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Abstract

Understanding and capturing temporal relationships between time-related events expressed in text is a crucial as-
pect of natural language understanding (NLU). Although transformer-based pre-trained language models such as
bidirectional encoder representations from transformers (BERT) have achieved significant success in various natural
language processing (NLP) tasks, they are still believed to underperform in temporal commonsense tasks due to the
limitation of vanilla self-attention. This paper proposes a methodology for developing language models to understand
temporal commonsense reasoning over several tasks better. The proposed framework integrates a multi-data hybrid
curation approach for dataset preparation, a collaborative synthetic dataset generation process involving chat agents
and human domain experts, and a multi-stage fine-tuning strategy that leverages curated, intermediate, and target
datasets to enhance temporal commonsense reasoning capabilities. The models we use in our proposed method-
ology are superior due to the use of an advanced attention mechanism and effective utilization of our framework.
These models utilize disentangled attention, which is relative encoding position, which proved crucial for temporal
commonsense by understanding temporal cues and indicators efficiently. Our extensive experiments show that mod-
els built with our proposed methodology enhance results on several temporal commonsense categories. Our results
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show that we achieved better performance than the previous published work by utilizing a disentangled attention
mechanism and hybrid data framework. Most impressively, our approach has demonstrated state-of-the-art (SOTA)
results, surpassing all previous studies on temporal commonsense for the MC-TACO dataset.

Keywords: Temporal commonsense, commonsense reasoning, disentangled attention mechanism, large language
models, data augmentation

1. INTRODUCTION

Commonsense is the basic unit of common knowledge among most people, which humans develop over time
without explicit learning, and it is essential for understanding human language text. In natural language pro-
cessing (NLP), commonsense reasoning is critical to discuss and develop methods that improve the common-
sense ability of machine learning models!'. Effectively understanding natural language text requires com-
monsense knowledge; recently, research focusing on NLP has increased in this direction, with Zhang et al.*!
developing a framework for extracting and analyzing ordinal commonsense knowledge, Yang et al.l*! intro-
ducing a model that enhances commonsense question answering by leveraging implicit relations in knowledge
graphs, Wang et al.|*) proposing a lexical taxonomy-based method for inferring isA commonsense knowledge
with high accuracy and Nguyen et al.*) constructing a large-scale refined commonsense knowledge base with
improved precision and recall. There are several commonsense reasoning types in NLP and applications of
reasoning in machine learning!®/, and our work investigates temporal commonsense, a special case of com-
monsense reasoning used to study time and its reasoning aspects. Temporal commonsense involves reasoning
about time-related concepts such as event duration (“It takes 30 min to brew coffee”), ordering (“Brushing
teeth happens after waking up”), and typical times (“Schools open at 8 AM”). Understanding time, whether
stated explicitly or implicitly in any form of data, is very easy for humans; however, it is difficult for computers
to comprehend temporal aspects in text and do reasoning in temporal commonsense. A few examples are
presented in Figure 1 to show temporal commonsense in text data.

Over the years, NLP research has made significant progress in understanding time”); it is crucial for event
extraction and relationships, which have many applications for deep learning®°). Initially, the focus was on
temporal information retrieval and temporal reasoning "%/, which aimed to extract and organize time-related
data from text, but now researchers have shifted their attention towards temporal commonsense reasoning!''/,
the latest form that emphasizes understanding how temporal events relate to everyday knowledge. While most
of the research on temporal reasoning focuses on the relationship between temporal events and event extrac-
tion '), some researchers also explore specific aspects individually, such as event duration '), frequency**/,
ordering "), and infilling*°!. Various masking techniques have recently been used for intermediate training,
followed by fine-tuning on temporal commonsense data, resulting in significant progress in current state-of-
the-art (SOTA) results 7.

Temporal commonsense reasoning has been the subject of many research studies, but most have only focused
on specific aspects of events individually, such as duration, ordering, or infilling. On the other hand, our
work is unique in that it examines all categories of temporal commonsense, similar to the work by Zhou et
al."""l, Finding time-related events stated in the text and deriving temporal commonsense relations is crucial
to comprehending sentences in natural language understanding (NLU). Earlier studies have utilized bidirec-
tional encoder representations from transformers (BERT) (18] and RoBERTa!"*! models but have not shown
effectiveness in generalizing temporal commonsense tasks. While BERT and RoBERTa have achieved SOTA
performance on numerous NLP benchmarks, their pre-training objectives do not explicitly capture dynamic
temporal relations, which leads to diminished effectiveness on temporal commonsense tasks!>°) as models
were not able to identify simple temporal distinctions such “before” and “after” on straightforward sentiment
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g )
[Sl: It's hail crackled across the comm, and Tara spun to retake her seat at ]
the helm.

Q1: How long was the storm?
[]an year [X] 6 hours [x] an hour  []an week
Temporal Commonsense type: Event Duration

Q2: What happened next?
[ 1 she drove for a while [X] tara sailed the ship to safety
[ ] yutaka kume took the helm [ ] mr. luzon took the helm
Temporal Commonsense type: Event Ordering

Q3: Will the hail storm ever end?
[1no [x] yes [ ] never [ ] maybe
Temporal Commonsense type: Stationarity

Q4: How often does a typical ship face a major storm like this?
[ ] once a day [ ] once every 5 seconds [X] rarely
[lonce anight []every minute []everyday

Temporal Commonsense type: Frequency

Q5: What time of day was the storm?

