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Abstract
Model editing aims to modify the knowledge
of a pre-trained language model. Previous ap-
proaches have often involved direct alterations to
model weights, which can result in model degrada-
tion. Recent weight-preserving techniques avoid
making modifications to the model’s weights
by employing an adapter that implements edits
through auxiliary components. These rely heavily
on scoping mechanisms based on distance func-
tions on the model’s representation space to de-
termine when to trigger edits. We demonstrate
that current adapter methods are critically vul-
nerable to strong lexical biases, leading to is-
sues such as applying edits to irrelevant prompts
with overlapping words. This paper presents a
principled approach to learning a disentangled
representation space that facilitates precise lo-
calization of edits by maintaining distance be-
tween irrelevant prompts while preserving prox-
imity among paraphrases. In our empirical study,
we show that our method, Projector Editor Net-
works for Model Editing - PENME, achieves
state-of-the-art model editing results while be-
ing computationally efficient during inference
compared to previous methods and adaptable
across different architectures. We provide the
codebase of PENME here: https://github.
com/hammadrizwan/PENME.git

1. Introduction
Large Language Models (LLMs) are successful in solving a
diverse range of natural language processing tasks (Devlin
et al., 2019; Liu et al., 2019; Touvron et al., 2023b; Radford
et al., 2019). Despite their successes, LLMs are fallible in
large part due to the noisy and imperfect nature of the data
used for training (Zhu et al., 2020). Moreover, as the world
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Figure 1. Projector networks mitigate lexical bias: a critical prob-
lem in adapter-based model editing techniques. Percentage of
samples where irrelevant but lexically similar prompts are closer
than semantically similar paraphrases in the representation space
before and after our learned projection (PENME).

evolves, new information requires updates to the models,
e.g. the leader of a country may change over time.

Periodically updating LLMs using fine-tuning is one poten-
tial solution, however, it risks degradation in performance,
leading to training from scratch to preserve the model’s
original performance (Luo et al., 2023; Wang et al., 2025).
However, retraining is often impractical due to the need of
substantial computational resources, time, data, and labor.

Model editing has been proposed as a sample and compute
efficient way to update LLMs (Yao et al., 2023). Histori-
cally weight-modifying techniques that make surgical small
parameters updates such as ROME (Meng et al., 2022) have
been popular. However, these techniques are known to be
computationally inefficient (Yu et al., 2024) and result in
catastrophic forgetting (Gupta et al., 2024a), the full impact
of which is difficult to determine (Rosati et al., 2024).

Weight-preserving approaches solve these problems by
maintaining the original model parameters and use ad-
ditional components like key-value codebook adapters
(GRACE and MELO) (Hartvigsen et al., 2023; Yu et al.,
2024) that apply a scoping mechanism to determine whether
to trigger a model edit, using a distance function over model
representations to assess semantic similarity between the
input and an edits registered in a codebook.

We find that the performance of weight-preserving meth-
ods is heavily reliant on scoping mechanism which suffers
from a critical vulnerability of Lexical bias (Figures 1 and
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Figure 2. An illustration of lexical bias in embeddings: a) a low similarity threshold (illustrated with the circle) results in failing to edit
paraphrases. b) A high similarity threshold results in misfires with irrelevant prompts. c) illustrates our solution which restructures the
representation space.

2), prompts with similar lexical tokens but different seman-
tics that are closer together in the representation space
compared to a prompt and its respective paraphrases. Lex-
ical bias prevents current adapter-based methods from ef-
fectively being able to balance generalization to unseen
paraphrases and “misfiring” on semantically dissimilar (ir-
relevant) prompts. Our analysis (§ 6.1; Figure 4) of these
misfires reveals that the representation space used to calcu-
late semantic similarity is dominated by a lexical bias where
irrelevant prompts (e.g. “The twin city of Portsmouth is”)
are often closer by euclidean distance to an input (e.g. “The
twin city of Pittsburgh is”) than a true semantically similar
prompt (e.g. “Pittsburgh is a twin city of”).

Based on this analysis, we propose Projector Editor Net-
works for Model Editing (PENME), an advancement over
adapter-based model editing that explicitly targets the lexi-
cal bias problem by learning a projection that disentangles
lexically similar and semantically similar text representa-
tions. We empirically demonstrate that resolving lexical
bias enables high edit generalization performance across
paraphrases of a prompt while also achieving strong locality
that prevents irrelevant prompts from triggering edits.

Our contributions are as follows: (1) We show that represen-
tations extracted across layers exhibit lexical bias, showing
a bias towards token overlap, which introduces significant
challenges for adapter-based model editing techniques. (2)
We propose PENME, a model editing framework that learns
a projection network that maps the model’s representation
space to a new representation space where lexical bias is
minimized. (3) We integrate our projection network in an
adapter-based retrieval scheme for model editing, demon-
strating, for the first time in adapter-based approaches, high
efficacy in both paraphrase execution (generalization) and
prevention of misfires on irrelevant prompts (locality).

2. Related Work
There are a number of surveys that provide a comprehensive
overview of various model editing methods (Wang et al.,

2024a;c; Mazzia et al., 2024; Durrani et al., 2025). Here,
we summarize three main themes of model editing.

Weight-modifying approaches apply targeted updates to
the model’s weights to reflect new knowledge (Tanno et al.,
2022; Meng et al., 2022; Gupta et al., 2023; Xu et al., 2023;
Hase et al., 2023b; Li et al., 2024b; Fang et al., 2025; Ma
et al., 2025). Fine-tuning on edited knowledge can have a
detrimental impact on a model’s general capabilities; there-
fore, many methods instead perform targeted updates. These
approaches typically rely on the localization hypothesis
(Miller et al., 2016; Geva et al., 2021) in the Transformer
architecture, which conjectures that the point-wise feed-
forward components act as a key–value memory for infor-
mation retention within an LLM, a claim that has recently
been challenged, in the context of model editing by Hase
et al., 2023a. Meng et al. (2022; 2023, ROME, MEMIT)
identifies salient neurons within the feed-forward layers,
facilitating targeted updates to effect the desired edits us-
ing causal analysis. Similarly, Li et al. (2024b, PMET)
investigates the role of multi-headed attention, in conjunc-
tion with feed-forward layers, for model editing. As we
mentioned earlier, these methods suffer from general model
degradation due to gradual performance drift, which can
lead to catastrophic forgetting (Gupta et al., 2024a). Im-
provements on MEMIT have been made by Ma et al. (2025,
PRUNE), which bounds the condition number of the edited
weight slice so that successive edits cause only minimal
drift and the model’s overall behaviour stays intact. Simi-
larly, Fang et al. (2025) propose AlphaEdit, which projects
each update into the null space of knowledge that must re-
main unchanged. This preserves existing knowledge while
inserting the update. AlphaEdit showcases the strongest per-
formance; however, the method is evaluated on mini-batches
of 100 edits, reducing the batch size to 1 for sequential edit-
ing, this necessitates recomputing the projection for every
edit, increasing computational cost and is likely to lead to
performance drift during prolonged editing.

An alternative approach, using a hypernetwork, is Mitchell
et al. (2021, MEND), which predicts new model weights by
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generating low-rank decompositions of the weight matrices
across different layers.

Weight-preserving pre-input approaches depend on ex-
tracting and processing relevant edit information before the
input is processed by the main model Mitchell et al. (2022);
Zheng et al. (2023); Zhong et al. (2023). For example,
SERAC (Mitchell et al., 2022) employs a memory-based
model editing strategy augmenting with a memory storage
and supplementary models to determine the scope of the
edit. RAG-based methods like IKE (Zheng et al., 2023)
leverage similarity-based retrieval to extract and rank edit
demonstrations from memory and use in-context reason-
ing to edit. A limitation of these approaches is the com-
putational overhead as they require additional models for
ranking, relevancy, context processing and generalization.

