
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS ROBUST AND REALISTIC HUMAN POSE ES-
TIMATION VIA WIFI SIGNALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust WiFi-based human pose estimation (HPE) is a challenging task that
bridges discrete and subtle WiFi signals to human skeletons. We revisit this prob-
lem and reveal two critical yet overlooked issues: 1) cross-domain gap, i.e., due
to significant discrepancies in pose distributions between source and target do-
mains; and 2) structural fidelity gap, i.e., predicted skeletal poses manifest dis-
torted topology, usually with misplaced joints and disproportionate bone lengths.
This paper fills these gaps by reformulating the task into a novel two-phase frame-
work dubbed DT-Pose: Domain-consistent representation learning and Topology-
constrained Pose decoding. Concretely, we first propose a temporal consistency
contrastive learning strategy with uniformity regularization, integrated into a self-
supervised masked pretraining paradigm. This design facilitates robust learning of
domain-consistent and motion-discriminative WiFi representations while mitigat-
ing potential mode collapse caused by signal sparsity. Beyond this, we introduce
an effective hybrid decoding architecture that incorporates explicit skeletal topol-
ogy constraints. By compensating for the inherent absence of spatial priors in
WiFi semantic vectors, the decoder enables structured modeling of both adjacent
and overarching joint relationships, producing more realistic pose predictions. Ex-
tensive experiments conducted on various benchmark datasets highlight the supe-
rior performance of our method in tackling these fundamental challenges in 2D/3D
WiFi-based HPE tasks. The code is available in the supplementary materials.

1 INTRODUCTION

Image-based human pose estimation (HPE), a highly active and hot topic, has recently achieved
remarkable success in both 2D Cao et al. (2017); Wang et al. (2022) and 3D scenarios Li et al.
(2022); Gong et al. (2023), spanning single-person Zhang et al. (2021) and multi-person settings Shi
et al. (2022); Liu et al. (2023). These advancements have significantly propelled broad applications
in virtual reality Zheng et al. (2023), autonomous driving Zheng et al. (2022), and the healthcare
community He et al. (2024b). However, those visual-based methods face inherent limitations due
to realistic challenges (e.g., lighting intensity, view variations, and occlusions). Furthermore, rising
concerns regarding privacy have driven the growing research attention toward non-visual modalities
(e.g., WiFi Yan et al. (2024); D Gian et al. (2025), RF Fan et al. (2025), and wearable sensor
Chen et al. (2020) signals), which offer significant advantages in privacy protection and resilience
to occlusions. Among these, the WiFi modality holds promise due to its widespread deployability
and compatibility with Edge AI in the AIoT era.

Tracing the development of the WiFi-based HPE, the field has gradually progressed from single-
person 2D to more complex multi-person 3D HPE Wang et al. (2019a;b); Jiang et al. (2020); Ren
et al. (2022); Zhou et al. (2022); Yang et al. (2022); Ren et al. (2021); Zhou et al. (2023); Yan
et al. (2024); D Gian et al. (2025). Predominantly, these methods rely on supervised learning and
focus on designing complex regression networks to map WiFi signals to 2D/3D pose coordinates.
However, all of them assume that the training and testing data follow the same distribution, which
does not hold in real-world scenarios due to domain variability. To address this limitation, the
recently introduced WiFi dataset (MM-Fi Yang et al. (2024)) incorporates cross-domain settings,
presenting new challenges for evaluating the generalizability of WiFi-based HPE methods.
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Figure 1: (a) shows the pose coordinates distribution between the source and target domains. (b)
represents the predictions of the MetaFi++ method Zhou et al. (2023) and corresponding ground
truth. (c) denotes the overview framework of our method.

Upon analyzing WiFi signals across diverse domains, we observed significant discrepancies in pose
coordinate distributions between the source and target domains under cross-environment settings,
i.e., cross-domain gap, contrasting with the commonly held assumption of identical distributions
(Fig. 1 (a)). In such scenarios, existing supervised methods tend to overfit source-domain pose
distributions and generalize poorly to target domains. This limitation underscores the inadequacy of
supervised learning in capturing intrinsic motion patterns embedded in sparse WiFi signals, leading
to the learning of spurious, motion-irrelevant, and noisy features. While AdaPose Zhou et al. (2024)
also recognizes this challenge, its reliance on pre-acquired target domain data for domain adaptation
renders it impractical and suboptimal. Thus, we aim to design a WiFi-specific approach that learns
domain-consistent and motion-discriminative WiFi representations independent of pose coordinates,
thereby enhancing cross-domain transferability.

