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Abstract
Given any algorithm for convex optimization that
uses exact first-order information (i.e., function
values and subgradients), we show how to use
such an algorithm to solve the problem with ac-
cess to inexact first-order information. This is
done in a “black-box” manner without knowl-
edge of the internal workings of the algorithm.
This complements previous work that consider
the performance of specific algorithms like (accel-
erated) gradient descent with inexact information.
In particular, our results apply to a wider range
of algorithms beyond variants of gradient descent,
e.g., projection-free methods, cutting-plane meth-
ods, or any other first-order methods formulated
in the future. Further, they also apply to algo-
rithms that handle structured nonconvexities like
mixed-integer decision variables.

1. Introduction
Optimization is a core tool for almost any learning or estima-
tion problem. Such problems are very often approached by
setting up an optimization problem whose decision variables
model the entity to be estimated, and whose objective and
constraints are defined by the observed data combined with
structural insights into the inference problem. Algorithms
for any sufficiently general class of relevant optimization
problems in such settings need to collect information about
the particular instance by making (adaptive) queries about
the objective before they can report a good solution. In
this paper, we focus on the following important class of
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optimization problems over a fixed ground set X ⊆ Rd

min{f(x) : x ∈ X}, (1.1)

where f : Rd → R is a (possibly nonsmooth) convex func-
tion. When the underlying ground set X is all of Rd or
some fixed convex subset, (1.1) is the classical convex op-
timization problem. In this paper, we allow X to be more
general and to be used to model some known nonconvexity,
e.g. integrality constraints by setting X = C ∩ (Zd1 ×Rd2)
with d1 + d2 = d, where C ⊆ Rd is a fixed convex set.
From an algorithmic perspective, the setup is that the algo-
rithm has complete knowledge of what X is, but does not
a priori know f and must collect information via queries.
A standard model for accessing the function f is through
so-called first-order oracles. At any point during its execu-
tion, the algorithm can request the function value and the
(sub)gradient of f at any point x̄ ∈ Rd.

Given access to such oracles, a first-order algorithm makes
adaptive queries to this oracle and, after it judges that it has
collected enough information about f , it reports a solution
with certain guarantees. A long line of research has gone
into understanding exactly how many queries are needed
to solve different classes of problems (with different sets
of assumptions on f and X), with tight upper and lower
bounds on the query complexity (a.k.a. oracle or infor-
mation complexity) known in the literature; see (Nesterov,
2004; Bubeck, 2015; Nemirovski, 1994; Basu, 2023; Basu
et al., 2023) for expositions of these results.

A natural question that arises in this context is what hap-
pens if the response of the oracle is not exact, but approx-
imate (with possibly desired accuracy). For example, the
response of the oracle might be itself a solution to another
computational problem which is solved only approximately,
which happens when using function smoothing (Nesterov,
2005), and in minimax problems (Wang & Abernethy, 2018).
Stochastic first-order oracles, modeling applications where
only some estimate of the gradient is used, may also be
viewed as inexact oracles whose accuracy is a random vari-
able at each iteration. Thus, researchers have also investi-
gated what one can say about algorithms that have access to
inexact oracle responses (with possibly known guarantees
on the inexactness). Early work on this topic appears in
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Shor (Shor, 1985) and Polyak (Polyak, 1987), and more
recent progress can be found in (Devolder et al., 2014;
Schmidt et al., 2011; Lan, 2009; Hintermüller, 2001; Kiwiel,
2006; d’Aspremont, 2008) and references therein. To the
best of our knowledge, all previous work on inexact first-
order oracles has focused either on how specific algorithms
like (accelerated) gradient methods perform with inexact
(sub)gradients with no essential change to the algorithm, or
on how to adapt a particular class of algorithms to perform
well with inexact information.

In this paper, we provide a different approach to the prob-
lem of inexact information. We provide a way to take any
first-order algorithm that solves (1.1) with exact first-order
information and, with absolutely no knowledge of the its
inner workings, show how to make the same algorithm work
with inexact oracle information. Thus, in contrast to earlier
work, our result is not the analysis of specific algorithms
under inexact information or the adaptation of specific al-
gorithms to use inexact information. It is in this sense that
we believe our results to be universal because they apply
to a much wider class of algorithms than previous work,
including gradient descent, cutting plane methods, bundle
methods, projection-free methods etc., and also to any first-
order method that is invented in the future for optimization
problems of the form (1.1).

2. Formal statement of results and discussion
We begin with definitions of standard concepts that we need
to state our results formally. We use ∥ · ∥ to denote the stan-
dard Euclidean norm and B(c, r) to denote the Euclidean
ball of radius r centered at c ∈ Rd. When the center is the
origin, we denote the ball by B(r). A function h : Rd → R
is said to be M -Lipschitz if |h(x) − h(y)| ≤ M∥x − y∥
for all x, y. Let F0(M,R) denote the standard family of
instances of the optimization problem (1.1) consisting of all
M -Lipschitz (possibly non-differentiable) convex functions
f such that the minimizer x⋆ ∈ X is contained in the ball
B(R).1 We now formalize the inexact first-order oracles
that we will work with.

Definition 2.1. An η-approximate first-order oracle for
a convex function f : Rd → R takes as input a query
point x̄ ∈ Rd and returns a first-order pair (f̃ , g̃) satisfying
|f̃ − f(x̄)| ≤ η and ∥g̃ − g∥ ≤ η

2R for some subgradient
g ∈ ∂f(x̄).

1This is a standard assumption in the analysis of optimization
algorithm – if no such bound is assumed, then it can be shown
that no algorithm can report a good solution within a guaranteed
number of steps for every instance (Nesterov, 2004). Alternatively,
one may give the convergence rates in terms of the distance of the
initial iterate of the algorithm and the optimal solution (one can
think of R as an upper bound on this distance). Our results can
also be formulated in this language with no conceptual or technical
changes.

We now state our main results. We remind the reader that
in (1.1) the underlying set X need not be Rd and may be
nonconvex; below, when we talk about a first order algo-
rithm for (1.1) we mean an algorithm that can solve (1.1)
with access to first-order oracles for f . We use OPT(f) to
denote the optimal value of the instance f .

Theorem 2.2. Consider an algorithm for (1.1) such that
for any instance f ∈ F0(M,R), with access to function
values and subgradients of f , after T iterations the algo-
rithm reports a feasible solution x ∈ X with error at most
err(T,M,R), i.e., f(x) ≤ OPT(f) + err(T,M,R).

Then there is an algorithm that, with access to an η-
approximate first-order oracle for f for any η ≥ 0, after
T iterations the algorithm returns a feasible solution x̄ ∈ X
with value

f(x̄) ≤ OPT(f) + err(T,M ′, R) + 4ηT,

where M ′ = M + η
2R .

Although we state this theorem as an existence result, our
proof is constructive and exactly formulates the desired
algorithm via Procedures 1 and 2. Let us illustrate what
this theorem says when applied to two classical algorithms
for convex optimization (i.e., X = Rd): subgradient meth-
ods and cutting-plane methods (Nesterov, 2004). When
using exact first-order information, the subgradient method
produces after T iterations a solution with error at most
O
(
MR√

T

)
. Applying the procedures mentioned from The-

orem 2.2 to this algorithm, one obtains an algorithm that
uses only η-approximate first-order information and after
T iterations produces a solution whose error is at most
O
(

MR+η√
T

)
+ 2Tη. If one can choose the accuracy of the

inexact oracle, setting η = ε3

M2R2 and T = ⌈M2R2

ε2 ⌉ gives
a solution with error at most O(ε). Note that this does not
involve knowing anything about the original algorithm; it
simply illustrates the tradeoff between the oracle accuracy
and final solution accuracy.

Similarly, for classical cutting-plane methods (e.g., center-
of-gravity, ellipsoid, Vaidya) the error after T itera-
tions is at most O

(
MR exp

(
−T

poly(d)

))
. Thus, with

access to η-approximate first-order oracles, we can use
our result to produce a solution with error at most
O
(
(MR+ η

2 ) exp
(

−T
poly(d)

))
+ 4ηT . With the de-

sired accuracy of η = O

(
ε

poly(d) log(MR
ε )

)
, and T =

O
(
poly(d) log

(
MR
ε

))
, it gives a solution with error at

most O(ε).

We next consider the family of α-smooth functions, i.e., the
family F1(M,α,R) of M -Lipschitz convex functions that
are differentiable with α-Lipschitz gradient maps, whose
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minimizers are contained in B(R). This is a classical family
of objective functions in convex optimization that admits
the celebrated accelerated method of Nesterov (1983) (see
(d’Aspremont et al., 2021) for a survey). We give the fol-
lowing universal transfer theorem for algorithms for smooth
objective functions.

Theorem 2.3. Consider an algorithm for (1.1) such that for
any instance in f ∈ F1(M,α,R), with access to function
values and subgradients of f , after T iterations the algo-
rithm reports a feasible solution x ∈ X with error at most
err(T,M,α,R), i.e., f(x) ≤ OPT(f) + err(T,M,α,R).

Then for any η ≤ αR2

5T , there is an algorithm that, with
access to an η-approximate first-order oracle for f , after T
iterations the algorithm returns a feasible solution x̄ ∈ X
with value

f(x̄) ≤ OPT(f) + err(T,M ′, α′, R) + 5η · (T + 2),

where M ′ = M + η
2R , α′ = α ·

√
d ·

(
4
√
5(T + 1) + 3

)
.

