Making Small Language Models Efficient Reasoners:
Intervention, Supervision, Reinforcement

Xuechen Zhang *' Zijian Huang ! Chenshun Ni' Ziyang Xiong' Jiasi Chen' Samet Oymak !
Abstract 50 Tl
"
as"® - ¢ . °‘°
Recent research enhances language model reason- 40 < e * RO
. > . o oS
ing by scaling test-t1m§ compqte via longer chain- 830 B . e
of-thought traces. This often improves accuracy 3 R g ® ST
. .] - M

but also introduces redundancy and high compu- <20 2 o9 . l;DR
tational cost, especially for small language mod- 10 ot o’ + BF
els distilled with supervised fine-tuning (SFT). In o 4 Prompt

this work, we propose new algorithms to improve
token-efficient reasoning with small-scale models
by effectively trading off accuracy and computa-
tion. We first show that the post-SFT model fails
to determine the optimal stopping point of the rea-
soning process, resulting in verbose and repetitive
outputs. Verbosity also significantly varies across
wrong vs correct responses. To address these is-
sues, we propose two solutions: (1) Temperature
scaling (TS) to control the stopping point for the
thinking phase and thereby trace length, and (2)
TLDR: a length-regularized reinforcement learn-
ing method based on GRPO that facilitates multi-
level trace length control (e.g. short, medium,
long reasoning). Experiments on four reasoning
benchmarks demonstrate that TS is highly effec-
tive compared to s1’s budget forcing approach and
TLDR significantly improves token efficiency by
about 50% with minimal to no accuracy loss over
the SFT baseline. Moreover, TLDR also facili-
tates flexible control over the response length, of-
fering a practical and effective solution for token-
efficient reasoning in small models.

1. Introduction

Recent works, such as OpenAl’s ol, DeepSeek-R1, and
sl (Jaech et al., 2024; Guo et al., 2025; Muennighoff et al.,

“Equal contribution "EECS Department, University of Michi-
gan, Ann Arbor, USA. Correspondence to: Xuechen Zhang
<zxuechen@umich.edu>, Zijian Huang <zijianh@umich.edu>,
Samet Oymak <oymak @umich.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

500 1000 1500 2000 2500 3000
Response Length

Figure 1. The average performances across four reasoning bench-
marks for 7B models. Our RL-based length-control method TLDR
enhances token efficiency by over 50% compared to SFT. Our
temperature scaling (TS) method outperforms other test-time inter-
vention techniques that avoid the need for training, such as Budget
Forcing (BF) (Muennighoff et al., 2025) and Prompting. The de-
tails of baselines and our methods are provided in Sec. 3.

2025) have focused on enhancing the reasoning capabilities
of language models by generating longer traces equipped
with a thinking phase. These traces can be extremely long
for challenging queries such as AIME or IOI problems. If
we wish to make reasoning more efficient, we could either
ask for a shorter reasoning trace or use a smaller language
model to solve the problem at hand. This raises the question:
Given a potentially small language model (SLM) and a max-
imum trace length, how can we achieve effective reasoning?
In this work, we provide new insights and algorithms toward
addressing this question. For training a small model, a go to
approach is distillation where we use supervised fine-tuning
(SFT) on the samples curated by a more powerful reasoning
model like o1 or R1 (Guo et al., 2025). Recent works (Muen-
nighoff et al., 2025; Guo et al., 2025; Li et al., 2025) indicate
that this straightforward distillation approach on properly
curated data significantly enhances the reasoning abilities
of small models. We find that pure SFT has a key limitation:
these models tend to generate excessively long answers that
often contain repetitions. This highlights a major weak-
ness of SFT compared to direct reward optimization via
reinforcement learning (e.g. GRPO).

We advocate that optimizing the efficiency-accuracy trade-
off necessitates explicitly incorporating length regulariza-
tion within reward or better intervention strategies if an RL
training phase is not allowed. To this aim, we introduce
Trace Length Control for Dynamic Reasoning (TLDR): a

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

Reasoning:

: o &b
Not applied to , Limited
small model “ Efficiency:
reasoning — :
——— m

High

Reasoning: Unstable

e.g.,Deepseek- ,0 é High
Distill, o . test-time
Efficiency: .
s1 —) ey behavior
— [) Redundant

O, é é Reasoning:
gy tme

D High

e.g. TLDR,
DeepScaler

Figure 2. We explore training strategies for small language mod-
els (SLM), focusing on the effects on reasoning capability and
test-time compute efficiency. RL improves efficiency, but when
used alone, can compromise reasoning performance. While SFT
enhances reasoning, it often leads to redundant outputs due to the
lack of deliberate stopping point control. Test-time strategies offer
limited control over output length and fail to improve performance
with increased length consistently. To address these challenges, we
propose TLDR, a method that combines SFT with RL to achieve
both strong reasoning and token-efficient generation.

length-penalized variation of GRPO. Our evaluations show
that, by utilizing a mild penalization, TLDR substantially
reduces the average response length over GRPO while main-
taining or even improving the overall accuracy. This could
be viewed as a free lunch for the efficiency-performance
trade-off. Additionally, we introduce a multi-level varia-
tion of TLDR that allows for dynamically controlling the
response length by directly prompting the model. This
eliminates the need for additional model training and of-
fers a flexible approach to controlled generation. Experi-
ments on multiple reasoning benchmarks demonstrate that
our method significantly improves token efficiency and
efficiency-performance pareto-front. As a training-free inter-
vention method, we also introduce an intuitive temperature
scaling strategy that provide a fine-grained control on the
sampling of end token. Our specific contributions are as
follows:

* Rethinking SFT for distillation: Through extensive ex-
periments comparing SFT, SFT with test-time compute,
and reinforcement learning (RL) across models of dif-
ferent sizes, we find that SFT-based methods result in
substantial inefficiencies. These arise from redundant
generation and repetitions, and notably can result in non-
monotonic accuracy progress as the test-time compute
budget increases (cf. Figure 8).

* Temperature scaling to control stopping time in SFT
models: We propose TS as a training-free model-agnostic
method to improve token-efficiency by controlling the
sampling probability of the EOS token. Compared to
budget forcing or textual prompting, this provides a finer-
grained control and yields a better accuracy-efficiency
pareto-front with up to 50% reduction in response length
while maintaining accuracy across benchmarks.

* Controlled generation via RL with multi-level length

penalties We introduce TLDR which integrates length-
penalty within GRPO formulation to improve response
efficiency. Remarkably, TLDR can reduce the response
length while preserving overall performance compared
to base GRPO. Within TLDR, we incorporate multi-
ple penalty levels that can be specified by the user
prompt. Through this, we show that TLDR can sweep
the efficiency-accuracy pareto-front. Comparing pareto-
fronts of different model sizes reveal scenarios where an
SLM with longer trace (smaller penalty) outperforms an
LLM with shorter trace while using fewer total FLOPs.

We remark that recent approaches (Muennighoff et al., 2025;
Aggarwal & Welleck, 2025; Butcher et al., 2024; Yuan et al.,
2024; Xu et al., 2025; Hou et al., 2025; Yang et al., 2025)
have also highlighted the importance of length control. How-
ever, with the exception of the recent work L1 (Aggarwal &
Welleck, 2025), these methods do not provide an optimized
control over the average or maximum output length. Our
evaluations show that lack of explicit optimization results
in sub-optimal tradeoffs. TLDR compares on par with L1
under an max trace length constraint, while training from
a weaker base model. We also contend that enforcing a
maximum length constraint is often more desirable in real-
world settings and refer the reader to Section 4 for details.
The remainder of this paper is organized as follows. In
Appendix B, we present our experimental characterization
of SFT and RL strategies regarding their response length.
Motivated by these observations, in Section 2 we present
our training-free TS method and, in Section 3, we present
our length penalty framework. Section 4 showcases the
empirical results, and Section 5 concludes the paper with a
discussion.

