37.31 75.67 64.82 68.32 64.82

SWE-bench Verified

SWE-agent ✓ 108967.81 10.81 0.00 74.63 68.70 67.47 68.70
✗ 180375.06 13.99 0.00 75.48 69.23 64.14 69.23

OpenHands ✓ 328385.09 11.82 0.00 70.39 68.79 42.91 68.79
✗ 514483.18 19.56 0.49 70.39 66.43 42.64 66.43

Moatless ✓ 163343.25 16.06 0.00 75.23 72.50 72.80 72.50
✗ 285908.52 20.96 0.00 75.11 68.88 69.62 68.88

Table 2: Performance of different agents, with the same LM (DeepSeek-V3), on SWE-bench-Lite
dataset. We organize metrics across 3 key dimensions: Tool Utilization, Logical Consistency and
Efficiency. The best value is indicated with a green background, while the worst value is indicated
with a orange background.

Agent Efficiency Logical Consistency Tool Utilization Patch Correctness
# Tokens # Turns % Stuck-in-Loop Inter-turns Intra-turns % Tool Suc. Info-gain % Apply % Resolved

SWE-bench-Lite
SWE-agent 31732.79 5.00 0.00 69.39 59.84 52.42 59.84 70.23 2.68
OpenHands 470697.05 20.78 6.02 74.88 69.89 54.83 69.89 93.00 27.00

Moatless 317615.00 24.29 27.78 76.03 68.86 69.52 68.86 82.41 37.96

SWE-bench-Verified
SWE-agent 154668.45 12.85 0.00 75.18 69.04 65.34 69.04 97.80 40.00
OpenHands 475116.28 17.92 0.39 70.39 67.40 42.70 67.40 93.85 22.31

Moatless 233043.83 18.85 0.00 75.16 70.44 70.99 70.44 86.84 40.00

tool calls contribute novel information. More details about the metric distribution between these two
categories can be found in Appendix G.2.

The comparison between resolved and unresolved trajectories reveals that successful resolu-
tion is strongly associated with trajectory-aware metrics. Hence, prioritizing these metrics is
crucial for improving % Resolved.

4.2 RQ2: HOW EFFECTIVE DOES SWE-EVAL EXPOSE THE LIMITATIONS OF AGENTS?

To test SWE-eval’s ability to expose failure modes of agents, we apply it to SWE-agent, OpenHands,
and Moatless (Table 2). From SWE-eval’s scores and rationales, we identify recurring failure modes.
Appendix D provides details on agent evaluation.

(1) SWE-agent performs worst because it optimizes for speed at the cost of depth. It explores
shallowly and uses the fewest turns and tokens (32k) yet achieves the lowest resolution rate, ranking
last on Inter-turns, Intra-turns, % Tool Suc., and Info-gain.

(2) OpenHands underperforms because its dialogue policy is strictly linear, with no backtrack-
ing. It cannot revisit earlier states when errors occur, so errors accumulate, especially after failed
tool calls. Accordingly, it scores poorly on Inter-turns (74.88) and % Tool Suc. (54.83).

(3) Moatless exhibits Stuck-in-Loop (27.78%) because it lacks an explicit loop-breaking mecha-
nism. Adding one would terminate unproductive rollouts and increase % Resolved. A second cause
is its MCTS design: nodes with repeated responses are not recorded in history, so the LLM cannot
observe redundancy or detect repetition.

To assess how well does SWE-eval expose LM shortcomings, we report four findings and their
causes from Table 3. Further details of evaluating LMs are in Appendix E
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Table 3: Performance of different LMs, with the same agent (SWE-agent), on SWE-bench-Lite.

LM Efficiency Logical Consistency Tool Utilization Patch Correctness
# Tokens # Turns % Stuck-in-Loop Inter-turns Intra-turns % Tool Suc. Info-gain % Apply % Resolved

SWE-bench-Lite
DeepSeek-V3 31732.79 5.00 0.00 69.39 59.84 52.42 59.84 71.67 2.73
DeepSeek-R1 93568.82 14.70 0.34 78.76 64.23 81.21 64.23 80.61 23.47
Qwen3-14B 252911.48 17.54 48.99 76.46 61.23 27.95 61.23 22.15 0.00
Qwen3-32B 226342.03 15.93 41.22 75.06 58.67 28.05 58.67 23.31 0.00

Mistral-small3.1-24B 90785.23 6.49 0.00 71.56 52.59 31.84 52.59 22.22 0.00
Devstral-24B 201785.02 17.66 54.00 80.99 62.40 22.20 62.40 23.67 0.00

Qwen2.5-Coder-7B 153424.20 16.66 53.85 80.24 53.84 12.50 53.84 2.68 0.00
Qwen2.5-Coder-14B 176475.25 15.94 47.65 79.48 56.42 15.85 56.42 12.08 0.00
Qwen2.5-Coder-32B 206309.18 13.39 8.79 75.36 58.89 17.95 58.89 31.76 0.00

Table 4: Inter-group stability metrics among three groups (Prediction A, Prediction B, Human An-
notation C). Confidence Interval (CI) establishes a numerical range, computed from sample data, to
quantify the uncertainty of a statistical estimate.

Metrics Group Value (95% CI)
Info-gain Intra-turns Inter-turns

Mean ± SD
Group A 61.87 ± 15.79 60.19 ± 18.00 76.22 ± 10.50
Group B 61.92 ± 15.40 60.26 ± 28.14 76.23 ± 10.71
Group C 58.33 ± 22.30 55.48 ± 23.17 70.40 ± 22.79

ICC(3,1) Group A & B 0.87 (0.86, 0.88) 0.56 (0.53, 0.58) 0.81 (0.80, 0.82)
ICC(3,k) (A+B)/2 & C 0.81 (0.80, 0.83) 0.72 (0.70, 0.74) 0.41 (0.36, 0.45)

Mean Diff
Group A & B -0.05 (-0.33, 0.23) -0.07 (-0.86, 0.71) -0.01 (-0.24, 0.22)
Group B & C 3.54 (2.99, 4.09) 4.71 (4.08, 5.35) 5.81 (5.05, 6.58)
Group A & C 3.59 (3.04, 4.15) 4.78 (3.80, 5.77) 5.82 (5.05, 6.60)

(1) Agent-specific fine-tuning overfits tool schemas, weakening SWE-agent tool use. Devstral
fine-tuned on OpenHands scores 22.20 on % Tool Suc., below Mistral-small-3.1 (31.84), indicating
reduced cross-agent transfer.

(2) Scaling LMs improves trajectories due to limited capacity to recover from tool errors.
In Qwen2.5-Coder, scaling from 7B to 32B lifts % Apply from 2.7% to 31.3%, with higher tool
utilization and success (Info-gain: 16.5 to 36; % Tool Suc.: 12.5% to 18%).

(3) On domain-specific tasks, scaling yields smaller gains for general models because domain
data strengthens tool grounding in code models. For Qwen2.5-Coder, scaling from 14B to 32B
raises % Apply from 12% to 31.3%. For Qwen3, the same scaling increases it only from 22% to
23%. This gap aligns with stronger tool utilization in code models (Info-gain: 21.6 to 36).

(4) LLMs outperform SLMs because scaling crosses a threshold that yields qualitative gains in
tool use and Logical Consistency. DeepSeek-R1 reaches 23% resolution, while all SLMs are 0%,
consistent with higher % Tool Suc. and Info-gain.

SWE-eval evaluates agents beyond patch correctness and explains why tasks succeed or fail. It
diagnoses both agent policies and LMs via Tool Utilization and Logical Consistency, exposing
concrete failure modes.

