TOWARDS ROBUST AND REALISTIC HUMAN POSE ESTIMATION VIA WIFI SIGNALS

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

035

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Robust WiFi-based human pose estimation (HPE) is a challenging task that bridges discrete and subtle WiFi signals to human skeletons. We revisit this problem and reveal two critical yet overlooked issues: 1) cross-domain gap, i.e., due to significant discrepancies in pose distributions between source and target domains; and 2) structural fidelity gap, i.e., predicted skeletal poses manifest distorted topology, usually with misplaced joints and disproportionate bone lengths. This paper fills these gaps by reformulating the task into a novel two-phase framework dubbed *DT-Pose*: *D*omain-consistent representation learning and *T*opologyconstrained **Pose** decoding. Concretely, we first propose a temporal consistency contrastive learning strategy with uniformity regularization, integrated into a selfsupervised masked pretraining paradigm. This design facilitates robust learning of domain-consistent and motion-discriminative WiFi representations while mitigating potential mode collapse caused by signal sparsity. Beyond this, we introduce an effective hybrid decoding architecture that incorporates explicit skeletal topology constraints. By compensating for the inherent absence of spatial priors in WiFi semantic vectors, the decoder enables structured modeling of both adjacent and overarching joint relationships, producing more realistic pose predictions. Extensive experiments conducted on various benchmark datasets highlight the superior performance of our method in tackling these fundamental challenges in 2D/3D WiFi-based HPE tasks. The code is available in the supplementary materials.

1 Introduction

Image-based human pose estimation (HPE), a highly active and hot topic, has recently achieved remarkable success in both 2D Cao et al. (2017); Wang et al. (2022) and 3D scenarios Li et al. (2022); Gong et al. (2023), spanning single-person Zhang et al. (2021) and multi-person settings Shi et al. (2022); Liu et al. (2023). These advancements have significantly propelled broad applications in virtual reality Zheng et al. (2023), autonomous driving Zheng et al. (2022), and the healthcare community He et al. (2024b). However, those visual-based methods face inherent limitations due to realistic challenges (e.g., lighting intensity, view variations, and occlusions). Furthermore, rising concerns regarding privacy have driven the growing research attention toward non-visual modalities (e.g., WiFi Yan et al. (2024); D Gian et al. (2025), RF Fan et al. (2025), and wearable sensor Chen et al. (2020) signals), which offer significant advantages in privacy protection and resilience to occlusions. Among these, the WiFi modality holds promise due to its widespread deployability and compatibility with Edge AI in the AIoT era.

Tracing the development of the WiFi-based HPE, the field has gradually progressed from single-person 2D to more complex multi-person 3D HPE Wang et al. (2019a;b); Jiang et al. (2020); Ren et al. (2022); Zhou et al. (2022); Yang et al. (2022); Ren et al. (2021); Zhou et al. (2023); Yan et al. (2024); D Gian et al. (2025). Predominantly, these methods rely on supervised learning and focus on designing complex regression networks to map WiFi signals to 2D/3D pose coordinates. However, all of them assume that the training and testing data follow the same distribution, which does not hold in real-world scenarios due to domain variability. To address this limitation, the recently introduced WiFi dataset (MM-Fi Yang et al. (2024)) incorporates cross-domain settings, presenting new challenges for evaluating the generalizability of WiFi-based HPE methods.

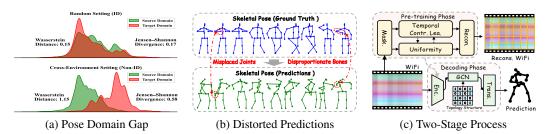


Figure 1: (a) shows the pose coordinates distribution between the source and target domains. (b) represents the predictions of the MetaFi++ method Zhou et al. (2023) and corresponding ground truth. (c) denotes the overview framework of our method.

Upon analyzing WiFi signals across diverse domains, we observed significant discrepancies in pose coordinate distributions between the source and target domains under cross-environment settings, i.e., *cross-domain gap*, contrasting with the commonly held assumption of identical distributions (Fig. 1 (a)). In such scenarios, existing supervised methods tend to overfit source-domain pose distributions and generalize poorly to target domains. This limitation underscores the inadequacy of supervised learning in capturing intrinsic motion patterns embedded in sparse WiFi signals, leading to the learning of spurious, motion-irrelevant, and noisy features. While AdaPose Zhou et al. (2024) also recognizes this challenge, its reliance on pre-acquired target domain data for domain adaptation renders it impractical and suboptimal. Thus, we aim to design a WiFi-specific approach that learns domain-consistent and motion-discriminative WiFi representations independent of pose coordinates, thereby enhancing cross-domain transferability.

In addition to domain generalization challenges, we observe that existing methods often produce pose predictions with unrealistic topologies (e.g., misplaced joints and disproportionate bone lengths), resulting in a *structural fidelity gap* (Fig. 1(b)). These deficiencies stem from two key factors: (1) prior works typically adopt CNNs combined with MLPs to regress poses in an unconstrained manner, leading to poor modeling of human joint relationships; and (2) unlike the image modality, which provides explicit spatial priors (e.g., human heatmaps), the WiFi modality offers only high-level semantic representations (e.g., global vectors) that lack spatial topological information, making it inherently more difficult to capture valid pose structures. To mitigate these issues, we propose incorporating explicit skeletal topology priors as constraints to better model the non-trivial spatial relationships among human joints.

Building on the above observations, we propose a novel framework (*DP-Pose*), which reformulates WiFi-based HPE as a two-phase process: *Domain-consistent* WiFi representation learning and *Topology-constrained Pose* decoding, as depicted in Fig. 1 (c). In the first phase, we transform raw WiFi signals into image-like inputs and adopt the self-supervised masked prediction strategy of MAE He et al. (2022) as the main line to learn domain-consistent representations. Considering the temporal continuity of WiFi signals, we treat adjacent WiFi frames within an action sequence as positive pairs and others in the batch as negatives, yielding motion-discriminative representations through contrastive objectives. Additionally, uniformity regularization is employed to mitigate potential representational collapse caused by signal sparsity. In the second phase, the pre-trained encoder is frozen to extract domain-consistent WiFi representations. We then introduce task prompts and Graph Convolution layers with spatial topology priors as constraints, enabling localized modeling of adjacent joint relationships. Concurrently, we establish more holistic dependencies among overarching joints within Transformer layers. By exploring these adjacent and overarching spatial correlations, our decoding architecture promotes realistic and structurally coherent pose predictions.