[X] 7:00 PM [X] it was morning [X] it was evening
[x] 3:00 PM [X] 7:00 AM [x] 5:00 PM
Temporal Commonsense type: Typical Time
_ J

Figure 1. Sample examples for temporal commonsense.

analysis data. Kadari et al.?'] have tried to address this issue using more recent language models such as
T512%), a text-to-text pre-trained model; however, their approach only involved different preprocessing tech-
niques such as time unit and duration unit normalization, which has limited effectiveness for large pre-trained
models. For adversarial methods, ALICE>*! is improving the generalization of pre-trained language models
on commonsense inference tasks by enhancing their robustness in the embedding space using the true label
and model prediction for perturbations. ALICE++ >4} is an improved method that employs a dynamic search
algorithm for the best layers to use perturbations compared to the embedding layer in the former approach.
The ML-ALICE**) method introduces perturbations to the attention representation of layers. However, ad-
versarial training methods have been ineffective due to their increased training time compared to standard
fine-tuning approaches and the need for extensive human labeling for perturbation data.

Limitations of prior work highlight critical gaps in temporal commonsense research. Therefore, our focus to
address these gaps is on developing computationally efficient methods and presenting the latest findings in this
domain. Our objective is to explore novel approaches that can effectively generalize temporal commonsense
tasks without requiring extensive human labeling or computational resources and advance this important area
of research, which has significant importance for various fields. Our approach introduces a hybrid data frame-
work and uses an advanced attention mechanism to achieve these goals.

This paper presents our approach to understanding temporal commonsense reasoning using DeBERTa mod-
els 2]
mented data generated by different methods. Our methodology integrates advanced techniques for data cu-
ration, synthetic dataset generation, and multi-stage fine-tuning, which elevate the model’s performance on

temporal commonsense tasks. After conducting extensive experiments and evaluating our technique against

. We employ various training and fine-tuning methods, including multi-stage fine-tuning, with aug-

standard question-answering metrics, our experimental results show SOTA performance, exceeding all pre-
vious studies on temporal commonsense with the MC-TACO dataset. Following are contributions of our
research to understanding temporal commonsense using disentangled attention mechanism-based methods:
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o We propose a multi-data hybrid curation framework, which involves the preparation of several sets of di-
verse datasets for temporal commonsense reasoning, significantly improving model training and perfor-
mance.

o We introduce an innovative process for generating a synthetic dataset through the hybrid collaboration
of chat agents and human experts, which enriches the model’s ability to reason on time-based events by
providing high-quality, diverse data.

o We perform multi-stage fine-tuning of DeBERTa models, where the model is fine-tuned first on curated
datasets, then on intermediate datasets, and finally on our target dataset, which enables the model to better
generalize across temporal commonsense reasoning tasks.

« We fine-tune four variants of the DeBERTa pre-trained model using both the target dataset and synthetic
datasets, with a detailed comparison of performance between the different fine-tuned models, demonstrat-
ing the impact of the data augmentation and fine-tuning strategies on model accuracy.

2. RELATED WORK

Commonsense research has recently become increasingly popular in the NLP research community. While ear-
lier research was primarily focused on physical commonsense, researchers have expanded their investigations
to include a broader range of topics. Forbes looked into commonsense reasoning related to size, weight, and
strength in the physical world?”!. Cocos explored concepts such as the intensity, roundness, and delicious-
ness of objects?*). Other researchers have looked at commonsense knowledge related to events, including the
intentions and reactions of participants ?° and subsequent event selection *°!. Despite the importance of tem-
poral commonsense for understanding event reasoning, very few studies have focused on it. Ning emphasized
the importance of understanding event duration for constructing a story timeline [*'/,

Understanding time and temporal inference in natural language has captured the attention of researchers for an
extensive period. Previous studies in this field have included the extraction of temporal expressions *?), extrac-

tion of temporal relations **/, and timeline construction [**/

. Other works have focused on implicit temporal
commonsense, such as event ordering and understanding what happens after an event!'>**/, as well as event
duration *>***”), One study has explored five types of temporal commonsense together and presented them
as a unified framework rather than as individual aspects of temporal commonsense '), This work has tailored
temporal commonsense as reading comprehension and presents a dataset as question-answering tasks. The
field of question-answering has seen steady research progress in the NLP community, with a focus on general

comprehension of text [*8-4],

Several challenging benchmarks have been recently developed for temporal commonsense inference. The
Story Cloze Test!*! dataset discusses typical temporal ordering and event causal relationships. TORQUE [*]
dataset presents temporal order of events as a reading comprehension task in NLP. MC-TACO "'} is the only
benchmark that focuses on five complex temporal commonsense categories altogether. TIMEDIAL!**) is a
dialogues dataset comprising multi-turn dialogues with complex temporal information. The construction of
language models for temporal reasoning tasks is proposed by Zhou et al., which presents and produces the

representation of time and other events relevant to tasks .