4.3 RQ3: HOW RELIABLE AND CONSISTENT IS SWE-EVAL?

We employ three statistical metrics to examine the reliability and consistency of LLM-based eval-
uations by testing their stability and agreement with human annotations. To obtain high-quality
human scores, we recruit three domain experts with substantial evaluation experience. Each expert
independently scores the same trajectories using the same rubric as the LLM, and disagreements are
resolved through iterative review. This procedure controls for rubric and data variation, isolating the
evaluator effect. In our analysis, the two LLM-based predictions are denoted as groups A and B,
while the human scores constitute group C.
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Evaluation Metrics We use statistical reliability metrics to assess the soundness of SWE-eval.
Suppose N evaluation metrics are measured under a set of groups G, where i = 1, . . . , N indexes
metrics and g ∈ G indexes groups. Let x(g)

i denote the value of metric i in group g. We report the
following indicators: (1) Arithmetic Mean ± Standard Deviation (Mean ± SD). For each group, we
summarize the distribution of metric values by reporting the sample mean and standard deviation. (2)
Intraclass Correlation Coefficients (ICC). To quantify the stability of metric values across groups, we
compute ICC(3, 1) and ICC(3, k) following the formulation of Shrout & Fleiss (1979); McGraw
& Wong (1996); Koo & Li (2016); Liljequist et al. (2019). Here, metrics are treated as targets and
groups as fixed raters, yielding a two-way mixed-effects model. Let MSind denote the mean square
between metrics and MSerr the residual mean square from the two-way ANOVA (metrics × groups).
The single-measure and average-measure forms are then defined as:

ICC(3, 1) =
MSind −MSerr

MSind + (k − 1)MSerr
ICC(3, k) =

MSind −MSerr

MSind

where k denotes the number of groups (i.e., |G|). ICC(3, 1) measures the reliability of a single rater
(e.g., multiple rounds of scoring by the same LLM), whereas ICC(3, k) captures the reliability of the
aggregated mean rating across different raters (e.g., LLM and human experts). (3) Mean Difference
(Mean Diff). We compute the bias between groups. The results are presented in Table 4.

(1) Alignment of LLM Scores with Human Judgments. We compute the ICC(3,k) between
Group C and the average score of Groups A and B. LLM scores exhibit strong alignment with
expert ratings on Info-gain (0.81), moderate alignment on Intra-turn (0.72), and weak alignment on
Inter-turn (0.41). The mean differences between LLM groups and experts are +3.59 for Info-gain
and +5.82 for Inter-turns between Group A and C, and +3.54 for Info-gain and +5.65 for Inter-turns
between Group B and C.

(2) The score distribution of LLM is reasonable. Standard deviations across the three groups
indicate that LLM ratings retain sufficient variance (SD gt 10), comparable to human expert scores,
ruling out score collapse and confirming that the ratings remain discriminative.

(3) LLM scores are stable and consistent across multiple ratings. The mean differences be-
tween LLM runs are minimal, with LLM consistently assigning higher scores than the experts (e.g.,
+3.59 in Info-gain, +5.82 in Inter-turns). The 95% confidence intervals exclude zero, indicating
these differences are systematic rather than due to random variation. Additionally, the ICC(3,1) for
Group A and B is 0.87 for Info-gain, 0.56 for Intra-turn, and 0.81 for Inter-turns, indicating strong
stability and consistency in LLM ratings across multiple runs.

LLM scores exhibit strong alignment with human ratings and a reasonable distribution. The
scores are stable and consistent across multiple evaluations. These results confirm the relia-
bility and effectiveness of SWE-eval.

4.4 CASE STUDY

SWE-eval exposes two critical shortcomings when Moatless addresses Django-12700. (1) Agents
often become trapped in repetitive error loops (Stuck-in-Loop) due to inadequate recovery mecha-
nisms. (2) Existing evaluation approach acquires excessively large patches (# Line ≥ 2k) by includ-
ing extraneous environment configuration files.

Agents repeatedly commit the same error across multiple iterations, which is found by Stuck-in-
Loop. This repetitive behavior is precisely quantified by continuous low scores: ≤ 45 in Intra-turns
and ≤ 40 in Info-gain. These metrics specifically pinpoint the repeated rounds, such as rounds 20
through 30. Although LLM might acknowledge, “I keep repeating the same mistake.”, the LLM
continues to use invalid file editing parameters, perpetuating the loop. Although semantic errors are
detected, the absence of robust recovery mechanisms allows initial errors to propagate unchecked.
Consequently, the observed disconnect between error acknowledgment and corrective action high-
lights a fundamental gap between declarative understanding and procedural execution.

Our patch quality assessment revealed that generated patches exhibit excessive size (# Line ≥ 2k)
and numerous code smells (e.g., over 100). This issue arises because current benchmarks often

8
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fail to exclude common .gitignore entries during patch extraction. Consequently, irrelevant
configuration directories, such as .venv and .node module, are included. While these oversized
patches might pass test cases, their bulk severely impedes accurate analysis of agent capabilities. If
the patch fails, it is difficult to analyze where the patch is wrong, it may be an error in other files.
This also significantly limits their real-world applicability. SWE-eval provides actionable insights
for refining benchmark design.

5 RELATED WORK

Coding Benchmarks Code generation benchmarks have evolved from early single-file synthetic
tasks, such as HumanEval (Yadav & Mondal, 2025) and MBPP (Austin et al., 2021), to comprehen-
sive repository-level evaluation frameworks. A key milestone in this area is SWE-bench (Jimenez
et al., 2023), which established an evaluation paradigm based on resolving real-world GitHub issues
with verifiable code patches produced by coding agents. This paradigm has since been extended with
multimodal contexts (Yang et al., 2024c), multilingual support (Zan et al., 2025). However, recent
work argue that data in SWE-bench suffer from solution leakage and weak test cases(Aleithan et al.,
2024). Improvements to SWE-bench address the static nature of the original benchmarks through
dynamic issue curation (Zhang et al., 2025b) and enhanced unit test generation (Yu et al., 2025).
TRAIL (Deshpande et al., 2025) articulates the need for robust and dynamic evaluation methods for
agentic workflow traces, proposing a formal taxonomy of errors in agentic systems. Besides SWE-
bench, Google’s internal bug dataset GITS-Eval(Rondon et al., 2025) was curated, which further
expanded the evaluation domain from open-source projects to industrial-scale enterprise projects.
However, when evaluating the issue resolving abilities of coding agents, existing benchmarks ig-
nore the multi-turn conversational trajectories inherent to agent-based issue resolution. Our SWE-
eval addresses this gap by introducing trajectory-based multi-dimensional evaluation approach that
evaluates both trajectories and patches.

Coding Agent Coding agents emerge, showcasing sophisticated issue resolution capabilities.
Notable examples include SWE-Agent (Yang et al., 2024b), OpenHands (Wang et al., 2025),
and Agentless (Xia et al., 2025). Moatless Tools integrates Monte Carlo Tree Search for self-
improvement (aorwall, 2025), while SemAgent leverages semantic analysis to ensure patch com-
pleteness (Pabba et al., 2025). Furthermore, to better emulate human developer workflows, recent
works have introduced multi-agent frameworks, where specialized agents in systems like HYPER-
AGENT (Phan et al., 2024) and MAGIS (Tao et al., 2024) collaborate to handle complex tasks.
Despite their advanced architectures, issue resolution remain outcome-centric, providing limited
insight into the reasoning processes that lead to success or failure. SWE-eval pioneers trajectory-
based evaluation, offering unprecedented visibility into an agent’s decision-making processes while
maintaining a rigorous assessment of final solutions.