The main contributions can be summarized as follows:

- We reveal the cross-modal gap issue in WiFi-based HPE and develop a tailored WiFi
 representation learning method that integrates a temporal consistency contrastive strategy
 with uniformity regularization, enabling the extraction of domain-consistent and motiondiscriminative features from sparse signals.
- We reveal the structural fidelity gap issue in WiFi-based HPE and propose a hybrid decoding architecture with explicitly incorporated skeletal topology priors as constraints, compensating for the lack of spatial cues in WiFi vectors and enabling effective modeling of joint relationships.

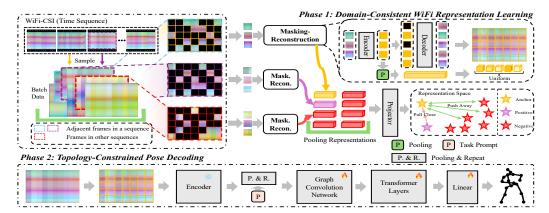


Figure 2: The pipeline of our method, including the pre-training and pose decoding phases (zoom in for a better view).

We evaluate the effectiveness of our method through extensive and comprehensive experiments on three mainstream datasets, demonstrating its superior performance in the WiFibased HPE field.

2 Related Work

WiFi-based HPE is an emerging research topic that has gradually flourished in recent years, encompassing a range of tasks from single-person 2D Wang et al. (2019a); D Gian et al. (2025) and 3D Jiang et al. (2020); Ren et al. (2022; 2021); Zhou et al. (2023) to multi-person 2D Wang et al. (2019b) and 3D scenarios Yan et al. (2024). Early work in this field, such as WiSPPN Wang et al. (2019a;b), pioneers 2D HPE by employing fundamental CNN models He et al. (2016). Subsequently, WiPose Jiang et al. (2020) extends to 3D poses through a combination of CNN and RNN layers, thereby leveraging temporal dynamics to yield smoother skeletal predictions. Differently, both GoPose Ren et al. (2022) and Winect Ren et al. (2021) methods leverage the 2D angle-ofarrival features of WiFi signals to estimate 3D poses. Recently, such as MetaFi++ Zhou et al. (2023) and Person-in-WiFi-3D Yan et al. (2024), employ the Transformer layers to learn WiFi representations for single-/multi-person 3D HPE. Concurrently, HPE-Li D Gian et al. (2025) has designed dynamic CNN kernels to predict poses more efficiently. Unfortunately, all these studies overlook cross-domain gaps and rely on pose supervision in the source domain to guide WiFi representation learning from sparse signals, which hinders generalization to target domains with different pose distributions. Even more fundamentally, WiFi signals lack explicit human spatial priors by nature compared to images, making it challenging to perceive body topology when using the abovementioned CNN architectures directly. (More related works are provided in the Appendix A.) [Summary]: In this work, we are the first to tackle the cross-domain gap challenge by introducing a self-supervised pretraining strategy with WiFi-specific designs, tailored to the sparse and continuous nature of WiFi signals. Simultaneously, we explicitly capture both adjacent and overarching spatial correlations between joints by compensating skeletal topology priors into a hybrid decoding architecture, thereby ensuring structurally faithful pose predictions.

3 METHOD

3.1 Preliminary

Typically, WiFi signals are captured using multiple transmitters and receivers, with each signal comprising multiple subcarriers operating in orthogonal frequency bands to facilitate inter-device communication. These subcarriers describe the signal propagation process, known technically as Channel State Information (CSI). As shown in Fig. 3 (a), the CSI undergoes various distortions attributed to multipath effects and physical transformations, e.g., reflections, diffraction, and scattering Yan et al. (2024); Zhou et al. (2023). Leveraging these properties, we can record time-continuous

WiFi signals that are dynamically influenced by human activities, i.e., action movements, thereby enabling the estimation of corresponding human poses. More specifically, one WiFi sample can be represented as $\mathbf{X} \in \mathbb{R}^{E \times R \times A \times S \times T}$, where E, R, A, S denote the numbers of transmitters, receivers, antennas, and subcarriers, respectively. Here, $T = \frac{f_{\text{wifi}}}{f_{\text{video}}}$ represents the temporal resolution, equal to the ratio of the WiFi sampling frequency to that of the corresponding video action sequence. Notably, increasing the number of subcarriers and antennas enhances the resolution of the WiFi signals, capturing more subtle movements and finer variations. We define the ground truth of 3D pose coordinates for each frame as $\mathbf{Y} \in \mathbb{R}^{M \times J \times C}$, where M represents the number of humans, J indicates the number of joints, and C specifies the spatial dimensions (coordinates). Hence, the entire dataset can be formalized as $\mathcal{D} = \{\mathbf{X}_i \in \mathbb{R}^{E \times R \times A \times S \times T}, \mathbf{Y}_i \in \mathbb{R}^{M \times J \times C}\}_{i=1}^N$, where N is the total number of samples.

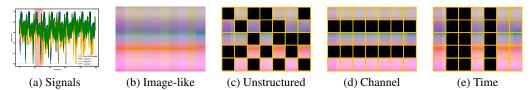


Figure 3: Original WiFi CSI signals and different masking strategies on the MM-Fi dataset.

3.2 Domain-Consistent Representation Learning

Masked Operation. To more closely align the WiFi modality with the image-based framework employed in MAE He et al. (2022), we first reshape each WiFi sample into an image-like form $\hat{\mathbf{X}}_i \in \mathbb{R}^{A \times ERS \times T}$, as illustrated in Fig. 3 (b). Concretely, we treat the antenna dimension A as the image channels, the concatenated subcarriers from all devices (ERS) to image height, and the temporal resolution T as image width. Subsequently, to investigate the best suitable masking strategy tailored to WiFi signals, we consider three distinct approaches at the pre-training stage, including unstructured (i.e., random masking with grid shape), channel-structured (i.e., random masking subcarriers along the time-frequency axis), time-structured (i.e., random masking timesteps along the subcarrier axis), as shown in Fig. 3 (c) - (e). Following MAE He et al. (2022), we divide X_i into non-overlapped regular grid patches and employ convolution layers to embed each patch, obtaining $\tilde{\mathbf{X}}_i \in \mathbb{R}^{n \times d}$, where n is the patch numbers and d is the embedding dimension. We then incorporate fixed sinusoidal positional embeddings into these embedded patches and apply random masking with a high ratio (80% in our experiments) to enforce robust representation learning. The encoder, comprising 4 stacked Transformer layers, is tasked with learning domain-consistent WiFi representations, while 2 Transformer layers in the decoder strive to reconstruct the original WiFi $\hat{\mathbf{X}}_{i,j}$ ultimately producing a reconstruction X'_i . The entire procedure is optimized by minimizing MSE between the reconstruction and the original input as follows:

$$\mathcal{L}_{\text{Mask}} = ||\mathbf{X}_i' - \hat{\mathbf{X}}_i||_2^2. \tag{1}$$