In addition to domain generalization challenges, we observe that existing methods often pro-
duce pose predictions with unrealistic topologies (e.g., misplaced joints and disproportionate bone
lengths), resulting in a structural fidelity gap (Fig. 1(b)). These deficiencies stem from two key
factors: (1) prior works typically adopt CNNs combined with MLPs to regress poses in an uncon-
strained manner, leading to poor modeling of human joint relationships; and (2) unlike the image
modality, which provides explicit spatial priors (e.g., human heatmaps), the WiFi modality offers
only high-level semantic representations (e.g., global vectors) that lack spatial topological informa-
tion, making it inherently more difficult to capture valid pose structures. To mitigate these issues, we
propose incorporating explicit skeletal topology priors as constraints to better model the non-trivial
spatial relationships among human joints.

Building on the above observations, we propose a novel framework (DP-Pose), which reformu-
lates WiFi-based HPE as a two-phase process: Domain-consistent WiFi representation learning and
Topology-constrained Pose decoding, as depicted in Fig. 1 (c). In the first phase, we transform
raw WiFi signals into image-like inputs and adopt the self-supervised masked prediction strategy
of MAE He et al. (2022) as the main line to learn domain-consistent representations. Considering
the temporal continuity of WiFi signals, we treat adjacent WiFi frames within an action sequence
as positive pairs and others in the batch as negatives, yielding motion-discriminative representa-
tions through contrastive objectives. Additionally, uniformity regularization is employed to mitigate
potential representational collapse caused by signal sparsity. In the second phase, the pre-trained en-
coder is frozen to extract domain-consistent WiFi representations. We then introduce task prompts
and Graph Convolution layers with spatial topology priors as constraints, enabling localized mod-
eling of adjacent joint relationships. Concurrently, we establish more holistic dependencies among
overarching joints within Transformer layers. By exploring these adjacent and overarching spatial
correlations, our decoding architecture promotes realistic and structurally coherent pose predictions.

The main contributions can be summarized as follows:

• We reveal the cross-modal gap issue in WiFi-based HPE and develop a tailored WiFi
representation learning method that integrates a temporal consistency contrastive strategy
with uniformity regularization, enabling the extraction of domain-consistent and motion-
discriminative features from sparse signals.

• We reveal the structural fidelity gap issue in WiFi-based HPE and propose a hybrid decod-
ing architecture with explicitly incorporated skeletal topology priors as constraints, com-
pensating for the lack of spatial cues in WiFi vectors and enabling effective modeling of
joint relationships.
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Figure 2: The pipeline of our method, including the pre-training and pose decoding phases (zoom
in for a better view).

• We evaluate the effectiveness of our method through extensive and comprehensive exper-
iments on three mainstream datasets, demonstrating its superior performance in the WiFi-
based HPE field.

2 RELATED WORK

WiFi-based HPE is an emerging research topic that has gradually flourished in recent years, en-
compassing a range of tasks from single-person 2D Wang et al. (2019a); D Gian et al. (2025) and
3D Jiang et al. (2020); Ren et al. (2022; 2021); Zhou et al. (2023) to multi-person 2D Wang et al.
(2019b) and 3D scenarios Yan et al. (2024). Early work in this field, such as WiSPPN Wang et al.
(2019a;b), pioneers 2D HPE by employing fundamental CNN models He et al. (2016). Subse-
quently, WiPose Jiang et al. (2020) extends to 3D poses through a combination of CNN and RNN
layers, thereby leveraging temporal dynamics to yield smoother skeletal predictions. Differently,
both GoPose Ren et al. (2022) and Winect Ren et al. (2021) methods leverage the 2D angle-of-
arrival features of WiFi signals to estimate 3D poses. Recently, such as MetaFi++ Zhou et al. (2023)
and Person-in-WiFi-3D Yan et al. (2024), employ the Transformer layers to learn WiFi represen-
tations for single-/multi-person 3D HPE. Concurrently, HPE-Li D Gian et al. (2025) has designed
dynamic CNN kernels to predict poses more efficiently. Unfortunately, all these studies overlook
cross-domain gaps and rely on pose supervision in the source domain to guide WiFi representa-
tion learning from sparse signals, which hinders generalization to target domains with different
pose distributions. Even more fundamentally, WiFi signals lack explicit human spatial priors
by nature compared to images, making it challenging to perceive body topology when using the
abovementioned CNN architectures directly. (More related works are provided in the Appendix A.)
[Summary]: In this work, we are the first to tackle the cross-domain gap challenge by introducing
a self-supervised pretraining strategy with WiFi-specific designs, tailored to the sparse and contin-
uous nature of WiFi signals. Simultaneously, we explicitly capture both adjacent and overarching
spatial correlations between joints by compensating skeletal topology priors into a hybrid decoding
architecture, thereby ensuring structurally faithful pose predictions.

