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Abstract

Supervised classification traditionally assumes that training and testing samples are drawn
from the same underlying distribution. However, practical scenarios are often affected by
distribution shifts, such as covariate and label shifts. Most existing techniques for correct-
ing distribution shifts are based on a reweighted approach that weights training samples,
assigning lower relevance to the samples that are unlikely at testing. However, these meth-
ods may achieve poor performance when the weights obtained take large values at certain
training samples. In addition, in multi-source cases, existing methods do not exploit com-
plementary information among sources, and equally combine sources for all instances. In
this paper, we establish a unified learning framework for distribution shift adaptation. We
present a double-weighting approach to deal with distribution shifts, considering weight
functions associated with both training and testing samples. For the multi-source case, the
presented methods assign source-dependent weights for training and testing samples, where
weights are obtained jointly using information from all sources. We also present general-
ization bounds for the proposed methods that show a significant increase in the effective
sample size compared with existing approaches. Empirically, the proposed methods achieve
enhanced classification performance in both synthetic and empirical experiments.

1 Introduction

Supervised classification traditionally assumes that training and testing samples are independently and
identically distributed (i.i.d.) drawn from the same underlying distribution. However, practical scenarios are
often affected by distribution shifts, such as covariate shift and label shift. In covariate shift, the marginal
distribution over the instances (covariates x) differs while the label conditional distribution remains the
same. In label shift, the marginal distribution over the labels (classes y) differs while the instance conditional
distribution remains the same. Additionally, in multi-source scenarios, the training data is obtained from
multiple sources, each of which has different probability distributions.

Distribution shifts are common in many practical applications, including electronic health record data ana-
lysis (Singh et al., 2022). For example, a model may be trained to learn a patient’s disease severity using
historical patients’ data, but there may exist shifts between training and testing populations due to the chal-
lenges in obtaining data from patients within the same population (Humbert-Droz et al., 2022). Moreover,
we may also need to learn from multiple datasets collected from different hospitals due to health record
fragmentation.

Multiple techniques have been developed for correcting different types of distribution shifts
(Quinonero-Candela et al., 2008; Sugiyama & Kawanabe, 2012; Zhang et al., 2013; Lipton et al., 2018;
Sun et al., 2011; Schweikert et al., 2008; Zhang et al., 2015). Most existing distribution shift correction
techniques are based on a reweighted approach. Reweighted techniques weight training samples assigning
lower relevance to the training samples that are unlikely at testing. However, these methods require certain
assumptions about the supports of the distributions and may achieve poor performance when the weights
obtained take large values at certain training samples (Cortes & Mohri, 2014; Martino et al., 2018) (see
Fig. 1). Additionally, existing methods for multi-source distribution shift adaptation inherit the problems of
single-source reweighting methods. Most methods define classification rules as a linear combination of the
classifiers learned independently on each source (Zhang et al., 2015; Shui et al., 2021; Wang et al., 2023) (see
Fig. 2). Theoretical work (Mansour et al., 2008) has shown that it is more effective to have sample-dependent
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coefficients to allow different combinations of classification rules for each instance. Further details on the
prior work are provided in Appendix A.

Weights for training samples Weight for testing samples

Main conventional single-source approaches

Proposed single-source approach

Figure 1: Different approaches for single-source distribution shift (the training and testing samples follow
Gaussian distributions with probability mass concentrated in the blue and black circles, resp.). Existing
methods obtain weights that take large values at certain training samples and do not consider weights at
testing (i.e., weights at testing are constant). The proposed approach reduces the large values of training
weights by utilizing weights at testing.

Recently, the double-weighting approach has been proposed to correct for single-source covariate shift
(Segovia-Martín et al., 2023), addressing the limitations of covariate shift reweighted methods by assigning
weights for both training and testing instances. The double-weighting approach does not require assumptions
for supports and can avoid large values by adjusting the weights given the relation of weights (see Fig. 1).
However, it remains unclear how assigning weights to both training and testing data points can help more
general marginal distribution shift, like label shift and multi-source distribution shift adaptation. In the
latter case, weight estimation and weight employment in both training and testing require the consideration
of multiple training sources.

This paper establishes a unified learning framework for distribution shift adaptation using a double-weighting
approach, considering weight functions that depend on the covariates and the labels. The usage of the double-
weighting approach enables us to overcome the limitations of existing reweighted methods. Our framework
can be reduced to dealing with covariate shift, label shift, and multi-source cases. In particular, in the
covariate shift and label shift cases, our approach alleviates the problem of extreme weights by also assigning
weights for testing samples (see Fig. 1). In the multi-source settings, our proposed method leverages the
rich complementary information among sources (see Fig. 2), inducing classification rules that involve sample-
dependent weighted combinations of feature mappings.

The main contributions in the paper are as follows.

1. We establish a unified double-weighting learning framework to deal with general distribution shifts. Our
framework can be reduced to dealing with covariate shift, label shift, and multi-source cases. In general,
the double-weighting framework alleviates problems of reweighted techniques, avoiding extreme weights
considering weights associated with the training and testing samples.

2. In the multi-source distribution shift cases, the proposed double-weighting method assigns source-
dependent weights for training and testing samples to better utilize the information from multiple
sources jointly. In addition, our multi-source methodology obtains classification rules that involve sample-
dependent weighted combinations of feature mappings.

2



Under review as submission to TMLR

Weights for training samples of the source 1

Weights for training samples of the source 2

Weight for testing samples learned from source 1

Weight for testing samples learned from source 2

Main conventional multi-source approaches

Proposed multi-source approach

Figure 2: Different approaches for multi-source distribution shift (the two training sources and testing
samples follow Gaussian distributions with probability mass concentrated in the blue, orange and black
circles, resp.). Existing methods obtain weights that take large values at certain training samples and
classify each testing instance using linear combinations of feature mappings. The proposed approach reduces
the large values of training weights by also utilizing weights at testing and considers classification rules that
involve sample-dependent combinations of feature mappings.

3. We develop generalization bounds for the proposed methods. Our analysis shows that double-weighting
techniques significantly increase the effective sample size for different types of distribution shifts adapta-
tion compared with reweighted approaches.