Temporal Consistency Strategy. Continuous WiFi samples captured over the duration of an action sequence can reflect the temporal variation of the motion. However, masked operation for individual WiFi samples would only extract modality-specific representations, lacking the essential motion patterns, as shown in Fig. 5 (a). Thus, we treat adjacent WiFi frames within the same action sequence as a positive pair due to motion consistency within them. Notice that the WiFi samples in a batch include one-pair adjacent WiFi frames $(\hat{\mathbf{X}}_t, \hat{\mathbf{X}}_{t+1})$ from the same sequence and other non-isomorphic WiFi frames $\{\hat{\mathbf{X}}_i\}_{i=1}^{B-2}$ from all action sequences, where B is the batch size. Thus, other combinations of WiFi samples in a batch should be negative pairs. Following the masked procedure, we pool the encoded visible embedding patches of each sample to derive a representation $\mathbf{e}_i \in \mathbb{R}^d$. Next, we project them to obtain positive pair representations $\{\mathbf{v}_i\}_{i=1}^{B-2}$. Then, we pull the positive pair closer and push the negative pairs away in a batch based on InfoNCE loss as follows, where $\rho(\cdot)$ is the cosine similarity, $\phi(\cdot)$ is the exp (\cdot) function, and τ is the temperature parameter.

$$\mathcal{L}_{\text{CL}} = -\log \frac{\phi(\rho(\mathbf{s}_t, \mathbf{s}_{t+1})/\tau)}{\phi(\rho(\mathbf{s}_t, \mathbf{s}_{t+1})/\tau) + \sum_{i=1}^{B-2} \phi(\rho(\mathbf{s}_t, \mathbf{v}_i)/\tau)}.$$
 (2)

Objective with Uniformity Regularization. The masked process and temporal consistency strategy jointly ensure the extraction of domain-agnostic and motion-discriminative WiFi representations. However, due to the inherent sparsity and homogeneity of WiFi signals, the learned representations may suffer from dimensional collapse, as depicted in Fig. 6. Here, we introduce explicit uniformity regularization to enhance representation diversity as follows:

$$\mathcal{L}_{\text{unif}} = \frac{1}{B} \sum_{j=1, j \neq i}^{B} (\hat{\mathbf{e}}_{i}^{\top} \hat{\mathbf{e}}_{j})^{2}, \hat{\mathbf{e}}_{i} = \|\mathbf{e}_{i}\|_{2}, \hat{\mathbf{e}}_{j} = \|\mathbf{e}_{j}\|_{2}.$$
 (3)

Overall, the pre-training optimization objective for each WiFi sample can be formulated as follows:

$$\mathcal{L} = \mathcal{L}_{\text{Mask}} + \lambda_{\text{CL}} \cdot \mathcal{L}_{\text{CL}} + \lambda_{\text{unif}} \cdot \mathcal{L}_{\text{unif}}, \tag{4}$$

where $\mathcal{L}_{\mathrm{CL}}$ and λ_{unif} are trade-off hyperparameters.

3.3 TOPOLOGY-CONSTRAINED POSE ESTIMATION

Adjacent Joint Local Modeling. After the pre-training phase, we freeze the pretrained encoder to extract WiFi representations $\mathbf{F} \in \mathbb{R}^{n \times d}$. To align these representations with the structure of human joints, we first pool all patches into one vector and repeat them into the joint numbers. Next, we add the learnable task prompt on them to obtain $\hat{\mathbf{F}} \in \mathbb{R}^{J \times d}$ for structural pose shape learning. Furthermore, we represent the human skeleton as a graph, where each joint is a vertex and each bone is an edge. This structure allows us to incorporate explicit spatial topology prior $\mathbf{A} \in \{0,1\}^{J \times J}$, where $\mathbf{A}_{i,j} = 1$ indicates that the i-th joint and j-th joint are physical connected and $\mathbf{A}_{i,j} = 0$ otherwise. By employing Graph Convolution layers, we leverage \mathbf{A} as a structural constraint to aggregate information from spatially connected joints, thereby mitigating the lack of spatial priors in $\hat{\mathbf{F}}$. Formally, the updated representation $\tilde{\mathbf{F}}$ is computed as follows:

$$\tilde{\mathbf{F}} = \sigma(\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\hat{\mathbf{F}}\mathbf{W}),\tag{5}$$

where $\mathbf{D} \in \mathbb{R}^{J \times J}$ is the degree matrix for normalization, \mathbf{W} is a learnable parameter, σ is the activate function.

Overarching Joint Holistic Modeling. Beyond local relationships, it is essential to capture holistic, long-range correlations among overarching joints. To this end, we treat the joints as an ordered sequence and apply Transformer encoder layers to enhance their non-physical interdependencies, such as the potential relationships between head and hand joints in "drinking water" pose. We calculate the attention values among all joints as follows:

$$\mathbf{Q} = \tilde{\mathbf{F}} \mathbf{W}_{Q}, \mathbf{K} = \tilde{\mathbf{F}} \mathbf{W}_{K}, \mathbf{V} = \tilde{\mathbf{F}} \mathbf{W}_{V}, \tag{6}$$

$$\mathbf{Z}_{\mathrm{attn}} = \mathrm{LN}(\tilde{\mathbf{F}} + \mathrm{softmax}(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{\tilde{d}}})\mathbf{V}),$$
 (7)

where \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V are learnable parameters, d is the dimension of \mathbf{K} , and $\mathrm{LN}(\cdot)$ denotes the layer normalization. Then, we feed them into the feed-forward network $\mathrm{FFN}(\cdot)$ and regress them into pose coordinates by MLPs $\Psi(\cdot)$:

$$\mathbf{Z} = \text{LN}(\text{FFN}(\mathbf{Z}_{\text{attn}}) + \mathbf{Z}_{\text{attn}}), \quad \hat{\mathbf{Y}}_i = \Psi(\mathbf{Z}),$$
 (8)

where $\hat{\mathbf{Y}}_i$ is the predicted pose. By jointly capturing local and holistic dependencies, our hybrid decoder produces predicted structurally coherent and realistic poses.

Objective. For training the pose decoder, we adopt the MSE loss for *each sample* to regress the pose as follows:

$$\mathcal{L} = ||\hat{\mathbf{Y}}_i - \mathbf{Y}_i||_2^2. \tag{9}$$

4 EXPERIMENTS

To evaluate the effectiveness of DT-Pose, we conduct comprehensive experiments across three main-stream datasets: **MM-Fi** Yang et al. (2024), **WiPose** Zhou et al. (2022), and **Person-in-WiFi-3D** Yan et al. (2024). The dataset introduction is in Appendix B. For additional experimental details, results, and analyses beyond those presented below, we refer readers to the Appendix.