As an illustration, we apply this transfer theorem to the
accelerated algorithm of Nesterov (1983) for continuous
optimization (X = Rd): Under perfect first-order infor-
mation, it obtains error O(αR

2

T 2 ) after T iterations. Using
our transfer theorem as a wrapper gives an algorithm that,
using only η-approximate first-order information, obtains
error O(αR

2
√
d

T 1.5 + ηT ); if the accuracy of the oracle is
set to η = O(αR

2
√
d

T 2.5 ), this gives an algorithm with error
O(αR

2
√
d

T 1.5 ). While this does not recover in full the accel-
eration of Nesterov’s method, the key take away is that a
significant amount of acceleration (i.e., error rates better
than those possible for non-smooth functions) can be pre-
served under inexact oracles in a universal way, for any
accelerated algorithm requiring exact information.

Remark 2.4. For the sake of exposition, we have assumed
that the accuracy η of the oracle is fixed and the additional
error is O(ηT ). However, one can allow different oracle
accuracies ηt at each query point xt and the additional error
is O(

∑
t ηt) (and the parameter M ′ = M + 1

2R maxt ηt).

2.1. Allowing inexactness in the constraint set

So far we have assumed that the algorithm has complete
knowledge of the constraints X . Now, we extend our results
to include algorithms that can work with larger classes of
constraints that are not fully known up front. In other words,
just like the algorithm needs to collect information about
f , it also needs to collect information about X , via another
oracle, to be able to solve the problem. To capture the most
general algorithms of this type, we formalize this setting by
assuming X is of the form C ∩ Z, where C belongs to a
class of closed, convex sets and Z is possibly nonconvex but
completely known (e.g., Z = Zd1 ×Rd2 with d1 + d2 = d).

min{f(x) : x ∈ C ∩ Z}. (2.1)

The algorithm then must collect information about C, for
which we use the common model of allowing the algorithm
access to a separation oracle. Upon receiving a query point
x, a separation oracle either reports correctly that x is inside
C or otherwise returns a separating hyperplane that sepa-
rates x from C. We note that a separation oracle for C is in
some sense comparable to a first-order oracle for a convex
function f ; since the pair (f(x),∇f(x)) can be viewed as
providing a supporting hyperplane for the epigraph of f
at x, using an oracle that returns separating hyperplanes
for C provides a comparable way of collecting information
about the constraints. Let us first precisely define the inexact
version of a separation oracle.
Definition 2.5. For a closed, convex set C ⊆ B(R)
and a query point x̄ ∈ B(R), an η-approximate sepa-
ration oracle reports a separation response (flag, g̃) ∈
{FEASIBLE, INFEASIBLE} × Rd such that if x̄ ∈ C then
flag = FEASIBLE (with no requirement on g̃), and other-
wise flag = INFEASIBLE and g̃ is a unit vector such that
there exists some unit vector g satisfying ⟨g, x⟩ ≤ ⟨g, x̄⟩ for
all x ∈ C and ∥g̃ − g∥2 ≤ η

4R . Given such a g̃ (for x̄ /∈ C),
we call the hyperplane through x̄ induced by this normal
vector an η-approximate separating hyperplane for x̄.

We now state our results for algorithms that work with
separation oracles. Note that for this, instances of (1.1) have
to specify both f and C, as opposed to just f , since only
Z is known but not C. We use I(M,R, ρ) to denote the
set of all instances (f, C) where f : Rd → R is an M -
Lipschitz convex function and C is a compact, convex set
that contains a ball of radius ρ and is contained in B(R).
We use OPT (f, C) to denote the minimum value of (2.1).
The “strict feasibility" assumption of C containing a ρ-ball
is standard in convex optimization with constraints given
via separation oracles. Otherwise, it can be shown that no
algorithm will be able to find even an approximately feasible
point in a finite number of steps (Nesterov, 2004). The first
result we state is for pure convex problems, i.e., Z = Rd.
Theorem 2.6. Consider an algorithm for (2.1) with Z = Rd,
such that for any instance in (f, C) ∈ I(M,R, ρ), with ac-
cess to function values and subgradients of f and separating
hyperplanes for C, after T iterations the algorithm reports a
feasible solution x ∈ C with error at most err(T,M,R, ρ),
i.e., f(x) ≤ OPT(f, C) + err(T,M,R, ρ).

Then there is an algorithm that, with access to an ηf -
approximate first-order oracle for f and an ηC -approximate
separation oracle for C for any ηf ≥ 0 and 0 ≤ ηC ≤ ρ,
after T iterations the algorithm returns a feasible solution
x̄ ∈ C with value

f(x̄) ≤ OPT(f, C)+err(T,M ′, R, ρ′)+4ηfT+
2ηCMR

ρ
,
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where M ′ = M +
ηf

2R and ρ′ = ρ− ηC .

We can handle more general, nonconvex Z with separation
oracles under a slightly stronger “strict feasibility" assump-
tion on C: let I⋆(M,R, ρ) denote the subclass of instances
from I(M,R, ρ) where the minimizer x⋆ of (2.1) is ρ-deep
inside C, i.e., B(x⋆, ρ) ⊆ C.

Theorem 2.7. Consider an algorithm for (2.1), such that
for any instance in (f, C) ∈ I⋆(M,R, ρ), with access to
function values and subgradients of f and separating hyper-
planes for C, after T iterations the algorithm reports a feasi-
ble solution x ∈ C ∩ Z with error at most err(T,M,R, ρ),
i.e., f(x) ≤ OPT(f, C) + err(T,M,R, ρ).

Then there is an algorithm that, with access to an ηf -
approximate first-order oracle for f and an ηC -approximate
separation oracle for C for any ηf ≥ 0 and 0 ≤ ηC ≤ ρ,
after T iterations the algorithm returns a feasible solution
x̄ ∈ C ∩ Z with value

f(x̄) ≤ OPT(f, C) + err(T,M ′, R, ρ′) + 4ηfT,

where M ′ = M +
ηf

2R and ρ′ = ρ− ηC .

Remark 2.8. The objective functions in the above results
were allowed to be any M -Lipschitz, possibly nondiffer-
entiable, convex function. One can state versions of these
results for algorithms that work for the smaller class of
α-smooth functions (e.g., accelerated projected gradient
methods), just as Theorem 2.3 is a version of Theorem 2.2
for α-smooth objectives. The reason is that the analysis for
handling constraints is independent of the arguments needed
to handle the objective using inexact oracles; however, for
space constraints, we leave the details out of this manuscript.
Additionally, one can prove versions of all our theorems for
strongly convex objective functions, but we leave these out
of the manuscript as well to convey the main message of the
paper more crisply.

2.2. Relation to existing work

Previous work on inexact first-order information focused on
how certain known algorithms perform or can be made to
perform under inexact information, most recently on (accel-
erated) proximal-gradient methods. For instance, (Devolder
et al., 2014) analyze the performance of (accelerated) gra-
dient descent in the presence of inexact oracles, with no
change to algorithm. They show that simple gradient de-
scent (for unconstrained problems) will return a solution
with additional error O(η) and accelerated gradient descent
incurs an additional error of O(ηT ) (similar to our guar-
antees). We provide a more thorough comparison of our
setting and results with those of (Devolder et al., 2014) in
Appendix C.

Similarly, (Schmidt et al., 2011) does an analysis for (accel-
erated) proximal gradient methods, with more complicated

forms of the additional error, depending on how well the
proximal problems are solved. (Gasnikov & Tyurin, 2019)
and (Cohen et al., 2018) also study gradient methods in inex-
act settings, with their analyses being specific to particular
algorithms.

In contrast, our result does not assume any knowledge of the
internal logic of the algorithm. We must, therefore, use the
algorithm in a “black-box” manner. We are able to do this
by using the inexact oracles to construct a modified instance
whose optimal solution is similar in quality to that of the
true instance, and where this inexact information from the
true instance can be interpreted as exact information for
the modified instance. Thus, we can effectively run the
algorithm as a black-box on this modified instance and
leverage its error guarantee. Constructing this modified
instance in an online fashion requires technical ideas that
are new, to the best of our knowledge, in this literature.
For instance, it is not even true that given approximate
function values and subgradients of a convex function, we
can find another convex function that has these as exact
function values and subgradients; see Figure 1. Thus, one
cannot directly use the inexact information as is (contrary
to what is done in many of the papers dealing with inexact
information for specific algorithms), in the general case
we consider. The key is to modify the inexact information
so that the information the algorithm receives admits an
extension into a convex function/set that is still close to the
original instance. When dealing with α-smooth objectives,
the arguments are especially technically challenging since
we have to report approximate function and gradient values
that allow for a smooth extension that also approximates the
unknown objective well. This involves careful use of new,
localized smoothing techniques and maximal couplings of
probability distributions. Such smoothing guarantees based
on the proximity to the class of smooth functions may be of
independent interest (see Theorem 4.1).

New applications: Since our results apply to algorithms
for any ground set X , we are able to handle mixed-integer
convex optimization, i.e., X = C ∩ (Zd1 × Rd2), with
inexact oracles. Recently, there have been several applica-
tions of such optimization problems in machine learning and
statistics (Bertsimas et al., 2016; Mazumder & Radchenko,
2017; Bandi et al., 2019; Dedieu et al., 2021; Dey et al.,
2022; Hazimeh et al., 2022; 2023). General algorithms for
mixed-integer convex optimization, as well as specialized
ones designed for specific applications in the above papers,
all involve a sophisticated combination of techniques like
branch-and-bound, cutting planes and other heuristics. To
the best of our knowledge, the performance of these algo-
rithms has never been analyzed under the presence of inexact
oracles which can cause issues for all of these components
of the algorithm. Our results apply immediately to all these
algorithms, precisely because the internal workings of the
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algorithm are abstracted away in our analysis. This yields
the first ever versions of these methods that can work with
inexact oracles. Moreover, X can be used to model other
types of structured nonconvexities (e.g., complementarity
constraints (Cottle et al., 2009)) and our results show how
to adapt algorithms in those settings to work with inexact
oracles. Note that this holds for the cases where the convex
set C is explicitly known a priori (Theorems 2.2 and 2.3),
or must be accessed via separation oracles (Theorems 2.6
and 2.7).