2. Proposed Method: Post-hoc Temperature
Scaling

Motivated by the bad example shown in Figure 7, we check
the next-token probabilities at the end of each block loop
and find that in 87.5% of the cases, the end-of-sequence
(EOS) token ranks among the top 5 candidates, despite not
being selected. So, we introduce post-hoc temperature scal-
ing to increase the probability of the end-of-sequence (EOS)
token, to reduce the response length of the SFT-distilled
models. The temperature scaling does not change the inter-
nal reasoning process of the model. Temperature scaling is
a fundamental method for controlling model behavior, in-
fluencing aspects such as stochasticity of generative LLMs,
calibration and imbalanced data, as highlighted in several
studies (Zhang et al., 2024a; Menon et al., 2021; Li et al.,
2021; Zhang et al., 2024c). 1 € RV is the original logits
output by the model, where V is the vocabulary size, and
the EOS token has index i.05, we modify the EOS logit as
/= Z—;ﬁs T < 1. By increasing the likelihood of EOS,

Leos

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

the model is more likely to terminate its generation earlier,
thus producing shorter outputs. Empirically, we find that
this simple adjustment effectively reduces redundancy, espe-
cially repeating, while preserving the core reasoning steps
and answer accuracy. The result is shown in Table 1.

Base BF TS
acc length acc length acc length
SFT-S1-7b 77.00 4842.68 77.17 3591.21 77.01 1983.93
SFT-DeepSeek-1.5b 80.60 5869.60 81.03 3162.49 81.09 2615.66
SFT-DeepSeek-7b 88.17 4078.26 88.03 2839.95 88.95 2547.42

Table 1. Results of post-hoc temperature scaling. Since budget
forcing (BF) requires a predefined target length, we sweep across
500, 1k, 2k, and 4k tokens, and select the config that achieves better
performance than the base model while producing the shortest
output as the BF baseline.

Based on the above observations, we ask two research ques-
tions:

* QS1: Given a small reasoning model, can we obtain a
sweet spot between accuracy and response length, which
means a model generates shorter responses without hurt-
ing the reasoning ability?

* QS2: Given a small reasoning model, can we incorpo-
rate the model with the ability to generate responses in
different length levels by following the users’ prompts?

3. Proposed Method: Reinforcement Learning
with Length Penalty

To tackle the above two research questions, we propose pe-
nalized reward function, conditioned on the response length.
The proposed reward functions can integrate with the Group
Relative Policy Optimization (GRPO) algorithm, a popular
RL algorithm for efficient training nowadays. We denote
the response length penalty function as ((L), where L is
the length of the response. The final reward function is
r =7 — ((L), where 7 is the original reward function (e.g.,
accuracy reward, format reward, etc.).

A unique aspect of our approach is that different parameter
settings can be indirectly controlled by the end user through
a special prompt, for example “[Response Length: LONG]
Provide a detailed step-by-step solution.” In other words,
the model is trained with the prompt and its corresponding
penalty function. The model thus learns to pair the spe-
cial prompt with the trajectories associated with that length
penalty. Then during inference, the model should automati-
cally produce responses that match that length penalty.

“Sweet Spot” of Length Penalty. To find the “sweet spot”
of response efficiency without hurting the reasoning perfor-
mance, we design the penalty function as n(L) = aﬁ,
where « is a hyperparameter for the strength of the length
penalty, and L, is the maximum length of the model’s

response. The a value should be set to a relatively small

s LONG, correct N
MODERATE, correct ’ ’

s SHORT, correct ”

= Incorrect _ P g
3 d
s i
> .~
= -
[0 -
c e
[} -
[4~

-
R
”
Lmax Lmax Lmax

z 2
Answer Length L

Figure 3. Length Penalty function.

value to ensure that the penalty term (L) does not perturb
the final reward r too much. Note that in this setting, the
reward function r = # — 7(L) correspondingly.

Length Penalty for Multi-level Length Control. To ad-
dress the problem of multi-level LP control, we define three
different LP levels: short, moderate and long. Intuitively,
the penalty function should be designed to penalize correct
answers from being too long. We also set a special penalty
nL for wrong answers, which is same as "Sweet Spot” ex-
periments, since we don’t want LLMs to waste tokens when
it cannot solve the problem with the current model size.
Formally, the length penalty is defined as:

0, if ¢ = 1 and (LONG or (MODERATE and L < Lmax)
or (SHORT and L < Zmax)
if ¢ = 1 and (MODERATE and L > Zmax
or (SHORT and L > Lmax)

C(L) =48,

n(L), ifc=0
(€8}

where LONG, MODERATE, and SHORT correspond to the
desired LP level (paired with the corresponding prompts),
L> % and L > % are the max length threshold corre-
sponds to MODERATE, and SHORT prompts, ¢ € {0,1}
means the answer is incorrect/correct, and 3 represents the
penalty for correct answers whose length is greater than a

threshold. The function are shown in Figure 3.

4. Experiments

4.1. Sweet Spot through Reinforcement Learning +
Length Penalty

In Table 2, we report the accuracy and token length for the
base model and for different settings of the length penalty.
We can see in the second column “RL” that RL training
directly within 4096 response length limitation can shorten
the response length directly, while at the same time gener-
ally improving or maitaining the accuracy of SFT models
compared to the Base model. From the third “RL + Length
Penalty” column, we can see that by applying length penalty,
we can further shorten the response length while preserving
the accuracy. With the comparison between the results of

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

Base RL RL+Length Penalty
acc length acc length acc length
Qwen?2.5-Math-1.5B(4k) 234 | 1976.874 | 682 685.896 714 495.842
Qwen?2.5-Math-7B(4k) 572 1109.13 70 671.58 71.2 404.962
DeepSeek-R1-Distill-Qwen-1.5B(32768) | 80.6 | 5769.596 | 77.2 | 1929.208 | 80.4 1104.748

Table 2. We investigate a range of models (size, short/long CoT, SFT/RL) and show that different values of the length penalty can produce

shorter responses while maintaining good accuracy.

Accuracy
»
&
Accuracy
g

Bt

POPPLL 3 o
500 1000 1500 2000 2500 3000 3500
Response Length

(b) AMC

500 1000 1500 2000
Response Length

(a) MATH500

w
s

Accur:
w 5 &
% ¥
& \
2
"
Accuracy
5 8

&
o

@

500 1000 1500 2000 2500 3000 3500

Response Lengt!

(d) OlympiadBench

°

500 1000 1500 2000 2500 3000 3500 4000
Response Length

(c) AIME24

Figure 4. Performance of TLDR under varying model sizes and
token budget. TLDR outperforms length-controlled baselines (S1)
both in performance and token efficiency.

“RL” and “RL + Length Penalty”, we can see that while RL
without length penalty can already gain better response effi-
ciency, a better “Sweet Spot” can be obtained when training
with length penalty.

4.2. Length Control through Reinforcement Learning +
Multi-Level Length Penalty

Figure 4 shows the accuracy and token length for different
models and settings of the length levels. From the results,
we can see that the base DeepSeek-R1-Distill models tend
to struggle with these strong reasoning tasks. This issue can
be more severe when the response length is limited, which
is shown by the accuracy gap between Figures 4a and 4c
for the base model, and the results reported in DeepSeek-
R1 (Guo et al., 2025). From Figure 4, we can see that after
training the distilled models by GRPO with TLDR, we not
only achieve much better accuracy on all four reasoning
datasets by at most 50%, but shorten the response length
by at most 50%. In particular, the lowest length penalty
(LONG) generally results in the best accuracy albeit with
slightly more tokens. We beat the base model, prompt con-
trol method and even the SOTA sl (Muennighoff et al.,
2025) both in accuracy and inference efficiency. In Figure 5,
we show that both correct response length and wrong re-
sponse length are shortened after training with TLDR, and
the shortened ratio grows with the response length limita-
tion. This means that TLDR can incorporate small language

4000 4000
- Al
3500 Correct 3500

3000 = Wrong o 3000

- All

Correct
= Wrong
2500 £ 2500
H 2000 H 2000
81500 1500
2 &

1000 1000

500 500
g P70 s 1]
7b-4k

1.5bBase 1.5b-ak 7b Base 1.5bBase 1.5b-dk 7bBase 7b-dk

(a) SHORT (b) MODERATE
4000
- Al
3500 Correct
3000 = Wrong
2
2500
#2000
a
1500
1000
500 l I
© lsbBase 15b-ak 7bBase 7b-ak

(c) LONG

Figure 5. The response length of models before and af-
ter trained with TLDR in different length control levels
(SHORT/MODERATE/HIGH)). After training TLDR, both of
the correct and wrong responses’ length decreases.

models both the ability to reduce redundancy during reason-
ing but also stop early when the problem is too hard for it.
The detailed experiment results are at Table 4.