Weight-preserving post-input These rely on the model’s in-
ternal representations to implement scoping mechanisms, de-
termine whether a specific edit applies for the current input.
If an edit does apply, they employ a playback mechanism
such as representation vector addition or replacement that
results in the model generating updated outputs Hartvigsen
et al. (2023); Yu et al. (2024); Lee et al. (2022). Most meth-
ods employ a key-value codebook: a vector representation
of the inputs which should be edited are stored as a key
and the representation vectors of the desired edit phrase are
stored as a value. Semantic similarity is computed using a
distance metric, such as Euclidean distance, against future
inputs to the language model. If a distance threshold is
satisfied, then the edit vector is “played-back.”

Alternative strategies introduce lightweight auxiliary struc-
tures—either additional neurons to scope and steer model
outputs, as in Huang et al. (2023); Zhu et al. (2024), fixed-
size hook layers that accumulate residual updates for con-
secutive batch edits while keeping the base weights frozen
Li et al. (2024a), purpose-built external memories Wang
et al. (2024b, WISE), or compact jet-pack modules (Sutton
et al., 2024) that modify hidden activations for a specific
prompt, originally proposed for stealth edits.

Lexical Bias Hartvigsen et al. (2023, GRACE) employs
playback vectors as above, whereas Yu et al. (2024, MELO)
utilizes LoRA blocks. We find that both of these methods are
vulnerable to lexical bias which invalidates their retrieval
methods. In order to resolve this issue, current methods
need to hand-engineer distance thresholds which balance
the trade off generalization for irrelevant prompt misfiring
protection. Our method, PENME, resolves lexical bias by
learning a new disentangled representation space where
large thresholds can safely be used that are much more re-
liable at preventing misfires. While lexical bias has been
repeatedly documented through initial diagnoses of syntac-
tic and lexical heuristics (McCoy et al., 2019; Dumpala
et al., 2024), dataset-level analyses (Zhou & Bansal, 2020),

and adversarial stress tests (Nie et al., 2020), recent work
shows the bias remains stubborn (Serrano et al., 2023). No-
tably, our work is the first to highlight this issue in model
editing and propose a solution to mitigate it.

3. Problem Setting: Model Editing
The aim of model editing is to alleviate the need for com-
plete retraining when updating learned knowledge. Editing
attempts to satisfy the following conditions: (1) sample effi-
ciency: update the model with the fewest number of samples
possible, (2) compute efficiency: train a small portion of the
model only, (3) minimal impact: make as small of an impact
on unrelated behaviour as possible i.e. prevent misfires on
irrelevant prompts and (4) ensure generalization: maintain
accurate paraphrase behaviour i.e. retrieval of correct edits
in adapter-based approaches.

The goal is to modify the behaviour of a model M on a
dataset D = [d1, ..., dn] where the sample di is the tuple
(xi, yi, [pi1, ..., pin], [p

¬
i1, ..., p

¬
in]), xi is the edit prompt, yi

is the new output tokens, pi,1:n are a set of paraphrases of the
edit prompt xi and p¬i,1:n are irrelevant prompts, examples
that are both lexically and semantically related; however,
they represent cases where the underlying model’s genera-
tion output should remain unchanged. For instance, consider
the edit “What is the twin city of Detroit”. A lexically sim-
ilar prompt would be “What is the twin city of London”,
whereas a semantically related prompt might be “For Detroit,
tell me what twin city it has” where the semantic relation-
ship lies in the fact it is a paraphrase. For successful model
editing, the edited model, M ′, should generate new target
tokens yi for a specific input xi (Edit Success) and its re-
lated paraphrases p1:n (Generalization), while maintaining
the model’s behaviour on semantically unrelated prompts
p¬1:n (Locality). The following metrics illustrate how these
factors are typically operationalized (see for example Yao
et al., 2023; Yu et al., 2024; Hartvigsen et al., 2023; Gupta
et al., 2024b).

Edit Success (ES): The proportions of edits that the model
is able to recall or generate correctly, also referred as effi-
cacy, reliability, and edit score. Formally we say M ′(xi) =
yi, ∀(xi, yi) ∈ d1:n.

Locality: The proportion of irrelevant prompts for which
the model generates the same outputs prior to editing, also
referred to as specificity, neighbourhood success, retain rate
and neighbourhood score and is denoted as:
M ′(p¬ij) = M(p¬ij), ∀p¬i j ∈ d1:n.

Generalization: The proportion of paraphrases for which
the model is able to recall or generate the correct edited in-
formation, also described as paraphrase success: M ′(pij) =
yi, ∀pj ∈ pi,∀(pi, yi) ∈ d1:n.
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Figure 3. PENME uses a projection network that interfaces with the pointwise feed-forward layer output in a transformer block. The
projection network, coupled with key-value codebook storage, acts as a scoping mechanism by comparing projection outputs with
codebook entries. This determines whether the current input relates to a specific edit or should pass through the model unmodified.

Score: It is the mean of the above three metrics and is used
for benchmarking.

4. Projector Editor Networks for Model
Editing (PENME)

PENME is a weight-preserving model editor that leverages
an adapter module which is integrated after the pointwise
feed-forward layers within a transformer block of a pre-
trained LLM. By introducing this additional component
rather than altering the original model weights, PENME
enables the integration of new information while preserving
the LLM’s initial capabilities.

PENME, illustrated in Figure 3, consists of two compo-
nents: (1) Projection Network (g) projects model activa-
tions denoted hl(input) at layer l into a distinct representa-
tion space g(hl(input)). (2) Key-Value Codebook stores
the projected model activations g(hl(input)) at layer l as
keys and corresponding values containing a learned similar-
ity threshold (δ) and the new associated output information
yi. This paper only considers storing strings as yi, but vec-
tors (Hartvigsen et al., 2023) or LoRA block indices (Yu
et al., 2024) can also be stored as values, which facilitate
playback approaches.

In the following sections, the vectors x⃗ij , p⃗ij , and p⃗¬ij are
outputs of the projection network g(hl(input)) for dataset
components xi, pij and p¬ij .

4.1. Projection Network

We hypothesize that if the representation space suffers from
lexical bias, then we could learn a new representation space
that disentangles lexical and semantic representations. We
achieve this by training a projection network g(·) : Rd →
Rd using contrastive learning whose function is to project
inputs into a space where paraphrases of inputs are closer to

edited inputs than irrelevant prompts. Our training loss is
inspired by contrastive learning (Hadsell et al., 2006) and is
defined by the following loss function:

L(x⃗i, z⃗) = (1− t)
1

2
||x⃗i − z⃗||22

+ t
1

2

[
max(0,m− ||x⃗i − z⃗||2)

]2
,

t =

{
1, if z⃗ ← p⃗ij ,

0, if z⃗ ← p⃗¬ij ∨ x⃗l.

(1)

where t is the target {0, 1} which is 0 when the training pair
is {xi, pij} (edit, paraphrase) and 1 when the training pair
is {xi, p

¬
ij} (edit, irrelevant) or the inter-edit (or edit-to-edit)

pair {xi, xl} where we sample an unrelated edit, m is the
margin which pushes p⃗¬ij at least m distance away from x⃗i.
The projection network is trained such that for all samples in
a dataset, edits xi and edit paraphrases pij are close together
while edits xi and irrelevant p¬ij paraphrases or unrelated
edits xl are pushed apart in the projection space. Training
is performed by sampling pairs at random. Note that z⃗ is a
variable that is assigned either a paraphrase, an irrelevant
prompt, or an unrelated edit just as a way to make the loss
function more concise.