6 DISCUSSION

The reliability of LLMs as automated code evaluators is a subject of debate. We demonstrate that the
LLM-based evaluations are not arbitrary. They exhibit strong internal consistency and a systematic,
predictable bias when compared to human ratings. This finding validates their use as a rational and
scalable proxy for human evaluation.

Given limited compute, we did not use more expensive LLMs or very large datasets. To ensure
reproducibility, we report empirical results on SWE-bench-Lite and SWE-bench-Verified in the main
text and include the SWE-smith subset in the appendix.

7 CONCLUSION

We present SWE-eval, a trajectory-augmented evaluation framework with two layers: a trajectory
layer that assesses efficiency, tool use, and logical consistency, and a patch layer that evaluates
patch correctness. This separation exposes process vs. outcome errors, addressing the limitation of
benchmarks that score only patches. In experiments, SWE-eval surfaces failures in agents and LMs
and recommends targeted fixes.

9
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8 ETHICS STATEMENT

Our work introduces SWE-eval, a multi-dimensional evaluation framework for assessing issue-
resolving agents and language models in software engineering. While the framework itself is de-
signed for analytical and diagnostic purposes, we recognize that automated code generation and
patching carry potential risks, such as the introduction of insecure or non-robust code. To mitigate
these concerns, we emphasize that SWE-eval is intended for research and development contexts to
help improve the transparency and reliability of AI-assisted software engineering. Furthermore, all
datasets and issue examples used in this study are derived from publicly available sources and con-
tain no private or sensitive information. We adhere to responsible research norms and recommend
that future applications of this framework prioritize fairness, accountability, and safety.

9 REPRODUCIBILITY

To ensure the reproducibility of our findings, detailed implementation instructions for SWE-eval
can be found in Appendix C. Additionally, the source code is publicly accessible at https://
anonymous.4open.science/r/SWE-eval-73D0ED31. These resources are intended to
enable independent verification and replication of our results by the research community.
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A APPENDIX INTRODUCTION

This appendix provides essential supplementary material, enhancing the main paper’s findings and
methodology. We first detail the experimental setup, ensuring complete transparency and repro-
ducibility of our results. Subsequently, we address three core research questions (RQ1, RQ2,
RQ3). To rigorously evaluate performance and ensure the validity of our findings, we include a
comparative analysis of metric values, providing in-depth statistical breakdowns. A dedicated
case study section then illustrates the practical application and effectiveness of our approach through
concrete, real-world examples. Finally, we evaluate the generalization capabilities of the SWE-eval
framework, demonstrating its robustness and broad applicability across diverse scenarios. This com-
prehensive documentation provides the empirical foundation necessary for thorough understanding,
replication, and further research.

B USE OF LLMS

In this research, we utilized Large Language Models (LLMs) as an auxiliary tool to enhance research
efficiency and the quality of the manuscript. We have strictly adhered to the principles of academic
integrity, and the authors assume full responsibility for all final research content and conclusions.
The specific use of LLMs is detailed below.

LANGUAGE POLISHING AND COPY-EDITING

We employed an LLM as a general-purpose writing assistant to polish the language of our
manuscript drafts. Its primary functions included:

• Correcting grammatical, spelling, and punctuation errors.

• Improving the clarity and fluency of the language.

• Refining sentence structures to better align with academic writing standards.

Throughout this process, all suggestions generated by the LLM were manually reviewed and con-
firmed by the authors to ensure they accurately conveyed our original intent and did not alter the
core academic arguments of the paper.

AUTOMATED EVALUATION OF CODING AGENT TRAJECTORIES

A primary contribution of this research is the investigation of using an LLM as a scalable, automated
evaluator for coding agent trajectories. In this capacity, the LLM was not used as a simple assistant
under human supervision, but rather as a core component of our evaluation methodology, whose
performance and rationality were systematically analyzed.

The process was as follows:

• Rubric-based Prompting: We developed a detailed evaluation rubric with specific crite-
ria for assessing trajectory quality, including aspects like information gain and turn-based
dynamics. This rubric was then formulated into a precise prompt to guide the LLM.

• Automated Scoring: The LLM was used to autonomously score a large set of coding agent
trajectories based on the provided prompt. This process was repeated to generate multiple
sets of predictions for consistency analysis.

• Rationality Analysis: A significant part of our research, as detailed in Section 4.3, was
dedicated to assessing the rationality of this LLM-based evaluation framework. We did
not use the LLM’s scores as ground truth directly. Instead, we rigorously compared the
LLM’s scores against each other and against a set of scores produced by human annotators.
This analysis involved quantifying the LLM’s performance in terms of statistical variance,
inter-rater consistency (using Intra-class Correlation Coefficient), and systematic bias.

Our findings confirm that the LLM serves as a rational evaluation proxy: its judgments are sta-
ble, highly consistent, and exhibit a predictable, systematic difference from human ratings rather
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Size Type Model #Param Context Window

Large General DeepSeek-V3 671B 64K

Reason DeepSeek-R1 671B 64K

Small

General
Qwen3 14B 40K
Qwen3 32b 40K

Mistral-small3.1 24B 128K

Code
Qwen2.5-Coder 7B 32K
Qwen2.5-Coder 14B 32K
Qwen2.5-Coder 32B 32K

SWE Devstral 24B 128K

Table 5: Studied LMs in this paper. LMs can be divided into two categories according to scale:
LLMs and SLMs. SLMs has different scales. Model names include general, reason, code, and
SWE-Fine-tuned. Context W. is Context Window.

than random noise. The use of the LLM in this manner was foundational to our research question
concerning the validity of automated evaluation agents. The authors take full responsibility for the
design of this methodology, the analysis of its results, and the conclusions drawn therefrom.

C EXPERIMENT SETUP

C.1 STUDIED LMS

To substantiate the judiciousness of our Language Models (LMs) selection, Table 5 systematically
presents the LMs chosen for this investigation, detailing their scale and architectural characteristics.
This deliberate selection ensures a robust comparative analysis. By encompassing models across
diverse scales and specialized domains, we validate the generalizability of our empirical findings.

Specifically, the Large Language Models (LLMs) category includes DeepSeek-V3 DeepSeek-AI
(2025) and DeepSeek-R1 DeepSeek-AI et al. (2025), both featuring 671 billion parameters and a
64K context window. DeepSeek-V3 represents a state-of-the-art general-purpose model. DeepSeek-
R1, with identical scale, is designed for reasoning tasks. This pairing enables a direct evaluation of
general versus reasoning models.

To assess Small Language Models (SLMs), our study includes diverse models. Qwen3 Yang et al.
(2025a) (14B, 32B parameters, 40K context) serves as a general-purpose LM, enabling investiga-
tion of general-domain model scale. For specialized applications, Qwen2.5-Coder Hui et al. (2024)
(7B, 14B, 32B parameters, 32K context) is examined, providing insights into domain-specific per-
formance scaling for code. Mistral-small3.1 Mistral (2025b) (24B parameters, 128K context) offers
a general baseline. Devstral Mistral (2025a), fine-tuned from Mistral Small 3.1, excels at tool-use
for codebase exploration and multi-file editing, powering software engineering agents. Its inclusion
is crucial for evaluating domain-specific fine-tuning efficacy and practical performance in software
engineering (SWE) applications.

