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Abstract
Although large vision-language models001
(LVLMs) have demonstrated powerful ca-002
pabilities in interpreting visual information,003
they frequently produce content that deviates004
from visual information, leading to object005
hallucination. Previous research has shown006
that hallucinations are primarily caused by007
insufficient attention to visual information. To008
tackle this, recent works either depend on ex-009
pensive manual annotations and computational010
cost, or significantly increase inference time.011
In this work, we observe that LVLMs’ attention012
to visual information is significantly stronger013
when answering caption queries compared014
to non-caption queries. Inspired by this015
phenomenon, we propose Caption-sensitive016
Attention Intervention (CAI), a training-free,017
plug-and-play hallucination mitigation018
method that leverages the attention activation019
pattern in response to caption queries to020
enhance LVLMs’ visual perception capability.021
Extensive experimental results across four022
benchmarks covering both discriminative023
and generative tasks, demonstrate that CAI024
achieves state-of-the-art (SOTA) hallucination025
mitigating performance only with minimal026
additional inference cost, while preserving027
other foundational capabilities of LVLMs.028

1 Introduction029

With advances in computational power and data030

availability, large vision-language models (LVLMs)031

have further extended large language models032

(LLMs) to vision-language tasks (Liu et al., 2024a).033

However, it is widely observed that LVLMs fre-034

quently generate content that conflicts with the cor-035

responding visual information, leading to halluci-036

nation (Sahoo et al., 2024; Huang et al., 2023).037

Previous works (Arif et al., 2025; Bi et al., 2024)038

shows that LVLMs’ insufficient attention to visual039

information is considered a key factor in hallu-040

cination. Recent works for mitigating hallucina-041

tion either use contrastive decoding strategy (Leng042
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next to a street. The motorcycle is 
positioned in the center of the scene, 
with a car parked behind it on the left 
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Figure 1: The visualization of attention weights at im-
age patch level across different conversations. LVLM
correctly generates the detailed content of the image in
response to the caption query, but exhibits hallucina-
tion (e.g., "helmet") when answering the non-caption
query. CAI refines LVLM’s visual attention patterns
from insufficient to sufficient, effectively enhancing vi-
sual perception capability and mitigating hallucination.

et al., 2024; Zhong et al., 2024) which arises high 043

inference latencies, or train LVLMs using care- 044

fully designed data (You et al., 2023; Yu et al., 045

2024a) which incurs expensive manual annotation 046

and computation cost. To address the aforemen- 047

tioned limitations, we focus on exploring how to 048

enhance LVLMs’ perception capability by provid- 049

ing sufficient attention to visual information. In this 050

work, we identify caption-sensitive attention heads 051

and reveal a critical phenomenon: these heads sig- 052

nificantly reduce attention to visual information 053

when fed non-caption queries compared to caption 054

queries. As shown in Figure 1 (a) and (b), we ob- 055

serve that several attention heads reduce local and 056

global attention of the image when responding to 057
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non-caption queries. In contrast, visual attention is058