4. We demonstrate that the proposed techniques achieve a significant performance improvement in multiple
distribution shift scenarios with experiments on both synthetic and real-world datasets. Our results show
that in cases of significant shifts between training and testing distributions, most existing techniques
result in a negative transfer of information among sources, while the proposed approach achieves improved
performance.

Notation. Calligraphic upper case letters represent sets; bold lower and upper case letters represent vectors
and matrices, respectively; for a vector v, vT denotes its transpose, v(i) denotes its i-th component, |v|
denotes its component-wise absolute value; 1 denotes a vector with all components equal to 1; || · ||1, || · ||∞,
and || · ||H denote the 1-norm, the infinity, and the Hilbert space norm of its argument, respectively; � and
� represent vector component-wise inequalities; N(x; m, Σ) denotes the pdf of a Gaussian r.v. x with mean
m and covariance matrix Σ; and Ep{·} denotes the expectation of its argument w.r.t distribution p.

2 Preliminaries

This section describes the problem setup and the framework for minimax risk classifiers (MRCs), a supervised
classification learning framework that allows us to correct distribution shifts using the double-weighting
methodology.

2.1 Problem setup

Let X be the set of instances and Y be the set of labels represented by the set {1, 2, . . . , |Y|}. We denote by
∆(X ×Y) the set of probability distributions over X and Y, and by T(X ,Y) the set of all classification rules
from instances X to labels Y. For h ∈ T(X ,Y), we denote by h(y|x) the probability of assigning label y ∈ Y to
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instance x ∈ X . We use the notation pte for the underlying distribution at test, (x1, y1), (x2, y2) . . . , (xn, yn)
for the training samples, and xn+1, xn+2, . . . , xn+t for the testing instances. For the multi-source case,
we use the notation S for the number of training sources, [S] = {1, 2, . . . , S} for the set of sources, and
(xs,1, ys,1), (xs,2, ys,2) . . . , (xs,ns

, ys,ns
) for the training samples that belong to the source s ∈ [S].

The ℓ-risk of a classification rule h is its expected classification loss with respect to the true underlying
distribution at test pte, i.e.,

Rℓ(h) = Epte
{ℓ (h, (x, y))} . (1)

Supervised classification techniques use the training samples to find a classification rule h that has small
ℓ-risk Rℓ(h). In this paper, we consider 0-1-loss and log-loss:

ℓ01 (h, (x, y)) = 1− h(y|x) (2)

ℓlog (h, (x, y)) = − log h(y|x) (3)

although the results presented can be analogously used with general losses, as is done in (Mazuelas et al.,
2022).

In the following, we assume that, for single-source distribution shift, n samples from ptr and t testing instances
from pte are available at learning. For the multi-source distribution shift, we assume that ns samples from
ps for s ∈ [S] and t testing instances from pte are available at learning.

Single-source marginal distribution shift (covariate and label shift). The training samples follow a
distribution ptr(x, y) such that the marginal distributions of instances (resp. labels) differ, i.e., ptr(x) 6= pte(x)
(resp. ptr(y) 6= pte(y)), but the label conditional (resp. instance conditional) coincide, i.e., ptr(y|x) = pte(y|x)
(resp. ptr(x|y) = pte(x|y)).

Multi-source marginal distribution shift (multi-source covariate and label shift). The training
samples from each of the S training sources follow distribution ps(x, y) such that the marginal distributions
of instances (resp. labels) differ, i.e., ps(x) 6= ps′(x) if s 6= s′ ∈ [S], ps(x) 6= pte(x) (resp. ps(y) 6= ps′(y) if
s 6= s′ ∈ [S], ps(y) 6= pte(y)) for s ∈ [S]; but the label (resp. instance conditional) conditional coincide, i.e.,
ps(y|x) = pte(y|x) (resp. ps(x|y) = pte(x|y)) for s ∈ [S].

2.2 Minimax risk classifiers

Similarly to other approaches based on robust risk minimization (RRM) also known as distributionally
robust learning (Farnia & Tse, 2016; Fathony et al., 2016), MRC methods do not require that the training
and testing samples follow the same distribution. MRC methods minimize the worst-case expected loss
with respect to distributions in uncertainty sets that can contain the true underlying distribution with high
probability. The uncertainty sets U are formed by probability distributions that match data-based constraints
for the expectations of a function Φ : X × Y −→ R

m referred to as feature mapping (Mazuelas et al., 2022;
2023). These feature mappings are defined using one-hot encodings of the elements of Y as Φ(x, y) =
ey ⊗ Ψ(x), where ey is the y-th element of the canonical basis of R

|Y|, ⊗ denotes the Kronecker product,
and Ψ : X → R

d is a map that represents instances as real vectors of dimension d. Given the uncertainty
set U , a classification rule hU is an ℓ-MRC for U if

hU ∈ arg min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (4)

where ℓ(h, p) denotes the expected loss of classification rule h w.r.t. distribution p, and we denote by R(U)
the minimax risk against U . The uncertainty set U is defined as

U = {p ∈ ∆ (X × Y) : |EpΦ(x, y)− τ | � λ and p(x) = pte(x),∀x ∈ X} (5)

where λ is the confidence vector that assesses the inaccuracies in expectations estimates, and τ denotes the
mean vector of expectation estimates.

The mean vector τ in (5) is an estimate of the expectation of the feature mapping Epte
Φ(x, y) with

respect to the underlying distribution. In cases without distribution shift, the n training samples

4



Under review as submission to TMLR

(x1, y1), (x2, y2), . . . , (xn, yn) are drawn from the underlying distribution at test pte so that the expectation
Epte

Φ(x, y) can be estimated using averages of training samples

τ =
1

n

n
∑

i=1

Φ(xi, yi) (6)

As shown in the following, the expectation estimate is modified in situations affected by distribution shifts
to account for the difference between the training and the testing distribution.

3 Unified Double-Weighting Framework for Single-Source Distribution Shifts

This section describes the unified learning framework for double-weighting for single-source distribution shift
adaptation. We also present generalization bounds for the proposed framework in comparison with the
reweighted framework.