3 METHOD

3.1 PRELIMINARY

Typically, WiFi signals are captured using multiple transmitters and receivers, with each signal
comprising multiple subcarriers operating in orthogonal frequency bands to facilitate inter-device
communication. These subcarriers describe the signal propagation process, known technically as
Channel State Information (CSI). As shown in Fig. 3 (a), the CSI undergoes various distortions at-
tributed to multipath effects and physical transformations, e.g., reflections, diffraction, and scattering
Yan et al. (2024); Zhou et al. (2023). Leveraging these properties, we can record time-continuous
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WiFi signals that are dynamically influenced by human activities, i.e., action movements, thereby
enabling the estimation of corresponding human poses. More specifically, one WiFi sample can
be represented as X ∈ RE×R×A×S×T , where E,R,A, S denote the numbers of transmitters, re-
ceivers, antennas, and subcarriers, respectively. Here, T = fwifi

fvideo
represents the temporal resolution,

equal to the ratio of the WiFi sampling frequency to that of the corresponding video action sequence.
Notably, increasing the number of subcarriers and antennas enhances the resolution of the WiFi sig-
nals, capturing more subtle movements and finer variations. We define the ground truth of 3D pose
coordinates for each frame as Y ∈ RM×J×C , where M represents the number of humans, J indi-
cates the number of joints, and C specifies the spatial dimensions (coordinates). Hence, the entire
dataset can be formalized as D = {Xi ∈ RE×R×A×S×T ,Yi ∈ RM×J×C}Ni=1, where N is the total
number of samples.
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Figure 3: Original WiFi CSI signals and different masking strategies on the MM-Fi dataset.

3.2 DOMAIN-CONSISTENT REPRESENTATION LEARNING

Masked Operation. To more closely align the WiFi modality with the image-based framework
employed in MAE He et al. (2022), we first reshape each WiFi sample into an image-like form
X̂i ∈ RA×ERS×T , as illustrated in Fig. 3 (b). Concretely, we treat the antenna dimension A as the
image channels, the concatenated subcarriers from all devices (ERS) to image height, and the tem-
poral resolution T as image width. Subsequently, to investigate the best suitable masking strategy
tailored to WiFi signals, we consider three distinct approaches at the pre-training stage, including
unstructured (i.e., random masking with grid shape), channel-structured (i.e., random masking sub-
carriers along the time-frequency axis), time-structured (i.e., random masking timesteps along the
subcarrier axis), as shown in Fig. 3 (c) - (e). Following MAE He et al. (2022), we divide X̂i

into non-overlapped regular grid patches and employ convolution layers to embed each patch, ob-
taining X̃i ∈ Rn×d, where n is the patch numbers and d is the embedding dimension. We then
incorporate fixed sinusoidal positional embeddings into these embedded patches and apply random
masking with a high ratio (80% in our experiments) to enforce robust representation learning. The
encoder, comprising 4 stacked Transformer layers, is tasked with learning domain-consistent WiFi
representations, while 2 Transformer layers in the decoder strive to reconstruct the original WiFi X̂i,
ultimately producing a reconstruction X′

i. The entire procedure is optimized by minimizing MSE
between the reconstruction and the original input as follows:

LMask = ||X′
i − X̂i||22. (1)

Temporal Consistency Strategy. Continuous WiFi samples captured over the duration of an action
sequence can reflect the temporal variation of the motion. However, masked operation for individual
WiFi samples would only extract modality-specific representations, lacking the essential motion
patterns, as shown in Fig. 5 (a). Thus, we treat adjacent WiFi frames within the same action
sequence as a positive pair due to motion consistency within them. Notice that the WiFi samples
in a batch include one-pair adjacent WiFi frames (X̂t, X̂t+1) from the same sequence and other
non-isomorphic WiFi frames {X̂i}B−2

i=1 from all action sequences, where B is the batch size. Thus,
other combinations of WiFi samples in a batch should be negative pairs. Following the masked
procedure, we pool the encoded visible embedding patches of each sample to derive a representation
ei ∈ Rd. Next, we project them to obtain positive pair representations (st, st+1) and other sample
representations {vi}B−2

i=1 . Then, we pull the positive pair closer and push the negative pairs away
in a batch based on InfoNCE loss as follows, where ρ(·) is the cosine similarity, ϕ(·) is the exp(·)
function, and τ is the temperature parameter.

LCL=−log
ϕ(ρ(st, st+1)/τ)

ϕ(ρ(st, st+1)/τ) +
∑B−2

i=1 ϕ(ρ(st,vi)/τ)
. (2)
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Objective with Uniformity Regularization. The masked process and temporal consistency strategy
jointly ensure the extraction of domain-agnostic and motion-discriminative WiFi representations.
However, due to the inherent sparsity and homogeneity of WiFi signals, the learned representations
may suffer from dimensional collapse, as depicted in Fig. 6. Here, we introduce explicit uniformity
regularization to enhance representation diversity as follows:

Lunif =
1

B

B∑
j=1,j ̸=i

(ê⊤i êj)
2, êi = ∥ei∥2 , êj = ∥ej∥2 . (3)

Overall, the pre-training optimization objective for each WiFi sample can be formulated as follows:

L = LMask + λCL · LCL + λunif · Lunif , (4)

where LCL and λunif are trade-off hyperparameters.