significantly stronger when fed caption queries.059

Inspired by the phenomenon of visual atten-060

tion variation when fed caption compared to non-061

caption queries, we propose Caption-sensitive062

Attention Intervention (CAI), a training-free, plug-063

and-play method, to refine caption-sensitive at-064

tention heads outputs during inference to regain065

LVLMs’ fine-grained visual perception capability066

and mitigate hallucination. First, we identify the067

optimal caption query from candidates, which acti-068

vates the model’s inherent visual perception capa-069

bility with the minimal necessary attention weight070

shift cost. Secondly, following previous work (Li071

et al., 2024), we train binary classifiers to iden-072

tify caption-sensitive attention heads and use the073

selected heads to compute attention output heads074

shifts, which measure how much the attention out-075

put deviates from non-caption to caption queries.076

Finally, we apply the precomputed attention out-077

put shifts to intervene caption-sensitive attention078

heads during inference, to imitate attention activa-079

tion patterns when feeding LVLMs caption queries.080

As shown in Figure 1 (b) and (c), after using CAI,081

LVLM regains sufficient attention to visual infor-082

mation and effectively mitigates hallucination.083

We evaluate the performance of CAI across mul-084

tiple discriminative and generative tasks, using085

models such as LLaVA-1.5-7b (Liu et al., 2024b),086

Qwen-VL-Chat (Bai et al., 2023), and LLaVA-087

NeXT (Liu et al., 2024c). On the POPE (Li et al.,088

2023) benchmark, the accuracy and the F1 score089

improve by 5.28% and 6.01% on average. On the090

MME (Fu et al., 2023) hallucination subset, the091

scores increase by 61.5 points on average. Further-092

more, hallucination rates decrease by 6.8% on the093

MMHalBench (Sun et al., 2023), while the infor-094

mativeness of the generated responses improves.095

The main contributions can be summarized as:096

(1) We propose CAI, a training-free, plug-and-097

play method significantly mitigates object hallu-098

cination in LVLMs by refining caption-sensitive099

attention head outputs during the inference.100

(2) Compared to methods using captioning de-101

scription and contrastive decoding, CAI achieves102

lower inference latency and better performance.103

(3) Comprehensive experimental results demon-104

strate that CAI effectively mitigates hallucination105

while maintaining other foundational capabilities.106

2 Related Works 107

2.1 Large Vision-Language Models 108

Recent advances in large vision-language mod- 109

els have significantly pushed the boundaries of 110

multimodal understanding and generation. Sev- 111

eral powerful LVLMs based on open-source LLM 112

backbones combined with visual encoders, such as 113

LLaVA-1.5-7b and Qwen-VL-Chat, have achieved 114

impressive capabilities through extensive vision- 115

language pretraining. Furthermore, recent searches 116

have further improved model performance by em- 117

ploying high-resolution visual encoders (Hong 118

et al., 2024) and exploring reinforcement learning 119

methods, such as RLHF (Yu et al., 2024a). Closed- 120

source models, such as GPT-4o (Hurst et al., 2024) 121

and Gemini 1.5 (Reid et al., 2024) have demon- 122

strated even more powerful performance. How- 123

ever, current LVLMs still suffer from hallucination 124

problems. Addressing how to efficiently and cost- 125

effectively mitigate hallucination is still a critical 126

problem that requires further exploration. 127

2.2 Mitigating Hallucination in LVLMs 128

Current methods for mitigating hallucination in 129

LVLMs can be broadly categorized into two meth- 130

odes: training-free methods and data-driven train- 131

ing methods. For training-free methodes, the main 132

strategies include designing decoding techniques 133

(Leng et al., 2024; Chen et al., 2024b; Chuang 134

et al., 2023; Huang et al., 2024; Zhong et al., 2024) 135

during the inference phase, leveraging language or 136

visual prompts (Lee et al., 2023; An et al., 2024), 137

incorporating external tools or knowledge sources 138

(Zhao et al., 2024) and correct the generation (Yin 139

et al., 2024). On the other hand, training-based 140

methods typically involve introducing novel train- 141

ing objectives (Chen et al., 2024a) and utilizing 142

carefully curated datasets (Gunjal et al., 2024; Liu 143

et al., 2023; Yu et al., 2024b; You et al., 2023). 144

However, there has been limited exploration of 145

leveraging LVLMs’ inherent captioning capability 146

and multi-head attention with the goal of mitigating 147

hallucination in LVLMs. Our work aims to address 148

this issues by applying caption-sensitive attention 149

intervention during the inference. 150

3 Methods 151

3.1 Task Formulation 152

We consider a LVLM parametrized by θ. 153

The model receives as input a textual query 154
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T = {t1, t2, . . . , tn} and a visual input V =155

{v1, v2, . . . , vm}, where n and m denote the se-156

quence lengths of the text and visual inputs, re-157

spectively. The text and vision inputs are con-158

catenated together to form the first layer input159

H1 = concat(V ,T ) ∈ R(m+n)×d for the L lay-160

ers × H heads language decoder.161

During the forward pass, the input H l received162

by the h-th attention head at l-th layer is linearly163

transformed using independent weight matrices to164

generate the Query, Key and Value matrices, de-165

noted as Q(l,h) ∈ R(m+n)×d, K(l,h) ∈ R(m+n)×d166

and V (l,h) ∈ R(m+n)×d, where d denotes the head167

hidden dimensions. The generated Query, Key, and168

Value matrices are then used to compute the atten-169

tion score, attention weight matrix and attention170

output as follows:171

Ȧ(l,h) =
Q(l,h)K

T
(l,h)√

d
,A(l,h) = softmax(Ȧ(l,h)),172

173
O(l,h) = A(l,h)V (l,h). (1)174

At each layer, the updated hidden state H l+1 is175

then computed by adding the residual connection to176

the output of the multi-head attention mechanism:177

H l+1 = H l +

H∑
h=1

O(l,h) ·W l
o, (2)178

where W l
o ∈ RHd×d is the learnable weight ma-179

trix for the linear transformation applied after con-180

catenating the outputs from all H attention heads.181

Finally, the model predicts the next token in an au-182

toregressive manner based on the last layer output.183

3.2 Best Caption Query Search Algorithm184

This module aims to seek the best caption query,185

which induces the minimal necessary attention186

weight shift to activate the LVLMs’ fine-grained187

visual perception capabilities. For a single VQA188

question, we separately use a certain caption query189

T from J candidate queries and a non-caption190

query T ′ paired with same image V as inputs dur-191

ing the forward pass to compute caption-sensitive192

attention weight matrix A(l,h) and non-caption at-193

tention weight matrix A′
(l,h). The attention weight194

shift matrix can be computed as:195

Ashift =
L∑
l=1

H∑
h=1

(
A(l,h) −A′

(l,h)

)
. (3)196

For a VQA dataset with a batch size of B and a197

caption query candidate list with length of J , the198

index of the best query j in the candidate list can 199

then be calculated as: 200

argmin
j

B∑
b=1

Ab,j
shift s.t. j ∈ J, (4) 201

where Ab,j
shift denotes the attention weight shift 202

matrix when answering the b-th VQA using the j-th 203

caption query. 204

3.3 Caption-Sensitive Attention Heads Probe 205

This module aims to identify caption-sensitive at- 206

tention heads, which exhibit significant differences 207

in attention outputs when responding to caption 208

and non-caption queries. We focus on the LVLMs’ 209

attention output shift of visual information, aiming 210

to minimize the influence of textual semantic infor- 211

mation during the probing process. To achieve this, 212

we set the last token’s text-related attention scores 213

of each attention head to −∞ during the forward 214

pass, and compute the modified attention output: 215

Ȧ(l,h)[m : m+ n] = −∞, (5) 216

217
Ô(l,h) = softmax(Ȧ(l,h))V (l,h), (6) 218

219

Õ(l,h) = Ô(l,h)[m+ n]. (7) 220

For a dataset with a batchsize of B, the last to- 221

ken’s modified attention output of b′-th VQA prob- 222

lem when answering the caption query and non- 223

caption query are denoted as Õ
b

(l,h) and Õ′b
(l,h). 224

Respectively, the last token’s origin attention out- 225

put are denoted as Ob
(l,h) and O′b

(l,h). 226

For each head, we use the B pairs of modified 227

attention output as input to train a binary classifier 228

fl,h(·) that predicts wether the input sentence is a 229

caption query: 230

argmin
fl,h(·)

B∑
b=1

L (fl,h (xb) , yb) , (8) 231

where xb ∈ {Õ
b

(l,h), Õ
′b
(l,h)} denotes the input of 232

classifier and yb ∈ {0, 1} denotes the category of 233

query. We then select the top K binary classifiers 234

with the highest accuracy. In order to compute the 235

optimization direction for each head, the attention 236

output shift vector is computed as follows: 237

S(l,h) =
1

B

B∑
b=1

(
Ob

(l,h) −O′b
(l,h)

)
. (9) 238
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Describe the following image.
What's happening in the scene? 
What do you see happening in this image?
What do you think is going on in this snapshot?
...

Analyze the image in a comprehensive 
and detailed manner.

Does the image reflect outdoor recreational 
activities during winter?