295

304 305

300

309 310

322

323

2D & 3D HPE PERFORMANCE COMPARISON

As shown in Table 1, 2, 3, and 7 (in Appendix), our framework outperforms existing methods in both 2D and 3D WiFi-based HPE tasks, illustrating its versatility and robust generalization. In particular, superior PA-MPJPE results highlight the plausibility of the predicted poses and the structural coherence of the generated skeletons. Notably, the remarkable gains under cross-domain settings in Table 1 confirm that our pretraining strategy successfully captures generalizable representations. Furthermore, our method also delivers competitive performance in terms of efficiency in Table 2.

Table 1: 3D HPE results on MM-Fi dataset. Best and second-best are in Red and Blue, respectively. † indicates results reproduced from released code but not reported in the original paper. Results for **2D HPE** on **MM-Fi** (**P3-S1**) dataset are shown in Table 7 of Appendix.

		Proto	col 1			Proto	col 2			Proto	col 3	
Method	PCK@20↑	PCK@50↑	MPJPE↓	PA-MPJPE↓	PCK@20↑	PCK@50↑	MPJPE↓	PA-MPJPE↓	PCK@20↑	PCK@50↑	MPJPE↓	PA-MPJPE↓
Setting 1 (Random Split):	•											
MetaFi++ Zhou et al. (2023)	49.1 [†]	86.5 [†]	186.9	120.7	32.2 [†]	81.7 [†]	213.5	121.4	43.9 [†]	85.0 [†]	197.1	121.2
HPE-Li D Gian et al. (2025)	56.2 [†]	87.6 [†]	173.4 [†]	104.5 [†]	36.9 [†]	81.9 [†]	206.1^{\dagger}	102.7 [†]	49.6 [†]	85.6 [†]	184.3 [†]	106.4 [†]
DT-Pose (Ours)	59.4	88.9	165.3	101.0	41.4	83.5	195.6	101.2	51.7	86.5	178.5	104.5
Setting 2 (Cross-Subject):												
MetaFi++ Zhou et al. (2023)	36.4 [†]	85.5 [†]	222.3	125.4	24.0 [†]	77.5 [†]	247.0	122.7	32.3 [†]	81.9 [†]	231.1	124.0
HPE-Li D Gian et al. (2025)	38.2 [†]	82.8 [†]	228.6^{\dagger}	106.8 [†]	26.9 [†]	78.0 [†]	242.6^{\dagger}	101.9 [†]	36.5 [†]	80.8 [†]	228.6^{\dagger}	107.7 [†]
DT-Pose (Ours)	41.9	86.7	213.0	105.6	28.5	78.5	238.3	101.1	37.7	82.6	221.6	106.2
Setting 3 (Cross-Environment)):											
MetaFi++ Zhou et al. (2023)	9.3†	55.1 [†]	367.8	121.0	5.3 [†]	45.9 [†]	360.2	117.2	6.4 [†]	49.1 [†]	369.5	116.0
HPE-Li D Gian et al. (2025)	4.3 [†]	47.8 [†]	381.1 [†]	110.3 [†]	4.2 [†]	40.3^{\dagger}	378.2^{\dagger}	104.0 [†]	3.4^{\dagger}	41.9^{\dagger}	388.4^{\dagger}	107.9 [†]
DT-Pose (Ours)	10.7	58.8	332.7	105.1	4.4	49.7	338.3	102.0	9.8	61.2	316.8	104.2

Table 2: 2D HPE results and efficiency comparison on WiPose. Best and second-best are in **Red** and **Blue**, respectively. [‡] indicates results reproduced from released code, correcting errors in D Gian et al. (2025) where MPJPE was mistakenly reported lower than PA-MPJPE. P and F refer to Params and Flops.

Method	MPJPE↓	PA-MPJPE↓	$P(M) / F(G) \downarrow$
MetaFi++	49.2 [‡]	30.1 [‡]	25.6 / 502.3
HPE-Li	40.9 [‡]	25.9 [‡]	3.5 / 5.2
DT-Pose (Ours)	34.3	23.1	3.8 / 1.5

Table 3: 3D HPE results on Person-in-WiFi-3D (1 Person). Best and second-best are in Red and Blue, respectively. † indicates results reproduced from released code, which are not reported in the original paper.

Method	MPJPE↓	PA-MPJPE↓
MetaFi++ Zhou et al. (2023)	132.0 [†]	75.8 [†]
HPE-Li D Gian et al. (2025)	120.2 [†]	69.5 [†]
Wi-Pose Jiang et al. (2020)	101.8	-
PiW3D Yan et al. (2024)	91.7	-
DT-Pose (Ours)	90.0	58.7

4.2 ABLATION STUDY

Influence of Masking Ratios. In Fig. 4, the performance improves with higher ratios but drops beyond 80% due to the excessive reconstruction difficulty. Thus, we use the default ratio at 80%.



Figure 4: Performance on the **MM-Fi** (**P1-S1**) with different masking ratios.

Influence of Masking Strategies. Table 4(a) shows that the unstructured masking strategy yields the best performance during pretraining, primarily because it captures contextual cues across both time and channel levels.

Influence of Pre-training Components. Table 4(b) shows that our pretraining phase learns more general and robust representations than training from scratch with pose supervision. Moreover, the temporal consistency strategy further enhances performance, highlighting the importance of motionaware learning in WiFi-based HPE.

Influence of Pose Decoding Components. Table 4(c) shows that replacing the simple MLP decoder with our adjacent-overarching joint modeling with explicit priors significantly improves absolute

joint localization, underscoring the value of capturing both local and global skeletal dependencies. The task prompt also plays a vital role by adapting skeletal shape information into decoding. If we remove it, the PA-MPJPE metrics will degrade a lot.

Table 4: Ablation studies on the MM-Fi (P1-S1) dataset.

(a) Masking strategies.

Masking Strategy	MPJPE↓	PA-MPJPE↓
Channel-Structured	175.2	103.9
Time-Structured	180.7	107.1
Unstructured (Ours)	165.3	101.0

(b) **Pretraining** component analysis. MO: masked operation. TCS: temporal consistency strategy. †: Trained from scratch with pose supervision.

MO	TCS	Uniformity	MPJPE↓	PA-MPJPE↓
X	Х	Х	198.6 [†]	100.9 [†]
/	X	X	183.1	102.0
✓	✓	×	173.1	102.7
✓	X	✓	181.8	101.9
/	√	<i>✓</i>	165.3	101.0

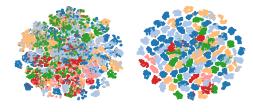
(c) **Pose decoder** component analysis. TP: task prompt. GCL: Graph Convolution layers. TL: Transformer layers. †: MLPs as the pose decoder; ‡: we transform all patches into the number of joints by MLPs.