To elucidate the factors governing language model efficacy, we systematically evaluated models
across varying scales and training paradigms (domain-specific versus general-purpose). To as-
sess performance scalability, we included models with diverse parameter counts (7B, 14B, 24B,
32B, 671B). This allowed us to identify the optimal balance between computational resources and
achieved performance, guiding efficient deployment. Concurrently, we selected models across dis-
tinct types, General, Reason, Code, and SWE-Fine-Tuned, to robustly evaluate their strengths and
weaknesses across varied linguistic and task domains. This comprehensive comparison provides
critical insights into the training considerations necessary for developing effective LMs for specific
applications.
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Prompt for Evaluating Info-gain

Role positioning: You are an expert judge of dialogue informativeness, with the ability to determine whether a statement meaningfully 
contributes new and relevant information.
Task description: Given **Current-sentence**, and **Previous-context**, your task is to evaluate the **informativeness** of 
**Current-sentence** - i.e., how much new, relevant, and helpful information it adds to the dialogue to solve the **Question**.
Evaluation Dimensions (with weights):
1. **Novelty of Information (40%)** - Does the sentence introduce new facts, reasoning, explanations, or actions not already 

mentioned?
2. **Topical Relevance (20%)** - Is the new information clearly connected to the main topic or current sub-task?
3. **Utility to Dialogue Progression (20%)** - Does the sentence advance the conversation toward resolution, clarification, or 

decision-making?
4. **Information Density (10%)** - Is the sentence compact yet informative, avoiding vague or redundant language?
5. **Reasoning or Explanation Depth (10%)** - If reasoning is present, does it add meaningful insight or justification?
Context:
**Question**: {question}
**Current-sentence**: {cur}
**Previous-context**: {history_str}
Scoring Instructions:
- Score **Current-sentence** from **0 to 100**, allowing any value in that range (e.g., 23, 62, 94).
- Think about the rubric below before deciding your score.
Important:
- Only output the final **int score**.
- Do not output explanation, reasoning, or extra commentary.
- The output must be a valid Python int.
Now provide the score below:

Figure 3: Prompt for Evaluating Info-gain

C.2 FULL PROMPTS IN SWE-EVAL

For transparency and reproducibility, we fully disclose the prompt structure for the LM’s dialogue
trajectory evaluation within our SWE-eval. This structure, comprising three distinct templates (Info-
gain, Intra-turns, Inter-turns), systematically controls variables to precisely evaluate prompt ele-
ment influence on LM output. LM evaluation utilized compressed trajectories for efficient context
provision. The prompt remained fixed across all instances for comparability, attributing LM output
differences solely to the context.

(1) Info-gain. To precisely evaluate each tool invocation’s utility within a query resolution process,
we quantify its individual contribution. This quantification is essential for understanding each tool’s
efficacy. Information gain serves as a direct metric to assess the novel knowledge a tool invocation
provides. A higher information gain value indicates a substantial contribution to query resolution,
thereby validating the tool’s effectiveness. Conversely, minimal information gain suggests redun-
dancy or limited utility, enabling the identification of specific optimization areas. The prompt is
shown in Figure 3.

(2) Intra-turns Reliable and coherent multi-turn interactions necessitate that each turn maintains
consistency with all prior information, preventing contradictions. This comprehensive context in-
cludes the initial input q̂ and all preceding premises RCU(<i)

p . To quantify global inter-turn consis-
tency, we assess contradictions between the current conclusion RCU(i)

c and the accumulated prior
knowledge. Contradictions are primarily detected by analyzing associated tool execution results.
This analysis provides concrete, verifiable evidence of inconsistency. The prompt is shown in Fig-
ure 4.

(3) Inter-turns. Evaluating an agent’s ability to execute simulated user instructions within a turn
requires assessing response rationality. A assessment of whether a LLM response resolves a user’s
instruction extends beyond mere logical consistency between the instruction and the immediate re-
sponse. Because immediate consistency alone may not capture the full instruction intent. Crucially,
subsequent user feedback provides vital context for determining true instruction resolution. This
feedback reveals whether the instruction was genuinely fulfilled from the user’s perspective. The
prompt is shown in Figure 5.
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Prompt for Evaluating Intra-turns

Role positioning: You are a professional dialogue quality evaluator specializing in assessing the internal coherence and correctness of 
conversation summaries.
Task description: Given three single-sentence summary in interaction among **User-Instruction**, **LLM-Answer**, and **User-
Feedback**. Now your task is to evaluate its **Intra-turnsness** - that is, whether the LLM-Answer logically follows from the User-
Instruction. And whether this interaction is internally self-consistent, grammatically sound, and semantically coherent.
Evaluation Criteria:
1. **Topic Continuity (45%)**  
 - Does the current sentence continue the core topic of the previous one?
2. **Logical Progression (20%)**   
 - Is the current sentence a reasonable logical or conversational response to the previous one?   
 - For example: a question is answered, a statement is elaborated, an action follows an intention, etc.
3. **Semantic Linkage (10%)**  

- Are there shared or related concepts/keywords?   
- Are references consistent via pronouns, synonyms, or hierarchical terms?

4. **Dialogue Act Alignment (10%)**  
 - Do the speech acts (e.g., asking, suggesting, confirming, reacting) align in a coherent way?   
 - Does the behavior fit typical dialogue flow?
5. **Temporal/Causal Fit (15%)**   
 - Does the current sentence plausibly follow the previous one in time or causality?   
 - Does it violate any commonsense expectations?
Rules:
- Only assess **coherence between User-Instruction and LLM-Answer** (not quality or informativeness).
- Do not consider whether the sentences are factually correct or grammatically sound.
- Output only the final **int score** (e.g., `49`). No explanations or comments.
Context:
User-Instruction: "{prev}“
LLM-Answer: "{cur}“
User-Feedback: "{next}“
Scoring Instructions:
- Score the sentence from **0 to 100**, allowing any value in that range (e.g., 23, 62, 94).
- Think about the rubric below before deciding your score.
Important:
- Only output the final **int score**.
- Do not provide explanation, analysis, or extra text.
- The output must be a valid Python int (e.g., 67)
Now provide the score below:

Figure 4: Prompt for Evaluating Inra-turns

Tool Utilization Consistency Efficiency Patch Quality
Agent Info-gain % Tool Suc. Intra-turns Inter-turns # In-tokens # Out-tokens Turns % Stuck # Lines # Files CC # Smell

All Instances (Unresolved+Resolved)
DeepSeek-V3 51.2 52.4 40.8 36.8 31.7k 1.9k 5.0 0.0 15.8 3.0 1.2 0.5
DeepSeek-R1 57.7 81.2 39.8 70.0 93.6k 1.5k 14.7 0.3 11.1 1.0 1.5 0.1
Qwen3-14B 10.6 27.9 48.5 51.7 252.9k 18.5k 17.5 49.0 5.0 0.5 0.3 0.6
Qwen3-32B 12.5 28.1 40.8 47.5 226.3k 17.0k 15.9 41.2 13.2 0.8 1.0 0.3

Mistral-small3.1-24B 42.4 31.8 32.2 39.5 90.8k 17.2k 6.5 0.0 12.1 0.7 0.9 0.3
Devstral-24B 35.9 22.2 46.9 66.9 201.8k 12.5k 17.7 54.0 11.1 0.4 1.1 0.3