Stage1: Best Caption Query Search Stage2: Probe & Shift Computation

Heads×H MLP

- =

Yes.

No.

Transformer Layer×L

Stage3: Inference-Time Intervention  

Attention Shift   

Probe Top-K Heads

Heads×H MLP

Transformer Layer×L
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Transformer Layer×L

Heads×H MLP

Transformer Layer×L

Is there a cup in the image?

Intervention

Attention Shift   
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= +

Figure 2: An overview of CAI method. Each square in the matrix represents the attention head output. Squares with
dark color indicate significant output differences. CAI consists of three stages: (1) §3.2 Best caption query search
algorithm is designed to seek the best optimization target query with minimal necessary attention weight shift. (2)
§3.3 The original and modified attention outputs are used to identify caption-sensitive attention heads and compute
attention output shift vectors. (3) §3.4 Precomputed attention shift vectors are applied to the top K caption-sensitive
attention heads during inference, thereby activating the model’s inherent fine-grained visual perception to mitigate
hallucination.

3.4 Intervention at Inference Time239

This module aims to refine the top K attention240

heads output that are most sensitive to caption241

queries at inference-time. The goal is to align the at-242

tention activation pathway closer to the pre-trained243

caption state, thereby enhancing the model’s fine-244

grained visual perception capability and mitigate245

hallucination. At each layer, the updated hidden246

state after intervention is computed as:247

H l+1 = H l +
H∑

h=1

(
O(l,h) + I(l,h)αS(l,h)

)
·W l

o,

(10)248

where I(l,h) is a gating function, assigning a value249

of 1 to attention heads with top k highest accuracy,250

and 0 to the others. α represents the intensity of251

the intervention.252

4 Experiments253

4.1 Experimental Setup254

We comprehensively evaluate the methods for both255

discriminative and generative tasks to measure the256

effectiveness and robustness of the methodes.257

Discriminative Tasks258

POPE employs a binary question-answering for-259

mat, inquiring LVLMs to answer if a special object260

exists in the given image. This benchmark is struc-261

tured around three distinct subsets: MS-COCO262

(Lin et al., 2014), A-OKVQA (Schwenk et al., 263

2022), and GQA (Hudson and Manning, 2019). 264

Following previous works, we adopt Accuracy and 265

F1 score as the evaluation metrics. 266

MME serves as a comprehensive tool for assess- 267

ing the capabilities of LVLMs across both 10 268

perception tasks and 4 cognition tasks. object- 269

level(existence, count) and attribute-level(position, 270

and color) tasks are specially designed for hallu- 271

cination evaluation. Consequently, task scores are 272

reported as the evaluation metrics. 273

Generative Tasks 274

CHAIR (Rohrbach et al., 2018) is a widely used 275

metric for assessing object hallucination in re- 276

sponses of LVLMs. Following previous work, We 277

use the MS-COCO Chair subset with the prompt 278

"Please describe this image in detail." to evaluate 279

the hallucination mitigating capabilities of LVLMs. 280

The CHAIR metric comprises two important indi- 281

cators, denoted as CHAIRi and CHAIRs, with the 282

following calculation formulas: 283

CHAIRi =
|{Hallucinationted objects}|
|{All objects mentioned}|

284

285

CHAIRs =
|{Sentence with hallucination objects}|

|{All sentence}|
286

MMHal-Bench comprises 96 meticulously de- 287

signed VQA questions, which evaluates response- 288

level hallucination rate and informativeness. It asks 289
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Dataset Setting Method LLaVA-1.5-7b Qwen-VL-Chat LLaVA-NeXT

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

MS-COCO

Random

Regular 83.29 81.33 84.63 82.61 84.78 86.43
VCD 87.73 87.16 86.93 85.46 88.76 89.57

OPERA 89.20 88.81 85.71 84.64 90.27 89.71
CAI(ours) 90.13(+6.84) 89.61(+8.28) 89.40(+4.77) 88.54(+5.93) 91.93(+7.15) 91.57(+5.14)

Popular

Regular 81.88 80.06 83.63 81.53 83.23 84.77
VCD 85.38 85.06 85.17 83.68 87.01 87.70

OPERA 86.64 86.62 84.82 83.99 87.16 87.68
CAI(ours) 88.57(+6.69) 88.16(+8.10) 87.97(+4.34) 87.19(+5.66) 89.70(+6.47) 89.49(+4.72)

Adversarial

Regular 78.96 77.57 81.03 79.30 81.19 82.50
VCD 80.88 81.33 83.10 82.04 84.80 85.23

OPERA 81.24 81.38 82.67 79.89 85.20 85.54
CAI(ours) 84.50(+5.54) 84.60(+7.03) 84.57(+3.54) 84.15(+4.85) 86.10(+4.91) 86.30(+3.80)

A-OKVQA

Random

Regular 83.45 82.56 84.93 83.68 84.20 84.22
VCD 86.15 86.34 87.33 86.52 89.27 88.65

OPERA 88.02 84.59 85.77 84.56 88.20 87.66
CAI(ours) 90.40(+6.95) 90.70(+8.14) 89.70(+4.77) 89.50(+5.82) 91.93(+7.73) 92.22(+8.00)

Popular

Regular 79.90 79.59 84.67 83.30 78.83 80.94
VCD 81.85 82.82 87.37 86.50 86.37 85.99

OPERA 83.22 84.67 86.20 85.77 85.78 85.48
CAI(ours) 85.33(+5.43) 86.45(+6.86) 90.80(+6.13) 90.52(+7.22) 88.63(+8.00) 88.51(+7.57)

Adversarial

Regular 74.04 75.15 78.87 78.54 74.50 75.40
VCD 74.97 77.73 81.30 81.38 79.97 80.77

OPERA 73.82 77.91 80.34 79.73 78.78 78.43
CAI(ours) 76.40(+2.36) 79.87(+4.72) 83.00(+4.13) 83.78(+5.24) 81.60(+7.10) 82.64(+7.24)

GQA

Random

Regular 83.73 82.95 83.93 82.19 85.87 84.87
VCD 86.65 86.99 86.97 85.66 87.83 87.12