The inherent lexical and semantic similarities among edits
increase the probability of certain edit paraphrases exhibit-
ing greater proximity to other unrelated edits. This phe-
nomenon can lead to erroneous paraphrase-edit associations
during execution, potentially triggering inappropriate edit
operations. This is why we also push unrelated edits farther
away in Eq. 1 as well as unrelated prompts. These pair-
ings are formed based on a similarity threshold defined as a
hyperparameter ϕ.

The projector network is a 2-layer MLP with one ReLU
non-linearity and batch norm applied between each layer.
The dimensionality of each layer is the same as the original
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representation space. Note that this network is only applied
to one single layer. The compact architecture of the projec-
tion network enables it to be trained on GPUs with limited
memory capacity since we can amortize the computation of
representation vectors (denoted above with the v⃗ec symbol
beforehand) irrespective of the underlying model’s scale.
We provide the details of implementation, data construction
and training in Appendix A.

4.2. Key-Value Codebook

The key-value codebook is a memory mechanism designed
to store edits and their corresponding outputs. For each
edit, representations are generated by passing the input xi

through the model and the projection network, denoted as
x⃗i = g(hl(xi)). x⃗i are then stored as keys ki ∈ K in the
codebook and are utilized during runtime in a similarity-
based retrieval system to access the relevant edit. The code-
book value vi ∈ V consists of the edited information µ
along with a similarity threshold δ. The edited information
in this paper is an exact string stored from the model editing
dataset. The threshold serves as a scoping mechanism and
is learned using a procedure described below. For a given
input prompt xi, euclidean distance || · ||2 is computed with
all keys in the codebook. From the computed distances, we
determine if the input prompt xi is relevant to the edited
codebook value vµi and its corresponding threshold vδi . This
is expressed as:

argmin
ki∈K

∥x⃗i − ki∥2

s.t. ∥x⃗i − ki∥2 < vδi

(2)

If the prompt xi is deemed relevant (Equation 2), the out-
put information of the edit is retrieved from codebook vµi .
Otherwise, the typical model output M(xi) is employed.

4.3. Finding the thresholds vδi and τ

Initial experimental findings regarding the thresholds vδi
reveal that unseen test paraphrases typically demonstrate
greater distance than the average seen training paraphrases,
while the inter-paraphrase distances within the training set
exhibit variation across edits. In contrast, unseen test ir-
relevant prompts generally show closer proximity to edits
compared to the nearest seen training irrelevant prompts.
This effect is illustrated in greater detail in Appendix B. We
determine an appropriate threshold by utilizing a data-driven
thresholding scheme based on the training data:

vδi = Max (∥x⃗i − p⃗ij∥2) + τ (3)

The threshold is determined as the maximum paraphrase
distance observed for each individual edit, augmented by a
hyperparameter τ to account for unseen paraphrases. We
select a value of τ through grid search. This formulation al-
lows our method to achieve an optimal balance between gen-
eralization and locality preservation. Alternatively, another

possibility is to set the threshold based on close irrelevant
prompts Min(||x⃗− p⃗¬ij ||2)− τ ; this option would maintain
locality by preserving all training irrelevant prompts.

4.4. Analysis of Codebook Management and Scalability

Both GRACE and MELO require multiple paraphrases
added to the codebook to improve generalization. The
PENME codebook scales linearly with the number of edits,
as each edit corresponds to a single codebook entry. Main-
taining one entry per edit enables efficient edit removal or
updates, providing greater flexibility in edit management. In
contrast, the scoping mechanism employed by Hartvigsen
et al. (2023); Yu et al. (2024) to deal with multiple, possibly
conflicting, entries per codebook requires splitting and merg-
ing operations. The effectiveness of this approach varies
across datasets. For instance, for GRACE, the zsRE dataset
exhibits a high occurrence of similar edit outputs (same
entity with the same edit), allowing for substantial reduc-
tions in codebook entries. Specifically, 1,000 edits on zsRE
require only 658 entries, whereas the Counterfact dataset
requires 1,682 entries for just 300 edits. The combination of
this consolidation process and the potential for edits to be
closely related in vector space leads to overlapping cluster
radii, necessitating cluster size reduction. This inadvertently
results in the removal of certain edits. A detailed comparison
between PENME and the scoping mechanisms employed by
GRACE and MELO is presented in Appendix C. The results
demonstrate that PENME achieves superior edit retrieval
speed and highlights the problem of edit conflict and edit
forgetting by GRACE and MELO.

5. Experimental Setup
We assess the performance of PENME across a spectrum of
transformer-based LLMs, including Text-to-Text Transfer
Transformer (specifically T5-small) (Raffel et al., 2020),
Llama-2-7b (Touvron et al., 2023a) and GPT2-XL (Rad-
ford et al., 2019). We compare PENME with GRACE and
MELO, as these are the only other current weight-preserving
adapter-based methods. Additionally, we include MEMIT
and SERAC1. Working details of the methods and hyper-
parameters are provided in Appendix D.1. We utilize the
methodology outlined in §6.1 to select an optimal layer to
introduce PENME adapter and use the second layer for all
models. We determine the optimal threshold for each edit
by systematically varying the τ parameter in Eq. (3) across
a range of 0.05 to 0.20.

Dataset The zsRE dataset (Levy et al., 2017) and the
Counterfact dataset (Meng et al., 2022) are the most com-
monly used model editing datasets. zsRE consists of an

1A simpler version of SERAC is used in Hartvigsen et al. (2023)
called Defer.
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Figure 4. Percentage of samples where edits are closer to lexically
similar yet irrelevant prompts as compared to paraphrases in the
representations space of different models across various layers.
T5-small, GPT2-XL and Llama-2-7b have 6, 32, and 48 layers,
respectively. The full figure for all layers is presented in App. E.1.

edit prompt along with several paraphrased versions of
that prompt. Irrelevant prompts are sourced from the NQ
dataset (Kwiatkowski et al., 2019), which offers a wide
range of user query questions. In contrast, Counterfact has
similar edit and paraphrase prompts but employs a more
nuanced approach to irrelevant prompts. It includes prompts
that are similar to the edit prompt in both semantic nature
and lexical structure. This differs significantly from zsRE,
where the irrelevant prompts are neither semantically nor
lexically related to the edit prompt. Moreover, zsRE has
a lower diversity in subjects, relationships, and linguistic
variations (Meng et al., 2022). This structural difference
between the datasets has important implications for eval-
uation. In zsRE, the lack of semantic or lexical relation-
ships between the edit prompt and its irrelevant prompts
allows weight-preserving approaches to achieve high local-
ity scores with relative ease. The enhanced complexity of
Counterfact renders it a more robust benchmark for evalu-
ating editing mechanisms. Dataset processing and training
data construction details are provided in Appendix D.2.

Downstream Tasks We adopt the evaluation setup of Ma
et al. (2025) to assess downstream performance. Specifi-
cally, we evaluate using three tasks: sentiment classification
using the DAiR-Emotions dataset (Saravia et al., 2018),
summarization using the CNN/DailyMail dataset (Hermann
et al., 2015), and natural language inference (NLI) using the
RTE dataset (Dagan et al., 2005).

6. Evaluation
This section presents the evidence of lexical bias, the results
of PENME in achieving separability of irrelevant prompts
and paraphrases, and a comparison with other methods.