Qwen2.5-Coder-7B 16.5 12.5 36.1 55.0 153.4k 10.1k 16.7 53.9 1.6 0.1 0.1 0.0
Qwen2.5-Coder-14B 21.6 15.8 39.6 55.5 176.5k 11.9k 15.9 47.6 4.6 0.3 0.4 0.1
Qwen2.5-Coder-32B 36.0 17.9 40.7 52.6 206.3k 15.8k 13.4 8.8 16.9 0.9 2.0 0.5

Unresolved Instances
DeepSeek-V3 51.2 52.4 40.7 36.3 31.4k 1.9k 5.0 0.0 15.8 3.0 1.2 0.6
DeepSeek-R1 56.0 83.2 39.1 70.4 107.9k 1.7k 16.3 0.4 9.0 0.9 1.6 0.1

Resolved Instances
DeepSeek-V3 54.1 53.1 45.6 51.6 45.0k 1.9k 6.1 0.0 14.5 1.6 2.0 0.0
DeepSeek-R1 63.1 74.6 42.1 68.7 46.9k 810.7 9.5 0.0 18.1 1.2 1.1 0.1

AvgGainresolved
unresolved +9% -5% +10% +20% -7% -26% -9% -50% +47% -9% +22% -44%

Table 6: Performance of different LMs, with the same agent (SWE-agent), on SWE-bench-Lite
dataset. % Resolved and % Unresolved are reported in parentheses. We organize metrics across four
key dimensions: Tool Utilization, Logical Consistency, Efficiency and Patch Quality. We group in-
stances by patch correctness: All, Unresolved, and Resolved. AvgGainresolved

unresolved: average
performance change of three agents from unresolved to resolved.
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Prompt for Evaluating Inter-turns

Role positioning: You are a professional evaluator of dialogue reasoning chains, with expertise in assessing the logical and semantic 
coherence between consecutive conversation turns.
Task description: Given two summaries of consecutive interaction rounds in a dialogue - **Current-sentence** and **Previous-
sentence** - your task is to assess their **Inter-turnsness**, i.e., how well the current sentence logically and semantically follows from 
the previous one.
Weighted Evaluation Criteria:
- **Topic Continuity (45%)**: Does the current sentence maintain or meaningfully extend the topic from the previous one?
- **Intent Consistency (30%)**: Is the communicative intent (e.g., question-answer, elaboration, rebuttal) logically compatible 

across the two turns?
- **Reasoning Validity (15%)**: If implicit logic or inference is used, is it reasonable and well-grounded?
- **Other Pragmatic Coherence (10%)**: Includes reference clarity, tone matching, memory consistency, and turn appropriateness.
You should penalize:
- Abrupt or unjustified topic changes
- Logical contradictions or inferential gaps
- Inappropriate intent shifts (e.g., ignoring a question)
- Jarring tone or reference mismatch
Context:
**Question**: {question}
**Current-sentence**: {cur}
**Previous-context**: {history_str}
Scoring Instructions:
- Score **Current-sentence** from **0 to 100**, allowing any value in that range (e.g., 23, 62, 94).
- Think about the rubric below before deciding your score.
Important:
- Only output the final **int score**.
- Do not output explanation, reasoning, or extra commentary.
- The output must be a valid Python int.
Now provide the score below:

Figure 5: Prompt for Evaluating Inter-turns

D RQ1: EVALUATING AGENTS

D.1 DETAILS OF EVALUATING AGENTS

To demonstrate the superiority of SWE-eval in evaluating agents, we details the performance of three
agents (SWE-agentYang et al. (2024a), OpenhandsWang et al. (2025), and Moatlessaorwall (2025))
on the SWE-bench-Lite datasetJimenez et al. (2023), utilizing DeepSeek-V3. Table 2 in mainbody
is organized by patch correctness, dividing the results into three sections: all instances (unresolved
+ resolved), unresolved instances, and resolved instances. The final row, AvgGainresolved

unresolved, quan-
tifies the average performance improvement when agents transit from an unresolved to a resolved
state. The color intensity within the table indicates performance; darker shades represent superior
results. For instance, a lower value for # Turns signifies better performance, while a higher value for
Info-gain is desirable.

Our evaluation method is systematic. Metrics are organized into four key dimensions: Tool Utiliza-
tion, Consistency, Efficiency, and Patch Quality. Tool Utilization measures Info-gain % and Tool
Suc.%, reflecting tool application effectiveness. Consistency assesses Intra-turns and Inter-turns
coherence. Efficiency includes In-tokens, Out-tokens, # Turns, and # Stuck, indicating resource con-
sumption and operational smoothness. Patch Quality evaluates generated patches via # Lines, #
Files, CC, and # Smell. Shading within the table signifies relative performance. Darker green gener-
ally denotes superior performance for beneficial metrics (e.g., higher percentages). Conversely, for
metrics where lower values are preferable (e.g., token counts, # Stuck, CC, # Smell), darker green
may indicate less favorable outcomes. The AvgGainresolved

unresolved row employs orange shading to
highlight positive performance changes.

In general, the AvgGainresolved
unresolved statistical value quantifies the average performance improve-

ment observed as instances transition from an unresolved to a resolved state across all three agents.
Tool Utilization showed positive gains (Info-gain +14%, Tool Suc. +6%), signifying enhanced tool
application. Consistency also improved (Intra-turns +12%, Inter-turns +19%), demonstrating more
coherent agent behavior. Conversely, efficiency metrics reduced desirably (In-tokens -15%, Out-
tokens -21%, # Turns -12%), indicating decreased resource consumption. A substantial # Stuck
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decrease (-45%) further confirms that successful resolution profoundly reduces impasses. For Patch
Quality, reductions in # Lines (-17%) and # Files (-8%) suggest more concise patches. Despite a
slight CC increase (+16%) implying localized complexity, a significant # Smell decrease (-36%)
confirms substantially cleaner resolved patches.

Analysis of the AvgGainresolved
unresolved metric reveals that Inter-turns is the most significant factor

influencing % Resolved. This critical insight underpins the superior performance of Moatless com-
pared to Openhands and SWE-agent. Moatless achieves this by organizing conversational nodes
using a Monte Carlo tree approach, a strategic design choice that enables the provision of highly
precise contextual and Inter-turn information. In contrast, Openhands and SWE-agent typically
process all historical context indiscriminately, which can dilute the relevance of crucial Inter-turn
dependencies and hinder optimal resolution.

Across All instances, distinct agents exhibited varied performance, a direct consequence of their
differing design principles. Moatless consistently demonstrates superior Tool Utilization (65.3%
Info-gain, 69.5% Tool Suc.) and Consistency (54.9% Intra-turns, 68.7% Inter-turns). This indicates
its robust ability to leverage tools and maintain coherent interaction flows. However, Moatless also
exhibits the highest Efficiency metrics, including In-tokens (317.6k), Out-tokens (4.8k), and # Turns
(24.3), suggesting a more verbose and iterative problem-solving approach. Concurrently, it records
the highest # Stuck rate (27.8%), indicating frequent impasses despite its verbosity. In Patch Quality,
Moatless generates the most concise patches (7.8 # Lines, 0.9 # Files) but with higher complexity
(CC = 2.1), implying greater complexity. Openhands shows moderate performance across most met-
rics and produces the cleanest patches (0.0 # Smell). SWE-agent exhibits the lowest Tool Utilization
and Consistency. It is highly efficient, with minimal token usage and turns, and notably, never gets
stuck (0.0% # Stuck). However, its patches are larger (15.8 # Lines, 3.0 # Files) and less clean (0.5
# Smell).