OPERA 88.13 88.91 85.30 85.08 88.27 87.92
CAI(ours) 90.07(+6.34) 90.29(+7.34) 89.23(+5.30) 88.62(+6.43) 90.20(+4.33) 90.56(+5.69)

Popular

Regular 78.17 78.37 82.40 80.91 79.20 80.66
VCD 80.73 82.24 84.90 83.87 83.17 82.77

OPERA 79.27 82.11 83.16 82.76 82.07 81.90
CAI(ours) 81.37(+3.20) 83.21(+4.84) 87.87(+5.47) 87.36(+6.45) 83.73(+4.53) 83.69(+3.03)

Adversarial

Regular 75.08 76.06 78.57 77.32 77.73 77.87
VCD 76.09 78.78 81.30 80.57 78.70 79.10

OPERA 75.00 78.71 81.65 80.98 77.20 77.57
CAI(ours) 76.93(+1.85) 80.01(+3.95) 84.03(+5.46) 84.01(+6.69) 81.03(+3.30) 81.51(+3.64)

Table 1: Main results on POPE tasks. We evaluate the accuracy and F1 Score of various LVLMs on the POPE tasks
across the MS-COCO, A-OKVQA, and GQA datasets. CAI(ours) demonstrates the best hallucination mitigation
performance among several methods. The comparison with more advanced methods can be found in Appendix B.

GPT-4 to compare model outputs with human re-290

sponses and object labels for evaluation.291

Baselines. We adopt the widely used LLaVA-1.5-292

7b, Qwen-VL-Chat and LLaVA-NeXT (Liu et al.,293

2024c) as our baseline LVLMs. We compared294

our method with severval SOTA baselines of both295

training and training-free methods, including VCD,296

OPERA, DoLA (Chuang et al., 2023), Woodpecker297

(Yin et al., 2024), LURE (Zhou et al., 2023), HALC298

(Chen et al., 2024b), LLaVA-RLHF (Sun et al.,299

2023) and CCA-LLaVA (Xing et al., 2024).300

Implementation Details. In our experience, we301

utilized 13 caption queries and 100 VQA from302

LLaVA pretrain dataset to search the best caption.303

Then we utilized 1000 VQA from LLaVA pretrain- 304

ing dataset pairs with the searched best caption 305

query and non-caption queries to identify caption- 306

sensitive attention heads and computed the atten- 307

tion shift. For each attention head, SVM (Cortes, 308

1995) was used as the classifier and 2-fold cross- 309

validation was performed to evaluate its accuracy. 310

More detailed experimental procedures are pro- 311

vided in Appendix A. 312

4.2 Main Results 313

Comprehensive evaluations demonstrate that our 314

method exhibits superior hallucination mitigation 315

capabilities in discriminative and generative tasks. 316
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Method LLaVA-1.5-7b Qwen-VL-Chat
Existence Count Position Color Total Existence Count Position Color Total

Greedy 170.00 121.33 115.00 152.33 558.66 175.00 140.00 123.33 170.00 608.33
VCD 180.33 131.67 125.00 155.00 592.00 180.00 133.33 131.67 175.00 620.00
OPERA 165.00 116.00 133.33 149.00 563.33 180.00 140.00 138.33 175.00 633.33
LURE 167.67 118.00 108.00 138.67 532.34 175.00 138.67 126.67 170.00 610.34
HALC 185.00 138.00 126.67 158.33 608.00 180.00 143.33 125.00 175.00 623.33
CCA-LLaVA 190.00 148.33 128.33 170.00 636.66 - - - - -
CAI(ours) 190.00 141.66 140.00 170.00 641.66 185.00 150.00 133.33 180.00 648.33

Table 2: Main results on the hallucination subset of MME. The best performances within each setting are bolded.

Perception

Recognition

Figure 3: Main results on the MME full set. CAI leads to the best enhancement in LVLMs’ perception capacities
while preserving their recognition competencies.

Result on POPE. Table 1 presents the POPE tasks317

results under nine different experimental settings.318

(1) SOTA performence. Compared with VCD and319

OPERA, our methodes achieved superior halluci-320

nation mitigation effects across all experimental321

configurations. Specifically, it leads to an aver-322

age improvement of 5.02% in accuracy and 6.58%323

in F1 score for LLaVA-1.5-7b, 4.87% and 6.03%324

for Qwen-VL-Chat, 5.95% and 5.43% for LLaVA-325

NeXT, resulting in SOTA hallucination mitiga-326

tion effects. (2) Easy to deploy in open-source327

LVLMs. During the best caption query searching,328

caption-sensitive attention heads probe and shift329

vector computation stages, we selected images, cap-330

tion query candidates and non-caption queries from331

LLaVA-1.5-7b pre-training dataset, which are out-332

side the domain of the benchmark datasets. De-333

spite this cross-domain discrepancy, our method334

achieved significant improvements even when ap-335

plied to Qwen-VL-Chat and LLaVA-NeXT, indi-336

cating that CAI does not rely on specific models or337

data and deploy in open-source LVLMs easily.338

Results on MME. Table 2 and Figure 3 respec-339

tively present the experimental results for the MME340

hallucination subset and full set. Our method ef-341

fectively mitigates hallucination while preserv- 342

ing the LVLMs’ other foundational capabilities. 343

On the MME hallucination subset, our method 344

achieved the best improvements across all capabili- 345

ties with score increases of 83.0 for LLaVA-1.5-7b 346

and 40.0 for Qwen-VL-Chat. On the full MME 347

dataset, performance improved on 13 out of 14 per- 348

ception and reasoning tasks, with an overall score 349

increase of 197.63 for LLaVA-1.5-7b. 350

Greedy  DoLA OPERA VCD Woodpecker  LURE CCA-
LLaVA

CAI0

5

10

15

20

25

20.80 21.00 21.13

23.33 23.85

19.48
18.20

17.20

6.77 6.70 6.73
7.90 7.50

6.50
5.60 5.50

CHAIRs CHAIRi

Figure 4: Main result of LLaVA-1.5-7b on MS-COCO
CHAIR task. Smaller values of CHAIRi and CHAIRs