5. Conclusion

In conclusion, we propose a novel approach to improving
token efficiency in reasoning tasks, addressing the inefficien-
cies of long reasoning traces generated by language models.
Our work demonstrates that supervised fine-tuning (SFT)
alone is insufficient to avoid redundant or repetitive outputs,
especially for smaller models. To overcome this, we intro-
duce TLDR, a length-penalized variation of Group Relative
Policy Optimization (GRPO), which effectively reduces re-
sponse length while maintaining accuracy. The flexibility
of TLDR, through its multi-level penalty system, allows for
dynamic control of response length, making it adaptable to
different reasoning scenarios. Our experiments across four
reasoning benchmarks show that TLDR achieves a signifi-
cant improvement in token efficiency—around 50%—with-
out a noticeable loss in accuracy. Furthermore, TLDR’s
performance compares favorably to existing methods, of-
fering a superior trade-off between efficiency and accuracy.
This work provides valuable insights into optimizing the
computational cost of reasoning models, and the proposed
method is a practical step toward more efficient and scalable
reasoning systems.

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

Acknowledgements

This work is supported by the National Science Foundation
grants CCF-2046816, CCF-2403075, CCF-2212426, the
Office of Naval Research grant N000142412289, and an
Adobe Data Science Research Award. The computational
aspects of the research is generously supported by computa-
tional resources provided by the Amazon Research Award
on Foundation Model Development.

References

Aggarwal, P. and Welleck, S. L1: Controlling how long
a reasoning model thinks with reinforcement learning.
arXiv preprint arXiv:2503.04697, 2025.

Akyiirek, E., Damani, M., Zweiger, A., Qiu, L., Guo, H.,
Pari, J., Kim, Y., and Andreas, J. The surprising effec-
tiveness of test-time training for few-shot learning. arXiv
preprint arXiv:2411.07279, 2024.

Butcher, B., O’Keefe, M., and Titchener, J. Precise
length control in large language models. arXiv preprint
arXiv:2412.11937, 2024.

Chen, L., Zaharia, M., and Zou, J. Frugalgpt: How to use
large language models while reducing cost and improving
performance. arXiv preprint arXiv:2305.05176, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Google. Gemini 2.0 flash thinking mode (gemini-2.0f lash-
thinking-exp-1219), 2024. https://cloud.goog
le.com/vertex—ai/generative-ai/docs/t
hinking.

Gozeten, H. A., Ildiz, M. E., Zhang, X., Soltanolkotabi,
M., Mondelli, M., and Oymak, S. Test-time training
provably improves transformers as in-context learners.
arXiv preprint arXiv:2503.11842, 2025.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P, Bi, X, et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Gupta, N., Narasimhan, H., Jitkrittum, W., Rawat, A. S.,
Menon, A. K., and Kumar, S. Language model cascades:
Token-level uncertainty and beyond. arXiv preprint
arXiv:2404.10136, 2024.

Hou, B., Zhang, Y., Ji, J., Liu, Y., Qian, K., Andreas,
J., and Chang, S. Thinkprune: Pruning long chain-of-
thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Infer-
national Conference on Machine Learning, pp. 19274—
19286. PMLR, 2023.

Li, M., Zhang, X., Thrampoulidis, C., Chen, J., and Oymak,
S. Autobalance: Optimized loss functions for imbal-
anced data. Advances in Neural Information Processing
Systems, 34:3163-3177, 2021.

Li, Y., Yue, X., Xu, Z., Jiang, F.,, Niu, L., Lin, B. Y., Ra-
masubramanian, B., and Poovendran, R. Small models
struggle to learn from strong reasoners. arXiv preprint
arXiv:2502.12143, 2025.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, 1., and
Cobbe, K. Let’s verify step by step. In The Tielfth
International Conference on Learning Representations,
2023.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. Awq:
Activation-aware weight quantization for on-device 1lm
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87-100, 2024.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W. Y., Roongta,
M., Cai, C., Luo, J., Zhang, T., Li, L. E., Popa, R. A., and
Stoica, I. Deepscaler: Surpassing ol-preview with a 1.5b
model by scaling 1l. https://pretty-radio-b75
.notion.site/DeepScaleR-Surpassing-0
l1-Preview-with-a-1-5B-Model-by-Scali
ng—-RL-19681902c1468005bed8ca303013a4de
2,2025. Notion Blog.

Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit,
A., and Kumar, S. Long-tail learning via logit adjustment.
ICLR, 2021.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candes, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

OpenAl. Gpt-4o0 mini: advancing cost-efficient intelligence,
2024. https://openai.com/index/gpt-40-m
ini-advancing-cost-efficient-intelli
gence/ ~.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024.

https://cloud.google.com/vertex-ai/generative-ai/docs/thinking
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/~
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/~
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/~

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

Setlur, A., Rajaraman, N., Levine, S., and Kumar, A. Scaling
test-time compute without verification or rl is suboptimal.
arXiv preprint arXiv:2502.12118, 2025.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Xu, Y., Dong, H., Wang, L., Sahoo, D., Li, J., and Xiong, C.
Scalable chain of thoughts via elastic reasoning. arXiv
preprint arXiv:2505.05315, 2025.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li,
C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115, 2024a.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu,
D., Tu, J., Zhou, J., Lin, J., et al. Qwen2. 5-math techni-
cal report: Toward mathematical expert model via self-
improvement. arXiv preprint arXiv:2409.12122, 2024b.

Yang, W., Ma, S., Lin, Y., and Wei, F. Towards thinking-
optimal scaling of test-time compute for llm reasoning.
arXiv preprint arXiv:2502.18080, 2025.

Yuan, W., Kulikov, I., Yu, P., Cho, K., Sukhbaatar, S., We-
ston, J., and Xu, J. Following length constraints in in-
structions. arXiv preprint arXiv:2406.17744, 2024.

Zhang, X., Chang, X., Li, M., Roy-Chowdhury, A., Chen,
J., and Oymak, S. Selective attention: Enhancing trans-
former through principled context control. Advances

in Neural Information Processing Systems, 37:11061—
11086, 2024a.

Zhang, X., Huang, Z., Taga, E. O., Joe-Wong, C., Oymak, S.,
and Chen, J. Efficient contextual LLM cascades through
budget-constrained policy learning. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024b. URL https://openreview.net
/forum?id=aDQ1Az09dS.

Zhang, X., Li, M., Chen, J., Thrampoulidis, C., and Oymak,
S. Class-attribute priors: adapting optimization to het-
erogeneity and fairness objective. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 16890-16898, 2024c.

https://openreview.net/forum?id=aDQlAz09dS
https://openreview.net/forum?id=aDQlAz09dS

- Al
Correct 0.30

== Wrong 025
o0
®
€0.20
-

H
20.15
&
0.10
I I I I 0.05
0.00

&
9
«&

Length
o o o
PO

Repeat rate
o
[

o
o

o

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement
&'

= Base
Short
I === Long
0.0
&

(a) Response length for different (b) Repeat rate for different FT (c) Repeat rate for different model
FT strategies strategies sizes and FT trace length

Qh

Figure 6. SFT models have longer and more repetitive answers when wrong, especially for small models fine-tuned under supervision by
long traces.

A. Related Work

Efficient LLMs. LLMs are widly popular for tasks such as conversational Al, code generation, healthcare, and scientific
research. However, their increasing size and computational demands pose challenges for scalability, efficiency, and
deployment. This has become a central challenge with the rising importance of test-time compute scaling (Snell et al., 2024)
where the model generates long chain-of-thought traces (Muennighoff et al., 2025; Jaech et al., 2024; Guo et al., 2025) or
conducts other computation/training (Akytirek et al., 2024; Gozeten et al., 2025) to solve challenging problems. Speculative
decoding (Leviathan et al., 2023) accelerates autoregressive generation by leveraging draft models to predict multiple tokens
in parallel. MoE-based architectures (Shazeer et al., 2017) reduces computational cost while maintaining performance
by activating only a subset of parameters per input. Quantization techniques, such as GPTQ (Frantar et al., 2022) and
AWQ (Lin et al., 2024), compress models into lower precision formats, achieving speed-ups with minimal accuracy loss.
Cascade-based methods (Chen et al., 2023; Zhang et al., 2024b; Gupta et al., 2024) save the inference cost by choosing the
appropriate models and prompts by either rule-based selection or training an RL algorithm. Instead of complicated model
architecture designs or multi model dependence, we build a simple method to make language models more efficient by
training from common models.