3.1 Double-weighting pairwise distributions

The proposed framework considers weights β(x, y) for the training distribution ptr and weights α(x, y) for
the testing distribution pte (see Fig. 1). For any function f , we exploit the fact that

Epte(x,y)α(x, y)f(x, y) = Eptr(x,y)β(x, y)f(x, y) (7)

can be achieved if we have
pte(x, y)α(x, y) = ptr(x, y)β(x, y) (8)

that can be attained by multiple choices of the weights α(x, y) and β(x, y). For the reweighted approaches,
the choice of weights is

α(x, y) = 1, β(x, y) =
pte(x, y)

ptr(x, y)
(9)

if ptr(x, y) > 0⇒ pte(x, y) > 0 (Sugiyama & Kawanabe, 2012). However, the equality in (7) can be obtained
in multiple ways, for instance the usage of

α(x, y) = min

(

1,
ptr(x, y)

pte(x, y)
C

)

, β(x, y) = min

(

pte(x, y)

ptr(x, y)
, C

)

(10)

allows us to satisfy (7) for any C > 0. Notice also that weights as those in (10) above can be utilized for
general train and test distributions without requiring assumptions for their supports.

As shown in the following subsection, the weight functions β(x, y) assign relevance to the training samples,
while the weight functions α(x, y) determine the confidence in the predictions for the testing instances.
Weights as in (10) can alleviate the limitations of reweighted approaches in distribution shift adaptation. By
applying (8), if the ratio pte(x, y)/ptr(x, y) is large, using a small α(x, y) enables having pte(x, y)α(x, y) =
ptr(x, y)β(x, y) with moderate values of β(x, y). Using weights as in (10), we predict with high confidence
(α(x, y) ≈ 1) by taking large C. Given that β(x, y) ≤ C, we can consider small values of β(x, y) by sacrificing
prediction confidence (decreasing C).

The usage of weights α(x, y) and β(x, y) tailored to general single-source distribution shift scenarios offers
a significant improvement over methods based on the reweighted approach. The proposed approach can
handle general single-source distribution shifts. In addition, this approach results in enhanced generalization
in comparison with the reweighted approach, as shown in Theorem 3.2.

3.2 MRC learning using general double-weighting

This subsection describes the proposed learning methodology for the unified view of double-weighting using
weights α(x, y) and β(x, y).

Uncertainty sets. To address the single-source distribution shift, we construct an uncertainty set U defined
in terms of constraints of the expectation of a weighted feature Φα(x, y). Then, the uncertainty set U can
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be defined as

U =
{

p ∈ ∆ (X × Y) : |EpΦα(x, y)− τ | � λ and p(x) = pte(x),∀x ∈ X
}

(11)

where the feature mapping Φα(x, y) is defined as Φα(x, y) = α(x, y)Φ(x, y). The expectation of such feature
mapping can be estimated using sample averages of training samples weighted by β(x, y) as

τ =
1

n

n
∑

i=1

Φβ(xi, yi), for Φβ(x, y) = β(x, y)Φ(x, y). (12)

Using weights α(x, y) and β(x, y) that satisfy (8) we can achieve that the estimate τ above is an unbiased
estimator of Epte(x,y)Φα(x,y). In addition, the variance of such estimator can be reduced by using weights
α(x, y) that avoid large weights β(x, y). The constraints in the proposed uncertainty set U in (11) characterize
weighted feature expectation matching on Φα(x, y) in the training domain with weights β(x, y).

Convex optimization. MRCs corresponding with the uncertainty set (11) can be learned by solving the
convex optimization problem

min
µ
−τ Tµ + λT|µ|+ Epte(x)ϕℓ (µ, x, α) (13)

where ϕℓ is a function defined in terms of the loss. For 0-1-loss, we have

ϕ01 (µ, x, α) = 1 + max
C⊆Y

∑

y∈C Φα(x, y)Tµ− 1

|C| (14)

and, for log-loss, we have

ϕlog (µ, x, α) = log
∑

y∈Y
exp

{

Φα(x, y)Tµ
}

(15)

Theorem 3.1. Let τ , λ ∈ R
m be such that the uncertainty set U in (11) is not the empty set. If µ∗ is a

solution of (13) for 0-1-loss, the classification rule

hU(y|x) =
(

Φα(x, y)Tµ∗ −max
C⊆Y

∑

y′∈C Φα(x, y′)Tµ∗ − 1

|C|
)

+
(16)

is a 0-1-MRC for U . If µ∗ is a solution of (13) for log-loss, the classification rule

hU(y|x) =
exp{Φα(x, y)Tµ∗}

∑

y′∈Y exp {Φα(x, y′)Tµ∗} (17)

is a log-MRC for U . In addition, the minimax risk R(U) is given by

R(U) = −τ Tµ∗ + λT|µ∗|+ Epte(x)ϕℓ (µ∗, x, α) . (18)

Proof. See Appendix B.

Remarks. The convex optimization problem in (13) can be addressed using conventional techniques such as
stochastic (sub)gradient method. Specifically, the optimization problem in (13) is an unconstrained convex
optimization problem for which stochastic subgradients can be readily obtained using the testing instances
xn+1, xn+2, . . . , xn+t. Note that such a subgradient can be efficiently computed even in cases with a sizable
number of classes using the greedy approach shown in (Fathony et al., 2016).

Regularization. The convex optimization problem (13) implements L1-type regularization, with the reg-
ularization parameter represented by the vector λ. This regularization term in (13) enables to penalize
differently each component of the parameter µ, ensuring that feature components with poorly estimated
expectations (i.e., components i with large λ(i)) are strongly penalized.

Classification rule. The form of the classification rules allows the adjustment of the confidence of the
predictions based on the weight function α(x, y). For very small values of α(x, y) for all y ∈ Y and a specific
testing instance x, the classifier hU uniformly assigns labels in the set Y for both losses, i.e., hU(y|x) = 1/|Y|
for all y ∈ Y.
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3.3 Generalization bounds

This subsection describes the generalization bounds of the proposed single-source methods. Such bounds
are given in terms of the smallest minimax risk, R∞, that corresponds with the uncertainty set given by the
exact expectations, and is defined by

R∞ = min
µ
−Epte(x,y)Φα(x, y)Tµ + Epte(x)ϕℓ (µ, x, α) . (19)

The MRC corresponding to that smallest minimax risk R∞ could only be obtained by an exact estimation of
the expectations of the feature mapping Φα that in turn would require an infinite amount of training samples.
The theorem below provides risk bounds for the proposed MRCs in terms of smallest minimax risks R∞,
showing how the proposed methods can lead to a significant decrease in the estimation error compared to
existing methods.

