
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROMPT OPTIMIZATION ACROSS MULTIPLE AGENTS
FOR REPRESENTING DIVERSE HUMAN POPULATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The difficulty and expense of obtaining large-scale human responses make Large
Language Models (LLMs) an attractive alternative and a promising proxy for hu-
man behavior. However, prior work shows that LLMs often produce homogeneous
outputs that fail to capture the rich diversity of human perspectives and behaviors.
Thus, rather than trying to capture this diversity with a single LLM agent, we
propose a novel framework to construct a set of agents that collectively capture
the diversity of a given human population. Each agent is an LLM whose behavior
is steered by conditioning on a small set of human demonstrations (task–response
pairs) through in-context learning. The central challenge is therefore to select a
representative set of LLM agents from the exponentially large space of possible
agents. We tackle this selection problem from the lens of submodular optimization.
In particular, we develop methods that offer different trade-offs regarding time
complexity and performance guarantees. Extensive experiments in crowdsourcing
and educational domains demonstrate that our approach constructs agents that more
effectively represent human populations compared to baselines. Moreover, behav-
ioral analyses on new tasks show that these agents reproduce the behavior patterns
and perspectives of the students and annotators they are designed to represent.

1 INTRODUCTION

The growing deployment of Large Language Models (LLMs) as human proxies in research and
industry has revealed a critical limitation: these models often produce homogeneous outputs that fail
to capture the rich diversity of human perspectives and behaviors (Bao et al., 2024; Wenger & Kenett,
2025; Lee et al., 2024; Lahoti et al., 2023). This issue limits their applicability in domains that require
this rich diversity, e.g., NLP tasks such as text paraphrasing (Cegin et al., 2023), simulating human
behaviors and opinions in surveys (Xie et al., 2024; Santurkar et al., 2023), evaluating conversational
recommendation systems (Yoon et al., 2024), replicating human subject studies (Aher et al., 2023),
and simulating diverse roles in educational contexts (Nguyen et al., 2024; Markel et al., 2023; Zhang
et al., 2025). In particular, LLMs might not be suitable for statistical inference and pose risks of
reinforcing and potentially amplifying prevailing community norms in such domains.

To address these limitations, existing works have explored various approaches to align LLMs with
humans. A common approach is to fine-tune a single LLM to align with human preferences, e.g.,
via Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022). However, RLHF
typically relies on aggregated preferences, which can obscure minority viewpoints and may be
unrepresentative of broader populations (Casper et al., 2023; Kirk et al., 2023). Indeed, research
suggests that it is fundamentally challenging, if not infeasible, to train one model to simultaneously
satisfy a multitude of diverse, potentially conflicting, preferences (Ouyang et al., 2022). Another
line of work focuses on test-time alignment, which avoids re-training or fine-tuning and leverages in-
context learning capabilities of generative models (Brown et al., 2020). In particular, these approaches
adapt model behavior dynamically by “conditioning” LLMs on personas or demographic attributes
from humans, using techniques such as in-context impersonation (Salewski et al., 2023), culturally
specific prompting (Tao et al., 2024), and demographic-aware prompting (Aher et al., 2023).

In this work, we shift the focus from creating a single agent that represents a human population to
constructing a set of representative agents. Figure 1 provides an overview of our approach. Our
guiding hypothesis is that a carefully curated ensemble of diverse agents can collectively achieve a
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Figure 1: Illustrative example of constructing a set of agents L that is representative of a given human
population H. In this example, H is a group of diverse students working on a set of tasks T and
providing answers. The goal is to create a set of agents L that can accurately represent the students.
The resulting agents exhibit different levels of understanding across mathematical concepts, with
each agent corresponding to a group of students matched by skill level and task performance.

more faithful representation of a given human population. We approach this by leveraging the power
of in-context learning, where an agent’s behavior is steered by a small set of behavior-representative
demonstration examples provided in its prompt. To this end, we formulate the problem of constructing
an optimal set of agents as a joint optimization of their prompts. To make this problem tractable, we
cast it as a submodular optimization problem and propose several methods for solving it, offering
different trade-offs regarding time complexity and performance. Our experimental evaluation shows
that these methods can construct agents representative of different groups of people, and that the
agents exhibit behaviors matching those groups on new tasks. In summary, our main contributions are:

• We propose a novel formulation that casts the construction of a representative set of LLM agents
for a diverse human population as a submodular optimization problem (§3).

• We instantiate this submodular optimization framework and propose methods for selecting sets of
representative agents, offering trade-offs between computational tractability and performance (§4).

• We empirically demonstrate the efficiency of our approach in constructing agents that capture the
behavior of a given human population in educational and crowdsourcing settings (§5).

• We conduct behavioral analysis on new tasks and show that agents constructed by our methods
exhibit behaviors similar to the students and annotators they are intended to represent (§5).

2 RELATED WORK

LLMs for crowdsourcing and simulating human behaviors. Large language models have
emerged as tools for facilitating crowdsourcing tasks and simulating human behaviors. The ap-
plications of these models have expanded across multiple domains, enabling research at speed and
scale while reducing potential risks to human crowdworkers. Recent studies have demonstrated
LLMs’ effectiveness as virtual crowd workers for various Natural Language Processing tasks, includ-
ing data annotation (Moskovskiy et al., 2024), text paraphrasing (Cegin et al., 2023), named entity
recognition and relation extraction (Zhang et al., 2023), and text classification (Sun et al., 2023).
Another line of work investigated LLMs’ capacity for simulating human behaviors and opinions
(Xie et al., 2024; Santurkar et al., 2023), evaluating conversational recommendation systems (Yoon
et al., 2024), replicating human subject studies (Aher et al., 2023), and simulating diverse roles in
educational contexts (Nguyen et al., 2024; Markel et al., 2023; Zhang et al., 2025).

Diversity and biases and in LLMs outputs. Current LLMs produce outputs with low diversity and
biases, making them unrepresentative of many population groups. Studies have revealed systematic
homogeneity in LLM responses (Yoon et al., 2024) and significant divergence from the distribution of
real human survey responses (Sun et al., 2024). These limitations may stem from sociocultural biases
observed since early models (Brown et al., 2020), creating substantial misalignment with numerous
demographic groups (Santurkar et al., 2023; Tao et al., 2024). The "hyper-accuracy distortion" in
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human subject study replication (Aher et al., 2023) further demonstrates LLMs’ failure to capture
diverse viewpoints. Together, these findings highlight fundamental limitations in representing popula-
tion diversity, raising concerns about LLMs’ reliability for statistical inference and their tendency to
encode and perpetuate dominant community norms (Bender et al., 2021; Liu et al., 2024). Our work
aims at making outputs from LLMs more diverse and representative of a given human population.