6.1. Lexical Bias

To examine the lexical bias of representations, we randomly
sampled 500 entries from the Counterfact dataset (see §5).
For each entry, we created triplets consisting of an edit
prompt, a randomly sampled paraphrase prompt and an ir-
relevant prompt with high lexical overlap (xi, pi, p

¬
i ). In

Table 7, we see the ROUGE-1 token overlap w.r.t xi mean F1
was 0.3 for both pi and p¬i . Qualitative samples are provided
for the reader’s validation in Table 8. These triplets are fed
into various models, and representation vectors (x⃗i, p⃗i, p⃗¬i )
from the feed-forward block of each layer l are extracted.
We select either averaged token representations or dedicated
sentence representations, based on whether a given model
offers a specific token for sentence-level representation. We
calculate two sets of pairwise Euclidean distances: (1) Be-
tween edit representations and paraphrase representations:
||x⃗i − p⃗i||2 (2) Between edit representations and irrelevant
prompts representations: ||x⃗i − p⃗¬i ||2. We then compare
these distances to determine if irrelevant prompts are closer
to the edits than the paraphrases ||x⃗i − p⃗i||2 > ||x⃗i − p⃗¬i ||2.
Figure 4 displays the percentage of samples where irrelevant
prompts were closer to the edits.

Figure 4 reveals an intriguing pattern: except for the first
layer in most models, the early layers demonstrate a reduced
percentage of samples where irrelevant prompts are closer
to edits than paraphrases. However, the trend shifts as we
progress through the model’s depth. In the mid-layers, this
percentage begins to ascend once more, only to descend
slightly towards the final layers, albeit with subtle fluctua-
tions among them. We hypothesize that in the initial layers,
token-specific information remains largely isolated. How-
ever, as the input traverses deeper into the model, guided by
repeated attention mechanisms, this information becomes
amalgamated across tokens (Sajjad et al., 2022). Moreover,
repeated normalization as demonstrated by Takase et al.
(2022) results in smaller changes in weights of an LLM,
leading to embedding vectors in the final layers being simi-
lar, thus only subtle fluctuations are seen in the percentages.

These results indicate why there is a significant chance of
misfire in adapter-based methods: lexical bias. This also
provides a systematic approach for identifying the optimal
layer to introduce PENME integration by elucidating the
regions within the model’s architecture where lexical bias
exhibits minimal influence. Although the projector network
approach can be generalized across all layers, as demon-
strated in Appendix E.2, it is advantageous in terms of
training time to integrate at points of minimal influence.

6.2. Disentangled Projection Space

In this section, we validate our proposed projection network
in its ability to learn a generalized disentangled representa-
tion space where paraphrases are closer to edits as compared
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Table 1. A comparative analysis of PENME and recent model editing methods on 2000 edits from the Counterfactual dataset and 1000
edits on zsRE. The metrics are Edit Success (ES), Locality (Loc) and Paraphrase Generalization (Para).

COUNTERFACT ZSRE
Method Model ES Loc Para Score ES Loc Para Score

PENME T5-small 1.000 0.787 0.808 0.865 1.000 0.941 0.913 0.951
Llama-2-7b 1.000 0.869 0.906 0.925 1.000 0.987 0.966 0.984
GPT2-XL 1.000 0.847 0.875 0.907 1.000 0.957 0.940 0.966

MELO T5-small 0.850 0.800 0.037 0.562 0.990 0.640 0.986 0.872
GPT2-XL 1.000 1.000 0.020 0.673 1.000 0.004 1.000 0.668

GRACE T5-small 1.000 0.860 0.140 0.667 1.000 0.730 0.993 0.907
Llama-2-7b 1.000 0.997 0.002 0.666 0.100 0.591 0.000 0.230
GPT2-XL 1.000 0.996 0.003 0.666 0.992 1.000 0.010 0.667

SERAC T5-small 0.017 0.526 0.010 0.184 0.017 0.526 0.010 0.184
Llama-2-7b 0.992 0.372 0.651 0.672 1.000 0.114 0.357 0.490
GPT2-XL 0.947 0.669 0.408 0.675 0.474 0.003 0.811 0.429

MEMIT Llama-2-7b 0.147 0.149 1.000 0.432 0.402 0.002 1.000 0.468
GPT2-XL 0.785 0.788 0.502 0.692 0.214 0.000 1.000 0.405

FT T5-small 0.955 0.000 0.450 0.468 0.017 0.526 0.010 0.184
Llama-2-7b 0.404 0.393 0.417 0.405 0.569 0.020 0.746 0.445
GPT2-XL 0.968 0.851 0.395 0.738 0.608 0.005 0.889 0.501

PENMEstream T5-small 1.000 0.782 0.756 0.846 1.000 0.615 0.550 0.721
Llama-2-7b 1.000 0.871 0.818 0.896 1.000 0.716 0.792 0.836
GPT2-XL 1.000 0.850 0.768 0.872 1.000 0.733 0.768 0.833

to irrelevant prompts. We sample 1500 tuples (ei, pi, p¬i ) of
edits denoted ei, paraphrases pi, and their unrelated irrele-
vant prompts p¬i from the Counterfact dataset with accompa-
nying input prompts xi and split them into train and test sets
of 1000 and 500 samples respectively. We use the training
set to train the projector network using model representa-
tions from layer 2 of each model. To evaluate the network’s
performance, we compare two types of test representations:
the original model representations hl(xi) where xi is the
input prompt and the projected representations g(hl(xi)).
This comparison uses the experimental method described
earlier, allowing us to determine whether the projection net-
work successfully learns to create a lexically disentangled
representation space.

The results presented in Figure 1 demonstrate that the pro-
jector network effectively learns to distance lexically simi-
lar but unrelated irrelevant prompts in comparison to para-
phrases. A two-dimensional PCA visualization of the repre-
sentation space, illustrating this phenomenon, is provided
in Appendix F.2.

For data pairs where irrelevant prompts are closer to edits
than paraphrases, T5-small exhibits a dramatic decrease
from 46% to 6.4%. Similarly, GPT2-XL reduces from 10%
to 2.8%, and Llama-2-7b drops to 0% from 11%, indicating
perfect separability of irrelevant prompts and paraphrases.

6.3. Model Editing Results

Table 1 presents the comparative results of PENME and
recent model editing methods for 2000 edits on the Counter-
fact dataset and 1000 edits on zsRE.2 PENME demonstrates
stable performance across editing metrics as compared to
other model editing approaches. In particular, PENME
shows high efficacy on both locality and generalization and
has stable performance across different models. Observe
that for both GRACE and MELO, these methods require
trading of locality for paraphrase performance or vice versa
due to lexical bias.

GRACE, similar to PENME, demonstrates high edit success
rates due to its inherent design. However, its generalization
scores compared to PENME were markedly low, suggesting
poor performance on edit paraphrases post-editing. GRACE
achieved the highest locality scores, with T5-small at 0.92
and Llama-2-7b nearly perfect at 0.997. The substantial
difference between locality and generalization scores can be
attributed to GRACE’s use of a very low distance threshold,
resulting in poor performance on paraphrases but success-
fully avoiding irrelevant prompts spillover into edits.

SERAC also achieves a high edit success but shows mixed
performance results for generalization and locality across
models. For T5-small, the approach does not work well as

2Due to computational constraints, editing is performed on
1,000 zsRE samples. However, this number is consistent with the
typical sample size used in related literature.
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Figure 5. Shows the trade-off between generalization and locality performance across different hyperparameter settings. The distance
threshold τ varies from 0.01 to 0.2 (0.01 increments and τ is normalized by 100), while the edit-pairing similarity threshold ϕ ranges
from 0.5 to 0.9 (0.1 increments). Higher ϕ values enforce stricter edit similarity requirements. The results showcase the effect of
hyperparameter tuning on the projector network’s learning capacity and overall performance.