Data augmentation is a process to expand available data without collecting new samples, initially proposed and
used in the computer vision field. Later, it also proved significant in NLP despite the challenges posed by the
4 There are several approaches
for text data augmentation; we will discuss the background of two methods, synonym replacement (SR), and
back-translation (BT), for the relevant scope of this research. Kobayashi uses predictive language models to
replace relevant words with the most similar words, which does not change the original labels**/. Other
data augmentation methods for substituting synonyms utilize well-known ontologies“’) or word similarity

discrete nature of languages to maintain invariance by continuous noising!
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Figure 2. Overall architecture of proposed framework for temporal commonsense reasoning.

calculations*”). The technique of using machine translation to generate new data from monolingual source

data was first introduced by Sennrich to train neural machine translation models!**

. Yu et al. expanded
the target data by generating new data by translating it into French and then back to English for BT data
augmentation ). Fadaee uses BT to expand data and improve model performance without changing the
training process of machine translation models'*°). Sugiyama proposes a method to prove the advantages
of BT-based data augmentation for neural machine translation, which is context-aware translation and uses
different language directions for BT[5!, Despite recent advancements in temporal reasoning, several technical
gaps remain: simple time unit and duration unit normalization methods fail to efficiently leverage pre-trained
models, adversarial techniques, while boosting performance, are computationally inefficient, vanilla attention
mechanisms struggle to effectively identify temporal cues in textual data, and the issue of data scarcity persists,

although it could be alleviated through data augmentation approaches.

3. METHODS

3.1. Proposed framework overview

Our proposed methodology framework consists of three main components: (a) a multi-data hybrid curation
framework to prepare several sets of datasets for temporal commonsense reasoning; (b) a process to generate
a synthetic dataset with a hybrid collaboration of chat agents and human experts; (c) fine-tuning pre-trained
models using curated datasets, our target data and multi-stage fine-tuning using intermediate datasets with
our target dataset. Figure 2 illustrates the overall framework for our proposed approach, and the following
subsections provide additional details about these components.
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Figure 3. Overall process to fine-tune models using our proposed method for temporal commonsense reasoning.

3.2. Problem definition

Following previous work, we also utilize pre-trained language models to fine-tune our approach to answering
questions that need an understanding of commonsense knowledge about time. We choose the DeBERTa as
a pre-trained model. We formulate our temporal commonsense reasoning task using sequence-pair classifi-
cation as a binary classification method. For sequence classification, the model is provided two sequences as
input; for sequence one, the context and question of our target dataset are concatenated, and the candidate
answer is sequence two. Special tokens of the model separate these sequences. The model’s dense output layer
utilizes the final hidden state of the classification special token in the sequence to make predictions about the
plausibility of the answer of each instance in our dataset.

3.3. Pre-trained models

DeBERTa!*?) is an advanced version of encoder-based models similar to the BERT [ and RoBERTa ") mod-
els, incorporating two innovative techniques. One of these techniques involves disentangled attention instead
of a vanilla self-attention mechanism that uses content embedding as two vectors where a content vector and
a position vector represent every word in sequence. This mechanism calculates attention weights for words
with the relative position of other words using disentangled matrices based on these vectors, resulting in bet-
ter contextual understanding. The second technique involves an improved mask decoder to predict masked
tokens during pre-training instead of the output softmax layer. Together, all these design strategies contribute
to significant performance enhancement of DeBERTa compared to its predecessors, BERT and RoBERTa.

We use DeBERTaV3 ), particularly for the pre-trained language model, an upgraded iteration of the original
DeBERTa model, implementing several advancements to enhance its performance. One notable improvement
is changing the pre-training objective from traditional BERT-based masked language modeling (MLM) "] to
the Electra style replaced token detection (RTD) **/ technique, which is superior to MLM and a more sample-
efficient technique. Additionally, DeBERTaV3 introduces a novel gradient-disentangled embedding sharing
method. This innovative approach effectively addresses the tug-of-war dynamics commonly encountered dur-
ing training °*!, leading to enhanced training efficiency and superior quality in the pre-trained model. Further-
more, DeBERTaV3 offers a range of model sizes, including xsmall, small, base, and large. Figure 3 illustrates
the overall process to fine-tune pre-trained models using our proposed approach.
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3.4. Data augmentation techniques

We implemented two data augmentation techniques to expand our dataset and compare the performance of
multiple fine-tuned models with different perspectives. We only applied data augmentation to the context and
question sentences of our dataset, keeping the original sentences for the answers in both techniques.

3.4.1 SR

SR technique is a simple data augmentation technique where several words from a sentence are chosen and
replaced with synonyms; it improved the performance of models for text classification where label data is not
available in huge quantities'**). For SR, we use the Easy Data Augmentation library (https://github.com/jas
onwei20/eda_nlp). The noise absorption ability of sentences for data augmentation depends on the length of
the sentence, so a long sentence can absorb more words without changing the original context and does not
affect ground truth class labels. In order to balance this trade-off for short and long sentences, we use n = @/
to select varying words to be changed®>). Here, I represents the sentence length, and « is a parameter for
the percentage of words to change in a sentence. This formula ensures that the number of words changed is
proportional to the sentence length, maintaining a consistent level of augmentation across different sentence
lengths. Following this setting, we generate four more augmented sentences for each original sample in our
training data split. So, in this way, our original dataset expanded to four times.