We performed more detailed comparative analysis between Resolved and Unresolved instances,
for precisely identifying the factors governing the agent’s issue resolution efficacy, . From % Re-
solved, Moatless demonstrates the highest resolution capability at 38%, followed by Openhands
at 27%, while SWE-agent achieves only 3%. This disparity underscores substantial differences in
their problem-solving efficacy. Analysis of resolved versus unresolved instances reveals consistent
behavioral trends. Successful resolutions correlate with enhanced tool utilization and behavioral
consistency. For example, Moatless’s Info-gain % rises from 58.3% for unresolved cases to 76.7%
for resolved ones, indicating that effective tool application and coherent agent actions are critical for
successful problem resolution. Concurrently, efficiency metrics, including In-tokens, Out-tokens,
and # Turns, generally decrease for resolved instances, suggesting that successful solutions typically
require less computational effort and fewer interaction steps. A particularly critical finding is the
substantial reduction in # Stuck rates for resolved instances; Moatless, for example, decreases from
37.3% to 12.2%. This demonstrates that successful resolution effectively mitigates impasses and
improves task progression. Regarding patch quality, resolved patches are consistently more concise,
evidenced by reductions in # Lines and # Files. Crucially, a significant decrease in # Smell counts
for resolved patches indicates improved code cleanliness and quality upon successful completion.

E RQ2: EVALUATING LMS

E.1 DETAILS OF EVALUATING LMS

To demonstrate the superiority of SWE-eval in evaluating LMs, Table 6 provides nuanced perfor-
mance insights beyond simple success rates. Utilizing SWE-agent, it details trajectory- and patch-
based metrics to analyze agent behavior and code quality across diverse categories, identifying
specific LM strengths and weaknesses for software engineering tasks. The modular design mea-
sures tool interaction effectiveness, decision-making coherence, resource consumption, and gener-
ated code characteristics.

System performance is rigorously evaluated across five critical dimensions. Tool Utilization quanti-
fies interaction efficacy by measuring Info-gain (information acquired) and % Tool Suc. (successful
executions). These metrics are specifically chosen to assess effective tool application, paramount
for successful problem-solving. Logical Consistency assesses decision-making coherence and be-
havioral robustness across turns. Employing Intra-turns for within-turn stability and Inter-turns for
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cross-turn continuity, this approach verifies reliable system operation in dynamic, multi-step scenar-
ios. Efficiency metrics provide insights into resource consumption and operational fluidity. In-tokens
and Out-tokens track computational load; Turns denotes interaction length; and % Stuck identifies
stagnation. These indicators are essential for pinpointing bottlenecks and optimizing practical de-
ployment. Finally, Patch Quality characterizes generated code’s maintainability and robustness.
Assessed using # Lines, # Files, Cyclomatic Complexity (CC), and # Smell, these standard software
engineering metrics comprehensively evaluate the long-term viability and ease of maintenance of
the system’s output.

The Unresolved instances and Resolved instances provide a direct comparison for DeepSeek-V3
and DeepSeek-R1. For DeepSeek-V3, resolving instances improves Info-gain from 51.2 to 54.1,
and Inter-turns consistency from 36.3 to 51.6. DeepSeek-R1, when instances are resolved, shows
a slight decrease in % Tool Suc. from 83.2 to 74.6 but a notable increase in # Lines from 9.0 to
18.1, alongside a reduction in % Stuck from 0.4% to 0.0%. The AvgGainresolved

unresolved row further
elaborates on these trends, showing a +9% average gain in Info-gain and a substantial +20% gain
in Inter-turns consistency for resolved instances. However, some efficiency metrics, such as Out-
tokens, show a -26% average decrease, implying increased resource usage for resolved tasks. Patch
quality metrics present a mixed picture, with # Lines increasing by +47% and CC by +22%, while
# Smell decreases by -44%, suggesting that resolved patches are more extensive but exhibit fewer
code quality issues.

Our analysis yields four principal conclusions::

(1) Analysis of Parameter Increases on % Tool Suc. for Code-Specific vs. General Models
The data indicates that increasing parameter count yields more substantial improvements in % Tool
Suc. for code-specific models compared to general models. For the general Qwen3 family, an
increase from 14B to 32B parameters results in a marginal improvement in % Tool Suc. from 27.9%
to 28.1%, a mere 0.2 percentage point gain. In contrast, the code-specific Qwen2.5-Coder family
demonstrates more pronounced gains: the 7B model has a % Tool Suc. of 12.5%, which increases
to 15.8% for the 14B model (a 3.3 percentage point increase), and further to 17.9% for the 32B
model (an additional 2.1 percentage points, or 5.4 percentage points from 7B). This suggests that
architectural specialization for code tasks allows for more effective leveraging of increased model
capacity to enhance tool interaction success.

(2) Comparison of Devstral and Mistral in % Tool Suc. Contrary to the initial hypothesis, the fine-
tuned Devstral-24B model does not marginally outperform its base model, Mistral-small3.1-24B, in
% Tool Suc.. The data explicitly shows that Mistral-small3.1-24B achieves a % Tool Suc. of 31.8%,
while Devstral-24B records a lower 22.2%. This indicates that, at least for this specific metric and
dataset, the fine-tuning applied to Devstral-24B did not translate into improved tool success rates
compared to the foundational Mistral model. This finding warrants further investigation into the
fine-tuning methodology and its impact on specific performance dimensions.

(3) Impact of Increasing Parameter Count on SLM Capabilities within the Same Architec-
tural Family Within the Qwen3 and Qwen2.5-Coder architectural families, increasing the param-
eter count does not consistently improve all SLM capabilities; performance varies across different
metrics. For instance, in the Qwen2.5-Coder family, increasing from 7B to 32B parameters leads to
significant improvements in Info-gain (16.5 to 36.0) and a drastic reduction in % Stuck (53.9% to
8.8%), indicating enhanced tool utilization and task completion reliability. However, this parameter
increase also results in a degradation of efficiency metrics such as In-tokens (153.4k to 206.3k) and
Out-tokens (10.1k to 15.8k), suggesting higher computational costs. Similarly, patch quality metrics
like # Lines (1.6 to 16.9) and # Smell (0.0 to 0.5) worsen, implying that larger models might generate
more verbose or less clean code despite improved task resolution. This nuanced outcome highlights
that while scaling improves some core capabilities, it can introduce trade-offs in efficiency and direct
output quality.

(4) Comparison of LLMs and SLMs in Overall Task Resolution Large Language Models (LLMs)
generally demonstrate substantial outperformance over Small Language Models (SLMs) in overall
task resolution, particularly in key indicators like % Tool Suc. and % Stuck. DeepSeek-R1, an
LLM, achieves an impressive 81.2% % Tool Suc. and a near-perfect 0.3% % Stuck rate. Similarly,
DeepSeek-V3 and Mistral-small3.1-24B exhibit excellent % Stuck rates of 0.0%. In contrast, most
SLMs, such as Qwen3-14B and Qwen2.5-Coder-7B, show considerably lower % Tool Suc. (27.9%
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Figure 6: Spearman correlation heatmap of trajectory-based metrics, showcasing their indepen-
dence.

and 12.5% respectively) and significantly higher % Stuck rates (49.0% and 53.9% respectively).
While the Qwen2.5-Coder-32B model, a larger SLM, reduces its % Stuck to 8.8%, it still lags be-
hind the top-performing LLMs in % Tool Suc. (17.9%). This disparity underscores the superior
robustness and effectiveness of LLMs in completing complex tasks within this benchmark.