SERAC uses logically entailed facts to determine the scope,
the original work uses a T5-large which is significantly
better at reasoning.

For GPT2-XL, MEMIT demonstrates moderate effective-
ness, achieving an edit success rate of 0.785 and a local-
ity score of 0.788. In contrast, when applied to Llama-
2-7b, both the edit success and paraphrase success rates
are relatively low, although the locality score remains high.
This discrepancy is likely due to challenges stemming from
MEMIT’s training on the Llama-2-7b model, as similar
findings have been reported by Huang et al. (2024).

Projector Generalization In the previous setting, we
trained the projector using all of the edit samples at once
i.e. batch editing. In this setting, we evaluate the stream or
lifelong editing setting for zero-shot generalization, where
we update the codebook once per edit using a frozen projec-
tor. As a trained projection network is needed we initialize
PENMEstream using 2k unseen samples from Counterfact.
Table 1 presents the results. Analysis on the zsRE dataset
demonstrates the projector network’s capacity for zero-shot
generalization, achieving robust performance metrics while
maintaining equilibrium between generalization and local-
ity. For the Counterfact dataset, the drop in performance is
minimal with the slight exception on the generalization of
GPT2-XL. These findings suggest that training a projector
network on a more extensive dataset to reduce lexical bias
could enable its use as a modular component.

6.4. Scaling Edits

We evaluate the projection network’s stability under varying
numbers of edits using incrementally larger training sets
ranging from 1000 to 5000 edits, with 1000-edit increments
per training session. The results of the experiment are shown
in Figure 6. Projector network trained on representations
from T5-small demonstrates lower overall performance in
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Figure 6. PENME’s performance in terms of Locality (dotted) and
Generalization (continuous line) across varying numbers of edits

generalization and locality compared to other models. We
hypothesize that this under-performance may be attributed
to either the model’s smaller size, resulting in less robust
learned representations, or the fact that it was trained on
a more limited dataset relative to larger, more recent mod-
els. Projection networks trained on Llama-2-7b and GPT2-
XL representations exhibit comparable performance levels.
Both models show a slight decrease in generalization and
locality performance as the number of edits increases from
1000 to 2000, with minimal decline after that.

Examination of projection network behaviour reveals inter-
esting patterns in generalization and locality failures based
on the varying distances between training edits and their
respective paraphrases and irrelevant prompts after the train-
ing of the projector network. The varying distances result
in different thresholds for each edit, which can cause er-
rors when the closest edit to an irrelevant prompt example
has a high threshold. To quantify these observations, we
employed ROUGE scores in a comparative study of gener-
alization outcomes. Appendix G provides further analysis
of the learned projection space.
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Model NLI Sentiment Summarization

Llama-2-7b 0.6476 0.6573 0.1865
Llama-2-7bPENME 0.6428 0.6573 0.1865
GPT2-XL 0.5128 0.4630 0.0936
GPT2-XLPENME 0.5128 0.4630 0.0936

Table 2. Downstream task performance of GPT2-XL and Llama-2-
7B before and after PENME editing, demonstrating the method’s
effect on model general capabilities.

Model Fluency Reference Score

Llama-2-7b 611.54 16.57
Llama-2-7bPENME 622.36 21.98

Table 3. Evaluation of long-form generation by Llama-2-7B pre-
and post-editing with PENME (via IKE).

7. Generalization and Locality
To demonstrate the trade-off between generalization and
locality, we conducted an ablation study by varying the τ pa-
rameter, which modulates the similarity threshold defining
an edit’s scope. Figure 5 presents the results for GPT2-
XL and T5-small. The trends observed for GPT2-XL and
Llama-2-7b are similar. Therefore, for clearer visualization,
we present the detailed results for Llama-2-7b separately in
Appendix F.1. Setting a low τ value achieves near-perfect
locality but poor generalization. As we incrementally in-
crease the threshold, generalization improves while locality
declines gradually. Each model exhibits an optimal thresh-
old where generalization and locality are balanced; these
thresholds can be adjusted to suit specific use cases e.g. high
locality to ensure no degradation in the original model.

Figure 5 also illustrates the impact of varying the similarity
threshold for edit-to-edit pairings in the training dataset
on the projector network’s learning. Edit-to-edit pairings ϕ
which move edits farther away from each other are central to
training a robust projector network. The threshold value for
edit-to-edit pairings ϕ significantly impacts training stability
and performance. Higher thresholds, such as 0.75, result in
fewer pairings and lead to unstable training for both Llama-
2-7b and GPT2-XL models, ultimately resulting in poor
performance. Conversely, lower thresholds, exemplified by
0.6, increase the number of pairings and enhances stability.

8. Downstream Task
Table 2 reports the performance of GPT2-XL and Llama-2-
7B across downstream NLP tasks, before and after applying
PENME. For GPT2-XL, performance remains unchanged
post-edit, indicating that the edit was successfully localised
without negatively affecting general capabilities. Similarly,
Llama-2-7B exhibits stable performance on summarization
and classification tasks, with only a minor drop observed on
the NLI task. These results suggest that PENME effectively

preserves model general capabilities.

9. Long Form Generation
As discussed in Section 4, vector playback or trainable
LoRA blocks can be used to support long-form generation.
In this section, we adopt the retrieval-based prompting strat-
egy introduced by IKE (Zheng et al., 2023) to perform long
form generation. Since PENME operates on early layers of
the model, inference can be halted early when user input
falls within the scope of an edit. In such cases, the edited
information is retrieved and used to construct a new prompt,
combining the retrieved content with the user query to guide
the model’s generation.

To evaluate this approach, metrics which include Gen-
eration Entropy (Fluency) and Consistency (Reference
score) (Meng et al., 2023) are used. Table 3 presents the
results of this approach on the CounterFact dataset. We ob-
serve an improvement in fluency of the model’s generation
(fluency), indicating a reduction in repetitive or redundant
output, and a corresponding increase in reference score, re-
flecting better factual alignment. Sampled generations and
detailed analysis along with a discussion on multi-hop edit-
ing, is provided in Appendix I. The samples demonstrate
that the edited fact is consistently preserved and integrated
across the full output.

10. Conclusion
In this paper, we raised awareness of a critical vulnera-
bility in weight-preserving adapter-based model editing
techniques: lexical bias in the representation space. We
developed a projection-based method PENME trained via
contrastive learning to disentangle lexical and semantic sim-
ilarity which originally would cause misfiring on irrelevant
prompts with a high lexical overlap. Empirical evaluations
showed PENME’s superior performance across varying lev-
els of task complexity. On the zsRE dataset, it achieved im-
pressive generalization and locality scores exceeding 0.90,
demonstrating that our method is satisfactorily able to bal-
ance generalization and locality using distance metrics in
this new projected space. Notably, when assessed on the
more challenging Counterfact benchmark, the system main-
tained robust performance, attaining scores above 0.80 for
both generalization and locality metrics. This performance
on Counterfact is particularly significant given the bench-
mark’s increased difficulty, underscoring PENME’s efficacy.
In future work, we aim to investigate whether a projector pre-
trained on a large-scale dataset can serve as a plug-and-play
component for cross-lingual generalization. Additionally,
we plan to explore whether the projector can be trained
and updated incrementally with new edits, thereby reducing
training overhead and improving scalability.
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Impact Statement
This paper advances model editing by mitigating lexical
bias in adapter-based approaches, enabling precise and tar-
geted updates to language models. While our method does
not introduce an additional ethical risk beyond those al-
ready associated with language models, the model editing
techniques, in general, can be exploited to inject unsafe
behaviour into a model (Li et al., 2024c).
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A. Data Construction and Inference for PENME
The projection network is similar to the feed-forward layers in a transformer as it contains two layers with ReLU activation
in between, with the addition of the Batch Normalization layer, a common element in contrastive learning. The network is
trained via contrastive learning, which requires a dataset based on a pair of inputs with positive and negative labels. The
algorithm 1 data construction process.