RL vs SFT. To obtain smaller language models with relatively high performance, Deepseek-R1-distill family (Guo et al.,
2025) shows that smaller language models can also get high performance by SFT with the long CoT reasoning answer
generated by the strong reasoning LLM. s1 (Muennighoff et al., 2025) shows that SFT on only 1,000 examples suffices to
build a competitive reasoning model matching ol-preview and produces a model that lies on the pareto frontier. However,
(Setlur et al., 2025) argues that scaling test-time compute without verification or RL is suboptimal, meaning that distillation
samll models do not understand the reasoning process but replicate the solution. We demonstrate that only SFT can either
make the model generate meaningless and redundant responses when querying difficult questions or do not reach the best
trade-off point between reasoning ability and efficiency.

Length Control in LLMs. To fulfill different hardware settings and different users’ requirements, several recent studies
focus on controlling the reasoning or response length, to have the ability either to save the inference cost by limiting the
length or to dig out the reasoning potential of language models. s1 (Muennighoff et al., 2025) utilizes a inference strategy
called budget forcing on the distilled small model to control the thinking length, while L1 (Aggarwal & Welleck, 2025)
empower the model with length control by adding penalty term with different token length targets during RL training on a
super powerful 1.5b model. There are also a few contemporaneous works (Xu et al., 2025; Hou et al., 2025; Yang et al.,
2025). Compared to these, we focus on and contrast the impact of different strategies (intervention, SFT, RL) on reasoning
length control. As a result, we provide temperature scaling as a more natural and effective intervention strategy compared to
Budget Forcing. Compared to L1 which uses DeepScaler as their base model, we provide a stronger understanding of the
shortcomings of SFT and demonstrate that RL can unlock token-efficiency even with weaker base models.

B. Observations of Supervised Finetuning and Reinforcement Learning Regarding Response
Length

In this section, we scrutinize a range of models, including Qwen-2.5 family (Yang et al., 2024a;b), Deepseek-R1-distill
family (Guo et al., 2025), DeepScaleR (Luo et al., 2025) and our RL fine-tuned models. The objective of this section is to

7

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

Okay, so | need to find the domain of the function log(x2). The problem states that the domain is x<aor x> b, and | have to find a + b.
Hmm, let me think. and the domainisx<aorx>b.

But the problem is asking for a + b. So, if a is less than 0 and b is greater than 0, then a + b would be some real number. However, the
problem doesn't specify any particular values for a or b.

Wait, but let me think again. The problem says ""the domain of the function log x2 is x < a or x > b™". So, the domain is all real numbers
except x=0. Therefore, a and b must be such thata <0 and b > 0, and the domain is x < a or x > b.

Figure 7. Example of wrong and lengthy response, generated by the Deepseek-R1-Distill-Qwen-1.5B model for a Math500 question. The
response repeatedly cycles through the paragraph shown in the blue block until it reaches the maximum context length, without providing
a final answer.

explore the benefits and drawbacks of the two post-training finetuning methods, SFT and RL, in terms of their reasoning
capability and efficiency. We make four main observations below, which later inform the application of our intervention
method in Section 2 and the design of our TLDR framework in Section 3.

B.1. Observation 1: Supervised fine-tuning introduces redundancy

To equip more efficient smaller models with reasoning capabilities, open-source models, like Qwen (Yang et al., 2024a;b),
with SFT, use samples curated by powerful RL-trained long reasoning models such as Deepseek-R1 (Guo et al., 2025).
Recent works indicate that this straightforward distillation approach significantly enhances the reasoning abilities of small
models. Our main observation is that LLMs with SFT sometimes generate excessively long answers, especially for smaller
models.

Experiment setup. We use the Qwen-2.5 family (Yang et al., 2024a;b) as the base models as well as short CoT models.
For SFT models, we use the Deepseek-R1-distill family (Guo et al., 2025), labeled as “SFT-Deepseek”, which has been
fine-tuned on the Deepseek-R1 curated dataset containing approximately 800k samples of reasoning and non-reasoning data.
Additionally, we study the S1 family of models (Muennighoff et al., 2025), labeled “SFT-S1”, which has been fine-tuned
on S1K, the dataset containing 1k questions paired with reasoning traces. To obtain S1 SFT models of different sizes, we
use the officially released S1K SFT models. For models fine-tuned with RL, we train using either standard GRPO or our
proposed (described later in Section 3). We evaluate on the MATHS500 dataset (Lightman et al., 2023).

SFT models generate excessively long and repetitive responses. First, we investigate the two SFT models with improved
performance compared to the Qwen base model. The results of models with 7b parameters are shown in Table 3. We also
visualize the length distribution in Figure 6a. In Figure 6a, the blue bars are the average length of all the responses, the
orange bars are the average length of all the correct responses and the green bars show the average length of all the incorrect
responses. We can see that SFT models generate longer responses compared to the base model and RL fine-tuned models.
Further, the average length of wrong answers are always longer than correct answers. Such responses are undesirable
because they are costly, inefficient, and unlikely to be correct. An example wrong answer is shown in Figure 7.

To understand the prevalence of such repetitive answers, we compute the “repeat rate”, defined as the proportion of incorrect
answers that are excessively long and repetitive among all wrong answers. Repetition is identified by querying GPT-40-
mini (OpenAl, 2024) with a custom prompt (Appendix F). The repeat rate results are presented in Figure 6b. We can see that
the repeated error rate of SFT models is much higher than that of base model and RL fine-tuned models. We also propose
hypothesis why RL natually provides more effective control in Appendix B.5.

B.2. Observation 2: Longer traces for FT causes redundant responses for small models

Experiment setup. We include the S1 family of models (Muennighoff et al., 2025), which has been fine-tuned on S1K or
S1K-1.1, two datasets containing 1k questions paired with reasoning traces. These traces were generated using either the
Google Gemini Flash Thinking API (Google, 2024) (S1K) or Deepseek-R1 (S1K-1.1), which are labeled as “short” and
“long” respectively in Figure 6¢. Notably, reasoning traces generated by Deepseek-R1 are of higher quality but are also
significantly longer, often including the “aha” moment that encourages deeper reasoning. The length distribution of the two
kinds of traces are shown in Appendix H.

Longer traces for FT hurt response efficiency. Previous research (Muennighoff et al., 2025) suggests that incorporating

8

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

difficulty, and high-quality traces can enhance reasoning performance. However, we argue that complex traces can decrease
the efficiency of small models and may even adversely affect performance, as they might exceed the maximum context
length before completing their reasoning process. In Figure 6¢, we present the repeat rate for different model sizes and
trace lengths. The orange bars indicate the results of models trained with shorter Gemini traces, while the green bars show
models trained with significantly longer Deepseek traces. We observe that smaller models tend to exhibit higher repeat rates.
Additionally, using long reasoning traces for fine-tuning increases this rate. Among all incorrect responses, over 60% of
failures are due to repetition in the 1.5B parameter model that was fine-tuned with supervision using long Deepseek traces.
We provide an example of a repeating incorrect answer in Appendix I, Figure 15. In this example, the model generates
the word “wait” 577 times, continuously repeats the same sentences, and fails to provide a final answer before reaching
the maximum context length, with one paragraph repeating 180 times. Even worse, when the model finally escapes this
repetitive cycle, it often falls back into it. We argue that fine-tuning with high-quality, longer traces severely hurts response
efficiency.

B.3. Observation 3: Controlling context length trades off performance for efficiency

Experiment setup. We experiment with three different sizes of state-of-the-art SFT models, drawn from the Deepseek-
R1-distill models (Guo et al., 2025) on the MATHS500 dataset (Lightman et al., 2023) with a state-of-the-art S1 “budget
forcing” method (Muennighoff et al., 2025) that caps the thinking trajectory length using test-time compute. “Auto” denotes
responses generated without any extra constraints on response length.

The results are shown in Figure 8a for different model sizes. The x-axis denotes the average context length, and the y-axis
shows the corresponding accuracy. Dots on the upper left of the figure have a better efficiency-performance trade-off.
“Budget forcing” achieves shorter response lengths with comparable or even better performance compared to responses
generated without constraints (“Auto”) across all three sizes. The improvement of budget forcing methods is most significant
on the smaller model, showing an almost 50% length decrease on Deepseek-R1-distill-1.5b (blue). However, without
training, such test-time length control strategies sometimes fail to find an optimal trade-off (results shown in the Appendix
in Figure 12). These results suggest significant room for improvement in achieving an efficient performance trade-off, a key
motivation for our TLDR.