3.3 TOPOLOGY-CONSTRAINED POSE ESTIMATION

Adjacent Joint Local Modeling. After the pre-training phase, we freeze the pretrained encoder
to extract WiFi representations F ∈ Rn×d. To align these representations with the structure of
human joints, we first pool all patches into one vector and repeat them into the joint numbers. Next,
we add the learnable task prompt on them to obtain F̂ ∈ RJ×d for structural pose shape learning.
Furthermore, we represent the human skeleton as a graph, where each joint is a vertex and each bone
is an edge. This structure allows us to incorporate explicit spatial topology prior A ∈ {0, 1}J×J ,
where Ai,j = 1 indicates that the i-th joint and j-th joint are physical connected and Ai,j = 0
otherwise. By employing Graph Convolution layers, we leverage A as a structural constraint to
aggregate information from spatially connected joints, thereby mitigating the lack of spatial priors
in F̂. Formally, the updated representation F̃ is computed as follows:

F̃ = σ(D− 1
2AD− 1

2 F̂W), (5)

where D ∈ RJ×J is the degree matrix for normalization, W is a learnable parameter, σ is the
activate function.

Overarching Joint Holistic Modeling. Beyond local relationships, it is essential to capture holistic,
long-range correlations among overarching joints. To this end, we treat the joints as an ordered
sequence and apply Transformer encoder layers to enhance their non-physical interdependencies,
such as the potential relationships between head and hand joints in “drinking water” pose. We
calculate the attention values among all joints as follows:

Q = F̃WQ,K = F̃WK ,V = F̃WV , (6)

Zattn = LN(F̃+ softmax(
QKT√

d̃
)V), (7)

where WQ,WK ,WV are learnable parameters, d̃ is the dimension of K, and LN(·) denotes the
layer normalization. Then, we feed them into the feed-forward network FFN(·) and regress them
into pose coordinates by MLPs Ψ(·):

Z = LN(FFN(Zattn) + Zattn), Ŷi = Ψ(Z), (8)

where Ŷi is the predicted pose. By jointly capturing local and holistic dependencies, our hybrid
decoder produces predicted structurally coherent and realistic poses.

Objective. For training the pose decoder, we adopt the MSE loss for each sample to regress the
pose as follows:

L = ||Ŷi −Yi||22. (9)

4 EXPERIMENTS

To evaluate the effectiveness of DT-Pose, we conduct comprehensive experiments across three main-
stream datasets: MM-Fi Yang et al. (2024), WiPose Zhou et al. (2022), and Person-in-WiFi-3D
Yan et al. (2024). The dataset introduction is in Appendix B. For additional experimental details,
results, and analyses beyond those presented below, we refer readers to the Appendix.
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4.1 2D & 3D HPE PERFORMANCE COMPARISON

As shown in Table 1, 2, 3, and 7 (in Appendix), our framework outperforms existing methods in both
2D and 3D WiFi-based HPE tasks, illustrating its versatility and robust generalization. In particu-
lar, superior PA-MPJPE results highlight the plausibility of the predicted poses and the structural
coherence of the generated skeletons. Notably, the remarkable gains under cross-domain settings
in Table 1 confirm that our pretraining strategy successfully captures generalizable representations.
Furthermore, our method also delivers competitive performance in terms of efficiency in Table 2.

Table 1: 3D HPE results on MM-Fi dataset. Best and second-best are in Red and Blue, respectively.
† indicates results reproduced from released code but not reported in the original paper. Results for
2D HPE on MM-Fi (P3-S1) dataset are shown in Table 7 of Appendix.

Protocol 1 Protocol 2 Protocol 3

Method PCK@20↑ PCK@50↑ MPJPE↓ PA-MPJPE↓ PCK@20↑ PCK@50↑ MPJPE↓ PA-MPJPE↓ PCK@20↑ PCK@50↑ MPJPE↓ PA-MPJPE↓
Setting 1 (Random Split):
MetaFi++ Zhou et al. (2023) 49.1† 86.5† 186.9 120.7 32.2† 81.7† 213.5 121.4 43.9† 85.0† 197.1 121.2
HPE-Li D Gian et al. (2025) 56.2† 87.6† 173.4† 104.5† 36.9† 81.9† 206.1† 102.7† 49.6† 85.6† 184.3† 106.4†

DT-Pose (Ours) 59.4 88.9 165.3 101.0 41.4 83.5 195.6 101.2 51.7 86.5 178.5 104.5
Setting 2 (Cross-Subject):
MetaFi++ Zhou et al. (2023) 36.4† 85.5† 222.3 125.4 24.0† 77.5† 247.0 122.7 32.3† 81.9† 231.1 124.0
HPE-Li D Gian et al. (2025) 38.2† 82.8† 228.6† 106.8† 26.9† 78.0† 242.6† 101.9† 36.5† 80.8† 228.6† 107.7†