Theorem 3.2. Let U be a non-empty uncertainty set given by (11) and hU be an ℓ-MRC for U . If weights
α(x, y) and β(x, y) are given by (10) with C = B/

√
D for D ≥ 1 and

B = sup
x∈X ,y∈Y

pte(x, y)

ptr(x, y)
. (20)

Then, with probability at least 1− δ we have that

R(hU) ≤ R∞ + λT (|µ∞| − |µ∗|) + ‖µ∞ − µ∗‖1‖τ − Epte
Φα(x, y)‖∞

≤ R∞ + λT (|µ∞| − |µ∗|) + M‖µ∞ − µ∗‖1

√

2B2

Dn
log

2m

δ
(21)

where M is a constant satisfying ‖Φ(x, y)‖∞ ≤M for all x ∈ X , y ∈ Y.

Proof. See Appendix B.

Note that the difference between the risk R(hU) and the smallest minimax risk R∞ decreases with the
estimation error ‖τ − Epte

Φα(x, y)‖∞.

Corollary 3.3. If weights α(x, y), β(x, y) are given by (10) with C = B/
√

D for D ≥ 1, and B as in (20),
the estimation error is bounded as

∣

∣

∣

∣

∣

∣
τ − Epte(x,y)α(y)Φ(x, y)

∣

∣

∣

∣

∣

∣

∞
≤M

√

2‖β(x, y)‖2
∞

n
log

2m

δ
≤M

√

2B2

Dn
log

2m

δ
(22)

with probability 1− δ, where M is a constant satisfying that ‖Φ(x, y)‖∞ ≤M for all x ∈ X , y ∈ Y.

Proof. The proof is straightforward using Hoeffding’s inequality.

Using a reweighted approach, we have that

‖β(x, y)‖∞ = B := sup
x∈X ,y∈Y

pte(x, y)

ptr(x, y)
. (23)

If pte(x, y)/ptr(x, y) take large values, using weights (9) as in reweighted leads to large values, while if we
consider weights as in (10), we can have β(x, y) = C < pte(x, y)/ptr(x, y). This is achieved at the cost of
using values of α(x, y) = Cptr(x, y)/pte(x, y) < 1. Using the weights in (10) we have that

‖β(x, y)‖∞ =
1√
D

sup
x∈X ,y∈Y

pte(x, y)

ptr(x, y)
. (24)

This way, the methods proposed can achieve an effective sample size D times larger using the double-weighting
given by (10) with C = B/

√
D. This is achieved at the cost of using classification rules with confidence in a
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subregion of X ×Y, since the region where α(x, y) is significantly large shrinks when C decreases (i.e., when
D increases). Considering the ratio

minx∈X ,y∈Y α(x, y)

maxx∈X ,y∈Y α(x, y)
(25)

we have that using weights as in (10) the ratio is smaller than one, while if we consider weights given by
reweighted in (9) that ratio is one since all testing samples have the same confidence. Ratios in (25) signific-
antly smaller than one correspond to situations where some points are predicted with very low confidence.
This reduction in prediction confidence for points (x, y) with ptr(x, y) ≪ pte(x, y) reflects the scarcity of
training samples in such regions of X × Y.

3.4 Double-weighting for different distribution shifts

This subsection describes how to apply the unified double-weighting framework presented in Section 3 to
different types of distribution shifts. Specifically, in this section we describe the learning methodology using
double-weighting under single-source covariate and label shift.

3.4.1 Single-source covariate shift

In cases where pte(y|x) = ptr(y|x), the reference weights in (10) simplify to

α(x) = min

(

1,
ptr(x)

pte(x)
C

)

, β(x) = min

(

pte(x)

ptr(x)
, C

)

(26)

for any C > 0, so that the weights depend only on the covariates x.

The double-weighting (DW) approach has been recently proposed to deal with extreme weight values
in single-source covariate shift adaptation by utilizing weights for both training and testing samples
(Segovia-Martín et al., 2023).

3.4.2 Single-source label shift

In cases where pte(x|y) = ptr(x|y), the weights in (10) simplify to

α(y) = min

(

1,
ptr(y)

pte(y)
C

)

, β(y) = min

(

pte(y)

ptr(y)
, C

)

(27)

for any C > 0, so that the weights depend only on the labels y.

Weights as in (27) can alleviate the limitations of existing reweighted label shift approaches. Considering
both weights β(y) and α(y) we can assign low relevance to the training samples with labels that are unlikely
at testing, and also assign low confidence prediction to the labels that are underrepresented in the training
data.

Learning MRCs. We can derive the learning framework for label shift adaptation using the learning
methodology presented in Section 3.2 by considering that the weight functions α(y) and β(y) only depend
on the labels, simplifying the general distribution shift framework to address label shift scenarios.

The classification rules associated to the MRCs corresponding with the uncertainty set U in (11) with weight
functions α(y) and β(y) are given by

hU(y|x) =

(

α(y)Φ(x, y)Tµ∗ −max
C⊆Y

∑

y′∈C
(

α(y′)Φ(x, y′)Tµ∗)− 1

|C|

)

+

(28)

for 0-1-loss and

hU(y|x) =
exp{α(y)Φ(x, y)Tµ∗}

∑

y′∈Y exp {α(y′)Φ(x, y′)Tµ∗} (29)

for log-loss, where µ∗ is a solution of (13) considering weigh functions that only depend on the labels.
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Predictive per label confidence. The values of α(y) adjust the confidence with which each label is
classified. Low values of α(y) reflect lower confidence in the classification of certain labels, meaning a
poor learning of those labels during training due to their underrepresentation in the training data. The
components of the parameter µ associated to the labels with low value α(y) will be less reliable, since the
feature components are poorly estimated. Low values of α(y) imply that the classifier would not assign label
y regardless of the instance we want to classify.

In this section, we described the unified learning framework for double-weighting for single-source distribu-
tion shift adaptation. In the next section, we will extend the unified learning framework for multi-source
distribution shift adaptation.