B.4. Observation 4: Test-time compute cannot precisely control response length

Experiment setup. We conducted experiments using various test-time length control strategies, including the S1 “budget
forcing” as in the previous subsection, and “exact control”. These methods force the thinking trajectory to be of fixed
length through a collection of strategies: suppressing the generation of the end-of-thinking token delimiter to enforce
a minimum response length, appending a “Wait” to the model’s current reasoning trace to encourage reflection on its
generation (Aggarwal & Welleck, 2025)), and adding the prompt “Think for up to n tokens” after the question. These
experiments were performed on three different datasets: MATHS00 (Lightman et al., 2023), GPQA (Rein et al., 2024), and
AIME24.

The results on the MATHS500 dataset using budget forcing are shown in Figure 8. The budget forcing method cannot
precisely control the total response length, as demonstrated in Figure 8a. Despite a maximum 500-token constraint for the
thinking trajectory, the final response often extends to about 2000 tokens or more (first green/blue dot), which is longer
than the responses generated with a maximum 1000-token constraint. This is because forcing a shorter thinking trajectory
sometimes leads to a significantly longer final solution. To illustrate this, we plot the ratio of tokens spent during thinking
vs the final solution in Figures 8b and 8c, for different token budgets. These length control methods performed poorly.
Additional results for all length control strategies and the datasets are in Figures 12 and 13 in the Appendix.

B.5. Observation 5: SFT introduces redundancy due to equal treatment of end token, while RL-based models can
learn when to stop

In SFT, the model is trained to predict the next token based on ground truth sequences, with each token, including special
tokens such as end-of-sequence (EOS), <think>, <answer>, treated equally during optimization. This method can lead to
redundancy in reasoning tasks for several reasons:

» Lack of Explicit Stopping Signal: Since the EOS token is treated like other tokens, the model is not explicitly encouraged
to optimize for brevity. Instead, it learns to imitate long reasoning traces, even when shorter reasoning suffices.

9

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B
3500 — Totgl:g?/:93 3500 == Total: 3381
MATH-500 ;h:”':'”g Total] 3152 M oo ;h:m:lng 10.7%
olution olution B
0.90 * " 3000 e " Total: 2793
' S Total: 2565 S 2500 14.3%
& 2500 Total: 2356 < Total: 2189
0.85 e Total: 2129 < :
- w 2000 30.7% w 2000 23.3%
go.80 * ° 5 e ° Total: 1622 s0.3%
o 5
£ 3 1500 | (RIS RS @ 1500 Total: 1322 4g 20s =
0.75 < < . 85.7%
S — 1.58 [75.4% g
. S 1000 S 1000 62.2%
<0.70 7B > 69.3% E < 76.7%
— 148B 5 45.1% 500 59.8%
0.65 ® Budget Forcing 19.5% SHFD
* Auto o o
0.60 500 1000 2000 4000 8000 500 1000 2000 4000 8000
Token Budget Token Budget

2000 3000 4000 5000
Average Tokens

(b) Thinking:solution token ratio of (c) Thinking:solution token ratio of
(a) Efficiency-performance trade-off Deepseek-R1-distill-1.5b Deepseek-R1-distill-7B

Figure 8. Test time compute strategies can trade off performance for efficiency, but cannot precisely control response length, in part due to
many tokens spent on the final solution.

response_length/mean

2500 v "fﬁ‘l‘n N

A w"‘ W m'"‘*“”u‘ Fhapdpl 'N"M Ny
. vl vWW‘JW"\W."'W.‘A"d“““ﬁ“
y}lé

100 150 200 250

Figure 9. Changes in response length during reinforcement training without length penalty.

* Bias: During training, the model only sees EOS tokens once at the end of the reasoning traces.

* Overfitting to Long Traces: If the training data contains long, detailed reasoning sequences, SFT models tend to
memorize these structures instead of learning when a concise answer would be sufficient.

RL can provide more effective control. Unlike SFT, RL-based models can learn when to stop reasoning. RL treats stopping
as a decision-making problem instead of treating it equally with other tokens. The model can learn when to terminate
reasoning to maximize rewards. This is evidenced by decreases in response length during training, as shown in Figure 9.

In RL, we can also define a reward function that explicitly balances reasoning quality and efficiency. Unlike SFT, where the
model passively learns from long training sequences, RL allows us to actively penalize excessive length, while rewarding
correct and concise answers, by adding a length penalty.

C. Experiment Setup

C.1. Setup for Sweet Spot Experiments

In this experiment, we use 3 base models as shown in Table 2, which contains models of different types and sizes (1.5b
and 7b). Specifically, Qwen2.5-Math-1.5B, Qwen2.5-Math-7B (Yang et al., 2024a;b) are short CoT reasoning models,
while DeepSeek-R1-Distill-Qwen-7B is a long CoT reasoning model. We warm up the models by training them on the
MATH training dataset with GRPO, where 7 = 0.9 - racc + 0.1 - Tformat» Tace> Tformat are the reward for accuracy and format,
and then train with length penalty as defined in “Sweet Spot” of Length Penalty, where o € {0.0,0.1} for RL without
length penalty and RL with length penalty correspondingly. After training finishes, we test the models’ performance on
the MATHS00 dataset. For all RL training, we set the response max length to 4096 because this is max length that can be
trained with our resource, and 4096 is generally long enough to solve problems in MATH dataset.

10

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

Histogram of Wrong Length and Correct Length Histogram of Wrong Length and Correct Length Histogram of Wrong Length and Correct Length

= Wrong
Correct

= Wrong
Correct

= Wrong
Correct

-
~
°

-
o
5

—_—

3
S

-

o

=]

@
S

@
=)

3
S

Frequency
Frequency
Frequency

IS
S

N
o

o

15000
Length

(c) DeepSeek-R1-Distill-7B

»
15000 5000 10000 20000 25000 30000

Length

(a) DeepScaleR-1.5B

5
5000 10000 20000 25000 30000

5000

10000 15000

Length

(b) DeepSeek-R1-Distill-1.5B

20000 25000 30000

Figure 10. The length distribution of wrong and correct responses of different models. The length of correct responses are generally
shorter than the length of wrong responses.

C.2. Setup for TLDR Experiments

In these experiments, we use two base models: DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B. The
training dataset is a combination of the training set of MATH, AIME, AMC, STILL, OlympiadBench, which is same as
the training set of DeepScaleR-1.5B-Preview. We first warm up the models by training them to the convergence in the
sense of the original reward 7, then we do the training with multi-level response length penalty as defined in Equation (1),
where v = 0.1, 5 = 0.3 in our setting. After training finishes, we test the models’ performance on the MATHS500 dataset
and the test sets of AMC, AIME24 and OlympiadBench datasets. For DeepSeek-R1-Distill-Qwen-1.5B, we experiment
with Ly, = 2048,4096, and for DeepSeek-R1-Distill-Qwen-7B, we experiment with L,x = 4096. The prompts for
low/medium/high length penalty are “[Response Length: LONG] Provide a detailed step-by-step solution.”, “[Response
Length: MODERATE] Provide a concise but clear solution.”, “[Response Length: SHORT] Provide only the essential steps.”

respectively. These three levels corresponds to the i, % length and the full length of the max response length.

D. Model performance

Table 3 shows the performance of different models on three reasoning datasets, where Qwen2.5-{ }b-Instruct_s1K models
are Qwen2.5-{ }b-Instruct supervised finetuned with s1K dataset, DeepSeek-R1-Distill-Qwen-{ } B models are distilled
models officially released by DeepSeek, s1.1-3B models are models released by the s1 team. From Table 3, we can see
that distillation with a small amount of high quality curated long CoT data can have comparable performance when the
model size is larger (7B and 14B) and the task is not very difficult (MATH and GPQA), but it’s still not close to the distilled
models with a large amount of long when the model is small (1.5B, 3B, 7B) or the task is reasoning intensive (AIME).