DT-Pose (Ours) 41.9 86.7 213.0 105.6 28.5 78.5 238.3 101.1 37.7 82.6 221.6 106.2
Setting 3 (Cross-Environment):
MetaFi++ Zhou et al. (2023) 9.3† 55.1† 367.8 121.0 5.3† 45.9† 360.2 117.2 6.4† 49.1† 369.5 116.0
HPE-Li D Gian et al. (2025) 4.3† 47.8† 381.1† 110.3† 4.2† 40.3† 378.2† 104.0† 3.4† 41.9† 388.4† 107.9†

DT-Pose (Ours) 10.7 58.8 332.7 105.1 4.4 49.7 338.3 102.0 9.8 61.2 316.8 104.2

Table 2: 2D HPE results and efficiency com-
parison on WiPose. Best and second-best are
in Red and Blue, respectively. ‡ indicates
results reproduced from released code, cor-
recting errors in D Gian et al. (2025) where
MPJPE was mistakenly reported lower than
PA-MPJPE. P and F refer to Params and Flops.

Method MPJPE↓ PA-MPJPE↓ P(M) / F(G)↓
MetaFi++ 49.2‡ 30.1‡ 25.6 / 502.3
HPE-Li 40.9‡ 25.9‡ 3.5 / 5.2
DT-Pose (Ours) 34.3 23.1 3.8 / 1.5

Table 3: 3D HPE results on Person-in-WiFi-
3D (1 Person). Best and second-best are in
Red and Blue, respectively. † indicates results
reproduced from released code, which are not
reported in the original paper.

Method MPJPE↓ PA-MPJPE↓
MetaFi++ Zhou et al. (2023) 132.0† 75.8†

HPE-Li D Gian et al. (2025) 120.2† 69.5†

Wi-Pose Jiang et al. (2020) 101.8 -
PiW3D Yan et al. (2024) 91.7 -
DT-Pose (Ours) 90.0 58.7

4.2 ABLATION STUDY

Influence of Masking Ratios. In Fig. 4, the performance improves with higher ratios but drops
beyond 80% due to the excessive reconstruction difficulty. Thus, we use the default ratio at 80%.

Figure 4: Performance on the MM-Fi (P1-S1) with different masking ratios.

Influence of Masking Strategies. Table 4(a) shows that the unstructured masking strategy yields
the best performance during pretraining, primarily because it captures contextual cues across both
time and channel levels.

Influence of Pre-training Components. Table 4(b) shows that our pretraining phase learns more
general and robust representations than training from scratch with pose supervision. Moreover, the
temporal consistency strategy further enhances performance, highlighting the importance of motion-
aware learning in WiFi-based HPE.

Influence of Pose Decoding Components. Table 4(c) shows that replacing the simple MLP decoder
with our adjacent-overarching joint modeling with explicit priors significantly improves absolute
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joint localization, underscoring the value of capturing both local and global skeletal dependencies.
The task prompt also plays a vital role by adapting skeletal shape information into decoding. If we
remove it, the PA-MPJPE metrics will degrade a lot.

Table 4: Ablation studies on the MM-Fi (P1-S1) dataset.
(a) Masking strategies.

Masking Strategy MPJPE↓ PA-MPJPE↓
Channel-Structured 175.2 103.9

Time-Structured 180.7 107.1
Unstructured (Ours) 165.3 101.0

(b) Pretraining component analysis. MO: masked opera-
tion. TCS: temporal consistency strategy. †: Trained from
scratch with pose supervision.

MO TCS Uniformity MPJPE↓ PA-MPJPE↓
✗ ✗ ✗ 198.6† 100.9†

✓ ✗ ✗ 183.1 102.0
✓ ✓ ✗ 173.1 102.7
✓ ✗ ✓ 181.8 101.9
✓ ✓ ✓ 165.3 101.0

(c) Pose decoder component analysis. TP:
task prompt. GCL: Graph Convolution layers.
TL: Transformer layers. †: MLPs as the pose
decoder; ‡: we transform all patches into the
number of joints by MLPs.

TP GCL TL MPJPE↓ PA-MPJPE↓
✗ ✗ ✗ 197.4† 103.5†

✓ ✗ ✗ 174.1 101.3
✗ ✓ ✗ 179.8‡ 107.0‡

✗ ✗ ✓ 181.4‡ 103.0‡

✓ ✓ ✗ 166.7 103.2
✓ ✗ ✓ 167.1 101.1
✗ ✓ ✓ 167.0 103.3
✓ ✓ ✓ 165.3 101.0

4.3 QUALITATIVE ANALYSIS

Temporal Consistency Strategy. As shown in Fig. 5, incorporating the temporal consistency strat-
egy enhances inter-sequence separability and intra-sequence compactness, thereby strengthening
temporal coherence and improving motion discrimination across action sequences.