3.4.2 BT

Given the limited size of our training dataset, we use the BT technique **) to expand it/*"). We selected four
languages that are closely related to our source language (English), and the available open-source machine
translation models for these languages have demonstrated exceptional performance. We utilize the EasyNMT
(https://github.com/UKPLab/EasyNMT) translation service on our server, a leading machine translation open
software library offering various models for nearly 100 languages and different translation directions. Specifi-
cally, we utilize the Opus-MT model °°/, a neural machine translation model based on encoder-decoder archi-
tecture, to translate the original English text to the selected languages. We use four languages - German (de),
French (fr), Spanish (es), and Dutch (nl) - for forward translation. The translated text is then back-translated
into English. Our back-translated dataset is also four times the size of the original dataset, ensuring consistency
for comparison purposes.

3.5. Synthetic dataset creation process

We have utilized Al chat agents to create a synthetic dataset focused on the characteristics of our target temporal
commonsense reasoning dataset, which we named generative temporal commonsense reasoning (GenTCSR).
The process for creating this dataset, as illustrated in Figure 2B, involved a careful selection of 1,000 seed
contexts to provide to the chat agent. From these contexts, we generated questions and answers for temporal
commonsense reasoning using a customized prompt tailored to the specific characteristics of the data. Our
proposed process ensures the reliability of the GenTCSR dataset. These seed contexts were sourced from the
Soda dataset, which includes seed narrative sentences derived from temporal knowledge graphs. The seed
sentences were then inputted into GPT-3 to generate complex contextual stories. After obtaining samples
of questions and answers of these selected contexts using an LLaMA-based chatbot in our process, a human
expert evaluated their quality and decided which ones should be included in the dataset. Ultimately, GenTCSR
serves as one of the intermediate datasets for our proposed methodology.

3.6. Fine-tuned models

We have fine-tuned DeBERTa models on the MC-TACO dataset using the standard fine-tuning process, which
we refer to as the standard fine-tuned model. We have also adapted two other fine-tuning models to train on
our augmented data to compare the model performance for standard fine-tuning processes and fine-tuning
after data augmentation. Figure 4 illustrates the overall working of our fine-tuned models. There are two
important concepts in our DeBERTa.
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Figure 4. Overview of our model's processing pipeline for temporal commonsense reasoning. The input is first converted into embeddings
and positional embeddings, which are then processed through the transformer layer. The output is passed to the RTD module with GDES,
and the final hidden states are computed for reasoning tasks. RTD: Replaced token detection; GDES: gradient disentangled embedding
sharing.

3.6.1 Disentangled attention

The traditional attention mechanism °”) used in BERT uses a single vector consisting of word embedding and
position embedding for input layer representation; in contrast, disentangled attention*? uses two different
vectors to represent each embedding. Attention weight scores for each word are calculated using content

vectors and position vectors for disentangled matrices. Two tokens, i and j, can be represented as { H;}, {Pi| j}

and {Hj}, {Pj|i} for the two vector approach of disentangled attention mechanism. To calculate attention

score AI,J N

Al_] = {Hi’Pilj} X {Hj,Pj‘i}T

= HiHjT + Hin‘iT + Pi‘jHjT + Pi‘ijﬁT

where {H;}, {Pilj}, {Hj}, and {Pj\i} represent the content of i, the position of i relative to j, the content of

J»>and the position of j relative to i, respectively. Equation (1) represents the disentangled matrices of content-
to-content, content-to-position, position-to-content, and position-to-position, respectively. The position-to-
position matrix has been removed from the equation since it does not add additional information.

(1)

The relative distance from token i to token j represented as §(i, j) € [0,2k) can be defined as:

-k
k (2)

0 for i-j
6(i,j) = 2k -1 for i—j
i—j+k others.

IV IA
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Here, k represents the maximum value for relative distance.

The standard self-attention *”! for single-head can be reformulated for disentangled attention using similar
terms in Equation (3). The query (Qc), key (K¢), and value (V¢) vectors represent projected content derived
from projection matrices Wq.c, Wy e, Wy € Rdxd, respectively. A fixed vector for relative position em-
bedding is represented as P € RZkxd Two other vectors (Qr, K;) are generated from projection matrices
(Waqr, Wy € R&d) o represent projected relative position vectors.

Qc = HWq’c, Kc = HWk,C’ Vc = HWV,C’ Qr = PWq)r, Kr = PWk,r

A.._OCKET CKr T cOr T
Ajj= QFKST+ QKL T+ K5QY 5 (3)

H., = softmax (‘/%) V.

Here, Ai,j is the attention score for a token i relative to token j, §(j, ) and 6 (i, j) is the relative position matrix

respective to token positions. The scaling factor applied here is \/%fd instead of \/ig in[57) for training stability.

The attention score for each token in sequence can be computed using the algorithm 52/,

3.6.2 Gradient disentangled embedding sharing

The DeBERTaV3 model training objective is inspired by the ELECTRA model, where the traditional MLM is
replaced by a generative adversarial network (GAN)-based generator and discriminator approach. The two
separate networks for the generator and discriminator share an embedding layer to learn from each other;
this causes a drawback of tug-of-war dynamics. To overcome this problem, gradient disentangled embedding
sharing (GDES) >/ is a novel approach that offers superior embedding sharing for each generator and dis-
criminator. In GDES, token embeddings are shared by both the generator and discriminator. However, the
gradients of the generator are not affected by RTD loss, which helps to avoid deficiencies due to conflicting
objectives. GDES allows only the change of embeddings of the generator with the MLM loss, which helps to
achieve the same converging speed of traditional embedding sharing with better results of generator output.