TP	GCL	TL	MPJPE↓	PA-MPJPE↓
X	X	Х	197.4 [†]	103.5 [†]
1	X	X	174.1	101.3
X	✓	X	179.8 [‡]	107.0^{\ddagger}
X	X	1	181.4 [‡]	103.0^{\ddagger}
1	✓	X	166.7	103.2
1	×	1	167.1	101.1
X	✓	1	167.0	103.3
✓	√	√	165.3	101.0

4.3 QUALITATIVE ANALYSIS

Temporal Consistency Strategy. As shown in Fig. 5, incorporating the temporal consistency strategy enhances inter-sequence separability and intra-sequence compactness, thereby strengthening temporal coherence and improving motion discrimination across action sequences.

Dimension Collapse Phenomenon. In Fig. 6 (a), we calculate the covariance values of each dimension of the WiFi representations. A more compact distribution is clearly visible when the uniformity term is included, implying that it enriches dimensional diversity and improves inter-dimensional dependencies. Additionally, Fig. 6 (b) represents the singular values of WiFi representations. More large singular values emerge upon introducing the uniformity term, suggesting that the embedding space mitigates the dimension collapse and preserves richer information.



(a) w/o TCS (b) w/ TCS Figure 5: t-SNE visualization of WiFi representations on **MM-Fi** (**P1-S1**) with and without the temporal consistency strategy (TCS) in the pretraining phase. Each color indicates a different action class.

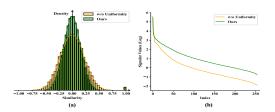


Figure 6: Dimension collapse. (a) represents the statistics of the covariance values of the WiFi representation dimensions. (b) compares the singular values of WiFi representations (zoom in for a better view).

Masking-Reconstruction Visualization. In Fig. 7, we plot the raw, masked, and reconstructed WiFi signals, selecting four actions to highlight variations in WiFi signal patterns. Our method faithfully reconstructs the original WiFi signals, underscoring its ability to capture domain-consistent and motion-discriminative WiFi representations effectively.

WiFi Representations Comparison. Fig. 8 provides the t-SNE visualization of WiFi representations across multiple models and datasets. In contrast to both the raw WiFi signals and other existing methods, the learned WiFi representations of our proposed method exhibit excellent inter-sequence separability and intra-sequence compactness. Consequently, this motion-discriminative representation space benefits subsequent pose estimation tasks, whereas prior methods tend to learn spurious or motion-irrelevant features that can undermine estimation accuracy.

Pose Realistic. Fig. 9 compares predicted poses across various methods and datasets. Our predictions exhibit a more consistent motion tendency in the MM-Fi dataset, highlighted by the green circles. Moreover, as the resolution of WiFi signals increases in the other two datasets, the predicted poses of our method become more coherent and precise. Notably, our predicted skeletal structures adhere closely to the human topology.

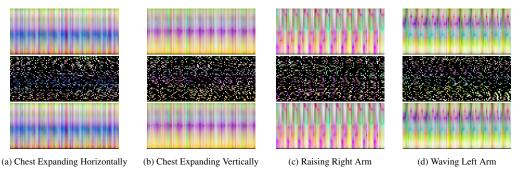


Figure 7: WiFi visualizations on the **MM-Fi** (**P3-S1**). The first row represents the raw WiFi signals, the second row represents the masked WiFI input, and the third row denotes the reconstructed WiFi output. All of them contain ten continuous frames.

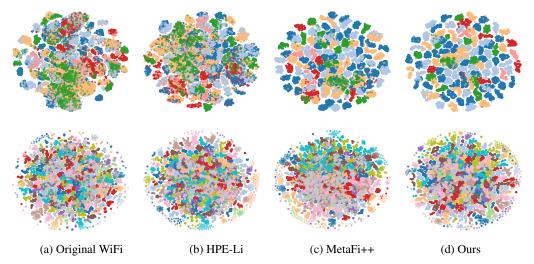


Figure 8: t-SNE visualization of WiFi representations. The first row denotes the WiFi representations extracted on the **MM-Fi** (**P1-S1**) testing set, and the second row represents the representations obtained on the **WiPose** testing set. Each color corresponds to a distinct action category.

4.4 LIMITATION AND DISCUSSION

Joints Analysis. To evaluate the joint-level accuracy of our method, we calculate the pose estimation error for each joint across three different datasets, as shown in Table 5. Our method performs superiorly on coarse-grained body parts like the torso. However, the hands and elbows exhibit the highest errors. These results stem from the limited resolution of current WiFi signals, which hinders the capture of fine-grained actions, e.g., hand movements. In Table 5(b) and 5(c), hand and elbow joints errors decrease when an increased number of antennas and receivers is employed for WiFi signal capture. Consequently, fine-grained pose estimation with WiFi necessitates higher-resolution signals, whereas images can achieve it even at lower resolutions.

Modality Comparison. Table 6 compares the HPE performance between images and WiFi, highlighting a notable performance gap that can be primarily attributed to two factors:

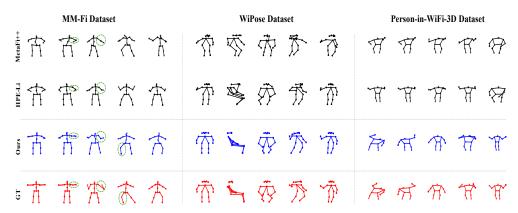


Figure 9: Predicted poses of MetaFi++, HPE-Li, and our method among all datasets.

Table 5: Per-joint performance on three datasets. L. and R. denote left and right, respectively. (b) WiPose

(a) MM-Fi (P1-S1)						
Joints	MPJPE↓	PA-MPJPE↓				
Bot Torso	102.7	56.7				
L.Hip	106.9	63.7				
L.Knee	105.7	66.1				
L.Foot	104.1	88.6				
R.Hip	108.3	64.3				
R.Knee	105.3	67.4				
R.Foot	109.5	90.8				
Center Torso	112.3	44.5				
Upper Torso	135.8	54.2				
Neck Base	158.2	66.2				
Center Head	160.5	70.9				
R.Shoulder	147.7	73.6				
R.Elbow	249.1	<u>140.5</u>				
R.Hand	<u>364.5</u>	<u>284.0</u>				
L.Shoulder	141.8	77.2				
L.Elbow	235.8	<u>132.4</u>				
L.Hand	<u>362.4</u>	<u>277.0</u>				
Average	165.3	101.0				