Dimension Collapse Phenomenon. In Fig. 6 (a), we calculate the covariance values of each dimen-
sion of the WiFi representations. A more compact distribution is clearly visible when the uniformity
term is included, implying that it enriches dimensional diversity and improves inter-dimensional
dependencies. Additionally, Fig. 6 (b) represents the singular values of WiFi representations. More
large singular values emerge upon introducing the uniformity term, suggesting that the embedding
space mitigates the dimension collapse and preserves richer information.

(a) w/o TCS (b) w/ TCS
Figure 5: t-SNE visualization of WiFi repre-
sentations on MM-Fi (P1-S1) with and with-
out the temporal consistency strategy (TCS) in
the pretraining phase. Each color indicates a
different action class.

(a) (b)

Figure 6: Dimension collapse. (a) represents
the statistics of the covariance values of the
WiFi representation dimensions. (b) compares
the singular values of WiFi representations
(zoom in for a better view).

Masking-Reconstruction Visualization. In Fig. 7, we plot the raw, masked, and reconstructed
WiFi signals, selecting four actions to highlight variations in WiFi signal patterns. Our method faith-
fully reconstructs the original WiFi signals, underscoring its ability to capture domain-consistent and
motion-discriminative WiFi representations effectively.

WiFi Representations Comparison. Fig. 8 provides the t-SNE visualization of WiFi representa-
tions across multiple models and datasets. In contrast to both the raw WiFi signals and other existing
methods, the learned WiFi representations of our proposed method exhibit excellent inter-sequence
separability and intra-sequence compactness. Consequently, this motion-discriminative representa-
tion space benefits subsequent pose estimation tasks, whereas prior methods tend to learn spurious
or motion-irrelevant features that can undermine estimation accuracy.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Pose Realistic. Fig. 9 compares predicted poses across various methods and datasets. Our pre-
dictions exhibit a more consistent motion tendency in the MM-Fi dataset, highlighted by the green
circles. Moreover, as the resolution of WiFi signals increases in the other two datasets, the predicted
poses of our method become more coherent and precise. Notably, our predicted skeletal structures
adhere closely to the human topology.

(a) Chest Expanding Horizontally (b) Chest Expanding Vertically (c) Raising Right Arm (d) Waving Left Arm

Figure 7: WiFi visualizations on the MM-Fi (P3-S1). The first row represents the raw WiFi signals,
the second row represents the masked WiFI input, and the third row denotes the reconstructed WiFi
output. All of them contain ten continuous frames.

(a) Original WiFi (b) HPE-Li (c) MetaFi++ (d) Ours

Figure 8: t-SNE visualization of WiFi representations. The first row denotes the WiFi representa-
tions extracted on the MM-Fi (P1-S1) testing set, and the second row represents the representations
obtained on the WiPose testing set. Each color corresponds to a distinct action category.

4.4 LIMITATION AND DISCUSSION

Joints Analysis. To evaluate the joint-level accuracy of our method, we calculate the pose estimation
error for each joint across three different datasets, as shown in Table 5. Our method performs
superiorly on coarse-grained body parts like the torso. However, the hands and elbows exhibit the
highest errors. These results stem from the limited resolution of current WiFi signals, which hinders
the capture of fine-grained actions, e.g., hand movements. In Table 5(b) and 5(c), hand and elbow
joints errors decrease when an increased number of antennas and receivers is employed for WiFi
signal capture. Consequently, fine-grained pose estimation with WiFi necessitates higher-resolution
signals, whereas images can achieve it even at lower resolutions.

Modality Comparison. Table 6 compares the HPE performance between images and WiFi,
highlighting a notable performance gap that can be primarily attributed to two factors:
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Figure 9: Predicted poses of MetaFi++, HPE-Li, and our method among all datasets.

Table 5: Per-joint performance on three datasets. L. and R. denote left and right, respectively.
(a) MM-Fi (P1-S1)

Joints MPJPE↓ PA-MPJPE↓
Bot Torso 102.7 56.7
L.Hip 106.9 63.7
L.Knee 105.7 66.1
L.Foot 104.1 88.6
R.Hip 108.3 64.3
R.Knee 105.3 67.4
R.Foot 109.5 90.8
Center Torso 112.3 44.5
Upper Torso 135.8 54.2
Neck Base 158.2 66.2
Center Head 160.5 70.9
R.Shoulder 147.7 73.6
R.Elbow 249.1 140.5
R.Hand 364.5 284.0
L.Shoulder 141.8 77.2
L.Elbow 235.8 132.4
L.Hand 362.4 277.0
Average 165.3 101.0

(b) WiPose
Joints MPJPE↓ PA-MPJPE↓
Nose 30.9 14.9
Neck 27.3 11.7
R.Shoulder 28.7 13.4
R.Elbow 38.7 25.6
R.Wrist 48.2 35.8
L.Shoulder 29.8 16.6
L.Elbow 37.2 24.9
L.Wrist 43.3 30.6
R.Hip 24.6 17.2
R.Knee 21.0 19.3
R.Ankle 22.6 21.7
L.Hip 25.6 17.9
L.Knee 22.4 19.2
L.Ankle 26.0 22.2
R.Eye 31.6 15.5
L.Eye 32.4 16.3
R.Ear 30.8 14.9
L.Ear 96.8 77.7
Average 34.3 23.1

(c) Person-in-WiFi-3D (One
Person Setting).