4 Unified Double-Weighting Framework for Multi-Source Distribution Shifts

This section describes the unified learning framework of double-weighting for multi-source distribution shift
adaptation. We also present generalization bounds for the proposed framework in comparison with the
reweighted approach.

4.1 Double-weighting pairwise distributions

The proposed framework extends that presented in Section 3.1 for the case where we have multiple training
sources. We match multiple training distributions p1, p2, . . . , pS with the testing distribution pte (see Fig. 2),
exploiting the fact that, for any function f , we have that

Epte(x,y)αs(x, y)f(x, y) = Eps(x,y)βs(x, y)f(x, y) (30)

for s ∈ [S], can be attained by multiple choices of the sets of weights {αs(x, y)}s∈[S] and {βs(x, y)}s∈[S]. In
this paper, we propose the usage of weights tailored to general scenarios of multi-source distribution shift as
follows

αs(x, y) = min

(

ps(x, y)
∑S

s′=1 ps′(x, y)
,

ps(x, y)

pte(x, y)
C

)

, βs(x, y) = min

(

pte(x, y)
∑S

s′=1 ps′(x, y)
, C

)

(31)

for any C > 0. Such weights satisfy (30) and also address the limitations of reweighted approaches because

if the ratio pte(x, y)/
∑S

s=1 ps(x, y) take large values, using small αs(x, y) can enable having (30) with
moderate values of βs(x). In particular, for single-source distribution shift, the double-weighting approach
presented in (10) can alleviate the limitations of reweighted approaches by sacrificing confidence in samples
such that pte(x, y) > Cps(x, y). For the multi-source case, the same improvements can be achieved by only

sacrificing confidence in the points such that pte(x, y) > C
∑S

s=1 ps(x, y) that is a much smaller set because
∑S

s=1 ps(x, y) > ps′(x, y) for all s′ ∈ [S]. Using the same C as in Section 3.1, we alleviate the existing
trade-off between expectation estimates and confidence in the classification rules because we do not need to
have significant confidence in each source s ∈ [S]. Instead, we need that

∑S

s=1 αs(x, y) ≈ 1, that is achieved
since the weights in (31) take into account the rest of the sources. This allows us to consider smaller sets of
weights {βs(x)}s∈[S] without losing confidence in the classifiers. Specifically, weights as in (31) can achieve
higher confidence predictions in comparison with weights as in (10) for the testing instances such that ps(x, y)
take large values for multiple s ∈ [S].

The usage of weights {αs(x, y)}S
s=1 and {βs(x, y)}S

s=1 tailored to multi-source scenarios offers a significant
improvement over methods based on the reweighted approach and the double weighting for single-source
distribution shift. The proposed approach can handle general multi-source distribution shifts. In addition,
this approach results in enhanced generalization, as shown in Theorem 4.2.

4.2 MRC learning using general multi-source double-weighting

This subsection describes the proposed learning methodology for the unified view of double-weighting using
sets of weights {αs(x, y)}S

s=1 and {βs(x, y)}S
s=1. To simplify the exposition, we assume that all training

sources have an equal number of training samples. In Appendix C, we extend the paper’s results for cases
with a general number of training samples in each source.

9
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Uncertainty sets. To address the multi-source distribution shift, we construct an uncertainty set U defined
in terms of the intersection of S sets of constraints. Each set of constraints bounds the expectation of the
weighted feature Φαs

(x, y) for each training source s ∈ [S]. Then, the uncertainty set U can be defined as

U =
{

p ∈ ∆ (X × Y) : |EpΦαs
(x, y)− τ s| � λs for s = 1, 2, . . . , S and p(x) = pte(x),∀x ∈ X

}

(32)

where the expectation of feature mapping Φαs
(x, y) = αs(x, y)Φ(x, y), for s ∈ [S], is estimated using sample

averages of training samples from source s weighted by βs(x, y) as

τ s =
1

n

n
∑

i=1

Φβs
(xs,i, ys,i), for Φβs

(x, y) = βs(x, y)Φ(x, y). (33)

The proposed uncertainty set U , defined in (32), is the intersection of S sets of constraints, each of which char-
acterizing weighted feature expectation matching on Φαs

(x, y) in each source domain with weights αs(x, y).
This set is contained in each uncertainty set Us defined using (11) for each source s ∈ [S] and is generally
significantly smaller.

Convex optimization. MRCs corresponding with the uncertainty set (32) can be learned by solving the
convex optimization problem

min
{µs}S

s=1

−
S
∑

s=1

τ T
s µs +

S
∑

s=1

λT
s |µs|+ Epte(x)ϕℓ

(

{µs}S
s=1, x, {αs}S

s=1

)

(34)

where ϕℓ is a function defined in terms of the loss. For 0-1-loss, we have

ϕ01

(

{µs}S
s=1, x, {αs}S

s=1

)

= 1 + max
C⊆Y

∑S

s=1

∑

y∈C Φαs
(x, y)Tµs − 1

|C| (35)

and, for log-loss, we have

ϕlog

(

{µs}S
s=1, x, {αs}S

s=1

)

= log
∑

y∈Y
exp

{

S
∑

s=1

Φαs
(x, y)Tµs

}

(36)

Theorem 4.1. Let τ s ∈ R
m, λs ∈ R

m for s ∈ [S] be such that the uncertainty set U in (32) is not the
empty set. If {µ∗

s}S
s=1 is a solution of (34) for 0-1-loss, the classification rule

hU(y|x) =
(

S
∑

s=1

Φαs
(x, y)Tµ∗

s −max
C⊆Y

∑S

s=1

∑

y′∈C Φαs
(x, y′)Tµ∗

s − 1

|C|
)

+
(37)

is a 0-1-MRC for U . If {µ∗
s}S

s=1 is a solutions of (34) for log-loss, the classification rule

hU(y|x) =
exp{∑S

s=1 Φαs
(x, y)Tµ∗

s}
∑

y′∈Y exp
{

∑S

s=1 Φαs
(x, y′)Tµ∗

s

} (38)

is a log-MRC for U . In addition, the minimax risk R(U) is given by

−
S
∑

s=1

τ T

s µ∗
s +

S
∑

s=1

λT

s |µ∗
s|+ Epte(x)ϕℓ

(

{µ∗
s}S

s=1, x, {αs}S
s=1

)

. (39)

Proof. See Appendix B.