Model MATH Accuracy | GPQA Accuracy | AIME Accuracy
Qwen?2.5-1.5b-Instruct_s1K 0.426000 0.176768 0.066667
Qwen2.5-3b-Instruct_s1K 0.579158 0.247475 0.066667
Qwen2.5-7b-Instruct_s1K 0.740000 0.166667 0.100000
Qwen?2.5-14b-Instruct_s1K 0.794000 0.414141 0.233333
Qwen?2.5-32b-Instruct_s1K 0.870000 0.601010 0.366667
DeepSeek-R1-Distill-Qwen-1.5B 0.818000 0.404040 0.400000
DeepSeek-R1-Distill-Qwen-7B 0.881764 0.515152 0.366667
DeepSeek-R1-Distill-Llama-8B 0.856000 0.510101 0.533333
DeepSeek-R1-Distill-Qwen-14B 0.903808 0.558376 0.586207
DeepSeek-R1-Distill-Qwen-32B 0.914000 0.595960 0.833333
s1.1-3B 0.630000 0.287879 0.133333
s1.1-7B 0.770000 0.393939 0.266667
sl.1-14B 0.840000 0.575758 0.300000
s1.1-32B 0.896000 0.621212 0.433333

Table 3. Model Performance

E. Model length distribution

Figure 10 illustrates the token length distributions for correct and incorrect responses on the MATH-500 dataset across three
different models: (a) DeepScaleR-1.5B, (b) DeepSeek-R1-Distill-1.5B, and (c) DeepSeek-R1-Distill-7B. Across all models,
correct responses tend to have shorter lengths on average compared to incorrect ones.

11

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

prompt = (
f"Please analyze the following text and determine if there are any
meaningless repetitions of identical sentences. "
f"Note that just phrases with 'wait' or 'Wait' itself is not considered a
repetition.”
f*Only consider it a repetition if the same content appears much more than
10 times. "
f"Provide 'yes' only if you find exact repetitions, and in the next line, please
specify the repeated sentence and specify its count in a new line.
Otherwise, return 'no'. Text: {answer}”

Figure 11. The prompt used for detecting answer repetition with GPT-4o0-mini.
F. Repeat Prompt
Figure 11 shows the prompt that we use to identify repetition in Figure 6b when using GPT-40-mini.

G. Test time strategy can not preciously control context length

We consider four test-time strategies for controlling the length of the thinking trajectory:

1. Budget Forcing (BF): A maximum token budget is imposed on the thinking trajectory. Within this limit, the model is

free to decide when to generate a special token indicating the end of thinking and the start of the final answer. If the
model fails to do so before reaching the budget, the end-of-thinking token is forcibly inserted, and the model proceeds
to generate the final answer.

. Exact Control (EC): The thinking trajectory is forced to be of a fixed length. If the model prematurely generates the
end-of-thinking token before reaching the desired length, the token is removed, and generation continues until the
target length is reached. At that point, the end-of-thinking token is forcibly appended to trigger final answer generation.

. Prompt Control (PC): A soft constraint is applied by including an instruction in the prompt that explicitly tells the
model not to exceed a specified number of tokens for the thinking trajectory.

4. Auto: The model is left unrestricted, allowing it to autonomously decide when to terminate the thinking trajectory and
begin generating the final answer.

In Figure 12, we can see that none of the test time strategies can exactly control the response under the length limitation.
What makes things worse is that the accuracy improvement rate is much slower than the response length growth rate when

encountering harder reasoning tasks such as AIME and GPQA.

H. Analysis of S1K trace

Figure 14 shows the distribution of response lengths of Gemini and DeepSeek on the s1K dataset. We can see that DeepSeek
generates longer reasoning traces when compared with Gemini. This makes its responses more suitbale for reasoning
distillation to obtain a higher accuracy. while also introduce more severe redundancy for small language models at the same

time.

12

Making Small Language Models Efficient Reasoners

: Intervention, Supervision, Reinforcement

MATH-500
B @
0.90 @é%ﬁ m O
(&)
0.85
GDDJE}A. L
>0.80 *
8 e m
gors @f
< % — 158
0.70 — ZABB
° @ Budget Forcing
0.65 i =] W Exact Control
=]] A Prompt Control
0.60 o * Auto

2000 4000 6000 8000 10000
Tokens

Figure 12. Each subplot shows the performance of different models (1.5B, 7B, and 14B) on three benchmarks: MATH-500, AIME24, and
GPQA-Diamond. The x-axis represents the average number of tokens in the generated response (including both thinking trace and final
answer), while the y-axis indicates accuracy. Within each shape category, marker size reflects variations of the same strategy (e.g., Budget
Forcing-500 to Budget Forcing-8000), with larger markers indicating higher token budgets.

I. Bad example

Figure 15 shows a typical failure case where the model exhibits severe repetition issue when generating reasoning for

AIME24 Question 4.

Accuracy

2000

J. Additioned Experiment Results

@ 0
s

.EO

4000

&
©
5]
oo
1=}
o

6000

AIME24

=
o

8000 10000
Tokens

13

(=

> > on
%

oA
A
A
— 158
78
— 148
@ Budget Forcing
W Exact Control
A Prompt Control
* Auto

12000 14000

Accuracy
o
a
S

ol

GPQA-Diamond

(@]

4000

*
Eo

“a
=\
N

A

™,

*

6000
Tokens

*

— 158
78

— 148

Budget Forcing

Exact Control

Prompt Control

Auto

4 (]

8000

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

500 1000 2000 4000 000
Token Budget

(a) 1.5B-BF

DeepSeek-R1-Distill-Qwen-1.58

500 1000 2000 4000 8000
Token Limit

1.5B-BF

= Thinking
= Solution

o
SRS

500 1000 2000 4000 8000
Token Limit

1.5B-BF

-Distill-Qwen-78

B000 | == Thinking

10000 | s Thinking

I

Number of Tokens
H

g

500 1000 2000 4000 8000
Token Limit

(h) 1.5B-EC

= Thinking

(n) 1.5B-EC

= Thinking
= Solution

§

¥

Number of Tokens

500 1000 2000 4000 8000
Token Budget

10¢ 0
Token Limit

(c) 1.5B-PC (d) 7B-BF

Figure 13. MATH-500

DeepSeek-R1-Distill-Q:

Number of Tokens

1000 2000 4000 2000 4000 8000
Token Limit Token Limit

(i) 1.5B-PC (j) 7B-BF

Figure 13. AIME24

= Thinking

Number of Tokens.

2000 4000 8000

Token Limit

(0) 1.5B-PC (p) 7B-BF

Figure 13. GPQA-Diamond

H

H

Number of Tokens.

Number of Tokens

= Thinking
= Solution

500 1000_ 2000 4000 5000
Token Limit

(e) 7B-EC

Number of Tokens

500 4000

1000 2000
Token Limit

(f) 7B-PC

1-Distill-Qwen-78

1000_ 2000
Token Limit

(k) 7B-EC

s ggiszmotat 32109, L

500 2000 4000

1000
Token Limit

(1) 7B-PC

DeepSeek-R1-Djstjl

= Thinking
= Solution

4000 8000

2000
Token Limit

(q) 7B-EC

000

§ 4000

Total: 4595

= Thinking
= Solution

500 4000

1000 2000
Token Limit

(r) 7B-PC

Figure 13. Length distribution of thinking/solution trajectories under different test-time strategies (Budget Forcing, Exact Control, Prompt
Control), model sizes (1.5B vs 7B), and benchmarks (AIME24, MATH-500, GPQA-Diamond).

Histogram of Response Lengths by DeepSeek and Gemini

I
Model

60 . DeepSeek
Gemini
50
5, 40 . B B
g
:l"so —HlH —
20
LA .
5000 10000 15000 20000 25000

0

Response Length

Figure 14. Histograms of response lengths by Gemini and DeepSeek on s1K dataset.

14

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

<|im_start|>think\nOkay, so Jen enters a lottery by picking 4 distinct numbers from the set S = {1, 2, 3, ..., 9, 10}. Then 4 numbers are
randomly chosen from S. She wins a prize if at least two of her numbers are among the randomly chosen ones, and the grand prize if all
four are hers. We need to find the probability that Jen won the grand prize given that she won a prize. The answer should be in the form
m/n where m and n are coprime, and then find m + n.\n\nFirst, let me parse the problem. The total number of possible 4-number
combinations from S is C(10,4). For each combination, 4 numbers are drawn randomly.

Wait, but actually, if a combination has two numbers in D, then it's included in the subsets of D that contain those two nhumbers.
However, each combination can be written as E U F where E is a subset of D and F is a subset of D.