Inducing and aligning behaviors of LLMs. Recent work has explored techniques to mitigate diver-
sity and representational issues by aligning LLMs with different population groups. LLMs are often
treated as a superposition of perspectives (Kovac et al., 2023), which allows different prompting strate-
gies without modifying model parameters, such as in-context impersonation (Salewski et al., 2023)
and demographic-aware prompting (Santurkar et al., 2023). Another line of work involves training or
fine-tuning models for cross-cultural alignment (Ramezani & Xu, 2023), value alignment (Liu et al.,
2022). Our work builds upon the success of leveraging in-context learning and prompting techniques,
but differs in a sense that we focus on optimizing prompts for multiple agents to collectively represent
a diverse human population, without using demographic information or metadata.

3 PROBLEM FORMULATION

In this section, we first introduce the necessary notation and background. We then formally define the
problem of selecting a representative set of agents and our optimization objective.

3.1 PRELIMINARIES

Let H = {h1, h2, . . . , hN} denote a population of N humans we want to represent. We assume
access to demonstrations (e.g., task–response pairs) from H on a set of tasks T , denoted by DT

H. If
each human provides a response to every task, then |DT

H| = |H| × |T |. Each human h is represented
by a vector eh ∈ Rd that summarizes their behavior across the tasks in T . We define an agent l as
an LLM conditioned on a set of K demonstrations, where each demonstration is a task–response pair.
The demonstrations are used to steer the agent’s behavior through in-context learning. The space
of all possible agents that can be constructed from DT

H is denoted by |L| =
(|DT

H|
K

)
. This number is

finite but typically much larger than |H|. When K is fixed, |L| asymptotically scales as (|T | · |H|)K ,
which we use later for complexity analysis. Similar to humans, each agent l is represented by a vector
el ∈ Rd that captures its behavior across tasks in T . In our experiments (Section 5), we explore
several types of behavioral embeddings, including binary vectors of student performance, vectors
of individuals’ answer choices, and continuous semantic embeddings of annotators’ responses.

We measure the behavioral similarity between any two objects (humans or agents) by the distance
between their embedding vectors, defined as dist(e1, e2) (e.g., Euclidean distance). The representa-
tion gap of a set of agents L ⊆ L with respect to the population H is the average distance between
each human h and its closest agent l ∈ L, given by g(L) = 1

|H|
∑

h∈H minl∈L dist(eh, el). This
representation gap serves as a proxy for how well the selected agents capture the diverse behaviors
and perspectives of the given population. As we will show in our experiments (Section 5), minimizing
this gap leads to agents whose behaviors align closely with those of humans on unseen tasks.

3.2 OBJECTIVE

Our goal is to select a set of agents Lopt ⊆ L of size M that best represents the human
population by minimizing the average distance between each human and its closest agent:
Lopt = argminL⊆L, |L|≤M g(L). We define the baseline gap when no agents are selected (L = ∅)
as g(∅) = 1

|H|
∑

h∈HDmax, where Dmax is a constant larger than any possible human–agent
embedding distance. It is often more natural to view the problem as maximizing the gain relative
to this baseline. We therefore define the average distance reduction obtained by selecting a set L as:

f(L) = g(∅)− g(L) =
1

|H|
∑
h∈H

[
Dmax −min

l∈L
dist(eh, el)

]
(1)

This gives us a monotone submodular function f(L) that can be approximated using greedy
algorithms. The optimization problem is therefore to find Lopt = argmaxL⊆L, |L|≤M f(L).
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Table 1: Performance guarantees and time complexity analysis.

Method Performance Guarantee Time Complexity

OPT f(Lopt) O
(
(|T | · |H|)KM

)
SINGLE – O(1)
RANDOM – O(M)

GREEDY (1− 1
e ) · f(Lopt) O

(
M · |H| · (|T | · |H|)K

)
SAMPLEGREEDY – O

(
M · |H| · ψ · (|T | · |H|)K

)
REPPOPdemo (ours) – O

(
M ·K · |T | · |H|2

)
REPPOPmapped-1 (ours) (1− 1/e) · (γ · f(Lopt)− ρ) O

(
K · |H|+M · |H|2

)
REPPOPmapped-2 (ours) (1− 1/e) · (γ · f(Lopt)− ρ) O

(
K · |T | · |H|+M · |H|2

)
4 METHODOLOGY

In this section, we establish the hardness of the representative agent selection problem and prove
the submodularity of our objective function. We then discuss how naive applications of existing
strategies are insufficient and present improved methods in Section 4.2. The performance guarantees
and time complexity of the methods discussed in this section are summarized in Table 1.

4.1 HARDNESS OF THE PROBLEM AND CONNECTION TO SUBMODULARITY

Theorem 1 (NP-Hardness). The problem of selecting an optimal subset L∗ ⊆ L of size M that
maximizes f(L) is NP-hard.

Proof sketch. We show NP-hardness through a reduction from the uncapacitated facility location
problem (UFLP) with zero facility costs, which is known to be NP-hard (Verter, 2011). We provide a
detailed proof of this proposition in Appendix D.1.
Proposition 1 (Submodularity of the Objective Function f(L)). The objective function f(L) =
1

|H|
∑

h∈H [Dmax −minl∈L dist(eh, el)] is submodular.

Proof sketch. Our objective function f(L) exhibits the diminishing returns property of submodularity,
which follows directly from its connection to the facility location problem (Krause & Golovin, 2014).
We provide proof of this proposition in Appendix D.2.

Greedy Approximation. Due to the NP-hardness of the problem, finding the optimal solution Lopt

requires exhaustive search with time complexity O((|T | · |H|)KM ). The submodularity of our objec-
tive function enables the GREEDY algorithm to achieve a (1−1/e) ·f(Lopt)-approximation guarantee
(Nemhauser et al., 1978), with time complexity O(M · |H| · (|T | · |H|)K). However, this approach
becomes intractable as the agent space grows. A stochastic variant, STOCHASTICGREEDY, samples a
subset of agents at each iteration to approximate the solution (Mirzasoleiman et al., 2015), but this still
remains impractical for large spaces. Inspired by (Singla et al., 2014; Mirzasoleiman et al., 2015), we
adopt SAMPLEGREEDY, which fixes a candidate pool C containing only a fraction ψ of agents from L
and applies greedy selection within this pool. At each round, the marginal contribution of each remain-
ing agent in C is evaluated relative to the current set, and the best agent is added. This process contin-
ues untilM agents are selected. The time complexity is O(M · |H| ·ψ ·(|T | · |H|)K), which is still im-
practical for large populations and motivates the more efficient methods introduced in the next section.