The theorem above is a generalization of Theorem 3.1 for the multi-source case. The classification rules in
(37) for 0-1-loss, and (38) for log-loss involve sample specific weighted combinations of the feature mappings

10
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given by {αs(x, y)}s∈[S]. This way, we allow different contributions from each source to classify each testing
instance, as detailed in the following subsections.

Source-dependent weights for training and testing. We obtain the benefits of the double-weighting
approach in the previous section by considering both weights βs(x, y) and αs(x, y) for each pair of training
and testing distribution, ps(x, y) and pte(x, y). We can assign low relevance to training samples that are
unlikely at testing and also assign low confidence to the testing instances that are unlikely at training. In
addition, since the uncertainty set U in (32) is contained in each uncertainty set Us defined using (11) for
each source s ∈ [S] we have that

min
h

max
p∈U

ℓ(h, p) ≤ min
s∈[S]

min
h

max
p∈Us

ℓ(h, p) (40)

and R(U) ≤ mins∈[S] R(Us). Therefore, the minimax risk of the proposed multi-source method is smaller
than the minimax risk of the single-source method. This fact also differentiates the proposed approach from
“summing over the sources,” which involves obtaining an MRC associated with the uncertainty set Us for
each source s ∈ [S] and then combining the classifiers. Directly applying Section 3.1 and Section 3.2 to each
source will not lead to the minimax risk R(U).

Sample-specific weights for classification rules. Considering the set of weights {αs(x, y)}s∈[S], the
prediction of each testing instance is obtained by combining the relevant feature mappings, leading to classi-
fication rules that involve sample-specific combinations of feature mappings given by {αs(x, y)}s∈[S]. Since
the set {αs(x, y)}s∈[S] depends on x and y, we allow different contributions from each source to classify each
testing instance. This way, the proposed learning methodology is capable of learning complex classification
rules to classify each instance with high confidence. Even if some αs(x, y) are small for a particular source s
and pair (x, y), we may be able to still achieve high confidence using the information from other sources. In

particular, we can leverage other αs′(x, y) to classify that instance as long as we have
∑S

s=1 αs(x, y) ≈ 1.

4.3 Generalization bounds

This subsection describes the generalization bounds of the proposed methods. Such bounds are given in terms
of the smallest minimax risk, R∞, that corresponds with the uncertainty set given by the exact expectations,
and is defined by

R∞ = min
{µs}S

s=1

−Epte(x,y)

S
∑

s=1

Φαs
(x, y)Tµs + Epte(x)ϕℓ

(

{µs}S
s=1, x, {αs}S

s=1

)

. (41)

The MRC corresponding to that smallest minimax risk R∞ could only be obtained by an exact estimation
of the expectations of the feature mapping Φαs

, for s ∈ [S], that in turn would require an infinite amount of
training samples from each source s ∈ [S]. The theorem below provides risk bounds for the proposed MRCs
in terms of smallest minimax risks R∞, showing how the proposed methods can lead to a significant decrease
in the estimation error compared to existing methods.

Theorem 4.2. Let U be a non-empty uncertainty set given by (32) and hU be an ℓ-MRC for U . If weights
{αs(x, y)}s∈[S] and {βs(x, y)}s∈[S] are given by (31) with C = B/

√
D for D ≥ 1 and

B = sup
x∈X ,y∈Y

pte(x, y)
∑S

i=1 pi(x, y)
. (42)

Then, with probability at least 1− δ we have that

R(hU) ≤ R∞ +

S
∑

s=1

λT

s (|µ∞
s | − |µ∗

s|) + ‖µ∞ − µ∗‖1 max
s∈[S]

‖τ s − Epte
Φαs

(x, y)‖∞

≤ R∞ +

S
∑

s=1

λT

s (|µ∞
s | − |µ∗

s|) + M‖µ∞ − µ∗‖1

√

2B2

Dn
log

2m

δ
(43)

where µ∞ = [µ∞
1 , . . . , µ∞

S ], µ∞ = [µ∗
1, . . . , µ∗

S ], n is the number of training samples available in each domain
s ∈ [S], and M is a constant satisfying ‖Φ(x, y)‖∞ ≤M for all x ∈ X , y ∈ Y.

11
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Proof. See Appendix B.

Note that, similarly to Theorem 3.2, the difference between the risk R(hU) and the smallest min-
imax risk R∞ decreases as the maximum of the estimation errors over the training sources s ∈ [S],
maxs∈[S] ‖τ s − Epte

Φα(x, y)‖∞, decreases. The set of weights {αs(x, y)}s∈[S] and {βs(x, y)}s∈[S] allow us
to reduce the estimation error in ‖τ s −Epte

Φαs
(x, y)‖∞, as detailed in the following section. We also detail

how weights for multi-source in (31) further reduce the maximum value of the weights ‖βs(x, y)‖ for each
source s ∈ [S] in comparison with weights for single-source in (10).

4.4 Leveraging complementary information from multiple sources

In this subsection, we explain how the usage of complementary information among different sources leads to
improved effective sample size. The bound in Theorem 4.2 depends on the estimate of Epte

Φαs
(x, y) and, as

shown in Corollary 3.3, the error in the estimate depends on the values of the weights βs(x, y).

In Section 3.3 we show that the proposed single-source double-weighting can achieve an effective sample size
D times larger than reweighted approach considering weights given in (10). This was achieved at the cost
of using classification rules with significant confidence in a subregion of X that shrinks when D increases.