The remainder of this paper is dedicated to the proof
sketches of Theorems 2.2 and 2.3. The missing details
and proofs of Theorems 2.6 and 2.7 can be found in the
Appendix.

3. Universal transfer for Lipschitz functions
In this section we prove our transfer result stated in The-
orem 2.2. The proof relies on the following key con-
cept: Given a set of points x1, . . . , xT ∈ B(R) (e.g.,
queries made by an optimization algorithm), we say that
the sequence of first-order pairs2 (f1, g1), . . . , (fT , gT ) ∈
R × Rd has an M -Lipschitz convex extension, or simply
M -extension, if there is a function F that is convex, M -
Lipschitz, and such that ft = F (xt) and gt ∈ ∂F (xt) for
all t, i.e., the first-order information of F at the queried
points is exactly {(ft, gt)}t.

As mentioned in the introduction, the main idea is to feed
to the convex optimization algorithm A a sequence of pairs
(ft, gt)’s that have an M -Lipschitz extension F that is close
to the original function f . Since the information is con-
sistent with what the algorithm expects when interacting
exactly with the function F , it will approximately optimize
the latter which will then give an approximately optimal
solution to the neighboring function f .

Unfortunately, it is easy to see approximate first-order in-
formation from f for the queried points xt’s does not nec-
essarily have a Lipschitz convex extension (see Figure 1).
Thus, the main subroutine of our algorithm Approximate-to-
Exact given below is that given an approximate first-order
oracle for f , it constructs first-order pairs (f̂t, ĝt)’s in an
online fashion (i.e. (f̂t, ĝt) only depends on x1, . . . , xt)
with the desired extension properties. For a function g, let
∥g∥∞ := supx |g(x)| denote its sup-norm.
Theorem 3.1 (Online first-order Lipschitz-extensibility).
Consider an M -Lipschitz convex function f : B(R) → R,
and a sequence of points x1, . . . , xT ∈ B(R). There is an
online procedure that, given η-approximate first-order oracle
access to f , produces first-order pairs (f̂1, ĝ1), . . . , (f̂T , ĝT )
that have a (M + η

2R )-extension F : B(R) → R satisfying

2We use first-order pair as just a more “visual” name for a pair
in R× Rd.

Figure 1: An example where two approximate function
values and subgradients do not have a convex extension.
The true function f is constant. The function values are
reported with no error. The reported slopes are shown in red.
However, these slopes decrease going from x1 to x2 thus
eliminating the possibility of any convex function having
these values and slopes at x1 and x2.

∥F − f∥∞ ≤ 2ηT . (Moreover, the procedure only probes
the approximate oracle at the given points x1, . . . , xT .)

With this at hand, given any first-order algorithm A we can
run it using only approximate first-order information in the
following natural way:

Procedure 1. Approximate-to-Exact(A, T )

For each timestep t = 1, . . . , T :

1. Receive query point xt ∈ B(R) from A.
2. Send point xt to the η-approximate oracle for f

and receive the information (f̃t, g̃t).
3. Use the online procedure from Theorem 3.1 to

construct the first-order pair (f̂t, ĝt).

4. Send (f̂t, ĝt) to the algorithm A.

Return the point in X returned by A.

Proof of Theorem 2.2. Consider a first-order algorithm A
that, for any M -Lipschitz convex function, after T itera-
tions returns a point x̄ ∈ X such that f(x̄) ≤ OPT(f) +
err(T,M,R), We show that running Procedure 1 with
A as input, which only uses an η-approximate oracle for
f , returns a point x̄ ∈ X such that f(x̄) ≤ OPT(f) +
err(T,M ′, R) + 4ηT with M ′ = M + η

2R .

To see this, let F be an M ′-extension for the first-order
pairs (f̂t, ĝt) sent to the algorithm A in Procedure 1 with
∥F −f∥∞ ≤ 2ηT , guaranteed by Theorem 3.1. This means
that the execution of the first-order algorithm A during our
procedure is exactly the same as executing A directly on the
convex function F . Thus, by the error guarantee of A, the
point x̄ ∈ X returned by A after T iterations (which is the
same point returned by our procedure) is almost optimal for
F , i.e., F (x̄) ≤ OPT(F ) + err(T,M ′, R). Since F and f
are pointwise within ±2ηT of each other, the value of the

5



A Universal Transfer Theorem for Convex Optimization

solution x̄ with respect to the original function f satisfies

f(x̄) ≤ F (x̄) + 2ηT ≤ OPT(F ) + err(T,M ′, R) + 2ηT

≤ OPT(f) + err(T,M ′, R) + 4ηT,

which proves the desired result.

3.1. Computing Lipschitz-extensible first-order pairs

In this section we describe the procedure that constructs the
first-order pairs with a Lipschitz convex extension F that
satisfies ∥F − f∥∞ ≤ 2ηT , proving Theorem 3.1. Before
getting into the heart of the matter, we show that the latter
property can be significantly weakened: instead of requiring
both f(x) ≥ F (x) − 2ηT and f(x) ≤ F (x) + 2ηT for
all x ∈ B(R), we can relax the latter to only hold for the
queried points x1, . . . , xT .

Lemma 3.2. Consider a sequence of points
x1, . . . , xT ∈ B(R), and a sequence of first-order
pairs (f̂1, ĝ1), . . . , (f̂T , ĝT ). Consider δ > 0 and M ′ ≥ M ,
and suppose that there is an M ′-extension F of these
first-order pairs that satisfies:

f(x) ≥ F (x)− δ︸ ︷︷ ︸
approx. under-approximation

, ∀x ∈ B(R) (3.1)

f(xt) ≤ F (xt) + δ︸ ︷︷ ︸
approx. queried values

, ∀t ∈ {1, . . . , T}. (3.2)

Then the first-order pairs have an M ′-extension F ′ such that
∥F ′ − f∥∞ ≤ δ. In particular, setting

F ′(x) = max{F (x), f(x)− δ}

provides such an extension.

Proof. Define the function F ′ as F ′(x) := max{f(x) −
δ, F (x)} by taking the maximum between F and a
downward-shifted f . We will show that this function
is the desired convex extension of the first-order pairs
(f̂1, ĝ1), . . . , (f̂T , ĝT ).

First, to show ∥F ′ − f∥∞ ≤ δ, by the definition of F ′ one
has F ′(x) ≥ f(x) − δ for all x. Furthermore, because of
the guarantee that F (x) ≤ f(x) + δ, we also have F ′(x) ≤
f(x)+δ for all x; together these imply that ∥F ′ − f∥∞ ≤ δ.
Since f and F are M ′-Lipschitz convex functions, so is F ′.

It remains to be shown that F ′ is an extension of the first-
order pairs, that is, to show f̂t = F ′(xt) and ĝt ∈ ∂F ′(xt)
for all t = 1, ..., T . Given property (3.2), we have F (xt) ≥
f(xt) − δ, and so F ′(xt) = F (xt) = f̂t. The fact that
F ′(xt) = F (xt) also implies that every vector in ∂F (xt) is
a subgradient of F ′ at xt, namely ∂F ′(xt) ⊇ ∂F (xt) ∋ ĝt.
To see this, recall that since F is convex, for ĝt ∈ ∂F (xt)
we have F (xt) + ⟨ĝt, xt − x⟩ ≤ F (x). Using the fact

that F ′(xt) = F (xt), we thus have F ′(xt) + ⟨ĝt, xt −
x⟩ ≤ F (x) ≤ F ′(x) for all x, and so any ĝt ∈ ∂F (xt) is
also a subgradient for F ′ at xt, as desired to conclude the
proof.

Given Lemma 3.2, to prove Theorem 3.1 it suffices to do
the following. Consider a sequence of points x1, . . . , xT ∈
B(R). Using an η-approximate first-order oracle to access
the function f (at the points x1, . . . , xT ), we need to pro-
duce a sequence of first-order pairs (f̂1, ĝ1), . . . , (f̂T , ĝT )
in an online fashion that have an M -extension F achieving
the approximations (3.1) and (3.2). We do this as follows.

At iteration t we maintain the function Ft(x) := max{f̂τ +
⟨ĝτ , x − xτ ⟩ : τ ≤ t}, that is, the maximum of the lin-
ear functions induced by the first-order pairs (f̂τ , ĝτ ) con-
structed up to this point. We would like to define the pairs
(f̂τ , ĝτ ) to guarantee that for all t, Ft is an M ′-extension for
these pairs, and satisfies (3.1) and (3.2) for x1, . . . , xt. In
this case, F = FT gives the desired function.

For that, suppose the above holds for t − 1; we will show
how to define (f̂t, ĝt) to maintain this invariant for t. We
should think of constructing Ft by taking the maximum of
Ft−1 and a new linear function f̂t + ⟨ĝt, x− xt⟩. To ensure
that Ft is an extension of the first-order pairs thus far, we
need to make sure that:

1. f̂t ≥ Ft−1(xt). This is necessary to ensure that
Ft(xt) = f̂t, and also guarantees ĝt ∈ ∂Ft(xt).