4.2 OUR PROPOSED METHODS

Greedy selection of demonstrations for an agent’s context. Searching through the exponen-
tially large agent space L is computationally infeasible, limiting the practicality of standard greedy
methods. Hence, we propose an alternative method, REPPOPdemo (Representative Population using
demonstration-level greedy selection), which reduces the complexity to O(M ·K · |T | · |H|2) and
empirically achieves competitive performance. Instead of enumerating all candidate agents and eval-
uating their marginal gains, REPPOPdemo builds each agent incrementally (cf. Algorithm 1). At each
step it greedily selects a demonstration from the pool DT

H to extend the current context Ω. We denote
by lΩ the agent constructed from Ω. This demonstration-level greedy construction avoids the expo-
nential blow-up in |L|, but sacrifices the formal performance guarantee of standard greedy selection.
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Algorithm 1 Greedy selection of demonstrations (REPPOPdemo)

1: Input: Human setH, human demonstrations DT
H, number of agents to select M , context size K

2: Output: A set of representative agents L ⊆ L with |L| ≤M
3: Initialize L← ∅
4: for i = 1 to M do
5: Initialize Ω← ∅ ▷ Best set of K demonstrations found so far
6: for k = 1 to K do
7: demo∗ ← argmaxdemo∈DT

H\Ω f(L ∪ {lΩ∪{demo}})− f(L) ▷ Select demo.

8: Ω← Ω ∪ {demo∗}
9: L← L ∪ {lΩ} ▷ Add agent with context Ω to solution set

10: return L

Algorithm 2 Greedy selection of human-mapped agents (REPPOPmapped-1 and REPPOPmapped-2)

1: Input: Human setH, human demonstrations DT
H, number of agents to select M , context size K

2: Output: A set of representative agents L ⊆ L with |L| ≤M

3: Initialize L̃ ← ∅, L← ∅
4: for each human h ∈ H do
5: Create agent lh using a subset of K demonstrations from DT

h ▷ Human-mapped agent
6: L̃ ← L̃ ∪ {lh} ▷ Add the agent to pool
7: for i = 1 to M do
8: l∗ ← argmaxl∈L̃\L f(L ∪ {l})− f(L) ▷ Select agent
9: L← L ∪ {l∗} ▷ Add agent to solution set

10: return L

Greedy selection of human-mapped agents. To further address the computational intractability of
searching the full agent space L, we introduce a reduced pool of proxies that directly reflect the hu-
mans in the population. We construct L̃ = {lh | h ∈ H}, where each agent lh corresponds to a human
h ∈ H and is formed by conditioning on a subset of K demonstrations from DT

h . This one-to-one
mapping reduces the candidate space to |L̃| = |H| while preserving diversity. The selection problem
then becomes L∗ = argmaxL⊆L̃,|L|≤M f(L). Building on this human-centered mapping idea, we in-
stantiate two methods, REPPOPmapped-1 and REPPOPmapped-2, which both follow the general procedure
in Algorithm 2. Their only difference lies in how demonstrations are selected to construct a human-
mapped agent (line 5). In REPPOPmapped-1, the K demonstrations for each human are sampled uni-
formly at random, yielding lightweight proxy agents with cost O(K|H|). In contrast, REPPOPmapped-2
selects the K demonstrations greedily with respect to the human’s own behavior, producing stronger
proxies at cost O(K|T ||H|). Concretely, for each human h, the demonstrations are chosen to min-
imize the distance between the human’s embedding eh and the embedding of the constructed agent
elh , i.e., dist(eh, elh). Both methods share the same greedy selection stage over the proxy pool,
which requires O(M |H|2) time, and both enjoy the same approximation guarantee in Theorem 2.

Theorem 2 (Performance Guarantee for REPPOPmapped-1 and REPPOPmapped-2). Let L̃ = {lh|h ∈
H} be the proxy agent set where for each h ∈ H, lh ∈ Nρ(h), with Nρ(h) representing the ρ-
neighborhood of h. Define the human coverage ratio γ = f(L∗

H)/f(L∗
L) ∈ [0, 1], where L∗

H is the
optimal subset from the human set and L∗

L is the optimal subset from the full agent set. If Lgreedy
L̃ is

the subset of size M returned by the greedy algorithm on L̃, then:

f(Lgreedy
L̃ ) ≥ (1− 1/e)

(
γ · f(L∗

L)− ρ
)
,

where γ measures the cost of restricting the search space to humans (coverage quality) and ρ
measures the cost of approximating each human by a proxy agent (imitation error). The value of γ is
determined by how expressive the human set is relative to the full agent space, whereas ρ depends on
the proxy construction strategy: uniform sampling in REPPOPmapped-1 typically yields larger ρ, while
greedy selection in REPPOPmapped-2 achieves smaller ρ at the expense of higher computational cost.

Proof sketch. We show that for the optimal human subset L∗
H, the corresponding set of proxy agents

L∗
H̃ = {lh|h ∈ L∗

H} ⊆ L̃ satisfies f(L∗
H̃) ≥ f(L∗

H)− ρ due to the ρ-neighborhood property. Since
L∗
L̃ is optimal within L̃, we have f(L∗

L̃) ≥ f(L∗
H̃). By the standard greedy approximation for submod-
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Table 2: Statistics of datasets used in our experiments.

Dataset Domain Task Type Repr. Type Multimodal No. Humans No. Tasks Source
EEDI Education Multi-choice Performance No 50 40 Primary & High school students

OpinionQA Opinion Survey Multi-choice Opinion No 500 77 US citizen
Wikiart Image Annotation Open-ended Semantic Yes 100 20 LLM-based annotators

A group of 7 friends has 3 chocolate 
bars that they plan to share equally. 
3 new friends arrive and bring along 
1 more chocolate bar. There are 
now 10 friends with 4 chocolate 
bars to share equally. What has 
happened to the amount of 
chocolate each of the original group 
of 7 now receive?

A. It has increased

B. It has decreased

C. It has stayed the same

D. We need more information

(a) Task in EEDI

What should be the priority for 
dealing with illegal immigration in 
the U.S.?