In multi-source cases we can improve the trade-off presented in Section 3.3 between the error in the estimation
of Epte

Φαs
(x, y) and the confidence of the classification rules. In particular, using weights as in (31) with

C = B/
√

D and B = supx∈X ,y∈Y pte(x, y)/
∑S

i=1 pi(x, y), we have that

‖βs(x, y)‖∞ =
B√
D

=
1√
D

sup
x∈X ,y∈Y

pte(x, y)
∑S

i=1 pi(x, y)
. (44)

In the following, we will compare the reference solution for multi-source double-weighting in (31) and the
reference solution for single-source double-weighting in (10). If we consider weights βs(x, y) as in (10) with
‖βs(x, y)‖∞ = Bs/

√
D and Bs defined in (20), we have that for any source s

B = sup
x∈X ,y∈Y

pte(x, y)
∑S

i=1 pi(x, y)
≤ sup

x∈X ,y∈Y

pte(x, y)

ps(x, y)
= Bs (45)

and often B ≪ Bs as long as the supports of the training sources significantly overlap (ps(x, y) ≫ 0 for
multiple s ∈ [S]). When we decrease ‖βs(x, y)‖∞, i.e., when we consider larger D, the region where the
classifier has significant confidence also decreases. Similarly as in Section 3.3, the ratio

minx∈X ,y∈Y
∑S

s=1 αs(x, y)

maxx∈X ,y∈Y
∑S

s=1 αs(x, y)
(46)

is C(1/B) using weights for multi-source in (31), while using weights for single-source in (10) such ratio is

C((1/S)
∑S

s=1 1/Bs), that is smaller than C(1/B) since B ≤ Bs for any s ∈ [S]. This means that using
weights as in (31) the region of X ×Y where the confidence of the classifier is significantly large is bigger than
if we use weights as in (10). Using the set of weights {αs(x, y)}S

s=1 in (31) where each αs(x, y) depend on all
the sources s ∈ [S], we can improve the trade-off between estimation error and confidence of the classifiers.
Using weights as in (31), we do not need significant confidence αs(x, y) ≈ 1 for each source s ∈ [S] but rather

that there is enough confidence among all sources, i.e., that
∑S

s=1 αs(x, y) ≈ 1.

4.5 Double-weighting for different multi-source distribution shifts

This subsection describes how to apply the unified multi-source double-weighting framework presented in
Section 4 to different types of distribution shifts. Specifically, we describe the learning methodology using
double-weighting under multi-source covariate and label shift.

12
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4.5.1 Multi-source covariate shift

In a scenario with multi-source covariate shift we have that pte(y|x) = ps(y|x) for s ∈ [S]. Hence, the
reference weights in (31) simplify to

αs(x) = min

(

ps(x)
∑S

i=1 pi(x)
,

ps(x)

pte(x)
C

)

, βs(x) = min

(

pte(x)
∑S

i=1 pi(x)
, C

)

(47)

for any C > 0, so that the weights depend only on the covariates x.

The usage of weights {αs(x)}S
s=1 and {βs(x)}S

s=1 tailored to multi-source covariate shift scenarios consti-
tutes a substantial improvement compared to methods based on reweighted approach. It also constitutes a
substantial improvement with respect to the double-weighting of a single-source covariate shift, since using
weights as in (47) we alleviate the existing trade-off since we do not need to have significant confidence in

each source s ∈ [S]. Instead, we need that
∑S

s=1 αs(x, y) ≈ 1, that is achieved since the weights in (47) take
into account the rest of the sources. This allows us to consider smaller sets of weights {βs(x)}s∈[S] without
losing confidence in the classifiers.

We can derive the learning for multi-source covariate shift adaptation using the learning methodology in
Section 4.2 by considering that the sets of weight functions {αs(x)}s∈[S] and {βs(x)}s∈[S] only depend on
the covariates. This simplifies the general distribution shift framework to address multi-source covariate shift
scenarios.

The classification rules associated to the MRCs corresponding with the uncertainty set U in (32) with weight
functions {αs(x)}s∈[S] and {βs(x)}s∈[S] are given by

hU(y|x) =
(

S
∑

s=1

αs(x)Φ(x, y)Tµ∗
s −max

C⊆Y

∑S

s=1

∑

y′∈C αs(x)Φ(x, y′)Tµ∗
s − 1

|C|
)

+
(48)

for 0-1-MRC and

hU(y|x) =
exp{∑S

s=1 αs(x)Φ(x, y)Tµ∗}
∑

y′∈Y exp
{

∑S

s=1 αs(x)Φ(x, y′)Tµ∗
} (49)

for log-loss, where {µ∗
s}s∈[S] is a solution of (34) considering sets of weight functions that only depend on

the covariates.

Predictive per source and per instance confidence. The classification rules learned for multi-source
covariate shift are given in terms of the set of weights {αs(x)}s∈[S]. The weights αs(x) adjust the confidence
with which testing instance x is classified using the contribution from the source s. Low values of αs(x) imply
that if we rely only on the information from source s, the classifier would uniformly assign labels in the set
of labels Y. By considering weights αs(x) for each source, we can classify instance x with high confidence

even when some of the αs(x) take small values, as long as
∑S

s=1 αs(x) ≈ 1.

4.5.2 Multi-source label shift

In a scenario with multi-source label shift we have that pte(x|y) = ps(x|y) for s ∈ [S]. Hence, the reference
weights in (31) simplify to

αs(y) = min

(

δs(y),
ps(y)

pte(y)
C

)

, βs(y) = min

(

δs(y)
pte(y)

ps(y)
, C

)

(50)

for any C > 0, where δs(y) = ps(y)/
∑S

i=1 pi(y), so that the weights depend only on the labels y.

The usage of weights {αs(y)}S
s=1 and {βs(y)}S

s=1 tailored to multi-source label shift scenarios constitutes
a substantial improvement compared to methods based on the reweighted approach. As for multi-source
covariate shift, it also constitutes a substantial improvement with respect to the double-weighting of single-
source label shift, since using weights as in (50) alleviate the existing trade-off between estimation errors
and confidence of the classification rules, as detailed in Section 4.4.
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As for multi-source covariate shift, we can simplify the general distribution shift framework in Section 4.2 to
address multi-source label shift scenarios by considering that the sets of weight functions {αs(y)}s∈[S] and
{βs(y)}s∈[S] only depend on the labels.