2. f̂t + ⟨ĝt, xτ − xt⟩ ≤ Ft−1(xτ ), ∀τ ≤ t − 1. This
is necessary to ensure that Ft(xτ ) = Ft−1(xτ ) = f̂τ ,
and also guarantees ∂Ft(xτ ) ⊇ ∂Ft−1(xτ ) ∋ ĝτ .

To construct (f̂t, ĝt) with these properties, we probe the
approximate first-order oracle for f at xt, and receive an
answer (f̃t, g̃t). If setting (f̂t, ĝt) = (f̃t, g̃t) violates the
first item above, we simply use the first-order information of
Ft−1 at xt, i.e., we set f̂t = Ft−1(xt) and ĝt ∈ ∂Ft−1(xt).

If the second item above is violated instead, we shift the
value f̃t down as little as possible to ensure the desired
property, i.e., we set (f̂t, ĝt) = (f̃t − s∗, g̃t) for appropriate
s∗ > 0. With this shifted value, the first item may now
be violated, in which case we again just use the current
first-order information of Ft−1.

These steps are formalized in the following procedure.

Procedure 2.

Set F0(x) = −∞.

For each t = 1, . . . , T :

1. Query the η-approximate oracle for f at xt, re-
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ceiving the first-order pair (f̃t, g̃t).
2. Let s∗ := min{s ≥ 0 : f̃t − s+ ⟨g̃t, xτ − xt⟩ ≤

Ft−1(xτ ),∀τ ≤ t− 1}.

3. Let Ft(x) = max{Ft−1(x), f̃t + ⟨g̃t, x − xt⟩ −
s∗}, and then set f̂t = Ft(xt), ĝt ∈ ∂Ft(xt).

We remark that this requires storing historical values of
f̃t and g̃t (this seems unavoidable to ensure convexity of
Ft). In terms of computational complexity, we remark that
the procedure takes a total of O(T 2d) operations. We now
prove that the functions Ft’s have the desired properties.

Lemma 3.3. For every t = 1, . . . , T , the function Ft is
an (M + η

2R )-extension of the first-order information pairs
(f̂1, ĝ1), . . . , (f̂t, ĝt).

Proof. Since Ft is the maximum over affine functions, it
is convex. Moreover, all of its subgradients come from the
set {g̃τ}τ , and by the approximation guarantee of the oracle
we have that for some subgradient g ∈ ∂f(xτ ), ∥g̃∥2 ≤
∥g̃ − g∥2 + ∥g∥2 ≤ η

2R +M , where we used that fact that
f is M -Lipschitz; thus, Ft is (M + η

2R )-Lipschitz.

We prove by induction on t that Ft is an extension of
the desired pairs (the base case t = 1 can be readily
verified). Recall Ft(xt) = max{Ft−1(x), H(x)}, where
H(x) := f̂t + ⟨ĝ, x − xt⟩. By the definition of s∗, for
all x = x1, . . . , xt−1, this maximum is achieved by the
function Ft−1, giving, by induction, that for all τ ≤ t− 1,
Ft(xτ ) = Ft−1(xτ ) = f̂τ ; this also implies that for such
τ ’s, ∂Ft(xτ ) ⊇ ∂Ft−1(xτ ) ∋ ĝτ , the last inclusion again
following by induction. These give the extension property
for the pairs (f̂τ , ĝτ ) with τ ≤ t− 1.

It remains to verify that this also holds for τ = t. Now
the maximum in the definition of Ft(xt) is achieved by the
function H: if f̃t − s∗ ≥ Ft−1(xt), the procedure sets f̂t =
f̃t−s∗ and we have H(xt) = f̂t ≥ Ft−1(xt); otherwise the
procedure sets f̂t = Ft−1(xt) and so H(xt) = Ft−1(xt).
Again this implies that ∂Ft(xt) ⊇ ∂H(xt) = {ĝt}. This
concludes the proof of the lemma.

Finally, we show that the functions Ft approximate f ac-
cording to (3.1) and (3.2).

Lemma 3.4. For every t = 1, . . . , T , the Ft satisfies in-
equalities (3.1) and (3.2) with δ = 2ηt.

Proof. Again we prove this by induction on t. Fix t. Let
∆ := f̃t−f(xt) be the error the inexact oracle makes on the
function value. We claim that the shift s∗ used in iteration
t of Procedure 2 satisfies s∗ ≤ max{0,∆ + 2ηt}. To see
this, the η-approximation of the oracle guarantees that there
is a subgradient g ∈ ∂f(xt) such that ∥g̃t − g∥2 ≤ η

2R , and

so for every τ ≤ t− 1

f̃t + ⟨g̃t, xτ − xt⟩
=∆+ f(xt) + ⟨g, xτ − xt⟩︸ ︷︷ ︸

≤f(xτ )

+ ⟨g̃t − g, xτ − xt⟩︸ ︷︷ ︸
≤∥g̃t−g∥2∥xτ−xt∥2≤η

≤Ft−1(xτ ) + ∆ + 2tη, (3.3)

the first underbrace following since g is a subgradient of
f , and the last inequality following from the induction
hypothesis Ft−1(xτ ) ≥ f(xτ ) − 2(t − 1)η (inequality
(3.2)); the optimality of s∗ then guarantees that it is at most
max{0,∆+ 2ηt}, proving the claim.

Now we show that Ft satisfies the desired bounds, namely
Ft(xτ ) ≥ f(xτ ) − 2ηt for all τ ≤ t, and Ft(x) ≤ f(x) +
2ηt for all x ∈ B(R). From the inductive hypothesis, for
τ ≤ t−1 we have Ft(xτ ) ≥ Ft−1(xτ ) ≥ f(xτ )−2η(t−1),
giving the first bound for these xτ . For xt, notice that
Ft(xt) ≥ f̃t − s∗. Therefore,

Ft(xt) ≥ f̃t − s∗ ≥ f̃t −max{0,∆− 2ηt}
≥ max{f(xt)− η , f(xt)− 2ηt} = f(xt)− 2ηt,

where in the second inequality we used the upper bound
on the shift s∗ ≤ max{0,∆ + 2ηt}, and in the next in-
equality we used the guarantee |f̃t − f(xt)| ≤ η from the
approximate oracle.

For the upper bound Ft(x) ≤ f(x) + 2ηt, by the inductive
hypothesis Ft−1(x) ≤ f(x) + 2η(t − 1). Moreover, the
same development as in (3.3) reveals that

f̃t + ⟨g̃t, x− xt⟩ − s∗ ≤ f̃t + ⟨g̃t, x− xt⟩
≤ f(x) + ∆ + η ≤ f(x) + 2η,

where the last inequality again uses that ∆ = f̃t − f(xt) ≤
η due to the guarantee of the approximate oracle. Thus,
Ft(x) ≤ max{f(x)+2η(t−1), f(x)+2η} ≤ f(x)+2ηt,
giving the desired bound. This concludes the proof of the
lemma.

Combining Lemmas 3.2, 3.3, and 3.4 shows that the first-
order pairs produced by Procedure 2 satisfies the properties
stated in Theorem 3.1, finally concluding its proof.

4. Universal transfer for smooth functions
In this section we prove our transfer theorem for smooth
functions stated in Theorem 2.3. Recall that a function f is
α-smooth if it has α-Lipschitz gradients:

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ α∥x− y∥.

As in the proof of the previous transfer theorem, the core
element is the following: Given the sequence of iterates
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x1, . . . , xt of a black-box optimization algorithm and access
to an approximate first-order oracle to the smooth objective
function f , construct in an online fashion first-order pairs
(f̂t, ĝt) and, implicitly, a smooth function S close to the
original f such that (f̂t, ĝt) provide exactly the value and
gradient of S at xt.

Theorem 4.1 (Online first-order smooth-extensibility). Con-
sider an α-smooth, M -Lipschitz convex function f : Rd →
R, and a sequence of points x1, . . . , xT ∈ B(R). Then,
for η ≤ αR2

5T , there is an online procedure that given η-
approximate first-order oracle access to f , produces first-
order pairs (f̂1, ĝ1), . . . , (f̂T , ĝT ) that have an α′-smooth
(M+ η

2R )-extension S : B(R) → R satisfying ∥S−f∥∞ ≤
5η (T +2), where α′ = α

√
d
(
4
√

5 · (T + 1)+3
)

. More-
over, the procedure only probes the approximate oracle at
the given points x1, . . . , xT .

In the previous section, the extension was created by adding
a new linear function at every iteration; this produced the
piecewise linear (non-smooth) functions Ft in the previous
section. Having to construct a smooth extension creates a
challenge. Our approach is to apply a smoothing procedure
to these piecewise linear functions, in an online manner.
One issue is that most standard smoothing procedures (e.g.,
via inf-convolution (Beck & Teboulle, 2012) or Gaussian
smoothing (Nesterov, 2005)) may use the values of the non-
smooth base function over the whole domain; in our online
construction, at a given point in time we have determined
the value of the function only in a neighborhood of the
previous iterates, and the updated functions can change at
points outside these small neighborhoods. Thus, we employ
a localized smoothing procedure. Moreover, we need the
procedure to leverage the fact that the non-smooth base
function is close to a smooth one, and produce stronger
smoothing guarantees by making use thereof. We start by
describing this smoothing technique and its properties, and
then describe the full procedure that gives Theorem 4.1.

Randomized smoothing of almost smooth functions.
Given a function h : Rd → R and a radius r > 0, we
define the smoothed function hr by hr(x) := Eh(x+ rU),
where U is uniformly distributed on the unit ball B(1). It is
well-known that when h is convex and M -Lipschitz, then hr

is differentiable, also M -Lipschitz, and, most importantly,
is M

√
d

r -smooth (Yousefian et al., 2012). However, we show
that the smoothing parameter can be significantly improved
when the function h is already close to a smooth function.
The proof is deferred to Appendix A.1.