A. Better border security and 
stronger enforcement of our 
immigration

B. Creating a way for immigrants 
already here illegally to become 
citizens if they meet certain 
requirements

C. Both should be given equal 
priority

(b) Task in OpinionQA

 

Emotions: sadness, pessimism, shyness

Affective description:
There's a definite melancholy to this 
one. The figure on the goat is oddly 
shaped and indistinct, almost like a 
shadow, giving a lonely feeling. The 
muted colors and blurred background 
really emphasize that sense of 
isolation. It’s not a vibrant scene, but a 
quiet one, which feels a bit reserved 
and shy. And overall, it leaves me with 
a somewhat bleak, pessimistic 
impression, like something has been 
lost or is fading away.

(c) Painting in Wikiart with an annotation example.

Figure 2: Examples of tasks in our experiments.

ular functions, f(Lgreedy
L̃ ) ≥ (1−1/e)f(L∗

L̃). Combining these inequalities and using the human cov-
erage ratio γ = f(L∗

H)/f(L∗
L), we derive our bound. We provide complete proof in Appendix D.3.

5 EXPERIMENTAL EVALUATION

In this section, we present the evaluation domains and datasets (see Table 2 for summary statis-
tics), describe the methods evaluated, and discuss the main results, with additional setup details in
Appendix B and further results in Appendix C.

5.1 EVALUATION DOMAINS AND DATASETS

Education: Math Questions and Answers (EEDI). In this domain, LLMs capturing the behavior of
a diverse student population, can allow teachers to practice instructional strategies (Markel et al., 2023)
and to conduct virtual pretesting (Benedetto et al., 2024) in a safe environment. Representing students
with varying levels of skills and misconceptions can thus benefit both teachers and learners. To this
end, we evaluate whether our methods can faithfully represent such a diverse group of students. Specif-
ically, we use the EEDI dataset (Wang et al., 2020), which contains multiple-choice math questions
and answers collected from students. Figure 2a shows an example question. We select 50 students
and 40 exercises (tasks) from the dataset, splitting tasks and their corresponding answers 50/50 into
the training and testing sets. Each student is represented by a binary embedding vector indicating
their correct and incorrect answers to the math questions. The representation gap is measured using
the L1 distance, which in this case is equivalent to the Hamming distance. Intuitively, it counts the
number of questions on which two students’ answers differ, reflecting their performance difference.

Crowdsourcing: Opinion Survey (OpinionQA). In this application, LLMs can be used as surrogates
for crowdworkers, giving answers that reflect different opinions and beliefs that diverse groups of
people might express. We use the OpinionQA dataset (Santurkar et al., 2023), which contains
multiple-choice questions from the Pew American Trends Panel (ATP) surveys along with human
responses. In particular, we focus on the ATP W92 survey, which includes 77 questions related to
politics. Figure 2b shows an example question. From this dataset, we sample 500 people and their
responses, and split the survey questions into 40 training and 37 test tasks. For each question, answer
choices are mapped to ordinal values and normalized to the range [−1, 1]. Each human is represented
by a vector embedding of their responses, and the representation gap is measured using the L2 distance.
This distance captures the extent of differences in opinions and beliefs expressed in their answers.
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(c) Wikiart

Figure 3: Representation error on test set. We show the representation error on the test set of each
method with different number of agents. We report the means and standard errors (error bars) of three
runs with different seeds. Our methods maintain lower representation error compared to baselines.

Crowdsourcing: Data Annotation (WikiArt). In this application, LLMs can be used as surrogates
for crowdworkers for data annotation. We focus on tasks where diverse perspectives are encouraged.
For example, to create a datasets on the emotions evoked by art (Mohammad & Kiritchenko, 2018;
Mohamed et al., 2022), human crowdworkers were shown a painting and asked to specify the
emotions it evoked and to provide a short affective description. Figure 2c shows an example of such
a task. Our goal is to construct a set of LLM agents representative of a given pool of annotators in
terms of both emotions and language use. We take 20 paintings from the WikiArt dataset (Tan et al.,
2019) and split them 50/50 into training and testing tasks. Unfortunately, existing datasets do not
provide annotations at the level of individual annotators, and thus we cannot use them directly in
our experiments. Hence, we generated 100 “synthetic humans” by prompting LLMs with different
“personalities” and asking them to annotate the paintings. Each annotator is then represented by a
continuous embedding of their responses extracted from an LLM (cf. Appendix C.3 for details and
alternative embedding strategies). Distances between these embeddings are computed using the L2
distance, which captures differences in annotators’ perspectives and behaviors across tasks.

5.2 METHODS EVALUATED

We compare our proposed methods REPPOPdemo, REPPOPmapped-1, and REPPOPmapped-2 from
Section 4.2 against SAMPLEGREEDY from Section 4.1 and the following baselines. The SINGLE
baseline uniformly samples a single agent from L and performs M rollouts, while RANDOM baseline
uniformly selects M agents from L and performs one rollout for each. The K-MEDOIDS baseline
applies K-medoids clustering to form M clusters of humans, and for each cluster uniformly samples
K demonstrations from the humans in that cluster to construct an agent; this approach requires
re-clustering whenever a new agent is added. For SAMPLEGREEDY, we set the sample size to the
number of humans in all experiments. For REPPOPdemo, we accelerate evaluation with a stochastic
greedy variant that samples a subset of α demonstration candidates from the pool DT

H, setting
α = 100 for WikiArt and EEDI, and α = 1000 for OpinionQA (values chosen based on the scale
of DT

H). All agents are implemented with decoding temperature fixed at 1.0 across all experiments.

5.3 RESULTS

Representation gap. We compare the considered methods by measuring the representation gap
on the test tasks Ttest. The error is normalized according to the distance used in each dataset: by
d for the EEDI dataset, and by

√
d for the OpinionQA and WikiArt datasets. Figure 3 shows the

normalized test representation error of agent sets constructed by each method using Gemma3-12B as
the underlying LLM, with varying numbers of agents (training plots are provided in Appendix C).
Using a randomly sampled set of N agents (RANDOM) reduces the representation error compared
to using a single agent with N rollouts (SINGLE), emphasizing the importance of the problem
addressed in this work. The heuristic method K-MEDOIDS does not improve over the simple baseline
RANDOM. By exploiting the submodularity of the problem, SAMPLEGREEDY applies a greedy
selection procedure on a sampled subset of agents and achieves lower representation error than the
aforementioned baselines. Finally, our methods further reduce representation error across all datasets.
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Table 3: Generalization to other models. Representation error on the EEDI dataset with M = 10 and
K = 3 across model families of varying sizes (4B–70B). Results are reported on the test set, with
bold numbers indicating the lowest error. Our proposed methods consistently outperform baselines,
demonstrating lower representation error across all tested models and highlighting the robustness of
our framework independent of the underlying model choice.