GDES implementation is presented as in Figure 5; the discriminator embedding is represented as Ep =
sg (Eg) + E,., where sg is an operator to stop gradients being updated for generator embedding E¢ and
only allow residual embedding E, to be updated. E, is initialed as a zero matrix and updated during training
using no embedding sharing method. During training, inputs are generated through a generator for the dis-
criminator for each iteration; MLM loss updates both Eg and E,. Next E, updated through discriminator on
inputs generated previously with RTD loss. Finally, Eg and E, are added to produce matrix for discriminator

embedding Ep.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

We use four types of datasets to fine-tune our models with different experimental settings and evaluate our
approach concerning temporal commonsense reasoning: a target dataset, an augmented dataset, and two in-
termediate datasets. We selected MC-TACO as our primary benchmark due to its comprehensive coverage of
temporal commonsense categories (e.g., duration, event ordering) and its status as the standard for temporal
commonsense reasoning evaluation benchmark to compare with prior work. MultiRC is included to over-
come the data scarcity problem for temporal commonsense reasoning and is used as an intermediate dataset
for a multi-stage fine-tuning approach. GenTCSR is used to increase the diversity of the dataset domain for
temporal commonsense reasoning and also acts as a comparing approach to a data augmentation approach.
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Figure 5. Overview of the GDES method. The discriminator embedding (Ej,) is formed by stopping gradients for the generator embedding
(Eg) while allowing updates to the residual embedding (E,). GDES: Gradient-disentangled embedding sharing.

1200 1 Bl plausible
mmm not plausible

1000 - I total

800 1

600 1

Example Count

400 1

200 1

Temporal Commonsense Category

Figure 6. Statistical overview of dataset.

Below, we briefly describe these datasets and present statistics in the tables.

4.1.1 MC-TACO

MC-TACO '] dataset introduces the temporal commonsense reasoning task to evaluate a pre-trained model’s
knowledge to understand temporal associations between events and entities in natural language text. MC-
TACO is our target dataset; the development set is used for fine-tuning and dataset augmentation, and the test
set is used to evaluate the performance of models trained with different experiments. The dataset comprises
13,000 samples, each presenting a distinct temporal reasoning challenge!'!). MC-TACO dataset categorizes
temporal commonsense into five classes; no previous work has studied all these classes, so it proved a challeng-
ing benchmark for models to test temporal commonsense. The temporal categories are duration, temporal
ordering, typical time, frequency, and stationarity. A tuple in each sample consists of a sentence for context,
a question with some temporal cue, a candidate answer, and a temporal category, which we are not using as
input for features for our models. The statistical distribution for the dataset is presented in Figure 6.
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Figure 7. Statistical overview of GenTCSR dataset. GenTCSR: Generative temporal commonsense reasoning.

Table 1. Parameters for our baseline models

Model name Vocabulary (K)  Backbone parameters (M)  Hiddensize Layers
DeBERTaV3ygman 128 22 384 12
DeBERTaV3gman 128 44 768 6
DeBERTaV3pase 128 86 768 12
DeBERTaV3iarge 128 304 1024 24

4.1.2 MultiRC

MultiRC is a reading comprehension dataset with short paragraphs and multi-sentence questions from diverse
domains (e.g., science books from elementary school, travel guides, etc.). It challenges the model to indepen-
dently identify the correct answers from multiple-choice questions without being a span in the text from a
given passage. It has around 10 K questions, and 60% of the data is released as training and development data.
For our purpose, we used only the train set of this dataset as an intermediate dataset. It is a general machine
reading dataset and does not have explicit temporal commonsense aspects.

4.1.3 GenTCSR

We used large language models to generate a temporal commonsense reasoning dataset named GenTCSR.
This synthetic data is also used as an intermediate dataset for our experiments; the creation of this dataset
is presented in our methods section. This generated dataset has 13,221 samples. We adopted MC-TACO
temporal commonsense categories for this dataset, and the statistics of these categories are shown in Figure 7.

4.2, Baseline models

The DeBERTa model, known for its disentangled attention mechanism, improved encoding capabilities, and
enhanced training, has established itself as a reliable and effective model for baseline in various NLP tasks (i.e.,
text classification, named entity recognition, and question answering). In our study, we have meticulously
chosen four baseline models of different sizes: DeBERTaV34r4e» DeBERTaV3j45., DeBERTaV 3,4, and
DeBERTaV3,gnau, all of which are pre-trained models. We are following the DeBERTa codebase setting for
our study, ensuring a rigorous and thorough approach. Detailed parameter information about these baselines
is presented in Table 1.