Lemma 4.2. Let h : B(4R) → R be a convex function such
that there exists an α-smooth convex function f : B(4R) →
R with ∥h− f∥∞ ≤ ε, for ε ≤ αR2. Then, for r ≤ R the
smoothed function hr : B(R) → R (so restricted to the ball
B(R)) satisfies:

1. hr is
(

4
√
αεd
r + 3α

√
d
)

-smooth

2. |hr(x)− f(x)| ≤ ε+ αr2

2 for all x ∈ B(R).

Construction of the smooth-extension. As mentioned, in
each iteration t we will maintain a piecewise linear function
Ft constructed very similarly to the proof of Theorem 3.1.
Now we will also maintain the smoothened version (Ft)r of
this function that uses the randomized smoothing discussed
above (for a particular value of r). Our transfer procedure
then returns the first-order information f̂t := (Ft)r(xt) and
ĝt := ∇(Ft)r(xt) of the latter. The final smooth function
S : B(R) → R compatible with the first-order information
returned by the procedure will be given, as in Lemma 3.2,
by taking the maximum between the final FT and a shifted
version of the original function f .

The main difference in how the functions Ft’s are con-
structed, compared to the proof of Theorem 3.1, is the
following. Previously, in order to ensure that FT (and
so the final extension) was compatible with the first-order
pairs output in earlier iterations, we needed to “protect” the
points xt and ensure that the function values and gradients
at these points did not change over time, e.g., we needed
FT (xt) = Ft(xt). But now the first-order pair output for
the query point xt depends not only on the value of Ft at xt,
but also on the values on the whole ball B(xt, r) that are
used to determine the smoothed function (Ft)r at xt. Thus,
we will now need to “protect” these balls and ensure that the
function values over them do not change in later iterations.

We now formalize the construction of the functions Ft, the
first-order information returned, and the final extension S
in Procedure 3.

Procedure 3.

Set r =
√

η/α and F0(x) = −∞.

For each t = 1, . . . , T :

1. Query the η-approximate oracle for f at xt, re-
ceiving the first-order pair (f̃t, g̃t).

2. Define the function Ft by setting Ft(x) =
max{Ft−1(x) , f̃t+ ⟨g̃t, x−xt⟩− (4ηt+αr2t+
2η)} for all x

3. Output the first-order information of the randomly
smoothed function (Ft)r: f̂t := (Ft)r(xt) and
ĝt := ∇(Ft)r(xt)

Define the function S : B(R) → R by S =
(max{FT , f − 4η(T + 1) + αr2(T + 1)})r, where
max denotes pointwise maximum.

The proof that this procedure indeed yields Theorem 4.1 is
presented in Appendix A.2.
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Yousefian, F., Nedić, A., and Shanbhag, U. V. On stochastic gradi-
ent and subgradient methods with adaptive steplength sequences.
arXiv preprint arxiv:1105.4549, 2011.
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Appendix

A. Universal transfer for smooth functions
In this section we present the missing proofs for our transfer theo-
rem for smooth functions from Section 4. We start by recalling the
definition of a smooth function.

Definition A.1. A function f : Rd → R is said to be α-smooth if
it is differentiable and its gradient is Lipschitz continuous with a
Lipschitz constant α, namely

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ α∥x− y∥.

An α-smooth function possesses the following useful upper bound-
ing property: for x, y ∈ Rn:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥y − x∥2. (A.1)

A.1. Proof of Lemma 4.2

Let h and f be the convex functions over the ball B(4R) satis-
fying the statement of the lemma, i.e., ∥h − f∥∞ ≤ ε and f is
α-smooth. Recall that the smoothed function hr is defined as
hr(x) = Eh(x+ rU) for x ∈ B(R), where U is a random vector
uniformly distributed on the unit ball B(1) and r ≤ R.

The first observation is that since h is close to f and the latter is
smooth, their (sub)gradients are close to each other; the same also
holds between hr and f .

Lemma A.2. We have the following:

1. ∥∂h(x)−∇f(x)∥ ≤ 2
√
αε for every x ∈ B(2R) and every

subgradient ∂h(x).

2. ∥∇hr(x)−∇f(x)∥ ≤ 2
√
αε+ αr for every x ∈ B(R).

Proof. To prove the first item, fix x ∈ B(2R) and let y be such
that

x− y = 2

√
ε

α
· ∂h(x)−∇f(x)

∥∂h(x)−∇f(x)∥ .

Since x ∈ B(2R), notice that y has norm at most 2R+ 2
√

ε/α,
which by assumption of ε is at most 4R; thus, y is in the domain
of h and f .

Then using α-smoothness of f , ∥h− f∥∞ ≤ ε, and convexity of
h, we have

f(x) + ⟨∇f(x), y − x⟩+ α

2
∥x− y∥2 ≥ f(y) ≥ h(y)− ε

≥ h(x) + ⟨∂h(x), y − x⟩ − ε,

and so

⟨∂h(x)−∇f(x), y − x⟩ ≤ f(x)− h(x) + ε+
α

2
∥x− y∥2

≤ 2ε+
α

2
∥x− y∥2 .

Plugging the definition of y on this expression gives

2

√
ε

α
· ∥∂h(x)−∇f(x)∥ ≤ 4ε,

and so ∥∂h(x)−∇f(x)∥ ≤ 2
√
αε, which gives the first item of

the lemma.

For the second item, again let U be uniformly distributed in B(1).
This random variable is sufficiently regular that gradients and
expectations commute, namely ∇hr(x) = ∇(Eh(x + rU)) =
E ∂h(x+ rU), were ∂h denotes any subgradient of h (Bertsekas,
1973).Then applying Jensen’s inequality, for any x ∈ B(R) we
get

∥∇hr(x)−∇f(x)∥ = ∥E ∂h(x+ rU)−∇f(x)∥
≤ E ∥∂h(x+ rU)−∇f(x)∥.

Also, for any unit-norm vector u we have

∥∂h(x+ ru)−∇f(x)∥ ≤ ∥∂h(x+ ru)−∇f(x+ ru)∥
+ ∥∇f(x+ ru)−∇f(x)∥

≤ 2
√
αε+ αr,

where the last inequality follows from Item 1 of the lemma (since
r ≤ R, x+ ru has norm at most R+ r ≤ 2R and so the item can
indeed be applied) and α-smoothness of f (which is equivalent
to ∥∇f(z) − ∇f(z′)∥ ≤ α∥z − z′∥ (Nesterov, 2018)). This
concludes the proof.

The second element that we will need is a bound on the total
variation between the the uniform distributions on the two same-
radius balls with different centers.
Lemma A.3. Let X ∈ Rd be the uniformly distributed on B(x, r)
and Y ∈ Rd be uniformly distributed on B(y, r). Then there
is a random variable (X ′, Y ′) ∈ R2d where X ′ has the same
distribution as X and Y ′ the same distribution as Y , and where
Pr(X ′ ̸= Y ′) ≤ ∥x−y∥

√
d

r
.
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Proof sketch. This folklore result can be obtained as follows.
Let µz be the uniform distribution over B(z, r). Since µx and
µy are the distribution of X and Y , by the Maximal Coupling
Lemma (Theorem 5.2 of (Lindvall, 2002)) there is a random
variable (X ′, Y ′) ∈ R2d where X ′ ∼ µx and Y ′ ∼ µy and
Pr(X ′ ̸= Y ′) = 1

2

∫
|dµx(z)−dµy(z)|dz. Moreover, it is known

that the right hand side is at most ∥x−y∥
√

d
r

, see for example in-
equality (39) of (Yousefian et al., 2011) (plus the estimate from
(Chen & Qi, 2005)).

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. Item 1: We prove that ∥∇hr(x) −
∇hr(y)∥ ≤ ( 4

√
αεd
r

+ 3α
√
d)∥x − y∥ for all x, y. In fact, it

suffices to prove this for x, y where ∥x − y∥ ≤ r, since the in-
equality can then be chained to obtain the result for any pair of
points.

Then fix x, y with ∥x − y∥ ≤ r. Using the notation from
Lemma A.3, ∇hr(x) = E ∂h(X ′) and ∇hr(y) = E ∂h(Y ′)

and Pr(X ′ ̸= Y ′) ≤ ∥x−y∥
√

d
r

. Applying Jensen’s inequality,

∥∇hr(x)−∇hr(y)∥ ≤ EX′,Y ′∥∂h(X ′)− ∂h(Y ′)∥

≤ ∥x− y∥
√
d

r
· max
x′,y′∈B(x,r)∪B(y,r)

∥∂h(x′)− ∂h(y′)∥.

We upper bound the last term by applying triangle inequality and
then Lemma A.2:

∥∂h(x′)−∇h(y′)∥ ≤ ∥∂h(x′)−∇f(x′)∥
+ ∥∇f(x′)−∇f(y′)∥
+ ∥∇f(y′)− ∂h(y′)∥

≤ 4
√
αε+ α ∥x′ − y′∥

≤ 4
√
αε+ 3αr,

where the second inequality uses that f is α-smooth, and the last
inequality uses the assumption ∥x − y∥ ≤ r. Plugging this into
the previous inequality gives

∥∇hr(x)−∇hr(y)∥ ≤
(
4
√
αεd

r
+ 3α

√
d

)
· ∥x− y∥,

as desired.

Second item: We now show that ∥hr − f∥∞ ≤ ε + αr2

2
. Fix

x ∈ Rd, and again let U be uniformly distributed in the unit ball.
Using the assumption ∥h− f∥∞ ≤ ε and convexity of f , we have

h(x+ rU) ≥ f(x+ rU)− ε ≥ f(x) + ⟨∇f(x), rU⟩ − ε.