Method Model
Phi-4-mini

(4B)
Phi-4
(14B)

Qwen-3
(14B)

Gemma-3
(27B)

Qwen-3
(32B)

Llama-3.1
(70B)

SINGLE 0.39 0.39 0.42 0.35 0.37 0.46
RANDOM 0.39 0.36 0.36 0.35 0.35 0.46
K-MEDOIDS 0.41 0.36 0.38 0.36 0.37 0.38
SAMPLEGREEDY 0.38 0.36 0.34 0.34 0.34 0.37
REPPOPdemo 0.37 0.30 0.33 0.31 0.33 0.35
REPPOPmapped-1 0.38 0.35 0.34 0.32 0.35 0.38
REPPOPmapped-2 0.35 0.33 0.30 0.32 0.35 0.38

Table 4: Average runtime (in minutes) for selecting an agent, reported as mean ± standard error over
three seeds. We use agent set size M = 10, context size K = 3, and the Gemma3-12B model.

Method Dataset
EEDI OpinionQA Wikiart

K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

SINGLE 0.3± 0.0 0.3± 0.0 0.3± 0.0 0.6± 0.0 0.4± 0.0 0.4± 0.0 2.0± 1.0 1.8± 0.9 1.6± 0.6
RANDOM 0.3± 0.0 0.3± 0.0 0.3± 0.0 0.3± 0.0 0.3± 0.0 0.3± 0.0 3.2± 1.8 1.8± 0.8 1.6± 0.6
K-MEDOIDS 0.9± 0.0 1.1± 0.0 1.3± 0.0 1.6± 0.0 1.7± 0.0 0.9± 0.0 2.5± 0.0 1.9± 0.0 2.3± 0.0
SAMPLEGREEDY 0.6± 0.0 0.7± 0.0 0.8± 0.0 2.7± 0.1 2.8± 0.0 3.2± 0.0 2.2± 0.0 1.8± 0.0 2.2± 0.0
REPPOPdemo 6.4± 0.1 21.3± 0.2 40.1± 0.4 38.3± 0.3 108.4± 0.9 179.0± 31.7 16.4± 0.1 43.6± 0.3 78.2± 0.2
REPPOPmapped-1 0.6± 0.0 0.7± 0.0 0.8± 0.0 2.7± 0.1 2.9± 0.0 3.2± 0.1 2.2± 0.0 1.8± 0.0 2.2± 0.0
REPPOPmapped-2 5.9± 0.0 17.8± 0.0 30.9± 0.1 71.7± 0.3 197.1± 0.3 350.1± 0.9 20.2± 0.2 43.0± 0.1 66.8± 0.5

Notably, REPPOPmapped-2 outperforms the strongest baseline SAMPLEGREEDY significantly on all
three datasets, with p < 0.01 according to a paired t-test where pairs are formed by matching runs
that share the same random seed and the same number of agents. These results demonstrate that our
methods can construct agent sets that represent human population behavior and generalize effectively.

Generalization to other LLMs. We conduct experiments with a variety of models to examine how
method performance changes across model families and sizes. Due to resource constraints, this anal-
ysis is limited to the EEDI dataset with M = 10 and K = 3. Table 3 shows that the same trends hold
across different LLMs in terms of reducing representation error. Our proposed methods consistently
outperform the baselines, achieving lower representation error on the test set across all tested models.
These results highlight the robustness of our framework regardless of the underlying LLM.

Trade-offs between performance and computation. We investigate the trade-off between
performance and computational cost of different methods. Table 4 reports the average runtime for
selecting an agent (details of computational resources are provided in Appendix B.4). Our method
REPPOPmapped-1 runs as fast as SAMPLEGREEDYwhile achieving slightly better performance. Both
REPPOPdemo and REPPOPmapped-1 are more computationally expensive but offer more representative
agent sets. In practice, these trade-offs should be considered when selecting a suitable method.

5.4 AGENT BEHAVIOR ANALYSIS

Beyond measuring the representation gap via embedding distances, we investigate whether the agents
exhibit behaviors similar to the humans they represent in the EEDI and OpinionQA datasets (cf.
Appendix C.3 for analysis on WikiArt). First, we analyze, for each agent, the behavior of the humans
it represents. Figure 4 shows 2D embeddings of humans and agents constructed by our method
REPPOPmapped-2, computed on the training set. We observe that REPPOPmapped-2 constructs agents that
cover different regions of the human embedding space, corresponding to distinct groups of humans.
Next, we analyze whether these agents behave like the groups of people they are intended to represent.

EEDI dataset. We select three agents and visualize the students they represent, along with the
aggregated math skill levels of those students in Figure 4a. For example, Agent 4 represents
students with a strong understanding of Mental Multiplication and Division but weaker proficiency
in Fractions and Negative Numbers. We then use these agents as surrogates for students to answer
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(a) EEDI (b) OpinionQA

Figure 4: 2D embeddings of humans and agents constructed by REPPOPmapped-2 on tasks in Ttrain using
UMAP. We provide examples of aggregated metadata (in the boxes) of humans represented by agents
(connections are denoted by black arrows). They are not used for constructing agents and used only for
analysis. Our method REPPOPmapped-2 constructs agents to cover different human behaviors, collec-
tively (approximately) representing the human population. (a) EEDI:. Each agent represents a group
of students with particular success rates on different Math concepts. (b) OpinionQA: Each agent
represents a group of people with particular distributions of political ideologies, parties, and regions.

new math questions in the test data. The distinct proficiency levels of agents (3, 4, 10) on these new
questions are shown in Figure 1, using the same color-coding of boxes. We find that their proficiency
levels across different math concepts closely mirror those observed in the students they represent.

OpinionQA dataset. We select two agents and visualize the aggregated self-declared metadata of the
humans they represent in Figure 4b. For each task in the test set, we map answer choices to political
ideologies and party affiliations. For each agent, we compute the distribution over these labels across
all questions. For example, for Agent 3 we obtain the following distributions: political ideologies —
Very liberal (13.3%), Liberal (40%), Moderate (13.3%), Conservative (26.7%), Very conservative
(6.2%); political parties — Independent (13.3%), Democrat (53.3%), Republican (33.3%). These
distributions mirror the actual human demographic patterns for Agent 3 shown in Figure 4b, despite
the fact that such metadata was not used in constructing the agents. These findings highlight their
ability to capture and reproduce meaningful population-level diversity.