F RQ3: CORRELATION

F.1 CORRELATION OF TRAJECTORY-BASED METRICS

The heatmap, presented as Figure 6, provides a Spearman correlation analysis of various trajectory-
based metrics, primarily aiming to illustrate their independence. Each cell in the matrix represents
the correlation coefficient between the metric on its row and the metric on its column. The color
scheme of the heatmap is designed to intuitively convey both the strength and direction of these cor-
relations. A divergent color gradient is employed, where shades of orange/brown indicate positive
correlations, signifying that two metrics tend to increase or decrease together. Conversely, shades
of green represent negative correlations, meaning that as one metric increases, the other tends to
decrease. The intensity of the color directly corresponds to the absolute magnitude of the Spearman
coefficient: darker hues denote stronger correlations (values closer to 1 or -1), while lighter shades
or white indicate weaker or negligible correlations (values closer to 0). This visual encoding allows
for rapid identification of the most significant relationships within the dataset.

The color scheme of the heatmap visually encodes the strength and direction of these correlations.
A gradient from light green/yellow to dark orange/brown is employed. Darker orange/brown hues
indicate stronger positive correlations (approaching +1.0), signifying that as one metric increases,
the other tends to increase proportionally. Conversely, lighter green/yellow shades denote negative
correlations (approaching -1.0), meaning that as one metric increases, the other tends to decrease.
Colors closer to the center of the spectrum (lighter yellow/white) represent correlations near zero, in-
dicating a weak or negligible linear relationship between the metrics. The diagonal, which correlates
each metric with itself, is consistently 1.000 and depicted in the darkest orange, as expected.

The heatmap analysis reveals that several key metrics exhibit weak correlations, underscoring their
distinct contributions to system evaluation. For instance, a moderate negative correlation (r = -
0.468) exists between Info-gain, Intra-turns, and Inter-turns. This relationship indicates that higher
information gain is associated with fewer conversational turns, suggesting an efficient interaction
where users achieve their goals with less verbose dialogue. Conversely, the correlation between #
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Figure 7: Spirman coefficient of patch-based metrics correlation heatmap.

Stuck and Inter-turns is nearly negligible (r = 0.015), demonstrating that the frequency of the system
becoming stuck has almost no linear relationship with the overall number of interactions. Simi-
larly, the weak negative correlation (r = -0.081) between Info-gain and # Stuck implies that system
impasses have minimal impact on the amount of information conveyed. These consistently weak
correlations across diverse metric pairs are not merely observations; they are a deliberate design
outcome, chosen to ensure each metric captures a unique facet of system performance. This inde-
pendence is paramount for comprehensive system evaluation because it prevents redundancy among
measures, allowing researchers to gain a granular and nuanced understanding of specific strengths
and weaknesses without confounding factors. By isolating distinct aspects of interaction quality,
these metrics collectively provide a more complete and interpretable profile of system behavior.

F.2 CORRELATION OF PATCH-BASED METRICS

To systematically analyze the interdependencies among our proposed patch metrics, we conduct a
correlation analysis, visually represented in Figure 7. This figure presents Spearman’s rank corre-
lation coefficients, providing crucial insight into the intrinsic relationships among our patch-based
metrics. This visualization is constructed to identify potential redundancies and reveal underlying
dependencies, which are vital for informing subsequent feature selection processes in our analysis
of software patches. By quantifying the monotonic association between each pair of metrics, we
gain critical insights into how different patch characteristics co-vary. This understanding is crucial
for building robust predictive models and deriving meaningful conclusions regarding patch quality
and impact. The color scheme aligns with that used in the Trajectory-based heatmap for visual con-
sistency. The color scale indicates correlation strength and direction, with lighter shades signifying
weaker relationships.

Specifically, we systematically quantify the relationships among diverse patch metrics through
correlation coefficients to establish the empirical rigor of the SWE-eval design. Our analysis reveals
that several metric pairs exhibit low correlation, approaching zero, indicating they capture distinct,
orthogonal patch aspects. For example, % Resolved correlates negligibly with # Lines (0.006) and #
Smell (0.007), and % Loc.Suc. weakly correlates with # Lines (0.014) and # Smell (-0.087). These
low correlations are critical: they confirm unique information contributions from each metric, en-
abling comprehensive patch characterization and mitigating multicollinearity. Conversely, strong
positive and negative correlations, visualized by dark orange and green hues, highlight significant
interdependencies. A prominent example is the strong negative correlation of -0.983 between %
Empty and % Apply, signifying highly redundant information. Furthermore, patch size and com-
plexity metrics, such as # Lines, correlate strongly with # Files (0.768), # CC (0.857), and # Smell
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Tool Utilization Consistency Efficiency Patch Quality
Agent Info-gain % Tool Suc. Intra-turns Inter-turns # In-tokens # Out-tokens Turns % Stuck # Lines # Files CC # Smell

All Instances (Unresolved+Resolved)
SWE-agent 53.6 52.8 42.5 37.8 35.5k 1.9k 5.3 0.0 19.6 4.2 1.3 0.6
Openhands 63.8 54.6 34.9 69.5 489.7k 4.7k 12.2 3.0 27.9 1.5 4.1 0.8
Moatless 64.3 66.5 55.8 70.9 371.9k 5.5k 29.0 41.7 6.9 0.8 1.8 0.0

Unresolved Instances
SWE-agent 53.8 52.3 42.5 37.2 35.4k 1.9k 5.3 0.0 19.9 4.2 1.3 0.6
Openhands 62.3 52.5 34.4 68.2 569.5k 5.1k 12.2 1.5 32.4 1.6 4.3 0.9
Moatless 58.2 62.2 54.3 69.2 433.0k 5.8k 32.9 53.9 6.5 0.7 1.9 0.0

Resolved Instances
SWE-agent 46.8 73.2 45.0 66.4 38.5k 1.9k 5.5 0.0 8.0 1.0 1.5 0.0
Openhands 67.0 59.1 36.0 72.3 320.1k 3.8k 12.1 6.2 18.5 1.3 3.7 0.6
Moatless 80.4 77.6 59.6 75.2 213.0k 4.7k 18.8 10.0 7.9 1.1 1.8 0.0

AvgGainresolved
unresolved +11% +26% +7% +31% -29% -15% -13% +81% -27% -14% -1% -45%

Table 7: In instances generated by SWE-smith, we report performance of SWE-agent and Open-
hands with Deepseek-V3. Proof SWE-eval can be applied to more than just SWE-bench-Lite. It
can also be applied to other benchmarks similar to SWE-Bench. We organize metrics across four
key dimensions: Tool Utilization, Logical Consistency, Efficiency and Patch Quality. We group in-
stances by patch correctness: All, Unresolved, and Resolved. AvgGainresolved

unresolved: average
performance change of three agents from unresolved to resolved.

Other

0

50

100

Bug Feature Regression

tool_accuracy

Categories

Figure 8: Violin plots of % Tool Suc. across different categories of issues, with SWE-agent and
DeepSeek-R1

(0.721). This suggests larger patches inherently possess higher cyclomatic complexity and more
code smells. Identifying such strong correlations is paramount for effective feature engineering,
guiding metric prioritization or combination to enhance patch quality by systematically reducing
redundancy.

G COMPARATIVE ANALYSIS OF METRIC VALUE

G.1 DIFFERENCES ACROSS ISSUE CATEGORIES

Figure 8 is integral to empirically substantiate the performance characteristics of the proposed tool
across distinct issue categories. By employing violin plots, we move beyond mere central tendency,
offering a comprehensive depiction of the % Tool Suc. distribution for each category. This approach
allows for a nuanced understanding of where the tool performs consistently well, where it struggles,
and the overall variability of its accuracy, thereby providing deeper insights into its robustness and
applicability.