((b) WIPose						
Joints	MPJPE↓	PA-MPJPE↓					
Nose	30.9	14.9					
Neck	27.3	11.7					
R.Shoulder	28.7	13.4					
R.Elbow	<u>38.7</u>	<u>25.6</u>					
R.Wrist	<u>48.2</u>	<u>35.8</u>					
L.Shoulder	29.8	16.6					
L.Elbow	<u>37.2</u>	<u>24.9</u>					
L.Wrist	<u>43.3</u>	<u>30.6</u>					
R.Hip	24.6	17.2					
R.Knee	21.0	19.3					
R.Ankle	22.6	21.7					
L.Hip	25.6	17.9					
L.Knee	22.4	19.2					
L.Ankle	26.0	22.2					
R.Eye	31.6	15.5					
L.Eye	32.4	16.3					
R.Ear	30.8	14.9					
<u>L.Ear</u>	<u>96.8</u>	<u>77.7</u>					
Average	34.3	23.1					

Person Sett	Person Setting).						
Joints	MPJPE↓	PA-MPJPE↓					
Neck	71.6	36.2					
Head	77.6	43.1					
L.Shoulder	80.5	37.8					
R.Shoulder	81.1	37.8					
<u>L.Elbow</u>	<u>107.4</u>	<u>54.1</u>					
L.Hip	57.7	41.5					
R.Elbow	<u>114.2</u>	<u>55.1</u>					
R.Hip	58.6	42.0					
L.Hand	<u>164.8</u>	<u>117.9</u>					
L.Knee	65.6	52.2					
R.Hand	<u>179.2</u>	<u>122.4</u>					
R.Knee	64.3	52.8					
L.Ankle	69.8	65.8					
R.Ankle	67.4	62.5					
Average	90.0	58.7					

Person-in-WiFi-3D (One

(c)

(1) images inherently encode human spatial priors, which are absent in WiFi signals; and (2) the spatial resolution of existing WiFi signals remains limited. Nevertheless, the two modalities are complementary: WiFi ensures robustness under low-light or occluded conditions, while images provide highresolution spatial details in well-lit environments.

Table 6: Modality comparison on MM-Fi.

ore or modumey con	nparison	OH IVALVA A						
Modality	MPJPE↓	PA-MPJPE↓						
Protocol 1 - Setting 1 (Random Split):								
Image Yang et al. (2024)	279.0	81.2						
WiFi (Ours)	178.5	104.5						
Protocol 1 - Setting 2 (Cross-Subject):								
Image Yang et al. (2024)	285.3	81.9						
WiFi (Ours)	221.6	106.2						
Protocol 1 - Setting 3 (Cross-Environment):								
Image Yang et al. (2024)	288.6	84.1						
WiFi (Ours)	316.8	104.2						

CONCLUSION

In this paper, we revisit and highlight two critical challenges in WiFi-based human pose estimation (HPE): (1) the cross-domain gap and (2) the structural fidelity gap. To tackle these issues, we introduce a two-phase framework, **DT-Pose**, and evaluate its effectiveness through extensive experiments on both 2D and 3D WiFi-based HPE tasks. Furthermore, we discuss the limitations and advantages of WiFi signals, emphasizing their suitability for Edge AI applications in the AIoT era.

REFERENCES

- Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. *arXiv preprint arXiv:2106.08254*, 2021.
- Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation using part affinity fields. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 7291–7299, 2017.
- Weiya Chen, Chenchen Yu, Chenyu Tu, Zehua Lyu, Jing Tang, Shiqi Ou, Yan Fu, and Zhidong Xue. A survey on hand pose estimation with wearable sensors and computer-vision-based methods. *Sensors*, 20(4):1074, 2020.
 - Yang Chen, Jingcai Guo, Song Guo, and Dacheng Tao. Neuron: Learning context-aware evolving representations for zero-shot skeleton action recognition. *arXiv preprint arXiv:2411.11288*, 2024a.
 - Yang Chen, Jingcai Guo, Tian He, Xiaocheng Lu, and Ling Wang. Fine-grained side information guided dual-prompts for zero-shot skeleton action recognition. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 778–786, 2024b.
 - Yang Chen, Tian He, Junfeng Fu, Ling Wang, Jingcai Guo, Ting Hu, and Hong Cheng. Vision-language meets the skeleton: Progressively distillation with cross-modal knowledge for 3d action representation learning. *IEEE Transactions on Multimedia*, 2024c.
 - Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying Deng, and Weiming Hu. Channel-wise topology refinement graph convolution for skeleton-based action recognition. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 13359–13368, 2021.
 - Mingyue Cheng, Qi Liu, Zhiding Liu, Hao Zhang, Rujiao Zhang, and Enhong Chen. Timemae: Self-supervised representations of time series with decoupled masked autoencoders. *arXiv preprint arXiv:2303.00320*, 2023.
 - Hyung-gun Chi, Myoung Hoon Ha, Seunggeun Chi, Sang Wan Lee, Qixing Huang, and Karthik Ramani. Infogen: Representation learning for human skeleton-based action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20186–20196, 2022.
 - Toan D Gian, Tien Dac Lai, Thien Van Luong, Kok-Seng Wong, and Van-Dinh Nguyen. Hpeli: Wifi-enabled lightweight dual selective kernel convolution for human pose estimation. In *European Conference on Computer Vision*, pp. 93–111. Springer, 2025.
 - Fuxiang Deng, Emil Jovanov, Houbing Song, Weisong Shi, Yuan Zhang, and Wenyao Xu. Wildar: Wifi signal-based lightweight deep learning model for human activity recognition. *IEEE Internet of Things Journal*, 2023.
 - Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
 - Junqiao Fan, Jianfei Yang, Yuecong Xu, and Lihua Xie. Diffusion model is a good pose estimator from 3d rf-vision. In *European Conference on Computer Vision*, pp. 1–18. Springer, 2025.
 - Zhimin Gao, Peitao Wang, Pei Lv, Xiaoheng Jiang, Qidong Liu, Pichao Wang, Mingliang Xu, and Wanqing Li. Focal and global spatial-temporal transformer for skeleton-based action recognition. In *Proceedings of the Asian Conference on Computer Vision*, pp. 382–398, 2022.
- Jia Gong, Lin Geng Foo, Zhipeng Fan, Qiuhong Ke, Hossein Rahmani, and Jun Liu. Diffpose: Toward more reliable 3d pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13041–13051, 2023.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

- Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16000–16009, 2022.
 - Tian He, Yang Chen, Xu Gao, Ling Wang, Ting Hu, and Hong Cheng. Enhancing skeleton-based action recognition with language descriptions from pre-trained large multimodal models. *IEEE Transactions on Circuits and Systems for Video Technology*, 2024a.
 - Tian He, Yang Chen, Ling Wang, and Hong Cheng. An expert-knowledge-based graph convolutional network for skeleton-based physical rehabilitation exercises assessment. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 2024b.
 - Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. *Advances in Neural Information Processing Systems*, 35:28708–28720, 2022.
 - Wenjun Jiang, Hongfei Xue, Chenglin Miao, Shiyang Wang, Sen Lin, Chong Tian, Srinivasan Murali, Haochen Hu, Zhi Sun, and Lu Su. Towards 3d human pose construction using wifi. In *Proceedings of the 26th Annual International Conference on Mobile Computing and Networking*, pp. 1–14, 2020.
 - Wenhao Li, Hong Liu, Runwei Ding, Mengyuan Liu, Pichao Wang, and Wenming Yang. Exploiting temporal contexts with strided transformer for 3d human pose estimation. *IEEE Transactions on Multimedia*, 25:1282–1293, 2022.
 - Huan Liu, Qiang Chen, Zichang Tan, Jiang-Jiang Liu, Jian Wang, Xiangbo Su, Xiaolong Li, Kun Yao, Junyu Han, Errui Ding, et al. Group pose: A simple baseline for end-to-end multi-person pose estimation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15029–15038, 2023.
 - Mengyuan Liu, Hong Liu, and Chen Chen. Enhanced skeleton visualization for view invariant human action recognition. *Pattern Recognition*, 68:346–362, 2017.
 - Chiara Plizzari, Marco Cannici, and Matteo Matteucci. Spatial temporal transformer network for skeleton-based action recognition. In *Pattern recognition*. *ICPR international workshops and challenges: virtual event, January 10–15, 2021, Proceedings, Part III*, pp. 694–701. Springer, 2021.
 - Alec Radford. Improving language understanding by generative pre-training. 2018.
 - Yili Ren, Zi Wang, Sheng Tan, Yingying Chen, and Jie Yang. Winect: 3d human pose tracking for free-form activity using commodity wifi. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 5(4):1–29, 2021.
 - Yili Ren, Zi Wang, Yichao Wang, Sheng Tan, Yingying Chen, and Jie Yang. Gopose: 3d human pose estimation using wifi. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies*, 6(2):1–25, 2022.
 - Dahu Shi, Xing Wei, Liangqi Li, Ye Ren, and Wenming Tan. End-to-end multi-person pose estimation with transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11069–11078, 2022.
 - Yi-Fan Song, Zhang Zhang, Caifeng Shan, and Liang Wang. Constructing stronger and faster baselines for skeleton-based action recognition. *IEEE transactions on pattern analysis and machine intelligence*, 45(2):1474–1488, 2022.
 - Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-efficient learners for self-supervised video pre-training. *Advances in neural information processing systems*, 35:10078–10093, 2022.
 - Fei Wang, Stanislav Panev, Ziyi Dai, Jinsong Han, and Dong Huang. Can wifi estimate person pose? *arXiv preprint arXiv:1904.00277*, 2019a.

- Fei Wang, Sanping Zhou, Stanislav Panev, Jinsong Han, and Dong Huang. Person-in-wifi: Fine-grained person perception using wifi. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 5452–5461, 2019b.
 - Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao. Videomae v2: Scaling video masked autoencoders with dual masking. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14549–14560, 2023.
 - Pichao Wang, Zhaoyang Li, Yonghong Hou, and Wanqing Li. Action recognition based on joint trajectory maps using convolutional neural networks. In *Proceedings of the 24th ACM international conference on Multimedia*, pp. 102–106, 2016.
 - Yihan Wang, Muyang Li, Han Cai, Wei-Ming Chen, and Song Han. Lite pose: Efficient architecture design for 2d human pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13126–13136, 2022.
 - Yiming Wang, Lingchao Guo, Zhaoming Lu, Xiangming Wen, Shuang Zhou, and Wanyu Meng. From point to space: 3d moving human pose estimation using commodity wifi. *IEEE Communications Letters*, 25(7):2235–2239, 2021.
 - Hong Yan, Yang Liu, Yushen Wei, Zhen Li, Guanbin Li, and Liang Lin. Skeletonmae: graph-based masked autoencoder for skeleton sequence pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 5606–5618, 2023.
 - Kangwei Yan, Fei Wang, Bo Qian, Han Ding, Jinsong Han, and Xing Wei. Person-in-wifi 3d: End-to-end multi-person 3d pose estimation with wi-fi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 969–978, 2024.
 - Jianfei Yang, Xinyan Chen, Han Zou, Dazhuo Wang, and Lihua Xie. Autofi: Toward automatic wi-fi human sensing via geometric self-supervised learning. *IEEE Internet of Things Journal*, 10 (8):7416–7425, 2022.
 - Jianfei Yang, He Huang, Yunjiao Zhou, Xinyan Chen, Yuecong Xu, Shenghai Yuan, Han Zou, Chris Xiaoxuan Lu, and Lihua Xie. Mm-fi: Multi-modal non-intrusive 4d human dataset for versatile wireless sensing. *Advances in Neural Information Processing Systems*, 36, 2024.
 - Feng Zhang, Xiatian Zhu, and Chen Wang. Single person pose estimation: a survey. *arXiv preprint arXiv:2109.10056*, 2021.
 - Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Sijie Zhu, Ju Shen, Nasser Kehtarnavaz, and Mubarak Shah. Deep learning-based human pose estimation: A survey. *ACM Computing Surveys*, 56(1):1–37, 2023.
 - Jingxiao Zheng, Xinwei Shi, Alexander Gorban, Junhua Mao, Yang Song, Charles R Qi, Ting Liu, Visesh Chari, Andre Cornman, Yin Zhou, et al. Multi-modal 3d human pose estimation with 2d weak supervision in autonomous driving. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4478–4487, 2022.
 - Yue Zhou, Aichun Zhu, Caojie Xu, Fangqiang Hu, and Yifeng Li. Perunet: Deep signal channel attention in unet for wifi-based human pose estimation. *IEEE Sensors Journal*, 22(20):19750–19760, 2022.
 - Yunjiao Zhou, He Huang, Shenghai Yuan, Han Zou, Lihua Xie, and Jianfei Yang. Metafi++: Wifienabled transformer-based human pose estimation for metaverse avatar simulation. *IEEE Internet of Things Journal*, 10(16):14128–14136, 2023.
 - Yunjiao Zhou, Jianfei Yang, He Huang, and Lihua Xie. Adapose: Towards cross-site device-free human pose estimation with commodity wifi. *IEEE Internet of Things Journal*, 2024.