6 CONCLUDING DISCUSSIONS

We studied the problem of constructing a set of generative agents that collectively represent a given
human population. Through formulating it as a submodular optimization problem, we proposed
methods that allow different tradeoffs of computational complexity and performance (guarantees). In
addition, we empirically demonstrated that our methods can construct a set of representative agents
for different populations of annotators and students in crowdsourcing and educational settings. We
also demonstrated quantitatively and qualitatively the generalizability of our methods to unseen tasks.
Next, we would like to discuss the limitations of our work and propose directions for future research to
tackle them. First, we rely on prompting-based approaches rather than fine-tuning; future work could
explore fine-tuning techniques for constructing an agent. Second, we do not consider the ordering of
demonstrations in prompts, and understanding how ordering influences model behavior would be a
valuable extension. Third, while our results show that agents constructed by our methods effectively
represent a human population, this work primarily provides groundwork for more comprehensive
evaluations of downstream applications, such as using the agents for training teachers, assessing the
effectiveness of interventions, or simulating responses to government policy.

9
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ETHICS STATEMENT

This work uses publicly available datasets (EEDI, OpinionQA, and WikiArt) that have been
anonymized and do not contain personally identifiable information. No new human subjects were
recruited, and thus no IRB approval was required. We respect privacy by using demographic in-
formation only for analysis. Potential risks of this work include misuse of representative agents
to simulate or stereotype demographic groups. Our methods are intended solely for research and
educational purposes and not for applications that could cause harm to individuals or communities.
We acknowledge that language models can reflect and amplify biases present in their training data,
and our work should not be interpreted as providing perfect or unbiased representations of populations.
During preparing this submission, we used Large Language Models (LLMs) for suggesting minor
edits, such as grammar, wording, and typos.

REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate the reproducibility of our work. All proposed algorithms and
implementation details are provided in the main text and appendices, as well as in the anonymized
source code repository. Detailed dataset descriptions, data processing steps, hyperparameters, config-
urations, and evaluation procedures are documented in Appendix B. We report main results across
three random seeds (1, 2, 3) and include variance estimates where appropriate. Complete proofs of
our theoretical claims are presented in Appendix D.
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APPENDIX

A TABLE OF CONTENTS

In this section, we briefly describe the content provided in the paper’s appendices.

• Section B provides more details about the experimental setup, including datasets and prompts
used for each domain, computational resources.

• Section C provides results on multiple runs with different context sizes K and random seeds.
• Section D provides detailed proofs of our theorems and propositions.
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B ADDITIONAL EXPERIMENTAL SETUP

B.1 EEDI

Dataset. We use the EEDI math dataset (Wang et al., 2020), which provides data on students’ answers
to mathematics questions on the Eedi platform. The questions are multiple-choice with four answer
choices presented as images, and we select 40 that can be converted to text and have a large number
of student responses, chosen to maximize both the number of questions answered per student and the
number of students answering each question. The selected questions cover four concepts—Fractions,
Negative Numbers, Mental Multiplication and Division, and Simplifying Expressions—with half of
the questions in each concept used for training and the other half for testing.

Prompt for agent. Each agent is given a set of K demonstrations, which are pairs of math questions
and example answers provided by the real students (cf. Figure 5). Then, we ask the agent to analyze
the given answers and predict how the student would answer a new question.

Figure 5: [EEDI] Prompt for Agent with K demonstrations

[User message]
{question_1}
{example_answer_of_question_1}
.
.
.
{question_K}
{example_answer_of_question_K}
Evaluate whether the student’s previous answers reveal any misconceptions. If so, analyze
those misconceptions before proceeding. If not, directly predict how the student would
answer the following question.
{question}

B.2 OPINIONQA

Dataset. We use questions and answers from the US citizens in the American Trends Panel W92
survey data, which was used in (Santurkar et al., 2023). This survey includes 77 multiple-choice
questions related to politics and responses from over 10, 000 respondents across the US. The answer
choices typically have an ordinal structure (e.g., ranging from “A great deal” to “Not at all”) and we
reuse the mapping from answer choices to ordinal values from (Santurkar et al., 2023). In addition,
the survey data includes demographic information of the people, including ideology, political party
and region. We sample N = 500 people and take their answers to create our dataset. We use the
demographic information of these people for analysis purposes only.

Prompt for agent. Each agent is given a set of K demonstrations, which are pairs of questions and
example answers provided by the real survey respondents (cf. Figure 6). Then, we ask the agent to
act as the human who has given the answers above and to answer a new question.

Figure 6: [OpinionQA] Prompt for Agent with K demonstrations

[User message]
{question_1}
{example_answer_of_question_1}
.
.
.
{question_K}
{example_answer_of_question_K}
Act as the human who has given the answers above. Answer the following question.
{question}
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B.3 WIKIART

Figure 7: [Wikiart] Prompt for Synthetic Human

[System message] Act as a human who has taken the following personality test. Be mindful
of how you focus your attention and the way you express yourself through language.
I see myself as someone who is generally trusting: {answer}
I see myself as someone who tends to be lazy: {answer}
I see myself as someone who is relaxed, handles stress well: {answer}
I see myself as someone who has few artistic interests: {answer}
I see myself as someone who is outgoing, sociable: {answer}
I see myself as someone who tends to find fault with others: {answer}
I see myself as someone who does a thorough job: {answer}
I see myself as someone who gets nervous easily: {answer}
I see myself as someone who has an active imagination: {answer}
[User message] What emotions does the following painting evoke? Choose from the follow-
ing list of emotions: gratitude, happiness, humility, love, optimism, trust, anger, arrogance,
disgust, fear, pessimism, regret, sadness, shame, agreeableness, anticipation, disagreeableness,
shyness, surprise. Provide a short explanation referencing specific details from the painting.
Respond in JSON format with two keys: "emotions" and "explanation".
{painting}

Figure 8: [Wikiart] Prompt for extracting embeddings for an annotator

[User message]
Response_1: annotation_of_painting_1
.
.
.
Response_q: annotation_of_painting_q

Figure 9: [Wikiart] Prompt for Agent with K demonstrations

[User message]
{painting_1}
{annotation_of_painting_1}
.
.
.
{painting_K}
{annotation_of_painting_K}
Act as the human who has given the answers above. What emotions does the following
painting evoke? Choose from the following list of emotions: gratitude, happiness, humility,
love, optimism, trust, anger, arrogance, disgust, fear, pessimism, regret, sadness, shame,
agreeableness, anticipation, disagreeableness, shyness, surprise. Provide a short explanation
referencing specific details from the painting. Respond in JSON format with two keys:
"emotions" and "explanation".
{painting}