Since U has mean zero, taking expectations gives hr(x) ≥ f(x)−
ε. Similarly, since f is α-smooth

h(x+ rU) ≤ f(x+ rU) + ε

≤ f(x) + ⟨∇f(x), rU⟩+ α

2
∥rU∥2 + ε,

and taking expectations gives hr(x) ≤ f(x) + αr2

2
+ ε. Together,

these yield |hr(x) − f(x)| ≤ ε + αr2

2
, thus proving the result.

This concludes the proof of the theorem.

A.2. Proof of Theorem 4.1

Throughout this section, fix an α-smooth M -Lipschitz function
f : B(R) → R. Recall that we have a sequence of queried
points x1, . . . , xT ∈ B(R) and access to an η-approximate first-
order oracle for f . Our goal is to produce, in an online fashion, a
sequence of first-order pairs (f̂1, ĝ1), . . . , (f̂T , ĝT ) for the queried
points and a function S that is smooth, Lipschitz, and compatible
with these first-order pairs (i.e., S(xt) = f̂t and ∇S(xt) = ĝt).

As mentioned, in each iteration t we will keep a piecewise linear
function Ft and their smoothened version (Ft)r (by using the
randomized smoothing from the previous section for a specific
value of r). Our transfer procedure then returns the first-order
information f̂t := (Ft)r(xt) and ĝt := ∇(Ft)r(xt) of the latter.
The final smooth function S : B(R) → R compatible with the
first-order information output by the procedure will be given, as
in Lemma 3.2, by using the maximum between the final FT and a
shifted version of the original function f . Also recall that in order
to ensure the compatibility of S with the first-order information
(f̂t, ĝt) output throughout the process, we need to “protect” the
points xt and ensure that the function values and gradients at
these points did not change across iterations, i.e. (FT )r(xt) =
(Ft)r(xt) and ∇(FT )r(xt) = ∇(Ft)r(xt). Since (Ft′)r(xt)
depends on the values of Ft′ at the ball B(xt, r) around xt, we
need to “protect” Ft′ on these balls, namely to have FT (x) =
Ft(x) for all x ∈ B(xt, r).

For convenience, we recall the exact construction of the functions
Ft, the first-order information returned, and the final extension
S. In hindsight, set r :=

√
η/α, and for every t define the shift

st := 4ηt+ αr2t.

Procedure 3.

Set F0(x) = −∞.

For each t = 1, . . . , T :

1. Query the η-approximate oracle for f at xt, receiving
the first-order pair (f̃t, g̃t).

2. Define the function Ft by setting Ft(x) =

max{Ft−1(x) , f̃t + ⟨g̃t, x − xt⟩ − (st + 2η)} for
all x.

3. Output the first-order information of the randomly
smoothed function (Ft)r: f̂t := (Ft)r(xt) and ĝt :=
∇(Ft)r(xt).

Define the function S : B(R) → R by S = (max{FT , f −
sT+1})r , where max denotes pointwise maximum.

We now prove the main properties of the functions Ft, formulated
in the following lemma. The first two are similar to (3.1) and
(3.2) used in our non-smooth transfer result and guarantee, loosely
speaking, that Ft is close to the original function f . The third
property is precisely the “ball protection” idea discussed above.
Lemma A.4. For all t, the function Ft satisfies the following:

1. Ft(x) ≤ f(x) for every x ∈ B(4R)

2. For every t′ ≤ t, we have Ft(x) ≥ f(x) − st+1 for all
x ∈ B(xt′ ,

√
2 r)

3. For every t′ ≤ t, we have Ft(x) = Ft′(x) for every x ∈
B(xt′ ,

√
2 r). In particular (Ft)r(xt′) = (Ft′)r(xt′) and

∇(Ft)r(xt′) = ∇(Ft′)r(xt′).

11
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Proof. We prove these properties by induction on t.

First item: Since the property holds by induction for Ft−1 and
Ft(x) = max{Ft−1(x) , f̃t+⟨g̃t, x−xt⟩−(st+2η)}, it suffices
to show that

f̃t + ⟨g̃t, x− xt⟩ − (st + 2η) ≤ f(x) (A.2)

for all x ∈ B(4R). For that, since (f̃t, g̃t) comes from an η-
approximate first-order oracle, by definition |f̃t − f(xt)| ≤ η and
∥g̃t −∇f(xt)∥ ≤ η

2R
; in particular, |⟨g̃t −∇f(xt), x− xt⟩| ≤

∥g̃t −∇f(xt)∥∥x− xt∥ ≤ 5η
2

for every x ∈ B(4R) (since also
xt ∈ B(R), by assumption). Then using convexity of f we get

f(x) ≥ f(xt) + ⟨∇f(xt), x− xt⟩

≥ f̃t + ⟨g̃t, x− xt⟩ − η − 5η

2
, (A.3)

which implies (A.2) as desired, since st + 2η ≥ η + 5η
2

.

Second item: Again since this property holds by induction for
Ft−1, it suffices to show

f̃t + ⟨g̃t, x− xt⟩ − (st + 2η) ≥ f(x)− st+1 (A.4)

for all x ∈ B(xt,
√
2 r). Since f is α-smooth, for every such x

we have

f(x) ≤ f(xt) + ⟨∇f(xt), x− xt⟩+
α

2
∥x− xt∥2

≤ f̃t + ⟨g̃t, x− xt⟩+ 2η + αr2. (A.5)

Since st+1 = st + 4η + αr2, reorganizing the terms gives (A.4)
as desired.

Third item: To show that for every t′ ≤ t, we have Ft(x) = Ft′(x)

for every x ∈ B(xt′ ,
√
2 r), it suffices to show that for every

t′ < t

f̃t + ⟨g̃t, x− xt⟩ − (st + 2η) ≤ Ft−1(x) (A.6)

for all x ∈ B(xt′ ,
√
2 r). For that, first notice that for all t′ < t

we have Ft−1 ≥ Ft′ , and the latter can be lower bounded by the
affine term added during iteration t′. Combining this with (A.5),
applied to iteration t′, we get for all x ∈ B(xt′ ,

√
2 r)

Ft−1(x) ≥ f̃t′ + ⟨g̃t′ , x− xt′⟩ − (st′ + 2η)

≥ f(x)− (st′ + 4η + αr2)

≥ f̃t + ⟨g̃t, x− xt⟩ − (st′ + 6η + αr2),

where the last inequality uses (A.3). Since st ≥ st′ + 4η + αr2,
this implies (A.6) as desired.

To conclude the proof of this item, notice that (Ft)r(xt′) (re-
spectively (Ft′)r(xt′)) only depends on the values of Ft (resp.
Ft′ ) on the ball B(xt′ , r). Since we just showed the value of
Ft and Ft′ agree on this ball, we get (Ft)r(xt′) = (Ft′)r(xt′).
Similarly, the gradient ∇(Ft)r(xt′) only depends on the val-
ues of Ft on an arbitrarily small open neighborhood of the ball
B(xt′ , r), and the same holds for ∇(Ft′)r(xt′). Since the bigger
ball B(xt′ ,

√
2 r) contains such a neighborhood, we again obtain

∇(Ft)r(xt′) = ∇(Ft′)r(xt′). This concludes the proof of the
lemma.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We need to prove that the function S :
B(R) → R defined in Procedure 3 satisfies:

1. ∥S − f∥∞ ≤ sT+1 +
αr2

2
.

2. S is
(

4
√

α·d·sT+1

r
+ 3α

√
d
)

-smooth

3. S is (M + η
2R

)-Lipschitz

4. S is an extension for the first-order pairs (f̂t, ĝt) output by
the procedure

First item: Define the function S̄ := max{Ft(x), f(x)− sT+1},
so S = S̄r . Using Item 1 of Lemma A.4, we see that S̄(x) ≤ f(x)
for all x ∈ B(4R), and by definition we have S̄(x) ≥ f(x) −
sT+1, thus |S̄(x)−f(x)| ≤ sT+1 for all x ∈ B(4R). Then using
Item 2 of Lemma 4.2 we get |S(x)− f(x)| ≤ sT+1 +

αr2

2
for all

x ∈ B(R) (we can indeed use this lemma since the definition r =√
η/α and the assumption η ≤ αR2

5(T+1)
imply that sT+1 ≤ αR2

and r ≤ R).

Second item: This follows Item 1 of Lemma 4.2 instead.

Third item: The subgradients of FT are (a convex combination of
a subset of the) vectors g̃t, and so FT is (maxt ∥g̃t∥)-Lipschitz.
Since the vectors came from an η-approximate oracle for f , we
have ∥g̃t − ∇f(xt)∥ ≤ η

2R
, and since f is M -Lipschitz we get

∥g̃t∥ ≤ M + η
2R

; it follows that FT is (M + η
2R

)-Lipschitz.
Next, the subgradients of S̄ come either from subgradients of FT

or gradients of f (or a convex combination thereof), and so S̄
is max{M + η

2R
,M} = M + η

2R
Lipschitz. Finally, for every

x ∈ B(R) we have (U being uniformly distributed in the unit ball
again)

∥∇S(x)∥ = ∥E∂S̄(x+ rU)∥ ≤ E∥∂S̄(x+ rU)∥ ≤ M +
η

2R
,

where ∂S̄(x + rU) denotes any subgradient at x + rU and the
first inequality follows from Jensen’s inequality. This proves that
S is (M + η

2R
)-Lipschitz.