4.3. Experiment settings
We utilized the Transformers library with Pytorch for our experiments to fine-tune all models. We used a
learning rate ranging from 9 x 10° to 1 x 10° for the ADAM optimizer and training batch size ranging from
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Table 2. Experiment settings for fine-tuning different DeBERTaV3 models

Hyperparameter XSmall  Small Base Large
Dropout of task layer 0.1 0.1 0.1 01
Warmup steps 0.01 0.01 0.01 0.01
Learning rates 5e-6 5e-6 5e-6 5e-6
Batch size 64 64 64 64
Weight decay 0.01 0.01 0.01 0.01
Max training epochs 510 510 510 510
Learning rate decay Linear Linear  Linear  Linear
Adam e Te-6 le-6 Te-6 le-6
Adam g, 0.9 0.9 0.9 0.9
Adam g, 0.999 0999 0999 0.999
Gradient clipping 1.0 1.0 1.0 1.0

Table 3. Results for DeBERTaV3 baseline models

Model name  Exact match (%)  F1(%)
XSmall 10.66 17.42
Small 1742 17.42
Base 17.42 17.42
Large 1216 49.84

16 to 128. Depending on the dataset type, we used five or ten training epochs. Gradient clipping of 1 is used
to evade gradient explosion. We used WordPiece*®! to tokenize all texts and did not chop text for maximum
sequence length. The more detailed hyperparameters setting is presented in Table 2 for all models following
the default settings of DeBERTaV3.

4.4. Evaluation metrics

Following other models, we also used two question-level metrics [Exact match (EM) and F1 score] for evalua-
tion. EM is a binary metric that checks if the prediction exactly matches the original answer. If there is even a
single character difference, it is considered wrong. If the predicted string matches the reference string exactly,
its EM score is 1; otherwise, it is 0. The EM score for a dataset is the sum of all individual EM scores divided by
the total number of predictions. F1 score is another popular metric for classification tasks. It compares words
in the predicted answer to those in the ground truth answer.

4.5. Results

This section summarizes our experiments’ results on an MC-TACO test set-based evaluator and presents re-
sults for each fine-tuned model in detail. The key findings of our experiments include the effectiveness of
augmenting text data with different methods, such as SR, BT, and multi-stage fine-tuning, in enhancing the
understanding of temporal commonsense tasks.

4.5.1 Results for baseline and standard fine-tuning

Table 3 summarizes the results of baseline models. The baseline models were evaluated without fine-tuning
on the target dataset, serving as a reference point for comparison. Table 4 presents the results of the standard
fine-tuning method using our target dataset without any data augmentation. To compare the results of the
baseline model and our standard fine-tuned model, we can see an apparent performance increase; fine-tuning
significantly improves both EM and F1 scores across all model sizes. Notably, the DeBERTaV3-Large model
achieves the highest performance, with an EM score of 63.06% and an F1 score of 82.17%, demonstrating the
effectiveness of fine-tuning on our target dataset. The Base model improves from 17.42% EM and 17.42% F1 in
the baseline setting to 48.72% EM and 75.87% F1 after fine-tuning. Similarly, the Small model exhibits a sub-
stantial boost, increasing its EM from 17.42% to 32.36% and F1 from 17.42% to 65.36%. These improvements
highlight the effectiveness of task-specific fine-tuning, with larger models benefiting more significantly.
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Table 4. Results for standard fine-tuned models

Model name  Exact match (%)  F1(%)

XSmall 1742 25.81
Small 32.36 65.36
Base 48.72 75.87
Large 63.06 8217

Table 5. Results for fine-tuned models on SR augmented data

Model name  Exact match (%)  F1(%)

XSmall 35.06 66.01
Small 46.10 7317
Base 55.26 78.89
Large 62.76 8311

SR: Synonym replacement.

4.5.2 Results for augmented data fine-tuning

Table 5 shows the results of models fine-tuned on SR augmented data. For comparison purposes, it shows a
visible gain in the performance results of all model variants over standard fine-tuned models. Notably, even
the XSmall model exhibits significant improvements compared to standard fine-tuning, with EM increasing
from 17.42% to 35.06% and F1 from 25.81% to 66.01%. This suggests that SR augmentation enhances model
robustness, particularly for smaller architectures. Table 6 shows a complete detail of the results accomplished
through fine-tuning models on BT-based augmented data, covering all languages and respective languages.
The thoroughness of our technique is evident in the detailed results presented, which cover four languages
and four models. The best results and models are in bold to emphasize the best-performing augmented data
for each language. Our results show that French is the best-performing language, giving two better models
than other languages: XSmall and Large. The second best-performing language is Dutch, which gives us
the best results for the Small model. Using all language data, we also achieved the best results for the Base
model. This table proves our hypothesis that augmenting text data with different techniques helps enhance
the understanding of temporal commonsense tasks. Overall, these results suggest that data augmentation,
particularly BT, substantially improves model generalization, with the best performance observed for French
and Spanish augmentations on larger models. Additionally, SR offers a lightweight yet effective enhancement,
particularly for smaller models.

4.5.3 Results for multi-stage fine-tuning

We also evaluated the performance of multi-stage fine-tuning models trained on two intermediate datasets,
MultiRC and GenTCSR. The results demonstrate notable differences in the effectiveness of the intermediate
datasets and reveal trends in model scalability. Table / summarizes the results of multi-stage fine-tuned mod-
els across the two intermediate datasets. Fine-tuning on MultiRC before training on our target dataset leads
to consistent performance gains across all model sizes. Notably, the Large model achieves 64.11% EM and
84.21% F1, outperforming both standard fine-tuning and SR augmentation. Similarly, the Base model benefits
significantly, reaching 53.68% EM and 77.53% F1, marking a strong improvement over its baseline and stan-
dard fine-tuned counterparts. Smaller models (XSmall and Small) also exhibit notable performance increases,
reinforcing the effectiveness of knowledge transfer from MultiRC. In contrast, using GenTCSR as an inter-
mediate dataset yields mixed results. While the Large model still achieves strong performance (59.01% EM,
80.89% F1), the Base model’s performance drops (34.76% EM, 62.06% F1) compared to MultiRC-based fine-
tuning. Interestingly, the Small model performs better than expected (38.06% EM, 66.66% F1), suggesting that
GenTCSR may provide more benefits to smaller architectures. However, the XSmall model sees a significant
drop in performance compared to MultiRC, indicating that its domain or task formulation may not transfer as
effectively. Another reason for the performance drop is that MultiRC has more examples than GenTCSR. To
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Table 6. Results for fine-tuned models on back translation augmented data