Joints MPJPE↓ PA-MPJPE↓
Neck 71.6 36.2
Head 77.6 43.1
L.Shoulder 80.5 37.8
R.Shoulder 81.1 37.8
L.Elbow 107.4 54.1
L.Hip 57.7 41.5
R.Elbow 114.2 55.1
R.Hip 58.6 42.0
L.Hand 164.8 117.9
L.Knee 65.6 52.2
R.Hand 179.2 122.4
R.Knee 64.3 52.8
L.Ankle 69.8 65.8
R.Ankle 67.4 62.5
Average 90.0 58.7

Table 6: Modality comparison on MM-Fi.
Modality MPJPE↓ PA-MPJPE↓
Protocol 1 - Setting 1 (Random Split):
Image Yang et al. (2024) 279.0 81.2
WiFi (Ours) 178.5 104.5
Protocol 1 - Setting 2 (Cross-Subject):
Image Yang et al. (2024) 285.3 81.9
WiFi (Ours) 221.6 106.2
Protocol 1 - Setting 3 (Cross-Environment):
Image Yang et al. (2024) 288.6 84.1
WiFi (Ours) 316.8 104.2

(1) images inherently encode human spatial priors,
which are absent in WiFi signals; and (2) the spa-
tial resolution of existing WiFi signals remains lim-
ited. Nevertheless, the two modalities are comple-
mentary: WiFi ensures robustness under low-light
or occluded conditions, while images provide high-
resolution spatial details in well-lit environments.

5 CONCLUSION

In this paper, we revisit and highlight two critical
challenges in WiFi-based human pose estimation (HPE): (1) the cross-domain gap and (2) the struc-
tural fidelity gap. To tackle these issues, we introduce a two-phase framework, DT-Pose, and eval-
uate its effectiveness through extensive experiments on both 2D and 3D WiFi-based HPE tasks.
Furthermore, we discuss the limitations and advantages of WiFi signals, emphasizing their suitabil-
ity for Edge AI applications in the AIoT era.
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A OTHER RELATED WORKS

Masked Pre-training. Masked pretraining techniques have been widely studied across various data
modalities for self-supervised representation learning, leveraging the reconstruction of masked in-
puts as a core strategy Devlin (2018); Radford (2018); Bao et al. (2021); He et al. (2022); Tong et al.
(2022); Wang et al. (2023); Huang et al. (2022); Yan et al. (2023); Cheng et al. (2023). Among these
modalities, the BERT Devlin (2018) and GPT Radford (2018) are two seminal language models
that pioneered the masked modeling paradigm by predicting masked word tokens based on con-
text information. Inspired by them, the computer vision community introduced masked pertain-
ing frameworks for images, giving rise to representative methods like BEiT Bao et al. (2021) and
MAE He et al. (2022), while the video community Tong et al. (2022); Wang et al. (2023) subse-
quently demonstrated that the masked mechanism extends effectively into the temporal dimension.
Beyond these, other data modalities, including audio (Audio-MAE Huang et al. (2022)), skeleton
(SkeletonMAE Yan et al. (2023)), and time series (TimeMAE Cheng et al. (2023)), have similarly
validated the feasibility and efficacy of masked modeling for task-agnostic representation learning
in a self-supervised manner. [Summary]: To the best of our knowledge, this work is the first to
employ a self-supervised masked pre-training paradigm in the WiFi modality. Moreover, we incor-
porate the temporal-consistent contrastive strategy with uniformity regularization to extract motion-
discriminative representations from sparse and continuous WiFi signals, thereby preserving motion
semantic consistency while mitigating potential mode collapse.

Skeleton-based Action Recognition. Learning skeleton action representation can be conceptu-
alized as the inverse process of human pose decoding. Typically, skeleton-based action recogni-
tion methods can be categorized into CNN-based, GCN-based, and Transformer-based Wang et al.
(2016); Chen et al. (2024b; 2021); Song et al. (2022); Chi et al. (2022); Chen et al. (2024a). CNN-
based methods transform skeleton sequences into image-like formats to extract discriminative rep-
resentations Wang et al. (2016); Liu et al. (2017). In contrast, GCN-based methods model human
joints and bones as graph nodes and edges, explicitly incorporating a learnable adjacent matrix to
explore spatial-temporal features, thus improving performance by a large margin Chen et al. (2021);
Song et al. (2022); Chi et al. (2022); Chen et al. (2024c). More recently, Transformer-based methods
leverage self-attention mechanisms to capture long-range dependencies among joints Plizzari et al.
(2021); Gao et al. (2022); He et al. (2024a). [Summary]: Inspired by the success of GCNs and
Transformers in learning representations directly from the skeleton data, we combine their strengths
in a reverse decoding manner to regress poses from WiFi-based representations. Although WiFi
semantic vectors inherently lack human skeletal topology priors, our method compensates for this
by incorporating skeletal topology, enabling more realistic and faithful pose predictions.