Fourth item: We need to show that for all t, f̂t = S(xt) and
ĝt = ∇S(xt). By definition, f̂t = (Ft)r(xt) and ĝt =
∇(Ft)r(xt). Moreover, by Item 3 of Lemma A.4, using FT in-
stead of Ft gives the same quantities, namely f̂t = (FT )r(xt)
and ĝt = ∇(FT )r(xt). We claim that for every t, FT and S̄

are equal inside the ball B(xt,
√
2 r), which then implies that

f̂t = (FT )r(xt) = S̄r(xt) = S(xt) and ĝt = ∇(FT )r(xt) =
∇S̄r(xt) = ∇S(xt), as desired. To show the equality in the ball
B(xt,

√
2 r), it suffices that the other term in the max defining S̄

does not “cut off” FT , namely that f(x) − sT+1 ≤ FT (x) for
every x ∈ B(xt,

√
2 r). But this follows from Item 2 of Lemma

A.4.

Substituting the value r =
√

η/α and st = 4ηt + αr2t in the
items above concludes the proof of Theorem 4.1.

B. Separation oracles: proofs of Theorems 2.6
and 2.7

We now consider the original constrained problem min{f(x) :
x ∈ C ∩ X}, and show how to run any first-order algorithm

12
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A using only approximate first-order information about f and
approximate separation information from C, proving Theorems 2.6
and 2.7. The main additional element is to convert the approximate
separation information for C into an exact information for a related
set K ≈ C so it can be used in a black-box fashion by A, as
the previous section did for the first-order information of f . For
simplicity, we assume throughout that the algorithm A only queries
points in B(R) (the ball containing the feasible set C), since points
outside it can be separated exactly.

Given a set of points x1, ..., xT ∈ B(R), we say a sequence of sep-
aration responses r1, ..., rT ∈ {FEASIBLE, INFEASIBLE} × Rd

has a convex extension if there is a convex set K ̸= ∅ such that
there exists an exact (i.e., 0-approximate) separation oracle for K
giving responses r1, ..., rT for the query points x1, ..., xT . We
will also refer to such responses as consistent with K. As in
the previous section, responses from an η-approximate separa-
tion oracle may not by themselves admit a convex extension, and
need to be modified in order to allow a consistent, convex exten-
sion; for example, approximate separating hyperplanes may not
be consistent with a convex set, or may "cut off" points previously
reported as feasible. When we say a point y is cut off by a sepa-
rating hyperplane through x with normal vector g, we mean that
⟨g, y⟩ > ⟨g, x⟩, i.e. that y is not in the induced halfspace. Note
that when given an exact separating hyperplane for some x /∈ C,
no point in C is cut off by it, whereas approximate separating
hyperplanes have no such guarantee. With this in mind, we now
give a theorem serving as a feasibility analogue to Theorem 3.1.
Definition B.1. For any convex set C ⊆ Rd and any δ > 0, we
define C−δ := {x ∈ C : B(x, δ) ⊆ C}, which will be called
δ-deep points of C.
Theorem B.2 (Online Convex Extensibility). Consider a con-
vex set C ⊆ B(R) and a sequence of points x1, . . . , xT ∈ B(R).
There is an online procedure that, given access to an η-approximate
separation oracle for C, produces separation responses r̂1, ..., r̂T
that have a convex extension K satisfying C−η ⊆ K ⊆ C. More-
over, the procedure only probes the approximate oracle at the
points x1, . . . , xT .

Note that the guarantee C−η ⊆ K ⊆ C means that for any point
xt that is ηC-deep in C, i.e., in C−η , the response r̂t produced
says FEASIBLE, whereas for any xt /∈ C it says INFEASIBLE and
gives a hyperplane separating xt from K (which cannot cut too
deep into C, i.e., it contains C−η). At a high-level, such responses
allow one to cut off infeasible solutions, but guarantee that there
are still (ηC -deep) solutions with small f -value available.

With this additional procedure at hand, we extend Procedure 1
from the main text in the following way to solve constrained op-
timization: in each step of the procedure, we also send the point
xt queried by the algorithm A to the ηC -approximate separation
oracle for C, receive the response r̃t, pass it through Theorem B.2
to obtain the new response r̂t, and send the latter back to A. We
call this procedure Approximate-to-Exact-Constr, and formally
state it as follows:

Procedure 4. Approximate-to-Exact-Constr(A, T )

For each timestep t = 1, . . . , T :

1. Receive query point xt ∈ B(R) from A

2. Send point xt to the ηf -approximate first-order or-
acle and to the ηC-approximate separation oracle,
and receive the approximate first-order information

(f̃t, g̃t) ∈ R × Rd, and separation response r̃t ∈
{FEASIBLE} ∪ {INFEASIBLE} × Rd.

3. Use the online procedures from Theorems 3.1 and B.2
to construct the first-order pair (f̂t, ĝt) and separation
response r̂t.

4. Send (f̂t, ĝt), r̂t to the algorithm A.

Return the point returned by A.

The proof that this procedure yields Theorem 2.6 is analogous to
the one for the unconstrained case of Theorem 2.2, so we only
sketch it to avoid repetition.

Proof sketch of Theorem 2.6. Let F and K be the Lipschitz and
convex extensions to the answers sent to A that are guaranteed
by Theorems 3.1 and B.2, respectively. Approximate-to-Exact-
Constr has the same effect as A running on the instance (F,K).
One can show that this instance belongs to I(M+

ηf
2R

, R, ρ−ηC).
Then if err(·) is the error guarantee of A as in the statement of
the theorem, this ensures that we return a solution x̄ ∈ K ∩ X
satisfying

F (x̄) ≤ OPT(F,K) + err(T,M +
ηf
2R

,R, ρ− ηC),

where OPT(F,K) := argmin{F (x) : x ∈ K∩X}. Since C−ηC

contains a solution x with value f(x) ≤ OPT(f, C) + 2MRηC
ρ

(e.g., Lemma 4.7 of (Basu, 2023)), we have OPT(f,K) ≤
OPT(f, C) + 2MRηC

ρ
. Finally, using the guarantee ∥F −

f∥∞ ≤ 2ηfT , we obtain that f(x̄) ≤ OPT(f, C) + err(T,M +
ηf
2R

, R, ρ− ηC) + 4ηfT + 2MRηC
ρ

, concluding the proof of the
theorem.

The proof of Theorem 2.7 follows effectively the same reasoning
as for Theorem 2.6; we also sketch it here. The main difference is
that one needs to ensure the optimal solution x∗ of 2.1 is contained
in contained in the auxiliary feasible region K the algorithm A
uses; otherwise the additional restrictions imposed by Z may lead
to arbitrarily bad solutions, or even K ∩ Z being empty (consider
for example the case of Z being a singleton on the boundary of
C that is then cut off by an approximate separation response).
However, since K is guaranteed to contain C−ηC and we assume
that ηC ≤ ρ, the fact that x∗ is ρ-deep in C implies that it is also
in K.

Proof sketch of Theorem 2.7. Again, let F and K be the Lipschitz
and convex extensions as in the previous proof, so that the instance
(F,K) belongs to I(M +

ηf
2R

, R, ρ− ηC) and A returns a solu-
tion x̄ ∈ K ∩ Z satisfying F (x̄) ≤ OPT(F,K) + err(T,M +
ηf
2R

, R, ρ − ηC), where OPT(F,K) := argmin{F (x) : x ∈
K ∩ Z}. Recall that Z is assumed to be given and known by
the algorithm. Since the optimal solution for (f, C) is assumed
to be in C−ρ, and K contains C−ηC ⊇ C−ρ, K contains the
optimal solution to to the true instance, x∗ : f(x∗) = OPT(f, C).
Finally, using the guarantee ∥F − f∥∞ ≤ 2ηfT , we obtain that
f(x̄∗) ≤ OPT(f, C) + err(T,M +

ηf
2R

, R, ρ − ηC) + 4ηfT ,
concluding the proof of the theorem.

13



A Universal Transfer Theorem for Convex Optimization

B.1. Computing convex-extensible separation responses

We now prove Theorem B.2. The result requires the existence
of a convex extension K for the responses r̂t that we construct,
and we need C−η ⊆ K ⊆ C. We provide a procedure that
produces the responses r̂1, . . . , r̂T together with sets K1, . . . ,KT

so that Kt ∩ C is consistent with the responses up to this round,
i.e., r̂1, . . . , r̂t, and is sandwiched between C−η and C. The set
Kt will consist of all the points that were not excluded by the
separating hyperplanes of the responses up to this round. Thus, our
main task is to ensure that as Kt evolves, it does not exclude the
points xτ that the responses up to now have reported as FEASIBLE
(ensuring consistency with previous responses). We also want to
ensure that none of the deep points C−η is excluded.

Before stating the formal procedure, we give some intuition on how
this is accomplished. Suppose one has Kt−1 satisfying the desired
properties. One receives a new point xt and separation response r̃t
from the approximate oracle, and we need to construct a response
r̂t and an updated set Kt to maintain the desired properties.

Suppose r̃t reports that xt is FEASIBLE. Our procedure ignores
this information, keeps Kt = Kt−1 and creates a response r̂t that
is FEASIBLE if and only if xt ∈ Kt = Kt−1 (also sending a
hyperplane separating xt from Kt if xt /∈ Kt; notice that since
this hyperplane does not cut into Kt−1, we do not need to update
this set). Notice that Kt∩C is indeed consistent with the response
r̂t.