indicate that the method demonstrates stronger halluci-
nation mitigation capabilities at instance and sentence
levels. Max new tokens is set to be 64.
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Results on CHAIR. Figure 4 demonstrates that our351

method significantly reduces both sentence-level352

and instance-level hallucination in responses to cap-353

tion queries. Specifically, we observed reductions354

of 3.6% in the CHAIRs metric and 1.27% in the355

CHAIRi metric.356

Method LLaVA-1.5-7b Qwen-VL-Chat
Score↑ VH Rate%↓ Score↑ VH Rate%↓

Training-Free Methods

Greedy 1.86 63.5 2.93 41.1
VCD 2.12 54.2 2.77 39.2
OPERA 2.15 54.2 2.94 38.4

Training Methods

LLaVA-RLHF 2.02 62.5 - -
CCA-LLaVA 2.22 59.5 - -

CAI(ours) 2.33 53.0 3.04 38.0

Table 3: Main result on MMHal-Bench.

Results on MMHal-Bench. Table 3 presents our357

method effectively reduces the hallucination rate in358

responses to non-caption queries while enhancing359

informativeness, even outperforming several data-360

driven training-based methodes.361

5 Analysis and Discussions362

5.1 Inference Latency363

Method TTFT(ms) TPOT(ms) Acc(%)

LLaVA-1.5-7b 99.8 1.0× 36.0 1.0× 78.96

+VCD 160.1 1.6× 96.8 2.7× 80.88
+OPERA 109.8 1.1× 69.5 1.9× 81.24
+VDGD 377.8 3.8× 340.9 9.5× 65.82

+CAI(ours) 102.2 1.0× 36.5 1.0× 84.50

Table 4: Inference latency (Time to First Token, Time
Per Output Token) and the accuracy on MS-COCO ad-
versarial POPE of different methods.

As shown in Table 4, although VDGD (Ghosh364

et al., 2024) attempts to mitigate hallucination us-365

ing captioning capability, directly using caption366

description significantly increases computational367

cost and forces the model to process longer context,368

leading to a performance drop on the POPE task.369

Compared to contrastive decoding-based methods370

which trade-off speed for accuracy, CAI implicitly371

utilizes captioning capabilities, achieveing faster372

inference speed and better performance.373

5.2 Necessity of the Search Algorithm374

To better understand the necessity of the search375

algorithm, we will focus on analyzing the following376

Figure 5: The accuracies of baselines and CAI with
different caption queries on GQA Random POPE task.

two issues: 377

One potential question is, Why does CAI pre- 378

fer using a single caption query instead of com- 379

bining multiple queries? The answer lies in the 380

fact that different caption queries activate differ- 381

ent paths during inference. Combining multiple 382

caption queries causes interference between the ac- 383

tivated paths, preventing the performance improve- 384

ments that could be achieved by using any single 385

caption query. 386

Another key question is, Why does CAI select 387

the query with minimal attention weight shift as 388

the best? The primary goal of CAI is to refine the 389

outputs of caption-sensitive attention heads with- 390

out significantly altering LVLMs’ existing behav- 391

iors. By minimizing the attention weight shift, CAI 392

strikes a balance between enhancing visual percep- 393

tion and maintaining the integrity of other foun- 394

dational capabilities. As illustrated in Figure 5, 395

the experimental results demonstrate that LVLMs 396

achieve the best performance using CAI search 397

strategy. Certain caption query without careful se- 398

lection may lead LVLMs to excessively focus on 399

visual information, preventing it from achieving 400

maximum performance improvement. 401

5.3 Distribution of Probed Attention Heads 402

Head Head

La
ye

r

La
ye

r

Accuracy of LLaVA-1.5-7b Accuracy of Qwen-VL-Chat

Figure 6: The accuracies of classifiers.
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LLaVA-1.5-7b (Vanilla):
The image features a woman standing on a street, holding an umbrella to protect herself from the 
rain. She is wearing glasses and a blue jacket, and she is positioned under a black umbrella. The 
woman is also holding a brown book in her left hand.
There are several other people…

LLaVA-1.5-7b (CAI):
The image features a woman standing on a street, holding an umbrella to protect herself from the 
rain. She is wearing glasses and a blue shirt, and she appears to be looking at something in front of 
her. The umbrella is open, covering her from the rain.
Other people can be seen further in the background…

LLaVA-1.5-7b (Vanilla Context + CAI):
The image features a woman standing on a street, holding an umbrella to protect herself from the 
rain. She is wearing glasses and a blue jacket, and she is positioned under a black umbrella. The 
woman is also using another umbrella to shield herself from the rain. 
There are two other individuals in the scene…

        Please describe this image in detail.

Hallucination

No Hallucination

No Hallucination

Response Continuation

Response Regeneration

Figure 7: LLaVA-1.5-7b demonstrated hallucination when addressing caption query of MS-COCO CHAIR dataset.
Both response continuation and regeneration for the same query provided by CAI effectively mitigate hallucination.

As illustrated in Figure 6, we visualize the clas-403

sification accuracies across 32 × 32 attention heads.404

We observe that caption-sensitive attention heads405

are concentrated primarily between the 7th and406

20th layers. These layers are critical for balanc-407

ing visual perception and semantic understand-408

ing within the model. By refining the output of409

these attention heads, CAI significantly enhances410

LVLMs’ visual perception capability while main-411

taining strong language comprehension, mitigating412

hallucination in the process.413

5.4 Case Study on CHAIR414

CAI proves effective in mitigating hallucination415

even when addressing caption queries. CAI416

strengthens the visual information attention of at-417

tention heads responsible for captioning tasks, fur-418

ther enhancing LVLMs’ captioning capability. As419

shown in Figure 7, CAI effectively mitigates hallu-420

cination through sentence continuation and regen-421

eration. See the Appendix E for more cases.422

5.5 Implications of Hyperparameters423

α: the intensity of intervention K: the number of refined heads 

Pe
rc

en
ta

ge
(%

)

Pe
rc

en
ta

ge
(%

)

Figure 8: Ablation study of α and K.