By analyzing % Tool Suc. across various issue types, we quantified their influence on the agents.
For all categories, the median % Tool Suc., indicated by the white dot within each violin, consistently
hovers around 50. This suggests a general baseline performance across diverse issue types. However,
the shapes of the violin plots, which represent the probability density of the % Tool Suc. data,
illustrate significant distributional differences. The Other category exhibits a broader distribution,
with notable density at both the median and near 100, implying that while some “other” issues yield
moderate accuracy, a substantial portion achieves very high accuracy. In contrast, both Bug and
Regression categories show a more pronounced density towards the lower end of the % Tool Suc.
spectrum, specifically around 0, alongside the median concentration. This indicates that the tool
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Figure 9: Violin plots of turns, In-tokens and completion tokens across three kinds of patches
(empty patch, Resolved and Unresolved) with SWE-agent + Deepseek-r1

frequently encounters instances of very low accuracy when addressing Bug and Regression issues,
suggesting these areas might represent specific challenges for the tool’s current design. The Feature
category, while also centering around a median of 50, displays a relatively uniform distribution
across the accuracy range, implying a more varied performance profile without strong concentrations
at either extreme, though a density near 0 is still present. These detailed distributional insights are
crucial for identifying specific areas for targeted improvements, such as tool refinement.

G.2 DIFFERENCES BASED ON PATCH CORRECTNESS

To characterize the numerical distribution of key performance indicators across diverse instances
within the SWE-eval, we visualized all data points using violin plots in Figure 9. This figure provides
critical insights into the ‘SWE-agent + Deepseek-r1’ system’s operational efficiency by illustrating
the distributions of turns and In-tokens across three distinct patch outcomes: empty patch, resolved,
and unresolved. We selected these metrics as they fundamentally indicate interaction depth and
computational cost, respectively. Analyzing their distributions identifies scenarios of optimal and
suboptimal agent efficiency.

The violin plots reveal distinct patterns in the agent’s interaction depth, measured by # Turns.
Empty patch outcomes show the highest median # Turns and widest distribution, indicating ex-
tensive, prolonged exploration even when no code modifications are required. This inefficiency
highlights a critical area for improvement: the agent’s ability to quickly ascertain the absence of nec-
essary changes to reduce operational time. Conversely, resolved tasks exhibit significantly lower me-
dian and tighter # Turns distribution. This demonstrates successful resolutions are achieved through
a more focused, efficient interaction sequence, optimizing the agent’s operational flow. Unresolved
tasks, while having a median # Turns count comparable to resolved tasks, display a broader up-
per tail. This suggests some failures manifest only after substantial interactions, underscoring the
significant cost of unproductive attempts.

Analysis of In-tokens, quantifying total tokens sent to the language model, reinforces these obser-
vations regarding resource expenditure. The empty patch category consumes the most In-tokens by
a substantial margin, with a very broad distribution. This elevated token usage directly correlates
with high turn counts, as each interaction necessitates sending prompts. This finding underscores
a significant inefficiency: considerable computational resources are expended on tasks yielding no
functional patch. In contrast, resolved tasks demonstrate the highest token efficiency, displaying a
much lower median and tighter In-tokens distribution, consistent with reduced turn counts. This ef-
ficiency for successful outcomes indicates optimized communication with the language model. For
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unresolved tasks, the In-tokens distribution is generally higher than for resolved tasks, particularly
in its upper range. This emphasizes that failed attempts incur substantial token costs, necessitating
strategies to detect and gracefully exit unproductive paths earlier. Collectively, these distributions
provide a robust empirical basis for understanding the agent’s resource footprint and pinpointing
specific performance enhancements.

H GENERALIZATION: SUPPLEMENT THE EVALUATION OF DIVERSE
BENCHMARKS WITH SWE-EVAL

The SWE-eval framework adapts diverse benchmark, provided they conform to the SWE-bench
trajectory and patch format. This standardization is essential for seamless integration and consistent
processing. We utilized SWE-smith Yang et al. (2025b), a novel pipeline that synthesizes test-
breaking task instances from Python codebases, to generate training data. To ensure the quality and
relevance of our evaluation, we developed specific filtering rules for the raw SWE-smith output.

To ensure the quality, relevance, and solvability of instances within the dataset created by SWE-
smith, we propose two rigorous filtering criteria. (1) Complexity filtering is a primary considera-
tion. We exclude trivial instances involving minimal code changes (e.g., 1-2 lines) because they of-
fer limited challenge for resolution systems. Instead, we retain instances necessitating modifications
across multiple files or functions, which better reflect real-world software engineering complexity
and demand more sophisticated problem-solving capabilities. (2) Quality assurance measures are
applied through stringent content and environment checks. Problem description clarity is a key
quality assurance measure. We artificially exclude instances with ambiguous descriptions or insuffi-
cient reproduction steps, as these hinder accurate problem comprehension and solution development.
Only instances providing clear gold patch and precise error descriptions are retained, ensuring that
the problem statement is unambiguous and actionable.

These rules were designed to select complex, solvable instances, yielding 976 refined samples. Con-
sidering computational cost and efficiency, we evaluated SWE-eval’s performance on this curated
subset using DeepSeek-V3 and SWE-agent. This focused evaluation demonstrates SWE-eval’s ex-
tensibility to other benchmarks. The capacity for expansion relies on architectural compatibility and
robust performance on representative samples, not merely dataset volume.

Performance metrics are detailed in Table 7. Table 7 provides empirical evaluation of SWE-agent,
Openhands, and Moatless across Tool Utilization, Consistency, Efficiency, and Patch Quality, dis-
tinguishing between resolved and unresolved instances to illuminate agent capabilities and guide
future design. This systematic comparison is crucial for understanding their operational profiles.

Our comparative evaluation reveals distinct performance profiles for Moatless, SWE-agent, and
Openhands across key metrics, highlighting their specialized strengths in tool utilization, operational
efficiency, and patch quality. Moatless generally excels in Tool Utilization, as evidenced by its
highest Info-gain (64.3) and % Tool Suc. (66.5), and demonstrates superior Consistency in both
Intra-turns (55.8) and Inter-turns (70.9), indicating effective tool leverage and coherent interactions.
Conversely, SWE-agent consistently achieves superior Efficiency, consuming significantly fewer In-
tokens (35.5k), Out-tokens (1.9k), and Turns (5.3), and notably maintaining a 0.0 % Stuck rate across
all and unresolved instances. Regarding Patch Quality, SWE-agent produces cleaner, more focused
code changes with the lowest # Lines (19.6 overall, 8.0 resolved), # Files, CC, and 0.0 # Smell in
resolved instances. Openhands offers a balanced performance profile, often falling between the two.

To understand the critical differences between resolved and unresolved instances, we analyze the
AvgGain row, revealing key characteristics of successful problem resolution. The AvgGain row,
comparing resolved to unresolved instances, reveals that successful resolutions correlate with im-
proved Tool Utilization (+11% Info-gain), Consistency (+31% Inter-turns), and Efficiency (e.g.,
-29% In-tokens, -13% Turns), alongside better Patch Quality (-45% # Smell). However, a notable
+81% increase in % Stuck for resolved instances suggests that achieving resolution might involve
navigating more complex or challenging scenarios, leading to a higher propensity for encountering
temporary impasses. This analysis highlights distinct agent strengths and the inherent complexity of
successful problem resolution, informing the development of more robust automated systems.
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