Dataset. We use LLMs conditioned on the Big Five personality traits (McCrae & John, 1992),
namely Extraversion, Agreeableness, Conscientiousness, Emotional Stability, and Openness, to act
as annotators. Each annotator is specified by responses to a 10-item BFI questionnaire (Rammstedt
& John, 2007), which we place in the system message to instruct the LLM to act as a human who
has taken the test (cf. Figure 7). Responses take one of five values (Disagree Strongly, Disagree
a Little, Neither Agree nor Disagree, Agree a Little, Agree Strongly), which we convert into trait
scores using the formula in (Rammstedt & John, 2007) and rescale to [0, 5], where higher values
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indicate stronger expression of the trait. To create a diverse set of annotators, we sample responses
from normal distributions of trait values with varying means and standard deviations. These system
messages condition the LLM to act with distinct personalities, and we use Gemma3-27B (Kamath
et al., 2025) to generate their answers.

To create an embedding for each human or agent, we concatenate their answers on the train/test tasks
into a single prompt (cf. Figure 8), pass it through a language model (Gemma3-12B (Kamath et al.,
2025)), and extract the last hidden state with mean pooling to obtain the embedding. We then reduce
the dimensionality to 64 using PCA and measure distances between embeddings using L2 distance.

Prompt for agent. Each agent is given a set of K demonstrations, which are pairs of paintings and
example annotations provided by the annotators (cf. Figure 9). Then, we ask the agent to act as the
annotator who has given the answers above and to annotate a new painting. The LLM agent is given
a list of emotions (from (Mohammad & Kiritchenko, 2018)) to choose from, and it must provide a
short explanation referencing specific details from the painting.

B.4 RESOURCES

We use a machine with 2 x Intel Xeon Gold 5317 for all experiments. We use 1 x NVIDIA H100 80GB
for experiments on EEDI and OpinionQA datasets, and 1 x NVIDIA H200 141GB for Wikiart dataset.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we show results on different context sizes K = 1, 3, 5 for each dataset. We report
the mean and standard error (shown as error bars) computed over three seeds. Overall, we observe
similar trends where our methods outperform other baselines across all datasets.
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Figure 10: Representation error on EEDI dataset (Train).
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Figure 11: Representation error on EEDI dataset (Test).
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C.2 OPINIONQA
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Figure 12: Representation error on OpinionQA dataset (Train).
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Figure 13: Representation error on OpinionQA dataset (Test).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.3 WIKIART
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Figure 14: Representation error on Wikiart dataset (Train).
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Figure 15: Representation error on Wikiart dataset (Test).

Agent behavior analysis. We select three agents and visualize the annotators they represent along
with their aggregated traits (cf. Figure 16). For example, Agent 2 represents annotators with high
neuroticism and low conscientiousness. To validate whether the agents exhibit behaviors consistent
with the annotators they represent, we ask each constructed agent to complete the 10-item BFI test
(Rammstedt & John, 2007), and their responses reveal traits that align with the average traits of the
corresponding humans. For instance, Agent 2 in Figure 16 obtains the following trait scores: Extraver-
sion (1.0), Agreeableness (1.5), Conscientiousness (1.38), Neuroticism (4.66), and Openness (2.5).

Embedding model analysis. We further evaluate our approach on the Wikiart dataset using a smaller
and more efficient bidirectional encoder (gte-base-en-v1.5). The results in Table 5 confirm that our
methods remain effective even when relying on a much smaller embedding model.

Table 5: Comparison of methods on the Wikiart dataset using the gte-base-en-v1.5 embedding model.
We report the representation error on the test set with context size K = 3 and agent set size M = 10.

Method gte-base-en-v1.5 (137M)
SINGLE 0.71
RANDOM 0.69
K-MEDOIDS 0.68
SAMPLEGREEDY 0.68
REPPOPdemo (ours) 0.62
REPPOPmapped-1 (ours) 0.66
REPPOPmapped-2 (ours) 0.68
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Figure 16: 2D embeddings of humans and agents constructed by REPPOPmapped-2 on Ttrain tasks in
Wikiart dataset using UMAP (McInnes & Healy, 2018). We provide examples of aggregated traits
(heatmaps) of annotators represented by each agent (connections are denoted by black arrows). We
note that metadata are not used for constructing agents and used only for analysis. Our method
REPPOPmapped-2 constructs agents to cover different areas in the annotator embedding space, col-
lectively representing the annotators. Each agent represents a group of annotators with particular
personality traits.
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D PROOFS

D.1 PROOF OF THEOREM 1

Theorem 1 (NP-Hardness). The problem of selecting an optimal subset L∗ ⊆ L of size M that
maximizes f(L) is NP-hard.

Proof. We show NP-hardness through a reduction from the k-facility location problem which extends
the uncapacitated facility location problem (UFLP) by including a constraint on the maximum number
of facilities. The problem is known to be NP-hard. (Fowler et al., 1981)

Consider an instance of the k-facility location problem with a set of potential facility locations
F = {f1, f2, . . . , fnF

}, a set of customers C = {c1, c2, . . . , cnC
}, service costs d(f, c) representing

the cost of serving customer c from facility f , and a cardinality constraint M . The objective is to
select a subset F ⊆ F of M facilities to minimize the sum of service costs

∑
c∈C minf∈F d(f, c).

We construct a corresponding instance of our representative agent selection problem as follows:
set H = C (each customer corresponds to a human); set L = F (each potential facility location
corresponds to a potential agent); define dist(eh, el) = d(l, h) for each human h ∈ H and agent
l ∈ L; and set M to be the number of facilities we wish to open.

Under this construction, our objective function becomes:

f(L) =
1

|H|
∑
h∈H

[
Dmax −min

l∈L
d(l, h)

]

=
1

|H|

(∑
h∈H

Dmax

)
− 1

|H|
∑
h∈H

min
l∈L

d(l, h)

= Dmax −
1

|H|
∑
h∈H

min
l∈L

d(l, h)

Since Dmax is a constant and 1
|H| is a positive constant, maximizing f(L) is equivalent to minimizing∑

h∈H minl∈L d(l, h), which is the objective of the k-facility location problem.

Therefore, if the representative agent selection problem could be solved in polynomial time, the
k-facility location problem could also be solved in polynomial time. Since the k-facility location
problem is NP-hard, the representative agent selection problem must also be NP-hard.