B DATASETS

MM-Fi Yang et al. (2024). It comprises 27 distinct action categories performed by 40 volunteers
across four different rooms, resulting in approximately 320.76k single-person synchronized frames.
One transmitter with one antenna and one receiver with three antennas capture all WiFi signals. Each
skeletal pose consists of 17 joints encoded with 3D coordinates. To rigorously assess robustness, the
dataset introduces three protocols and three settings for data splitting. Protocol 3 (P3) encompasses
all 27 action categories, while Protocol 1 (P1) and Protocol 2 (P2) focus on 14 daily activities and
13 rehabilitation exercises, respectively. Setting 1 (S1 Random Split) randomly divides all data into
training and testing sets with a 3:1 ratio. Setting 2 (S2 Cross-Subject Split) employs 32 subjects for
training and the remaining 8 subjects for testing. Setting 3 (S3 Cross-Environment Split) selects 3
rooms randomly for training and others for testing.

WiPose Zhou et al. (2022). It contains 12 action categories performed by 12 volunteers. WiFi
signals are captured by one transmitter with three antennas and one receiver with three antennas.
Each pose annotation comprises 18 joints in 2D coordinates. The official split provides 132847
WiFi samples for training and 33753 for testing.

Person-in-WiFi-3D Yan et al. (2024). It includes 8 daily actions performed by 7 volunteers at three
distinct locations. A single transmitter with one antenna and three receivers with three antennas
capture all WiFi signals. Each skeleton pose features 14 joints with 3D coordinates. The dataset has
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been officially partitioned into training and test sets, with 89946 WiFi samples allocated for training
and 7824 for testing.

C IMPLEMENTATION DETAILS

In the pre-training phase, the encoder-decoder is trained for 400 epochs using the AdamW, employ-
ing a batch size of 256, a learning rate of 1.5e-4 with cosine annealing schedule, a warm-up epoch
of 40, and a weight decay of 0.05. The mask ratio is set as 80%. For the MM-Fi dataset, we train the
pose decoder for 50 epochs using the SGD optimizer with a weight decay of 0.01. For the WiPose
dataset, we train the pose decoder with the AdamW optimizer for 50 epochs. For the Person-in-
WiFi-3D dataset, we train the pose decoder for 200 epochs using the AdamW optimizer. All the
learning rates are 1e-3, and the batch size is 32. All the experiments are finished using the PyTorch
platform on a GeForce RTX 4090 GPU.

D EVALUATION METRIC

Three evaluation metrics are adopted following mainstream methods Yang et al. (2024); D Gian
et al. (2025); Zhou et al. (2023):

Mean Per Joint Position Error (MPJPE (mm)): Measure the average Euclidean distance between
ground truth and predictions, which is widely used to evaluate absolute positional accuracy.

Procrustes Analysis MPJPE (PA-MPJPE (mm)): Measure the MPJPE after aligning the predic-
tions and ground truth using rigid transformations (translation, rotation, and scaling) by Procrustes
analysis. Typically, it can be used to reflect the similarity in human shape and structure.

Percentage of Correct Keypoints (PCK@α (%)):; Measure the percentage of predictions that fall
within a certain threshold distance from the ground truth. The threshold is set as a fraction α of the
torso length following the previous works D Gian et al. (2025); Zhou et al. (2023). It is widely used
to evaluate the local accuracy.

Table 7: 2D HPE results on MM-Fi (P3-S1). Best and second-best are in Red and Blue, respec-
tively.

Method PCK@20↑ PCK@30↑ PCK@40↑ PCK@50↑ MPJPE↓ PA-MPJPE↓
Wi-Pose Jiang et al. (2020) 48.6 65.1 75.6 82.4 158.2 97.7
Wi-Mose Wang et al. (2021) 48.7 66.6 77.3 83.9 155.8 95.4
WiLDAR Deng et al. (2023) 44.1 62.6 72.6 79.3 170.3 115.6
WiSPPN Wang et al. (2019a) 45.4 63.2 74.1 81.0 166.5 110.0
PerUnet Zhou et al. (2022) 50.1 67.3 77.6 83.6 154.6 98.6
MetaFi++ Zhou et al. (2023) 45.5 64.4 75.1 81.8 164.4 106.3
HPE-Li D Gian et al. (2025) 52.1 68.2 78.2 85.1 149.4 92.5
DT-Pose (Ours) 65.8 77.9 85.1 89.8 137.0 92.3

E THE USE OF LLM

The LLM was solely employed as a general-purpose tool to improve writing style after the
manuscript had been completed. All polished sentences were carefully reviewed by the authors
to ensure the accuracy and integrity of the content.
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