At runtime, upon receiving a user query, PENME checks if the query falls within the editing scope of the edits. If so, the
new output from memory is retrieved and the inference process is stopped. Alternative generation mechanism is discussed
in Section 4 of the main paper text, which includes replacing the storage of the new fact as text with playback vectors or
LoRa block indices. Additionally, using the retrieved information in context learning based generation can be used. The
inference pipeline for PENME is given in 2.

Algorithm 1 Data Construction for Projector Network

1: Input: num overall negative, threshold edit pairings
2: Input: memory← {} {Memory storage}
3: Input: dataset pairs← []
4: Input: Cos(·, ·) {Cosine similarity function}
5: Input: dataset rows ri = (xi, yi, {pij}, {p¬ij})
6: for each ri in dataset do
7: for each pij and p¬ij in ri do
8: Add (xi, pij) to dataset pairs {Positive pair}
9: Add (xi, p

¬
ij) to dataset pairs {Negative pair}

10: end for
11: for each rt in dataset, where i ̸= t do
12: if Cos(xi, xt) > threshold edit pairings then
13: Add (xi, xt) to dataset pairs {Negative edit-to-edit pair}
14: end if
15: for each p¬tj in rt do
16: Add (Cos(xi, p

¬
tj), (xi, p

¬
tj)) to memory

17: end for
18: end for
19: end for
20: Sort memory in descending order by similarity
21: Add top-num overall negative items from memory to dataset pairs
22: return dataset pairs

Algorithm 2 Inference for LLM with PENME

1: Input: hl(·) {LLM output at layer l}
2: Input: g(·) {Projector network}
3: Input: D(·, ·) {Euclidean distance}
4: Input: codebook = {ki: (vδi , vµi )}
5: Input: user prompt xt

6: hl ← hl(xt)
7: ax ← g(hl)
8: Find k∗ = argminki

D(ax, ki)
9: if D(ax, k

∗) < vδk∗ then
10: return yk∗

11: else
12: return y {Fallback to base LLM output}
13: end if
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B. Paraphrases and Irrelevant prompts Distance Analysis
Table 4 shows the distance between edits and their respective paraphrases and irrelevant prompts across various measurement
metrics. From the distances the average paraphrase distance (AvgPD) and average distances between training and test
paraphrases (AvgDTTP), we can see that they are generally a little farther than the test paraphrases and are on average a bit
farther from the edit than train paraphrases. On the other hand, the average irrelevant prompt distance (AvgPN) and average
distances between training and test irrelevant prompts (AvgDTTN) show that the test irrelevant prompts are a little closer to
the edit as compared to the train irrelevant prompts.

C. Comparison Scoping Mechanism: PENME versus MELO and GRACE
To demonstrate the improvement in inference time for selecting the appropriate key, we compare PENME with MELO
across various sample sizes of edits, ranging from 50 to 300 in increments of 50 shown in table 5. The results show that
PENME outperforms MELO in terms of speed and also highlight the number of keys forgotten during training due to the
design of its scoping mechanism, as well as the number of entries for which the radius had to be reduced.

D. Experimentation and Implementation Details
D.1. Experimentation Setup

For our comparative analysis, we contrast against baseline methods such as simple fine-tuning (FT), alongside advanced
approaches drawn from relevant literature. These encompass GRACE (Hartvigsen et al., 2023; Yu et al., 2024), employing
adapter-based editing with a similarity-based scoping mechanism. SERAC (Mitchell et al., 2022), a multimodal editing
approach incorporating a scoping classifier, memory database, and counterfactual model alongside the target model and
MEMIT (Meng et al., 2023) an editing approach designed for decoder only model adopts a model-editing strategy by
identifying and updating knowledge-contained model layers’ weight matrices.

In evaluating our approach, we adhere to the metrics outlined in §3. Regarding generalization, we define a paraphrase as
generalized if it aligns with the correct edit and falls below its distance threshold. For assessing locality, we maintain that
locality is preserved when the distance between matched edits exceeds its threshold. Any other instances are categorized as
misfires. It is important to note that (Hartvigsen et al., 2023; Yu et al., 2024) utilize token F1 Accuracy and (Mitchell et al.,
2022) use a metric based on token probabilities. These metrics are softer in nature which allows for higher scores.

D.1.1. COMPUTATION RESOURCES

Training for all projector networks is conducted on an NVIDIA P100 GPU with 16GB VRAM. A larger VRAM or RAM
capacity is only necessary for the initial extraction of layer representations from the pre-trained language models. For the
evaluation of approaches from relevant literature, some of which demanded greater computational resources, we employed
NVIDIA A100 GPUs with 40GB and 80GB VRAM. All editing approaches were supported are implemented using the
default configurations provided in the Easy-Editor library (Wang et al., 2023). It is important to note that not all models
are supported across all editing methods. For instance, Llama-2-7b is not supported for MELO. For some models such as
T5-small, limited support is provided therefore, we utilise the code provided by the paper’s authors.

D.1.2. HYPERPARAMETERS

For training the projector networks, we utilise the Adam optimiser. we experiment with various learning rates 1e1−2, 2e1−2,
3e1−2. we find that a moderate learning rate is required to learn faster while not overfitting, hence we choose 1e1−2, with
a learning rate decay rate of 0.01. All projection networks are trained for 200 epochs using a batch size of 8192 and an
early stopping patience of 8 epochs. For selecting the margin m in the contrastive learning cost function we ablate on the
hyperparameter m for the GPT2-XL model. The table 6 shows the margin m along with the adjustment to τ for balanced
results for generalization and locality. It can be observed from the table to achieve high-performance minimum value of 30
needs to be utilized. The higher the the value for m the better the score for localization. The value chosen is 40 which has
the most balanced results.
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Table 4. Distance analysis of distances between edit and its respective paraphrase and irrelevant prompts. The metrics for mea-
surement include average/max/min paraphrase distance (AvgPD)(MaxPD)(MinPD), average/max/min irrelevant prompts distance
(AvgND),(MaxND)(MinND), average/max/min distances between training and test paraphrase (AvgDTTP)(MaxDTTP)(MinDTTP), the
average distance between farthest edit and closest irrelevant prompt (AvgCPFN), and average/max/min distances between training and test
irrelevant prompts (AvgDTTN)(MaxDTTN)(MinDTTN).

Model Measurement Metric Training Set Test Set Train vs Test

Llama-2-7b

AvgPD 0.240 0.254 -
MinPD 0.0 0.02 -
MaxPD 0.829 1.59 -
AvgND 1.436 1.379 -
MinND 0.803 0.616 -
MaxND 1.884 1.853 -
AvgCPFN 0.348 0.893 -
AvgDTTP - - 0.013
MaxDTTP - - 1.459
MinDTTP - - -0.634
AvgDTTN - - -0.227
MaxDTTN - - -1.130
MinDTTN - - 0.0

T5-small

AvgPD 0.409 0.491 -
MinPD 0.0 0.002 -
MaxPD 1.375 1.381 -
AvgND 0.468 0.534 -
MinND 0.005 0.010 -
MaxND 1.384 1.386 -
AvgCPFN 0.193 0.238 -
AvgDTTP - - 0.018
MaxDTTP - - 1.273
MinDTTP - - -1.290
AvgDTTN - - -0.276
MaxDTTN - - -1.341
MinDTTN - - 0.0

GPT2-XL

AvgPD 0.378 0.349 -
MinPD 0.0 0.01 -
MaxPD 1.49 1.395 -
AvgND 1.174 1.092 -
MinND 0.227 0.368 -
MaxND 1.709 1.728 -
AvgCPFN 0.382 0.700 -
AvgDTTP - - 0.008
MaxDTTP - - 1.368
MinDTTP - - -1.046
AvgDTTN - - -0.148
MaxDTTN - - -0.856
MinDTTN - - 0.0
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Table 5. Runtime Performance Comparison of PENME versus MELO. For PENME, the number of Codebook entries is the same as the
number of edits.