CAI method primarily relies on two key hyper-424

parameters: the intensity of intervention α and the425

number of refined attention heads K. To explore426

their effects on performance, we performed a se- 427

ries of ablation experiments on the MS-COCO Ad- 428

versarial POPE dataset. The results are shown in 429

Figure 8. The key implications can be summarized 430

as follows: 431

(1) Impact of α: A negative value reduces the 432

model’s attention to visual tokens, which in turn 433

diminishes its performance in hallucination mitiga- 434

tion. When α is small, the attention intervention 435

is insufficient, resulting in only marginal improve- 436

ments in model performance. A large α leads to 437

insufficient attention to textual information, result- 438

ing in a decline in performance. 439

(2) Impact of K: Applying intervention to too 440

few attention heads fails to effectively influence the 441

activation pathways of visual information, resulting 442

in limited improvements in hallucination mitiga- 443

tion. Conversely, intervening in too many attention 444

heads can disrupt critical attention activation paths 445

that are unrelated to visual perception and play 446

essential roles in other foundational capabilities, 447

leading to performance degradation. 448

6 Conclusion 449

In this paper, we presented CAI, a training-free 450

method that refines caption-sensitive attention 451

heads outputs for non-caption queries towards 452

outputs for caption queries during the inference, 453

thereby leveraging LVLMs’ inherent fine-grained 454

visual perception capabilities to mitigate object 455

hallucination. CAI demonstrates strong general- 456

izability and can be applied to several open-source 457

LVLMs. Moreover, CAI achieves lower inference 458

latency and better performance compared to other 459

contrastive-decoding based training-free methods. 460

Consistent performance improvements across di- 461

verse benchmarks highlight its robustness. 462
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7 Limitations463

While CAI demonstrates significant effectiveness464

in mitigating object hallucinations in Large Vision-465

Language Models (LVLMs), several limitations466

should be acknowledged to provide a balanced per-467

spective on its applicability and scope. First, CAI468

relies on the availability of suitable caption queries469

to identify the optimal attention shift. While our470

search algorithm is designed to minimize this de-471

pendency, the performance of CAI may vary de-472

pending on the quality and relevance of the cap-473

tion queries used. In scenarios where high-quality474

caption queries are unavailable, the effectiveness475

of CAI could be limited. Expanding the caption476

query candidate list could address this issue. More-477

over, LVLMs that do not rely on multi-head atten-478

tion mechanisms, or those employing non-standard479

visual-textual alignment strategies, may not benefit480

from CAI’s intervention method. We will address481

the above issues in future work.482
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A Additional Experimental Details711

All datasets used in this paper are licensed under a712

Creative Commons Attribution 4.0 License.713

A.1 Data Source714

Although our method does not rely on specific data,715

we separately specify the sources of the data used716

in the experiments for the sake of reproducibility.717

A.1.1 Data of Best Query Search718

In the best caption search algorithm, we use the719

top 100 VQA samples from the complex reason-720

ing data in the LLaVA-1.5-7b pre-training dataset.721

From this, we obtain non-caption queries and their722

corresponding images. Additionally, we maintain a723

list of 13 candidate caption queries, some of which724

are manually generated and others are derived from725

the pre-trained instructions of LLaVA-1.5-7b. The726

caption query candidates are listed as follows:727

"What do you see happening in this image?",728

"What do you think is going on in this snapshot?",729

"Can you elaborate on the elements of the pic-730

ture provided?", "Describe the following image.",731

"What’s happening in the scene?", "Analyze the732

image in a comprehensive and detailed manner.",733

"Write a detailed description of the given image.",734

"What is this photo about?", "Explain the visual735

content of the image in great detail.", "What are736

the key elements in this picture?", "Can you de-737

scribe the main features of this image for me?",738

"Please describe this image in detail.", "Generate739

the caption in English:"740

In the experiments, the best caption query for741

LLaVA-1.5-7b is "Analyze the image in a compre-742

hensive and detailed manner." and the best caption743

query for Qwen-VL-Chat is "Please describe this744

image in detail.".745

A.1.2 Data of Probe and Shift Computation746

We extracted the first 1,000 samples from the747

complex reasoning data in the LLaVA-1.5-7b pre-748

training dataset. The questions from these samples749

were treated as non-caption queries.750

A.2 Detailed Experimental Setup751

In the experiment of POPE, ’regular’ refers to the752

direct sampling setting. To better compare with753

the results of other methods, we adopted the de-754

fault experimental settings of other methods. For755

reproducibility of our results, we used greedy de-756

coding and set α = 1.5 and K = 100 in the main757

experiments.758

B Comparison with More Advanced 759

Methods 760

We selected LLaVA-1.5-7b as the baseline model 761

and compared CAI with more advanced models in- 762

cluding VCD (Leng et al., 2024), ICD (Wang et al., 763

2024), OPERA (Huang et al., 2024), Woodpecker 764

(Yin et al., 2024), M3ID (Favero et al., 2024), 765

DAMRO (Gong et al., 2024), IMCCD (Li et al., 766

2025), CATCH (Kan et al., 2024), IBD (Zhu et al., 767

2024), HIO (Chen et al., 2024a), CAUSALMM 768

(Zhou et al., 2024) and CCA-LLaVA (Xing et al., 769

2024). The results of CAI compared with several 770

state-of-the-art methods on MS-COCO Adversarial 771

POPE are shown in Table 7. 772

C Detailed Experimental Results of MME 773

Detailed experimental results on MME perception 774

and cognition can be found in Table 8 and Table 9. 775

D Detailed Experimental Results of 776

Ablation 777

Detailed results of the ablation experiments can be 778

found in Table 5 and Table 6. 779

α LLaVA-1.5-7b Qwen-VL-Chat
Accuracy F1-Score Accuracy F1-Score

-0.50 77.07 77.14 80.32 78.62
0.00 78.96 77.57 81.03 79.30
0.50 81.07 82.50 84.13 82.78
1.00 82.50 83.32 84.23 83.40
1.25 83.47 83.94 84.47 83.44
1.50 84.50 84.60 84.57 84.15
1.75 84.90 84.21 84.12 83.54
2.00 85.10 84.02 83.98 83.12

Table 5: Detailed results of α on MS-COCO Adversarial
POPE dataset.