D.2 PROOF OF PROPOSITION 1

Proposition 1 (Submodularity). The objective function

f(L) =
1

|H|
∑
h∈H

[
Dmax −min

l∈L
dist(eh, el)

]
is submodular.

Proof. A set function f is submodular if for all A ⊆ B ⊆ L and for all l′ ∈ L \ B, we have
f(A ∪ {l′})− f(A) ≥ f(B ∪ {l′})− f(B).

Let A ⊆ B ⊆ L and l′ ∈ L \B. The marginal gain of adding l′ to A is:

f(A ∪ {l′})− f(A) =
1

|H|
∑
h∈H

[
Dmax − min

l∈A∪{l′}
dist(eh, el)−

(
Dmax −min

l∈A
dist(eh, el)

)]

This simplifies to:

f(A ∪ {l′})− f(A) =
1

|H|
∑
h∈H

[
min
l∈A

dist(eh, el)− min
l∈A∪{l′}

dist(eh, el)

]
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Define Hl′

A = {h ∈ H | dist(eh, el′) < minl∈A dist(eh, el)} as the set of humans for whom l′

provides improvement when added to A. Similarly define Hl′

B for set B.

For humans in h ∈ H \ Hl′

A, the closest agent in A remains closer than l′, so
minl∈A∪{l′} dist(eh, el) = minl∈A dist(eh, el), giving zero marginal improvement. Therefore:

f(A ∪ {l′})− f(A) =
1

|H|
∑

h∈Hl′
A

[
min
l∈A

dist(eh, el)− dist(eh, el′)

]

Since A ⊆ B, for any human h, we have minl∈A dist(eh, el) ≥ minl∈B dist(eh, el).

This implies that if l′ provides improvement overB (i.e., h ∈ Hl′

B), then l′ also provides improvement
over A (i.e., h ∈ Hl′

A). Therefore, Hl′

B ⊆ Hl′

A.

For humans in Hl′

B , the improvement when adding l′ to A is at least as large as when adding l′ to B,
since minl∈A dist(eh, el)− dist(eh, el′) ≥ minl∈B dist(eh, el)− dist(eh, el′).

Similarly, for B we have:

f(B ∪ {l′})− f(B) =
1

|H|
∑

h∈Hl′
B

[
min
l∈B

dist(eh, el)− dist(eh, el′)

]

Therefore:

f(A ∪ {l′})− f(A) =
1

|H|
∑

h∈Hl′
A

[
min
l∈A

dist(eh, el)− dist(eh, el′)

]

=
1

|H|
∑

h∈Hl′
B

[
min
l∈A

dist(eh, el)− dist(eh, el′)

]

+
1

|H|
∑

h∈Hl′
A\Hl′

B

[
min
l∈A

dist(eh, el)− dist(eh, el′)

]

≥ 1

|H|
∑

h∈Hl′
B

[
min
l∈B

dist(eh, el)− dist(eh, el′)

]
= f(B ∪ {l′})− f(B)

This shows that f is submodular.

D.3 PROOF OF THEOREM 2

Theorem 2 (Performance Guarantee for REPPOPmapped-1 and REPPOPmapped-2). Let L̃ = {lh|h ∈
H} be the proxy agent set where for each h ∈ H, lh ∈ Nρ(h), with Nρ(h) representing the ρ-
neighborhood of h. Define the human coverage ratio γ =

f(L∗
H)

f(L∗
L) ∈ [0, 1], where L∗

H is the optimal

subset from the human set and L∗
L is the optimal subset from the full agent set. If Lgreedy

L̃ is the subset
of size M returned by the greedy algorithm on L̃, then:

f(Lgreedy

L̃ ) ≥ (1− 1

e
)(γ · f(L∗

L)− ρ)

Proof. In our context, L∗
H ⊆ H represents the optimal subset of humans of size M that would be

selected if we directly choose humans instead of agents. This is a theoretical construct for analysis
purposes. In contrast, L∗

L is the optimal subset of size M from the actual agent set L. The human
coverage ratio γ =

f(L∗
H)

f(L∗
L) ∈ [0, 1] measures how well selecting from the human set can approximate
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the optimal solution achievable using the full agent set. We start our proof by first decomposing the
objective function as

f(L) =
∑
h∈H

fh(L)

where

fh(L) =
1

|H|

[
Dmax −min

l∈L
dist(eh, el)

]
For each human h in the optimal subset L∗

H, consider its corresponding agent lh in the proxy agent
set L̃. Let L∗

H̃ = {lh|h ∈ L∗
H}.

By definition, for each human h ∈ H and its corresponding proxy agent lh ∈ L̃, we have
dist(eh, elh) ≤ ρ since lh is in the ρ-neighborhood of h. Therefore:

|fh(L∗
H)− fh(L

∗
H̃)| ≤ ρ

|H|

The above inequality holds because the maximum distance deviation between any human and its
proxy agent is at most ρ (by definition of the ρ-neighborhood).

Then:

|f(L∗
H)− f(L∗

H̃)| =
∣∣∣∣∣∑
h∈H

fh(L
∗
H)− fh(L

∗
H̃)

∣∣∣∣∣ ≤ ∑
h∈H

|fh(L∗
H)− fh(L

∗
H̃)| ≤ ρ

|H| · |H| = ρ

This gives us:
f(L∗

H̃) ≥ f(L∗
H)− ρ (2)

Since L∗
L̃ is the optimal subset of size M from the proxy agent set L̃, and L∗

H̃ is a feasible solution of
size M from L̃, we have:

f(L∗
L̃) ≥ f(L∗

H̃) (3)

From the guarantees of the greedy algorithm for submodular function maximization (Nemhauser
et al., 1978), if Lgreedy

L̃ is the subset of size M returned by the greedy algorithm on L̃, we have:

f(Lgreedy

L̃ ) ≥ (1− 1

e
)f(L∗

L̃) (4)

Combining inequalities equation 2, equation 3, and equation 4, we get:

f(Lgreedy

L̃ ) ≥ (1− 1

e
)f(L∗

L̃) ≥ (1− 1

e
)f(L∗

H̃) ≥ (1− 1

e
)(f(L∗

H)− ρ)

Using the definition of human coverage ratio γ =
f(L∗

H)
f(L∗

L) , we have f(L∗
H) = γ · f(L∗

L). Substitution
yields

f(Lgreedy

L̃ ) ≥ (1− 1

e
)(γ · f(L∗

L)− ρ)

This gives us the performance guarantees for REPPOPmapped-1 and REPPOPmapped-2.
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