Number of Edits PENME MELO/GRACE

Runtime (ms) Runtime (ms) Codebook Entries Edits Forgotten Edit Conflict

50 0.024 ± 0.003 0.316 ± 0.090 269 24 21
100 0.115 ± 0.129 0.364 ± 0.050 523 77 66
150 0.188 ± 0.182 0.624 ± 0.082 785 132 114
200 0.279 ± 0.170 1.423 ± 0.180 1048 188 169
250 0.404 ± 0.170 1.681 ± 0.205 1319 254 217
300 0.418 ± 0.125 2.149 ± 1.069 1554 301 268

Table 6. The table shows how the performance changes along with the required threshold adjustment to τ as margin m in contrastive loss
is changed

Margin m Threshold Adjustment τ Generalization Locality

10 0 0.634 0.831
20 3 0.891 0.880
30 6 0.958 0.948
40 8 0.967 0.977
50 11 0.978 0.965
60 13 0.976 0.986
70 17 0.973 0.976
80 17 0.973 0.976
90 20 0.928 0.986

D.2. Data Processing

Counterfact: Each row in the Counterfact consists of an edit prompt, two paraphrase prompts, multiple irrelevant prompts
and an edit label xi, yi, [p1, p2], [p

¬
i1...p

¬
ij ]). For the training dataset, we extract the edit prompt xi, one randomly sampled

paraphrase pi and half the irrelevant prompts p¬ij . For creating additional paraphrases for the training set we utilize the
extracted edit prompt and paraphrase prompt as input to ChatGPT and use it to generate three additional paraphrases for
training. We ensure that the generated paraphrase follows the (s, r, o∗) triplet format that the dataset uses. The test set for
locality and generalization compromises of the paraphrase and irrelevant prompts not sampled from the training set.

zsRE: The zsRE dataset comprises of rows containing a sample question, its corresponding new label, and multiple rephrased
questions along with its filtered rephrased questions. We constructed this dataset following methodologies established in
the relevant literature. A balanced subset of paraphrases are derived from the filtered rephrased questions for training and
testing purposes. For irrelevant prompts samples, we randomly selected an equal number of questions from the NQ dataset
for training and testing while ensuring no overlap in questions.

To highlight the lexicality issue in the datasets, we compute several token overlap metrics between pairs of (edits, paraphrases)
(xi, pij) and (edits, irrelevant prompts) (xi, p

¬
ij). The results are presented in Table 7 and dataset samples in Table 8. From

the token overlap metrics table, it is evident that the edit prompt and irrelevant prompts show high overlap in Counterfact,
whereas the overlap is minimal in zsRE. This, coupled with the experiment in Section 6.1, highlights the significant
challenges observed in the Counterfact dataset.
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Table 7. Comparison between zsRE and Counterfact for token overlap metrics
zsRE Counterfact

Metric Pair Type Score Precision Recall F1 Value Precision Recall F1

Jaccard Similarity (xi, pij) 0.399 - - - 0.401 - - -
Jaccard Similarity (xi, p

¬
ij) 0.086 - - - 0.430 - - -

ROUGE-1 (xi, pij) - 0.321 0.315 0.316 - 0.310 0.325 0.307
ROUGE-1 (xi, p

¬
ij) - 0.076 0.087 0.079 - 0.295 0.293 0.290

ROUGE-2 (xi, pij) - 0.189 0.194 0.194 - 0.189 0.198 0.184
ROUGE-2 (xi, p

¬
ij) - 0.008 0.008 0.008 - 0.205 0.203 0.201

ROUGE-L (xi, pij) - 0.299 0.294 0.293 - 0.299 0.312 0.295
ROUGE-L (xi, p

¬
ij) - 0.070 0.080 0.073 - 0.294 0.292 0.289

Counterfact zsRE

Edit Paraphrase Neighbour Edit Paraphrase Neighbour NQ
dataset

The twin city of
Cologne is

What is the twin
city of Cologne? It
is

The twin city of
London is

Which river system
contains Laborec?

What river system
does Laborec con-
tain?

Where does the last
name serrano come
from?

Alexander Zi-
noviev works in the
area of

Alexander Zi-
noviev’s domain of
work is

TFred W. Riggs
works in the area of

Which airport does
Air Seychelles op-
erate in?

Which airport is
closely linked to
Air Seychelles?

How many students
attend chippewa
valley high school?

The original lan-
guage of Kondura
was

The language of
Kondura is

The language of
Taal is

The country of ori-
gin for Kala Pul is
what?

Which was the
country for Kala
Pul?

”When do the new
sky sports channels
launch?

Thomas Arne died
in the city of

Thomas Arne lost
their life at

Bill Brandt died in
the city of

What label was re-
sponsible for Wild
World?

What was the label
Wild World?

Who composed the
music for avengers
infinity war?

Table 8. Random samples from the Counterfact and zsRE datasets.

E. Projector Network and Lexical Bias
E.1. Lexical Dominance Layer Analysis

Figure 7 shows the percentage of edits samples where irrelevant prompts were closer to the edits for all models across all
layers.

E.2. Layer-Wise Analysis of the Projector Network

Figure 8 shows the results for generalization and locality for the T5-small model. The results suggest that performance
remains largely consistent; however, training tends to require more time to converge at higher layers.

F. Visualizations
F.1. GENERALIZATION AND LOCALITY for Llama-2-7b

Figure 9 shows generalization and locality trade-off as a function of varying distance thresholds τ and ϕ for the Llama-2-7b
model.

F.2. PCA

Figures 10 and 11 present the two-dimensional PCA of the model representations and projector network representations for
the Llama-2-7b and GPT2-XL models, respectively. The visual demonstrates that irrelevant prompts are closely aligned
with edit prompts, while edit prompts also show proximity to other edit prompts within the original model representations.
The projector network, however, effectively mitigates this effect by learning a disentangled representation space.
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Figure 7. Percentage of samples where edits are closer to irrelevant prompts as compared to paraphrases in the representations space of
different models across all layers. T5-small, GPT2-XL and Llama-2-7b have 6, 32, 48 layers, respectively.

Figure 8. Generalization and locality scores for various projector networks trained on layers of T5-small using 500 samples from
Counterfact.

G. Error Analysis Projector Network
To investigate the reasons behind failures in PENME, we performed a comprehensive error analysis across our models. Our
findings indicate that contrastive learning significantly mitigates lexical bias. However, due to the inherent variability in
lexical pattern distribution within the dataset, there remains potential for further optimization in the projection phase.

The training process of the projector network does not lead to uniform distances between each edit, its paraphrases and
irrelevant prompts for all samples. This paired with individually varying thresholds for edits leads to misfires. To illustrate
this problem, we format the results of each dataset sample for automatic inspection. For all paraphrases and irrelevant
prompts in the test set, we extract the nearest key/edit, the ground truth edit/key, the distance to the nearest key/edit, and
the distance to the ground truth edit/key. Table 9 shows rouge scores (Lin, 2004) for two possible scenarios i.e. success
and failure of generalization and locality. We also show separately the score for where generalization failure occurs due
to distance not meeting the set threshold. Moreover, since failures can occur in similarities with unrelated edits we show
locality and paraphrase failure with both ground truth edit and matched edit.