The interesting case is when r̃t reports that xt is INFEASIBLE (so
xt /∈ C) but xt ∈ Kt−1. Thus, xt cannot belong to Kt ∩ C
(recall we will construct Kt ⊆ Kt−1), and so to ensure consis-
tency our response r̂t needs to report INFEASIBLE and a separating
hyperplane that excludes xt. The first idea is to simply use sep-
arating hyperplane reported by the approximate oracle. But this
can exclude points that were deemed FEASIBLE by our previous
responses r̂τ (we call these points FEASt−1), which would violate
consistency. Thus, we first rotate this hyperplane as little as pos-
sible such that it contains all points in FEASt−1, and report this
rotated hyperplane H (adding it to Kt−1 to obtain Kt). While this
rotation protects the points FEASt−1, we also need to argue that
it does not stray too much away from the original approximate
separating hyperplane so as to not cut into C−η .

We now describe the formal procedure in detail. We use
H(g, x̄) := {x : ⟨g, x⟩ ≤ ⟨g, x̄⟩} to denote the halfspace with
normal g passing through the point x̄.

Procedure 5.
Initialize K0 = Rd and FEAS0 = ∅. For each t = 1, . . . , T :

1. Query the η-approximate feasibility oracle for C at xt,
receiving the response (flagt, g̃t)

2. If flagt = FEASIBLE and xt ∈ Kt−1. Define the
response r̂t = (FEASIBLE, ⋆), and set Kt = Kt−1

and FEASt = FEASt−1 ∪ xt.

3. ElseIf flagt = FEASIBLE but xt /∈ Kt−1.
Set ĝt be any unit vector such that the halfspace
H(ĝt, xt) contains Kt−1. Define the response
r̂t = (INFEASIBLE, ĝt). Set Kt = Kt−1 and
FEASt = FEASt−1.

4. Else (so flagt = INFEASIBLE). Let ĝt be a unit vec-
tor such that the induced halfspace H(ĝt, xt) contains

FEASt−1 that is the closest to g̃t with this property, i.e.

∥ĝt − g̃t∥2

= min
g∈B(1)

{
∥g − g̃t∥2 : H(g, xt) ⊇ FEASt−1

}
.

Define the response r̂t = (INFEASIBLE, ĝt). Set Kt =
Kt−1 ∩H(ĝt, xt) and FEASt = FEASt−1.

We remark that in Line 4, there indeed exists a halfspace supported
at xt that contains all points in FEASt−1: in this case xt /∈ C
(since flagt = INFEASIBLE) and by definition FEASt−1 ⊆ C, so
any halfspace separating xt from C will do.

Lemma B.3. For every t = 1, . . . , T , the set Kt ∩ C, with Kt

computed by Procedure 5, is a convex extension to the responses
r̂1, . . . , r̂t. Moreover, all these sets satisfy Kt ⊇ C−η .

Proof. It suffices to prove this for each iteration, so suppose Kt−1

with responses r̂1, ..., r̂t−1 satisfy the lemma. If Lines 2 or 3 of the
procedure were executed, it is straightforward to see Kt satisfies
the lemma. If Line 4 executes, xt /∈ C, and so the response r̂t
is consistent with Kt ∩ C since Kt = Kt−1 ∩ H(ĝt, xt). As
FEASt−1 ⊆ Kt by construction and Kt ⊆ Kt−1, Kt ∩ C is
consistent with all responses r̂1, ..., r̂t made. It remains to show
that Kt contains C−η , for which showing H(ĝt, xt) contains it
suffices. Notice that since there exists an exact halfspace H(g, xt)
separating xt /∈ C that is η

4R
-close to g̃t (due to the η-approximate

oracle), and H(g, xt) contains C and thus FEASt−1, we have
∥ĝt−g̃t∥2 ≤ η

4R
. The triangle inequality then reveals ∥ĝt−g∥2 ≤

∥ĝt − g̃t∥2 + ∥g̃t − g∥2 ≤ η
2R

, and then it is easy to see that
H(ĝt, xt) contains C−η , concluding the proof.

C. A closer comparison with related work
In this section, we give a more detailed comparison between our
work and the results and settings in closely related work of (De-
volder et al., 2014). Therein, the authors define a similar setting
using their own notion of inexact first-order oracles and analyze
the behavior of a few primal, dual and accelerated gradient meth-
ods for convex optimization problems under these oracles. In
particular, they show that accelerated gradient methods must ac-
cumulate errors in the inexact information setting. As noted, their
analysis gives guarantees for specific algorithms, as opposed to our
“universal” algorithm-independent guarantees. In summary, for
the algorithms they provide results for, implementing our method
mostly requires less noise to achieve equivalent convergence rates.
We begin by comparing the oracles used.

Comparing the inexact oracles: The notion of inexact first-
order oracle in (Devolder et al., 2014) uses two parameters, as
opposed to the single η parameter in our Definition 2.1. Neverthe-
less, an oracle from the Devolder et al. setting corresponds to an
oracle in our setting for any family of convex functions on B(R),
with appropriate settings of the noise parameters, and vice versa.
We provide the definition for an inexact oracle used by Devolder
et al. here:

Definition C.1. Let f be a convex function on B(R). A first-
order (δ, L)-oracle queried at some point y ∈ B(R) returns a pair
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f̃y, g̃y

)
∈ R× Rd such that for all x ∈ B(R) we have

f̃y + ⟨g̃y, x− y⟩ ≤ f(x)

≤ f̃y + ⟨g̃y, x− y⟩+ L

2
∥x− y∥2 + δ.

Note that while this definition is valid for any convex function, not
just L-smooth functions, the motivation for the definition comes
from the L-smooth inequalities. The parameter δ can be viewed
as the “noise" while L is the smoothness constant of the family of
functions considered, which is taken for granted throughout (De-
volder et al., 2014). We will refer to the oracle of Definition
2.1 as the η-approximate oracle and that of Definition C.1 as the
(δ, L)-oracle in this section.

Here is what one can say when comparing the two oracles. For
the family of L-smooth functions, an η-approximate oracle cor-
responds to a (δ, L)-oracle with δ = 4η (see Example b. from
Section 2.3 in (Devolder et al., 2014)). For M -Lipschitz functions,
an η-approximate oracle is equivalent to a (δ, L)-oracle obtained
by setting δ = 3η + M2

L
and arbitrary L > 0 (if the response of

the η-approximate oracle is f̂ , ĝ, the response of the (δ, L)-oracle
is f̃ = f̂ − 3

2
η and g̃ = ĝ). This follows from the Lipschitz bound

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ + 2M∥y − x∥ combined with
the fact that Mr ≤ L

2
r2 + M2

2L
for any r, L > 0.

In the other direction, if one is given a (δ, L)-oracle from the
Devolder et al. setting for any family of convex functions on
B(R), this provides an η-approximate oracle in our sense for
η = max(δ, 2R

√
2δL) (see eqn. (8) in (Devolder et al., 2014)).

Comparison of the noise levels needed for convergence
rates: Next, we compare the noise levels needed to achieve
comparable convergence rates across our approach and the results
of Devolder et al. We look at three different function classes for
this comparison.

a) Nonsmooth, M -Lipschitz functions: As mentioned above,
Devolder et al. do not explicitly do an analysis for this
family; they focus on L-smooth functions. However, one
can carry out an analysis of the subgradient method given an
η-approximate oracle similar to the Devolder et al. analysis
in the smooth case. The additional error incurred by the
inexactness of the oracle is indeed still O(η). Therefore, if
one uses subgradient descent without any modifications, one
needs to set η = O( 1

T0.5 ) to get overall error O( 1
T0.5 ) after

T iterations. Using our black-box reduction however, one
needs to set η = O( 1

T1.5 ) for the same convergence rate.

b) Comparison for L-smooth functions with gradient descent:
Devolder et al.’s analysis of gradient descent with their no-
tion of (δ, L) oracle gives O(δ) additional error. Thus, they
need to set δ = O( 1

T
) to get O( 1

T
) convergence. From the

discussion above, an η-approximate oracle corresponds to
a (δ, L)-oracle with δ = 4η. In other words, Devolder et
al.’s result says that η = O( 1

T
) suffices to get O( 1

T
) conver-

gence, if gradient descent is run without modification with
an η-approximate oracle. From our black-box analysis for
the L-smooth case, we cannot guarantee a convergence rate
better than O( 1√

T
), no matter what choice of η, since we

lose the
√
T factor due to our smoothing technique. Thus,

our technique does not achieve the O( 1
T
) rate for gradient

descent for L-smooth functions.

c) Comparison for L-smooth functions with acceleration: De-
volder et al.’s analysis of Nesterov’s acceleration with the
(δ, L)-oracle gives O(δT ) additional error. Thus, they need
to set δ = O( 1

T3 ) to get the standard O( 1
T2 ) convergence.

From the discussion above, an η-approximate oracle in our
setting corresponds to a (δ, L)-oracle with δ = 4η. In other
words, Devolder et al.’s result says that η = O( 1

T3 ) suffices
to get O( 1

T2 ) convergence. To get just O( 1
T1.5 ) rate, one

can set η = O( 1
T2.5 ) in the analysis of Devolder et al. (the

additional error term from the oracle noise dominates in this
case). From our black-box analysis for L-smooth functions,
we need to set η = O( 1

T2.5 ) as well, but note that we lose
a factor of

√
d (d being the dimension) additionally. So our

final rate is O(
√
d

T1.5 ), whereas the Devolder et al. analysis
does not accrue any dimension-dependent factors.

Overall, the algorithm-specific analyses in (Devolder et al., 2014)
give better convergence rates for equivalent noise levels, or equiv-
alently have less stringent noise requirements to achieve a target
convergence rate. This is not too surprising, since our black-box
approach is much more general to work with any first-order algo-
rithm, and can be viewed as a kind of trade-off to the generality of
our results.
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