Wait, actually, the number of combinations with at least two numbers in D is equal to the number of subsets of D with size 2, 3, or 4. Each
such subset is counted once, because each combination that has two numbers in D is included in exactly one subset of D with size 2,
three numbers in D is included in exactly one subset of size 3, and four numbers in D is included in exactly one subset of size 4. Wait, but
actually, if a combination has two numbers in D, then it's included in the subsets of D that contain those two numbers. However, each
combination can be written as E U F where E is a subset of D and F is a subset of D.

& repeat 180 times

<|im_start|>answer\nFinal Answer: To solve the problem of finding the probability that Jen won the grand prize given that she won a
prize, we need to compute the conditional probability \\(\\frac{\\text{Number of combinations with at least two numbers matching the
drawn set}}{\\text{Total number of combinations}}\\).\n\nFirst, we note that the total number of possible combinations is \\(C(10, 4) =
210\\). The grand prize is winning all four numbers, which occurs with probability \\(\\frac{1}{210}\\).\n\nTo find the number of
combinations with at least two numbers matching the drawn set, we use the principle of inclusion-exclusion.

The conditional probability is \\(\frac{\\frac{1}{210}}{\\frac{23}{42}} = \frac{1}{210} \times \\frac{42}{23} = \\frac{42}{210 \\times 23} =
\\frac{2}{21 \\times 23} = \\frac{2}{483}\\).

But the problem states that the number of combinations with at least two numbers matching is 115, which includes the grand prize.
Therefore, the conditional probability is \\(\frac{1}{23}\\). However, the problem states that the number of combinations with at least two
numbers matching is 115, which includes the grand prize. Therefore, the conditional probability is \\(\\frac{1}{23}\\).\n\n

& repeat 34 times

Figure 15. The response generated by Qwen-Instruct-1.5b finetuned by S1K-1.1 on AIME24 problem 4.

15

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

80 — == DeepScaleR "
70 7 e L1-Max 60 iy
=== TLDR

60 50 °
) .)
© 50 © 40
b - 4
< <

30 o

20 ’ 20 === DeepScaleR

o= | 1-Max
10 10 == TLDR
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Length Length
(a) MATH500 (b) AMC

w
o

20.0 . DpeepScaleR g Z

17.5 == L1-Max /)
150 TLDR .

&

N
w

>12.5 4 g >
5 10.0 . 35 o
o o
< 7.5 y <15

5.0 10 === DeepScaleR

25 / —— L1-Max

0.0 . s) —=— TLDR

1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000
Length Length
(c) AIME24 (d) OlympiadBench

Figure 16. TLDR compares on par with L1 under an max trace length constraint. Moreover, TLDR requires only a single training phase of
100 epochs, whereas L1 involves a more complex two-phase training process: 700 epochs for the first phase (L1-Exact) and an additional
120 epochs for the second phase (L1-Max).

16

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

No Length Control With Length Control
SHORT MODERATE LONG SHORT MODERATE LONG
acc length acc length acc length acc length acc length acc length
DeepSeek-R1-Distill-Qwen-1.5B-2k 0.0 512 13.2 1017.756 44.4 1832.292 54.6 307.862 63.8 373.63 72 595.232
DeepSeek-R1-Distill-Qwen-1.5B-4k 13.2 1017.756 44.4 1832.292 64.0 2781.848 60.0 650.08 65.0 868.134 74.4 1194.83
DeepSeek-R1-Distill-Qwen-1.5B-4k-new 62.4 714.17 724 927.476 78.4 1285.882
DeepSeek-R1-Distill-Qwen-7B-4k 12.2 1019.408 48.4 1805.768 71.4 2631.856 70.2 351.828 74.4 433.952 77.2 673.16
DeepScaleR-1.5B-Preview-4k 28.8 966.116 59.4 1618.526 74 2329.458 68.6 577.702 75.2 706.082 74.8 857.298
L1-Qwen-1.5B-Max-4k NA 70.4 351.774 76.2 656.242 80.2 1353.576
S1-Qwen-1.5B-BudgetForcing-4k NA 43.60 876.31 66.20 1360.79 76.80 1936.26
S1-Qwen-7B-BudgetForcing-4k NA 48.20 871.75 72.00 1366.49 83.00 2044.31
DeepSeek-R1-Distill-Qwen-1.5B-prompt-4k NA 32.20 890.22 55.60 1441.21 69.60 2108.98
DeepSeek-R1-Distill-Qwen-7B-prompt-4k NA 28.20 918.25 51.20 1480.86 76.40 2153.89
(2) MATH500
No Length Control With Length Control
SHORT MODERATE LONG SHORT MODERATE LONG
acc length acc length acc length acc length acc length acc length
DeepSeek-R1-Distill-Qwen-1.5B-2k 0.0 512 3.6 1024 16.9 1988.036 19.28 444.47 42.17 650.19 51.81 1041.90
DeepSeek-R1-Distill-Qwen-1.5B-4k 3.6 1024 16.9 1988.036 325 3690.096 32.53 939.39 46.48 1423.66 59 2043.96
DeepSeek-R1-Distill-Qwen-1.5B-4k-new 33.73 944.53 51.81 1536.16 63.86 1937.98
DeepSeek-R1-Distill-Qwen-7B-4k 2.4 1024 19.3 1984.229 554 3461.916 51.81 524.42 54.22 736.25 65.06 1125.60
DeepScaleR-1.5B-Preview-4k 6.02 1018.48 24.10 1948.16 50.60 3271.06 36.15 838.92 56.63 1162.20 65.06 1374.27
L1-Qwen-1.5B-Max-4k NA 46.99 472.37 60.24 848.96 66.27 1584.44
S1-Qwen-1.5B-BudgetForcing-4k NA 14.46 964.06 31.33 1624.02 45.78 2553.99
S1-Qwen-7B-BudgetForcing-4k NA 13.25 960.19 36.14 1636.60 48.19 2665.64
DeepSeek-R1-Distill-Qwen-1.5B-prompt-4k NA 6.02 999.94 18.07 1906.54 39.76 3354.06
DeepSeek-R1-Distill-Qwen-7B-prompt-4k NA 6.02 1003.98 18.07 1908.93 43.37 3284.07
(b) AMC
No Length Control With Length Control
SHORT MODERATE LONG SHORT MODERATE LONG
acc length acc length acc length acc length acc length acc length
DeepSeek-R1-Distill-Qwen-1.5B-2k 0 512 0 1024 3.33 2048 0 494.4 3.33 865.8 16.67 1441.37
DeepSeek-R1-Distill-Qwen-1.5B-4k 0 1024 3.33 2048 13.33 3999.83 6.67 1007.83 133 1702.57 10 2637.7
DeepSeek-R1-Distill-Qwen-1.5B-4k-new 6.67 1011.17 10 1880.8 16.67 3030.8
DeepSeek-R1-Distill-Qwen-7B-4k 0 1024 10 2038.13 16.67 3835.0 10 764.33 13.33 1168.2 30 1936.93
DeepScaleR-1.5B-Preview-4k 0 1024 3.33 2048 20 3919.03 6.67 999.53 13.33 1524.2 13.33 2043.4
L1-Qwen-1.5B-Max-4k NA 3.33 718.2 10 1238.8 10 1835.83
S1-Qwen-1.5B-BudgetForcing-4k NA 0 1004.10 0 1792.73 333 3033.50
S1-Qwen-7B-BudgetForcing-4k NA 0 1007.87 3.33 1737.03 20 2857.97
DeepSeek-R1-Distill-Qwen-1.5B-prompt-4k NA 0 1024.00 0 2048.00 13.33 3926.93
DeepSeek-R1-Distill-Qwen-7B-prompt-4k NA 0 1024.00 0 2048.00 16.67 3959.57
(c) AIME24
No Length Control With Length Control
SHORT MODERATE LONG SHORT MODERATE LONG
acc length acc length acc length acc length acc length acc length
DeepSeek-R1-Distill-Qwen-1.5B-2k 0 512 2.2 1023.4 10.37 1999.238 15.11 412.58 20.59 564.63 24 941.90
DeepSeek-R1-Distill-Qwen-1.5B-4k 2.2 1023.4 10.37 1999.238 18.81 3598.139 16.88 850.82 20.30 1245.40 25.48 1951.65
DeepSeek-R1-Distill-Qwen-1.5B-4k-new 20 926.65 25.93 1363.68 28.30 1969.88
DeepSeek-R1-Distill-Qwen-7B-4k 1.78 1023.25 11.7 1996.39 24.74 3504.83 26.52 491.54 26.22 643.62 28.59 1004.45
DeepScaleR-1.5B-Preview-4k 5.33 1019.20 17.78 1941.47 27.26 3347.61 23.70 786.27 29.04 1054.94 29.48 1319.93
L1-Qwen-1.5B-Max-4k NA 24.30 464.51 29.04 833.43 31.3 1503.4
S1-Qwen-1.5B-BudgetForcing-4k NA 10.96 965.88 27.85 1616.35 40.44 2567.32
S1-Qwen-7B-BudgetForcing-4k NA 14.52 948.51 31.56 1573.08 47.56 2526.31
DeepSeek-R1-Distill-Qwen-1.5B-prompt-4k NA 4.30 1012.55 16.00 1915.82 30.67 3311.35
DeepSeek-R1-Distill-Qwen-7B-prompt-4k NA 341 1011.88 14.22 1948.05 36.30 3387.5311
(d) OlympiadBench