Language Model name  Exact match (%)  F1(%)
XSmall 27.55 47.84
Small 3333 66.47
German (de) e 5010 77.00
Large 62.99 831
XSmall 19.44 22.61
Spanish (es) Small 34.16 6712
Base 50.23 76.98
Large 64.49 83.29
XSmall 30.78 62.72
Small 38.44 68.87
French () page 50.90 77.49
Large 64.19 84.35
XSmall 24.62 36.15
Small 42.34 71.07
Dutch (D g e 48.05 75.22
Large 61.56 82.50
XSmall 31.46 65.64
all Small 39.79 69.97
Base 56.46 79.44
Large 63.96 83.62

Bold denotes the best performance.

Table 7. Results for multi-stage fine-tuned models on two intermediate datasets

Intermediate dataset Model name  Exact match (%)  F1(%)

XSmall 3536 68.02
. Small 37.31 68.72
MultiRC Base 53.68 7753
Large 641 84.21

XSmall 27.03 55.30

Small 38.06 66.66

GenTCSR Base 34.76 62.06
Large 59,01 80.89

Bold denotes the best performance. GenTCSR: Gen-
erative temporal commonsense reasoning.

conclude, models fine-tuned on MultiRC consistently achieved higher performance across all sizes compared
to those fine-tuned on GenTCSR, underscoring the potential benefits of human-created datasets over synthetic
datasets generated by large language models for temporal commonsense reasoning.

4.5.4 Results comparison with prior work

We chose the previous SOTA studies to compare our results with other works and reported their best results
in Table 8. The upper part of the table presents results for other transformer-based models; these models
are encoder-based architecture except the T5, which is encoder-decoder architecture. The results for TacoLM
are reported for individual categories of temporal commonsense, so we calculated the average of these results
and presented them here to compare overall results with fairness. The middle part of the table presents results
for adversarial-based methods. These two models are current SOTA results for temporal commonsense, and
as for comparison, we can see these models are better performing than the other transformer-based meth-
ods. The bottom part of the table presents our results; as we can see, our large model surpasses the current
SOTA ALICE++ on both EM and F1, scoring approximately 4% more. To compare our result with another
transformer-based method, our large model also outperforms the T5 model by approximately 5% on both met-
rics and also, our model has fewer backbone parameters than the T5 model. Our Base model also achieves
better results than the RoBERTa large and BERT large models, and it has substantially fewer parameters than
the RoBERTa and BERT models.
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Table 8. Results comparison of our best-fine-tuned models with other relevant studies

Methods Model name  Exact match (%)  F1(%)
TacolLM[14] 42.72 -
BERT [59] 45.2 725
Other transformer-based ~ RoBERTa[*?1  51.2 76.2
ALBERT [59] 59.2 79.7
T5-3B[21] 59.08 79.46
Adversarial based ALICETZ] 26.45 79:50
ALICE++[24] 59.90 80.88
XSmall 35.36 68.02
Small 37.31 68.72
Ours (best results) Base 55.41 78.99
Large 64.19 84.35

Bold represents our best results.

5. ANALYSIS AND DISCUSSION

5.1. Quality and biases in GenTCSR

Our statistical analysis indicates that the quality of GenTCSR is comparable to that of MC-TACO across mul-
tiple dimensions. The average narrative length in GenTCSR is 183.14 words, and the average question length
is 50.95 words, closely aligning with MC-TACO’s distribution. Moreover, GenT'CSR maintains a similar cov-
erage of temporal commonsense categories, ensuring a balanced representation of event ordering, duration,
frequency, stationarity, and typical time. Additionally, lexical analysis of the most frequent words in GenTCSR
questions reveals strong alignment with MC-TACO, with key temporal indicators such as often, time, when,
and before appearing at comparable frequencies. These similarities suggest that GenTCSR effectively captures
the structural and semantic characteristics of real-world temporal reasoning datasets, reinforcing its utility
for benchmarking temporal commonsense understanding. While GenTCSR enhances temporal reasoning, its
synthetic nature limits exposure to real-world ambiguity. It may also introduce common biases of pre-trained
models of AI chatbots used for data creation. Future work will integrate crowdsourced ambiguous examples
and deep analysis of biases introduced.

5.2. Performance analysis on temporal categories

Our approach significantly improved all our models’ performance across all evaluation metrics in the MC-
TACO dataset by integrating SR and BT augmentations during training, as demonstrated in Tables 5 and 6.
Our results evidently depict the significant impact of our approach with and without data augmentation com-
pared to the baseline results for all model variants.