For cases of successful generalization, we observe a substantial uni-gram overlap and a moderate bi-gram overlap between
the edited sentences and their paraphrases. The ROUGE-L scores are similarly high for these metrics, indicating that the
sentences likely share similar tokens in the same sequence. This implies that the attention mechanism produces similar
representations, leading to a high degree of similarity. For locality success, we can see that although there is significant
token overlap between irrelevant prompts and their target edits, the irrelevant prompts had higher similarity with some
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Figure 9. Generalization and Locality trade-off a function of varying distance thresholds τ and ϕ

other edits with low token overlap, this means our approach of pushing irrelevant prompt sentences farther away is able to
generalize to unseen irrelevant prompts.

In cases of generalization failure, the ROUGE scores for paraphrases compared with the ground truth are slightly lower than
those observed in successful instances. Although there is some token overlap with the target edits, the matched edits exhibit
even less token overlap. On the other hand for locality failure, we can see that the prediction case token overlap is higher
as compared to locality success, moreover, the overlap is higher as compared to ground truth edits. Thus lexicality based
similarity is not the issue but rather the varying thresholds, which in some cases are large leads to misfires.

H. Details Downstream Tasks
For the evaluation of sentiment classification and natural language inference (NLI), we randomly sample 2,000 examples
from their respective datasets. For the summarization task, we use 1,000 randomly selected examples. The prompts used for
evaluation are listed in Table 10. For both the sentiment classification and summarization tasks, providing a single in-context
example was necessary to achieve reasonable model performance.

I. Details Long Form Generation
Sampled generations using Llama-2-7b with max token length set to 300 are presented in Table 11.

We use the following prompt, which is stored as the value in the codebook:

You have a new fact: {edit prompt}.
Based on this fact, complete the following sentence to answer the question:
{query}
Your answer should specifically incorporate the new fact I’ve shared.
Paragraph: {query}

The generated text shows that the edited fact is propagated throughout the generation, and the generation is coherent.
However, it is important to note that IKE-based generation, as well as by other approaches, including weight-modifying
methods, do not guarantee the elimination of hallucinated content that may accompany the edited information. Although
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Figure 10. Generalization and locality scores for various projector networks trained on layers of T5-small using 500 samples from
Counterfact. The lines show edits and a respective paraphrase and irrelevant prompts.
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Figure 11. Two dimensional PCA on GPT2-XL model representation and the trained projejctor network.

the target fact is often correctly inserted, unrelated or inaccurate details can still be produced. Addressing this limitation
remains an open challenge and a promising direction for future work.

For multi-hop editing, prompts whose outputs are expected to change can be passed through the model and projector to
generate corresponding keys. These keys can then be linked to a central edit, enabling the model at runtime to retrieve and
associate relevant information with the original edit. Through in-context reasoning, the model can subsequently produce the
desired output

J. Limitations
Training the projection network in PENME using the contrastive learning scheme is sensitive, requiring tuning of hyper-
parameters such as the learning rate and contrastive loss margin. Effective network training also hinges on the careful
construction of training data, which requires consideration of edit-to-edit pairings. Finally, the thresholds for the codebook-
based retrieval system, though dynamically determined from training data, can vary across different models, necessitating
adjustments to the alpha (a) parameter for each model.
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Table 9. ROUGE Evaluation Scores
Model Rouge-1 2.5%

CI
Rouge-1 97%
CI

Rouge-2 2.5%
CI

Rouge-2 97%
CI

RougeL 2.5%
CI

RougeL 97%
CI

Generalization Success
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
Llama-2-7b 0.629 0.639 0.382 0.394 0.608 0.619
GPT2-XL 0.655 0.666 0.403 0.417 0.642 0.653

Generalization Failure (prediction)
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
Llama-2-7b 0.133 0.173 0.056 0.091 0.125 0.162
GPT2-XL 0.122616 0.160 0.056 0.090 0.117 0.153

Generalization Failure (ground truth)
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
Llama-2-7b 0.488 0.518 0.270 0.296 0.460 0.489
GPT2-XL 0.501 0.527 0.284 0.310 0.474 0.500

Locality Success (prediction)
T5-small 0.100 0.104 0.011 0.013 0.096 0.099
Llama-2-7b 0.100 0.104 0.011 0.013 0.096 0.099
GPT2-XL 0.095 0.100 0.011 0.013 0.092 0.095

Locality Success (ground truth)
T5-small 0.100 0.104 0.011 0.013 0.096 0.099
Llama-2-7b 0.487 0.518 0.269 0.296 0.459 0.489
GPT2-XL 0.176 0.217 0.036 0.059 0.173 0.211

Locality Failure (prediction)
T5-small 0.566 0.577 0.390 0.403 0.562 0.574
Llama-2-7b 0.259 0.277 0.148 0.164 0.247 0.264
GPT2-XL 0.254 0.273 0.147 0.164 0.244 0.262

Locality Failure (ground truth)
T5-small 0.203 0.212 0.052 0.058 0.197 0.206
Llama-2-7b 0.201 0.206 0.049 0.053 0.195 0.201
GPT2-XL 0.207 0.218 0.052 0.059 0.201 0.212

Generalization Distance Failure
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
GPT2-XL 0.522 0.551 0.279 0.309 0.484 0.512
Llama-2-7b 0.495 0.579 0.252 0.324 0.455 0.529

Model NLI Sentiment Classification Summarization

Llama-2-7b {sentence1} entails the {sentence2}.
True or False? Answer:

Choose from one of these: anger,
fear, joy, love, sadness, surprise.
Example: {example} Text: {text}
Sentiment:

Example: {example} Now generate
short summary of the following:
Article: {article} Summary:

GPT2-XL {sentence1} entails the {sentence2}.
True or False? Answer:

Choose from one of these: anger,
fear, joy, love, sadness, surprise.
Example: {example} Text: {text}
Sentiment:

What is the main takeaway from the
following article? {text} Summary:

Table 10. Prompt used for GPT2-XL and Llama-2-7b for downstream tasks.
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Table 11. Example of an edited factual prompt and generated output.
Prompt Edit Original

Information
Edit Query Output

What is the twin city of Shanghai? It
is

Barcelona Dresden The twin city
of Shanghai is
none other
than

The twin city of Shanghai is none
other than Dresden Germany. This
may come as a surprise to many as
Dresden is located in Eastern
Germany while Shanghai is a major
city in Eastern China. However, the
two cities have a long history of
cultural and economic ties dating back
to the 19th century when both were
part of the German Empire. In the
years following World War II,
Dresden and Shanghai maintained
close diplomatic relations, and in 1981
the two cities officially designated
each other as twin cities. Today, the
connection between Dresden and
Shanghai continues to flourish with
regular exchanges in the fields of
education, culture, and trade.

Baal Shem of London speaks the
language

Hebrew French Baal Shem of
London is
proficient in

Baal Shem of London is proficient in
multiple languages including French.
This is a remarkable feat given that he
is a spiritual leader and healer who is
said to have the ability to
communicate with the divine.
However his proficiency in French is
particularly noteworthy as it is a
language that is not commonly
associated with his spiritual tradition.
Despite this Baal Shem of London has
demonstrated a remarkable ability to
master this language allowing him to
connect with and heal individuals
from a diverse range of cultural
backgrounds. This is yet another
testament to his incredible spiritual
abilities and his commitment to
serving others.
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