Table 4. Detailed performance of different models and different methods in four reasoning datasets. The first 3 rows are the results of
original DeepSeek distilled models (No Length Control) and models finetuned with TLDR, L1-Qwen-1.5B-Max-4k is the method in
(Aggarwal & Welleck, 2025), 2 rows with S1 is the method proposed in (Muennighoff et al., 2025), and the last 2 rows are controlling
original DeepSeek distilled model by prompts. In the name of models, “2k™ and “4k” means the max length of model output, and
“SHORT”, “MODERATE” and “LONG” means the i, % and the original max length. For different datasets, RL with our multi-level
length penalty design can shorten response length while achieving good accuracy, particularly for the “long” length penalty setting.

17

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

SHORT MODERATE LONG
All Correct Wrong All Correct Wrong All Correct ‘Wrong
Deepseek+TLDR 714.17 611.71 884.21 927.476 772.36 1334.36 1285.882 1091.87 1990.06
DeepScaleR+TLDR 1374.28 1145.57 1800.14 1374.28 1145.57 1800.14 1374.28 1145.57 1800.14
DeepScaleR 966.116 831.90 1020.40 1618.526 1367.84 1985.29 2329.458 1857.26 3673.39
L1 351.774 291.85 494.30 656.242 568.94 935.76 1353.576 1287.46 1621.39
Deepseek 1017.756 | 978.788 | 1023.682 | 1832292 | 1587.640 | 2027.662 | 2781.848 | 2142.125 | 3919.133
(a) MATHS500
SHORT MODERATE LONG

All Correct | Wrong All Correct Wrong All Correct Wrong

Deepseek+TLDR 944.53 842.43 996.51 1536.16 1229.0 1866.35 1937.98 1607.68 2521.5

DeepScaleR+TLDR 838.92 585.37 982.43 1162.20 919.89 1478.56 1374.28 1145.57 1800.14

DeepScaleR 1018.48 932.4 1024.0 1948.16 1633.65 2048.0 3271.06 2494.64 4066.41

L1 472.37 41726 | 521.23 848.96 736.02 1020.09 1584.45 1477.13 1795.25

Deepseek 1024.0 1024.0 1024.0 | 1988.036 1692.5 2048.0 3690.096 | 2848.222 4096.0

(b) AMC
SHORT MODERATE LONG
All Correct Wrong All Correct Wrong All Correct Wrong

Deepseek+TLDR 1011.17 1021.5 1010.43 1880.8 1677.0 1903.44 3030.8 2228.0 3191.36
DeepScaleR+TLDR 999.53 878.5 1008.18 1524.2 1343.75 1551.96 2043.4 1437.5 2136.62

DeepScaleR 1024.0 NA 1024.0 2048.0 2048.0 2048.0 3919.03 3686.0 3977.29
L1 718.2 772.0 716.34 1238.8 1117.0 1252.33 1835.83 1551.0 1867.48
Deepseek 1024.0 NA 1024.0 2048.0 2048.0 2048.0 3999.83 | 3396.25 | 4092.69
(c) AIME24
SHORT MODERATE LONG
All Correct Wrong All Correct ‘Wrong All Correct Wrong

Deepseek+TLDR 926.64 793.81 959.85 1363.68 1038.28 1477.568 1969.88 1394.24 2197.04
DeepScaleR+TLDR 786.27 559.76 856.64 1054.94 750.94 1179.33 1319.93 848.86 1516.87

DeepScaleR 1019.20 957.11 1022.70 1941.47 1632.28 2008.33 3347.61 2397.49 3703.67

L1 464.51 362.54 497.24 833.43 656.24 905.92 1503.47 1329.72 1581.93

Deepseek 1023.4 1003.66 1023.87 1999.238 1684.94 2035.60 3598.139 | 2574.03 | 3835.478
(d) OlympiadBench

Table 5. Average response length of models’ responses in 4 datasets. We report the value in different levels and in the whole dataset,
subset of correct responses and subset of wrong responses. TLDR can reduce the response by at most 50% from base models.

18

Making Small Language Models Efficient Reasoners: Intervention, Supervision, Reinforcement

SHORT MODERATE LONG
Deepseek+TLDR 0.0053 0.0507 0.1296
DeepScaleR+TLDR 0.0127 0.0725 0.0635
DeepScaleR 0.0168 0.0936 0.2692
L1 0.0135 0.0168 0.1313
Deepseek 0.0138 0.1798 0.4111
(a) MATHS500

SHORT | MODERATE | LONG
Deepseek+TLDR 0.0000 0.0750 0.1333
DeepScaleR+TLDR 0.0189 0.1389 0.1379
DeepScaleR 0.0128 0.0635 0.3170
LI 0.0227 0.0606 0.0714
Deepseek 0.0000 0.2029 0.5000

(b) AMC
SHORT MODERATE LONG
Deepseek+TLDR 0.0357 0.0370 0.2000
DeepScaleR+TLDR 0.0357 0.1923 0.2308
DeepScaleR 0.0000 0.1379 0.1667
L1 0.0345 0.0742 0.2592
Deepseek 0.0333 0.2759 0.3462

(c) AIME24
SHORT | MODERATE | LONG
Deepseek+TLDR 0.0333 0.0720 0.1756
DeepScaleR+TLDR 0.0330 0.1023 0.1492
DeepScaleR 0.0125 0.1333 0.2770
L1 0.0117 0.0355 0.1290
Deepseek 0.0167 0.1983 0.3923
(d) OlympiadBench

Table 6. Repeat rate of models’ responses in 4 datasets. Repeat rate is calculated using GPT-4o to identify significant repetitions of
identical sentences in each response, excluding short phrases like *wait’. TLDR can reduce the response by at most % from base models.

SHORT MODERATE LONG
Deepseek+TLDR 3.516 4.114 5.73
DeepScaleR+TLDR 3 3.806 4.16
DeepScaleR 4.856 7.768 11.062
L1 2.848 4.272 7.826
Deepseek 4.22 7.72 11.64
(a) MATHS500

SHORT | MODERATE | LONG

Deepseek+TLDR 4.75 6.75 8.81
DeepScaleR+TLDR 4.25 5.89 7.12
DeepScaleR 5.82 10.13 16.45

Ll 3.86 5.76 9.57
Deepseek 4.60 8.57 15.73

(b) AMC

SHORT MODERATE LONG

Deepseek+TLDR 5.27 7.7 13.67
DeepScaleR+TLDR 6.03 9.97 10.23
DeepScaleR 6.6 11.53 20.13

L1 6.57 10.73 13.07
Deepseek 5.27 9.37 18.97

(c) AIME24

SHORT | MODERATE | LONG

Deepseek+TLDR 4.74 6.45 9.11
DeepScaleR+TLDR 4.31 5.51 6.55
DeepScaleR 5.69 10.45 17.43

LI 3.67 6.08 9.57
Deepseek 4.39 8.94 16.93

(d) OlympiadBench

Table 7. Steps of models’ responses in 4 datasets. We define the number of steps as the number of occurrence of keywords in the keyword
list [“But”, “Wait,”, “Alternatively,”, “Perhaps”, “First,”, “Okay,”, “Given”, “The”, “Therefore,”, “So,”]. TLDR can reduce the response

5 9

by at most 50% from base models.

19