In Table 9, we have presented the results for each individual category of Temporal Commonsense to show
detailed findings. The table implies the percentage of correct answers for each category. These results are
grouped according to model size and represent a structured result for each dataset. The XSmall model fine-
tuned on an augmented dataset of German and French back-translated data achieved the best score for event
ordering, event duration, frequency, and typical time categories. The model trained on BT(de) performed best
for the stationarity category. The Small model fine-tuned on the BT (NL) dataset gained the best scores for event
ordering and event duration; also, trained on the DA(sr) dataset, it performed best for frequency, stationarity,
and typical time categories. For the Base model, the best scores for three categories, event ordering, event
duration, and frequency, were achieved by the BT (all) trained model, and for two categories, stationarity and
typical time were achieved for the DA(sr) dataset. The Large model displayed diverse results for each category.
The BT (fr) trained model achieved the best scores for event ordering, frequency, and typical time categories.
The model trained on BT(de) achieved the best score for event duration, while the model trained on DA(sr)
achieved the best score for the stationarity category.

Our main results and secondary results for each temporal commonsense category show the impact of data aug-
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Table 9. Results comparison according to temporal commonsense categories

Configration Temporal CSR

Model Setting Event ordering  Event duration  Frequency  Stationarity = Typical time

Baseline 49.46 54.78 4916 42.38 48.83

STD 52.45 74.04 73.65 56.28 56.90

DA(sr) 5143 71.77 72.81 66.83 66.39

XSmall BT(de) 53.20 76.65 75.28 72.36 68.96

BT(es) 52.45 74.04 73.65 56.28 56.90

BT(fr) 59.13 82.42 81.33 56.66 73.00

BT(nD) 55.18 74.01 73.01 66.16 65.03

BTl 53.75 75.76 77.55 67.50 67.76

Baseline 52.45 74.04 73.65 56.28 56.90

STD 62.33 83.38 81.45 66.16 76.87

DA(sr) 70.78 86.74 86.03 75.71 85.38

Small BT(de) 63.69 82.88 81.73 67.34 75.72

BT(es) 63.90 82.52 81.33 70.18 76.70

BT(fr) 63.28 85.55 83.88 71.36 80.96

BT(nl) 71.32 86.77 85.15 74.87 82.87

BTl 68.53 83.87 83.64 73.03 80.74

Baseline 52.45 74.04 73.65 56.28 56.90

STD 74.32 88.92 87.38 78.39 87.78

DA(sr) 81.06 90.20 88.30 84.42 89.80

Base BT(de) 75.95 89.78 87.22 77.72 8740

BT(es) 76.57 89.35 8714 79.90 88.82

BT(fr) 75.75 88.56 87.66 77.22 89.58

BT(nD) 71.87 87.86 85.35 75.21 8811

BT(all) 81.13 90.11 89.17 82.58 89.25

Baseline 4755 25.96 26.35 43.72 4310

STD 86.92 91.75 9112 84.76 92.69

DA(sr) 85.22 91.66 91.84 85.93 91.82

Large BT(de) 85.97 92.71 92.24 83.92 92.03

BT(es) 87.06 91.26 91.72 84.59 92.74

BT(fr) 88.49 92.25 92.36 84.09 92.85

BT(nD 85.35 91.79 91.28 83.25 91.76

BT(al 87.74 92.05 91.68 84.59 91.98

Bold denotes the best performance. CSR: Commonsense reasoning; STD: stan-
dard fine-tuned.

mentation on our models’ performance. Both data augmentation SR and BT are very effective in improving
the performance of our fine-tuned models compared to baseline models. Data augmentation using BT con-
sistently enhances performance results for all model sizes on the temporal commonsense reasoning dataset.
These enhancements indicate that BT augmentation facilitates a more thorough comprehension of the text,
allowing the model to recognize various categories and contexts of temporal commonsense better.

6. CONCLUSIONS

This paper has focused on understanding temporal commonsense reasoning using DeBERTa models. Tempo-
ral commonsense is significant for commonsense reasoning in the NLP field. Understanding and reasoning
about time pose challenges for computers, making it an important area for further study and development
in NLP. It is evident that NLP research has evolved significantly in understanding temporal aspects of text
data. The shift towards temporal commonsense reasoning reflects the dynamic nature of this field. Previous
research only focuses on one aspect of temporal commonsense, such as duration, ordering, or infilling, but our
paper presents a unique contribution by introducing five categories of temporal commonsense. Our research
introduces a novel framework that unifies multiple datasets and generates a synthetic dataset for these five
distinct categories of temporal commonsense, enabling a more holistic approach to modeling temporal phe-
nomena in text data. We utilized various training and fine-tuning methods, including multi-stage fine-tuning,
and augmented our data using different methods. After conducting extensive experiments and evaluating our
technique against standard question-answering metrics, our approach has demonstrated SOTA results, sur-
passing all previous studies on temporal commonsense within the MC-TACO dataset. Overall, our focus has
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been on developing computationally efficient methods and presenting the latest findings in the domain of tem-
poral commonsense reasoning. We aimed to explore and propose novel approaches that effectively generalize
the temporal commonsense tasks without requiring extensive human labeling or computational resources and
advance this crucial area of research, which has significant implications for various fields. While our work has
limitations, such as the need for human supervision in synthetic dataset validation, it is still a faster alternative
to manual human labeling of datasets. Future directions include extending this framework to multilingual con-
texts, integrating external knowledge sources for richer temporal grounding, and developing fully automated
data generation pipelines to eliminate dependency on human validation.
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