K LLaVA-1.5-7b Qwen-VL-Chat
Accuracy F1-Score Accuracy F1-Score

0 78.96 77.57 81.03 79.30
25 79.77 81.79 83.87 82.21
50 80.50 82.16 83.90 82.52
75 80.77 82.37 84.32 83.67
100 84.50 84.60 84.57 84.15
125 84.10 84.27 84.47 84.06
150 83.20 83.80 83.97 83.74
200 83.00 83.38 83.37 83.62

Table 6: Detailed results of K on MS-COCO Adversar-
ial POPE dataset.

E Additional Case Studies 780

More case studies are shown as follows. 781
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Method Random Popular Adversarial Average

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Regular 83.29 81.33 81.88 80.06 78.96 77.57 81.38 79.65
VCD (CVPR’24) 87.73 87.16 85.38 85.06 80.88 81.33 84.66 84.52
ICD (EMNLP’24 findings) 89.56 89.68 86.16 86.76 79.71 81.70 85.14 86.05
OPERA (CVPR’24) 89.20 88.81 86.64 86.62 81.24 81.38 85.70 85.60
Woodpecker (SCIS’24) 87.67 86.45 80.67 79.72 80.67 80.00 83.00 82.05
M3ID (CVPR’24) 86.20 84.51 84.77 83.17 82.53 81.14 84.50 82.94
DAMRO (EMNLP’24) 88.20 87.29 85.67 84.98 82.07 81.90 85.31 84.72
IMCCD (arXiv’25) 89.23 88.68 86.73 86.13 82.87 82.77 86.27 85.86
CATCH (ECCV’24) 90.43 90.13 87.07 86.56 83.17 83.18 86.89 86.62
VDD (arXiv’24) 90.00 88.79 85.91 84.40 83.52 82.20 86.48 85.13
HIO (NeurIPS’24) 90.21 89.94 88.12 87.84 84.32 84.34 87.55 87.37
CAUSALMM (ICLR’25) 88.93 88.10 87.13 87.26 83.70 82.78 86.59 86.05
CCA-LLaVA (NeurIPS’24) 88.03 86.65 86.87 85.54 85.67 84.42 86.86 85.54

CAI(ours) 90.13 89.61 88.57 88.16 84.50 84.60 87.73 87.46

Table 7: Result compared with more advanced methods on MS-COCO POPE.

Method Artwork Celebrity Color Count Existence Landmark OCR Position Posters Scene Total

Regular 102.20 113.59 151.00 124.67 175.67 129.95 92.00 114.00 127.82 148.30 1279.20
VCD 109.60 120.94 153.00 138.33 184.66 140.45 104.00 128.67 132.11 152.20 1363.96
OPERA 122.50 126.76 149.00 116.00 165.00 152.75 132.50 133.33 136.05 154.00 1387.89
CAI(ours) 120.25 135.88 170.00 141.67 190.00 158.50 120.00 140.00 140.48 157.00 1473.78

Table 8: Results on all MME perception-related tasks. The best performance of each setting is bolded.

Method Coding Reasoning Commonsense Reasoning Numerical Calculation Text Translation Total

Regular 66.38 106.43 57.00 72.50 302.31
VCD 68.50 111.29 42.64 68.50 290.93
OPERA 62.50 119.29 37.50 82.50 301.79
CAI(ours) 75.00 122.86 57.50 50.00 305.36

Table 9: Results on all MME recognition-related tasks. The best performance of each setting is bolded.

LLaVA-1.5-7b (CAI):
The image depicts a rainy day in a city, with a wet street and sidewalk. The street 
is lined with trees, and there are several cars parked along the side of the road. A 
bus is also visible on the street, adding to the urban atmosphere.
There are multiple traffic lights in the scene, with one near the center of the image 
and others scattered around the area. A fire hydrant can be seen on the sidewalk, 
and a stop sign is located further down the street.
A few people are walking along the sidewalk, with one person closer to the center 
of the image and two others further down the street. The overall scene captures 
the feeling of a rainy day in a city.

GPT-4 Evaluation: 
The LMM's response is accurate and does not hallucinate any information. It 
captures the main details described in the human-generated response, such as 
the city street, parked cars, pedestrians, and rainy atmosphere. It also mentions 
other details not mentioned in the human response, like the bus, the traffic lights, 
a f i re hydrant ,  and a stop s ign.  These addi t ional  deta i ls  add to the 
descriptiveness of the LMM's response. However, it does not capture the sense 
of "calm and serenity" mentioned in the human-generated response, which may 
reduce its nformativeness slightly.

Rating: 5, very informative, no hallucination.

LLaVA-1.5-7b (Vanilla):
The image depicts a rainy day in a city, with a wet street and sidewalk. The street 
is lined with trees, and there are several cars parked along the side of the road. A 
bus is also visible on the street, adding to the urban atmosphere. There are 
several people walking on the sidewalk, some of them carrying umbrellas to 
shield themselves from the rain. A traffic light is present in the scene, and a fire 
hydrant can be seen further down the street. The street appears to be a popular 
spot for people to walk, as there are several benches placed along the sidewalk. 
One of the benches is located near the center of the scene, while another is 
situated closer to the right side.

GPT-4 Evaluation: 
The LMM's response is detailed and generally accurate in describing the street, 
the trees, the parked cars, the people with umbrellas, and the wet conditions 
suggestive of a recent rainfall. However, the model hallucinates when it infers that 
there is a bus present in the picture, layers additional detail by saying that there 
are benches along the sidewalk, and specifies the location of a fire hydrant. 
These elements are not mentioned in the human-generated description or implied 
by the image contents provided. 

Rating: 1, somewhat informative, with hallucination.

        Describe the image in detail.