A OTHER RELATED WORKS

Masked Pre-training. Masked pretraining techniques have been widely studied across various data modalities for self-supervised representation learning, leveraging the reconstruction of masked inputs as a core strategy Devlin (2018); Radford (2018); Bao et al. (2021); He et al. (2022); Tong et al. (2022); Wang et al. (2023); Huang et al. (2022); Yan et al. (2023); Cheng et al. (2023). Among these modalities, the BERT Devlin (2018) and GPT Radford (2018) are two seminal language models that pioneered the masked modeling paradigm by predicting masked word tokens based on context information. Inspired by them, the computer vision community introduced masked pertaining frameworks for images, giving rise to representative methods like BEiT Bao et al. (2021) and MAE He et al. (2022), while the video community Tong et al. (2022); Wang et al. (2023) subsequently demonstrated that the masked mechanism extends effectively into the temporal dimension. Beyond these, other data modalities, including audio (Audio-MAE Huang et al. (2022)), skeleton (SkeletonMAE Yan et al. (2023)), and time series (TimeMAE Cheng et al. (2023)), have similarly validated the feasibility and efficacy of masked modeling for task-agnostic representation learning in a self-supervised manner. [Summary]: To the best of our knowledge, this work is the first to employ a self-supervised masked pre-training paradigm in the WiFi modality. Moreover, we incorporate the temporal-consistent contrastive strategy with uniformity regularization to extract motiondiscriminative representations from sparse and continuous WiFi signals, thereby preserving motion semantic consistency while mitigating potential mode collapse.

Skeleton-based Action Recognition. Learning skeleton action representation can be conceptualized as the inverse process of human pose decoding. Typically, skeleton-based action recognition methods can be categorized into CNN-based, GCN-based, and Transformer-based Wang et al. (2016); Chen et al. (2024b; 2021); Song et al. (2022); Chi et al. (2022); Chen et al. (2024a). CNN-based methods transform skeleton sequences into image-like formats to extract discriminative representations Wang et al. (2016); Liu et al. (2017). In contrast, GCN-based methods model human joints and bones as graph nodes and edges, explicitly incorporating a learnable adjacent matrix to explore spatial-temporal features, thus improving performance by a large margin Chen et al. (2021); Song et al. (2022); Chi et al. (2022); Chen et al. (2024c). More recently, Transformer-based methods leverage self-attention mechanisms to capture long-range dependencies among joints Plizzari et al. (2021); Gao et al. (2022); He et al. (2024a). [Summary]: Inspired by the success of GCNs and Transformers in learning representations directly from the skeleton data, we combine their strengths in a reverse decoding manner to regress poses from WiFi-based representations. Although WiFi semantic vectors inherently lack human skeletal topology priors, our method compensates for this by incorporating skeletal topology, enabling more realistic and faithful pose predictions.

B Datasets

MM-Fi Yang et al. (2024). It comprises 27 distinct action categories performed by 40 volunteers across four different rooms, resulting in approximately 320.76k single-person synchronized frames. One transmitter with one antenna and one receiver with three antennas capture all WiFi signals. Each skeletal pose consists of 17 joints encoded with 3D coordinates. To rigorously assess robustness, the dataset introduces three protocols and three settings for data splitting. Protocol 3 (P3) encompasses all 27 action categories, while Protocol 1 (P1) and Protocol 2 (P2) focus on 14 daily activities and 13 rehabilitation exercises, respectively. Setting 1 (S1 Random Split) randomly divides all data into training and testing sets with a 3:1 ratio. Setting 2 (S2 Cross-Subject Split) employs 32 subjects for training and the remaining 8 subjects for testing. Setting 3 (S3 Cross-Environment Split) selects 3 rooms randomly for training and others for testing.

WiPose Zhou et al. (2022). It contains 12 action categories performed by 12 volunteers. WiFi signals are captured by one transmitter with three antennas and one receiver with three antennas. Each pose annotation comprises 18 joints in 2D coordinates. The official split provides 132847 WiFi samples for training and 33753 for testing.

Person-in-WiFi-3D Yan et al. (2024). It includes 8 daily actions performed by 7 volunteers at three distinct locations. A single transmitter with one antenna and three receivers with three antennas capture all WiFi signals. Each skeleton pose features 14 joints with 3D coordinates. The dataset has

been officially partitioned into training and test sets, with 89946 WiFi samples allocated for training and 7824 for testing.

C IMPLEMENTATION DETAILS

In the pre-training phase, the encoder-decoder is trained for 400 epochs using the AdamW, employing a batch size of 256, a learning rate of 1.5e-4 with cosine annealing schedule, a warm-up epoch of 40, and a weight decay of 0.05. The mask ratio is set as 80%. For the MM-Fi dataset, we train the pose decoder for 50 epochs using the SGD optimizer with a weight decay of 0.01. For the WiPose dataset, we train the pose decoder with the AdamW optimizer for 50 epochs. For the Person-in-WiFi-3D dataset, we train the pose decoder for 200 epochs using the AdamW optimizer. All the learning rates are 1e-3, and the batch size is 32. All the experiments are finished using the PyTorch platform on a GeForce RTX 4090 GPU.

D EVALUATION METRIC

Three evaluation metrics are adopted following mainstream methods Yang et al. (2024); D Gian et al. (2025); Zhou et al. (2023):

Mean Per Joint Position Error (**MPJPE** (**mm**)): Measure the average Euclidean distance between ground truth and predictions, which is widely used to evaluate absolute positional accuracy.

Procrustes Analysis MPJPE (PA-MPJPE (mm)): Measure the MPJPE after aligning the predictions and ground truth using rigid transformations (translation, rotation, and scaling) by Procrustes analysis. Typically, it can be used to reflect the similarity in human shape and structure.

Percentage of Correct Keypoints (PCK@ α (%)):; Measure the percentage of predictions that fall within a certain threshold distance from the ground truth. The threshold is set as a fraction α of the torso length following the previous works D Gian et al. (2025); Zhou et al. (2023). It is widely used to evaluate the local accuracy.

Table 7: **2D HPE** results on **MM-Fi** (**P3-S1**). Best and second-best are in **Red** and **Blue**, respectively.

Method	PCK@20↑	PCK@30↑	PCK@40↑	PCK@50↑	MPJPE↓	PA-MPJPE↓
Wi-Pose Jiang et al. (2020)	48.6	65.1	75.6	82.4	158.2	97.7
Wi-Mose Wang et al. (2021)	48.7	66.6	77.3	83.9	155.8	95.4
WiLDAR Deng et al. (2023)	44.1	62.6	72.6	79.3	170.3	115.6
WiSPPN Wang et al. (2019a)	45.4	63.2	74.1	81.0	166.5	110.0
PerUnet Zhou et al. (2022)	50.1	67.3	77.6	83.6	154.6	98.6
MetaFi++ Zhou et al. (2023)	45.5	64.4	75.1	81.8	164.4	106.3
HPE-Li D Gian et al. (2025)	52.1	68.2	78.2	85.1	149.4	92.5
DT-Pose (Ours)	65.8	77.9	85.1	89.8	137.0	92.3

E THE USE OF LLM

The LLM was solely employed as a general-purpose tool to improve writing style after the manuscript had been completed. All polished sentences were carefully reviewed by the authors to ensure the accuracy and integrity of the content.