Golden Answer:
The picture depicts a city street, recently dampened by rain, with a sidewalk lined 
by trees. There are several cars parked on the right, while others move along the 
road. A few pedestrians can be seen at a distance on the sidewalk, some of them 
holding umbrellas to protect themselves from the rain. The trees offer shade and 
lend a touch of nature to the urban setting. The scene exudes a sense of calm 
and serenity, emphasized by the glistening wet street and the nearly vacant 
walkway.

Figure 9: Caption query case of LLaVA-1.5-7b on MMHal-Bench.
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LLaVA-1.5-7b (CAI):
The image features a zoo enclosure with a group of zebras and giraffes 
standing together. There are three zebras in the scene, with one positioned 
closer to the left side, another in the middle, and the third one on the right 
side. A giraffe is standing near the left side of the enclosure, while another 
giraffe is positioned more towards the center.
The enclosure is surrounded by a rock wall, and there is a large rock in the 
middle of the scene. The animals appear to be enjoying their time together, 
possibly in a shaded area.

GPT-4 Evaluation: 
The LMM's response provides a detailed description of the image, identifying 
the animals present (zebras and giraffes) and giving a sense of their 
positioning within the enclosure. However, it neglects to specify the number 
of giraffes, which were included in the standard human-generated answer. It 
also makes a claim of the animals possibly enjoying their time together in a 
shaded area\u2014an assumption not explicitly made in the image content. 
Nonetheless, it captures the main elements in the image with no significant 
hallucination.

Rating: 4, somewhat informative, no hallucination.

LLaVA-1.5-7b (Vanilla):
The image features a zoo enclosure with a group of zebras and giraffes 
standing together. There are three zebras in the foreground, with one of them 
being a baby zebra. Behind them, there are two giraffes, one of which is a 
baby giraffe. The animals are standing near a rock wall, and there is a large 
rock in the background.
The enclosure is surrounded by a fence, and there is a small building in the 
background. The zebras and giraffes appear to be enjoying their time 
together in the zoo.

GPT-4 Evaluation: 
The LMM's response is somewhat informative as it describes the presence of 
zebras and giraffes near a rock wall, mentioning a small building and a fence 
surrounding the enclosure, all of which aligns with the image's content. 
However, the response also has some minor inaccuracies, such as the claim 
of baby zebras and giraffes being present, and stating that there are only two 
giraffes when there are actually four. Additionally, there is a sl ight 
hallucination in that it claims the animals are "enjoying their time", which is an 
anthropomorphic attribution that is not directly observable from the image. 
Therefore, the response is rated as somewhat informative, with minor 
hallucinations.

Rating: 1, somewhat informative, with hallucination.

        Describe the image in detail.

Golden Answer:
The image depicts three zebras and four giraffes on a sandy terrain, with 
trees in the background and a stone structure to the right. Surrounding the 
scene is fencing, suggesting a controlled environment like a zoo or nature 
reserve.

Figure 10: Another caption query case of LLaVA-1.5-7b on MMHal-Bench.

LLaVA-1.5-7b (CAI):
The weather in the picture was dark, with a nighttime setting.

GPT-4 Evaluation: 
The LMM's response matches the standard human-generated 
answer and makes no false claims about the image contents. 
Therefore, this response does not contain any hallucination. 
Both responses indicate that the weather was dark during the 
capturing of the photo, suggesting a nighttime setting. 
However, the LMM's response does not provide additional 
helpful insights, other than stating the darkness of the setting.

Rating: 4, somewhat informative, no hallucination.

LLaVA-1.5-7b (Vanilla):
The weather in the picture was dark and cloudy.

GPT-4 Evaluation: 
The LMM response matches with the standard human 
answer that it was dark, implying it was nighttime, but it 
falsely adds that the weather was cloudy. There was no 
mention or indication in the image contents that could 
support the claim of cloudiness. Therefore, the LMM 
response involves hallucination.

Rating: 1, somewhat informative, with hallucination.

        How was the weather when this picture was captured?

Golden Answer:
When this photo was taken, it was dark at night. This photo 
shows a horse race at night.

Figure 11: Non-caption query case of LLaVA-1.5-7b on MMHal-Bench.
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LLaVA-1.5-7b (CAI):
This photo is taken during the day.

GPT-4 Evaluation: 
"The LMM's response is accurate and matches the human-
generated answer, indicating that it correctly interpreted the 
image. However, it doesn't provide a detailed analysis hence 
it isn't very informative. Therefore, there is no hallucination in 
the information provided by the LMM. 

Rating: 5, very informative, no hallucination.

LLaVA-1.5-7b (Vanilla):
This photo is taken at night.

GPT-4 Evaluation: 
The LMM's response is false because it claims that the photo 
is taken at night, when the standard human-generated 
answer states that the photo was taken during the day. The 
model seems to be hallucinating in this case.

Rating: 0, not informative, with hallucination.

      At what time is this photo taken?

Golden Answer:
The photo is taken during the day.

Figure 12: Non-caption query case of LLaVA-1.5-7b on MMHal-Bench.

LLaVA-1.5-7b (CAI):
The umbrella is colorful, featuring a combination of purple, yellow, 
orange, and green.

GPT-4 Evaluation: 
The LMM identifies the umbrella as being colorful and mentions 
similar colors as in the standard human-generated answer. However, 
i t  mentions green instead of teal.  This is not necessari ly a 
hallucination as teal can be seen as a shade of green. Therefore, the 
answer is generally in alignment with the objects listed in the image 
contents and it correctly answers the question. 

Rating: 5, very informative, no hallucination.

LLaVA-1.5-7b (Vanilla):
The umbrella is purple.

GPT-4 Evaluation: 
The LMM's response is considered as hallucination because it incorrectly 
identifies the umbrella as only having the color purple, while the standard human-
generated answer suggests that the umbrella is colorful, containing purple, yellow, 
teal, and orange. This means the LMM's response has failed in providing correct, 
comprehensive information about the image. Therefore, the rating would be 1, 
somewhat informative, with hallucination. 

Rating: 1, somewhat informative, with hallucination.

What color is the umbrella?

Golden Answer:
The umbrella is colorful, containing purple, yellow, teal, and orange.

Figure 13: Non-caption query case of LLaVA-1.5-7b on MMHal-Bench.
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