The classification rules associated to the MRCs corresponding with the uncertainty set U in (32) with weight
functions {αs(y)}s∈[S] and {βs(y)}s∈[S] are given by

hU(y|x) =
(

S
∑

s=1

αs(y)Φ(x, y)Tµ∗
s −max

C⊆Y

∑S

s=1

∑

y′∈C αs(y)Φ(x, y′)Tµ∗
s − 1

|C|
)

+
(51)

for 0-1-MRC and

hU(y|x) =
exp{∑S

s=1 αs(y)Φ(x, y)Tµ∗}
∑

y′∈Y exp
{

∑S

s=1 αs(y′)Φ(x, y′)Tµ∗
} (52)

for log-loss, where {µ∗
s}s∈[S] is a solution of (34) considering sets of weight functions that only depend on

the labels.

Predictive per source and per label confidence. The classification rules learned for multi-source label
shift are given in terms of the set of weights {αs(y)}s∈[S]. The weights αs(y) adjust the confidence with
which label y is classified using the contribution from the source s. Low values of αs(y) imply that if we rely
only on the information from source s, the classifier would never assign label y regardless of the instance we
want to classify. By considering weights αs(y) for each source, we can learn how to classify with label y with

high confidence even when some of the αs(y) take small values, as long as
∑S

s=1 αs(y) ≈ 1.

Remark.The unified framework proposed in Section 4 can be used to adapt to other types of distribution
shifts, such as conditional shifts or even a general distribution shift. For these types of distribution shifts,
additional assumptions need to be considered in order to be able to obtain adequate values for weights. For
instance, in (Schweikert et al., 2008; Sun et al., 2011; Chattopadhyay et al., 2012) it is assumed that labeled
examples of the test distribution are known, while in (Zhang et al., 2013; 2015) a relationship between the
conditional distributions is assumed.

In this section, we described the unified learning framework for double-weighting for multi-source distribution
shift adaptation. In the next section, we will present the algorithms and the implementation of the proposed
double-weighting for specific distributions shifts.

5 Practical Algorithm and Implementation

This section describes the implementation of the proposed techniques for double-weighting label shift
(DW-LS), double-weighting multi-source (MS) covariate shift (DW-MSCS), and double-weighting MS la-
bel shift (DW-MSLS) detailed in Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

5.1 Practical algorithm for double-weighting label shift

Algorithm 1 shows the implementation of the proposed techniques for DW-LS that is further described in
the following. In this section, we assume that n training samples (x1, y1), (x2, y2), . . . , (xn, yn) and t testing
instances xn+1, xn+2, . . . , xn+t are available at learning.

Computing weights. We obtain weights α and β considering the reference solution in (27). The weights
are obtained using the ratio ω(y) := pte(y)/ptr(y), for y ∈ Y, that can be estimated using multiple
methods (Lipton et al., 2018; Azizzadenesheli et al., 2019; Garg et al., 2020). In particular the method
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Algorithm 1 The proposed algorithm for label shift adaptation: DW-LS

Input: Training samples (x1, y1), (x2, y2) . . . , (xn, yn)
Testing instances xn+1, xn+2, . . . , xn+t

Hyperparameters λ and D
Output: Weights β̂ and α̂

Classifier parameter µ∗, and Minimax risk R(U)
1: p̂te(y)/p̂tr(y)← solution of (53)

2: β̂, α̂← reference solution in (54)

3: τ ← 1
n

∑n

i=1 β̂(yi)Φ(xi, yi)
4: µ∗ ← solution of (55)
5: R(U)← optimum value of (55)

in (Zhang et al., 2013) estimates such ratio by solving the optimization problem

min
ω

∥

∥

∥

∥

∥

1

t

t
∑

i=1

Kx(xn+i)− ÛX |Y
1

n

n
∑

i=1

eyi
ωKy(yi)

∥

∥

∥

∥

∥

2

Hx

s.t. 0 ≤ eyi
ω ≤ B, for i = 1, 2, . . . , n

∣

∣

∣

∣

∣

1

n

n
∑

i=1

eyi
ω − 1

∣

∣

∣

∣

∣

≤ ǫ (53)

where Kx : X −→ H is a feature map corresponding with a reproducing kernel Hilbert space (RKHS) Hx

with kernel kx(x, x̄) = 〈Kx(x), Kx(x̄)〉Hx
, Ky : Y −→ Hy is a feature map corresponding with a RKHS

Hy with kernel ky(y, ȳ) = 〈Ky(y), Ky(ȳ)〉Hy
, and ÛX |Y is an estimation of the operator that maps Hy

into Hx, representing the conditional embedding of p(x|y). The optimization problem (53) minimizes the
discrepancy between two empirical means of distributions ptr and pte considering embeddings of conditional
distributions, studied in (Fukumizu et al., 2004; Song et al., 2009; 2010). The minimization problem in (53)
can be written as a standard quadratic problem that can be solved by applying standard techniques. In
particular, the parameters related to (53) are determined as proposed in (Song et al., 2009; Zhang et al.,
2013).

Using the estimated ratios p̂te(y)/p̂tr(y), the weights α and β are computed using (27) as

β(y) = min

(

p̂te(y)

p̂tr(y)
,

1√
D

max
y′∈Y

p̂te(y′)

p̂tr(y′)

)

, α(y) = min

(

p̂tr(y)

p̂te(y)

1√
D

max
y′∈Y

p̂te(y′)

p̂tr(y′)
, 1

)

(54)

for y ∈ Y.

Learning MRCs. After computing the sets of weights, we solve the optimization problem in (13) by
approximating the expectation term in (13) using the t testing instances xn+1, xn+2, . . . , xn+t and n training
samples (x1, y1), (x2, y2), . . . , (xn, yn), given (7), as

min
µ
−τ Tµ + λT|µ|+ 1

n + t

(

t
∑

i=1

ϕℓ (µ, xn+i, α) +

n
∑

i=1

β(yi)

α(yi)
ϕℓ (µ, xi, α)

)

(55)

that is an unconstrained convex optimization problem and can be addressed in practice using conventional
optimization methods such as stochastic subgradient methods.

We determine hyperparameters D and λ following the same approach as in (Segovia-Martín et al., 2023),
detailed in Appendix E.

Complexity and implementation without testing instances. The computational complexity of the
proposed methods for label shift adaptation is similar to that of existing methods. In particular, the step
of obtaining the parameters of the classifiers solving the convex optimization problem in (55) has similar
complexity as that for conventional methods. The main difference is that existing reweighted methods
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estimate the expectation term in (13) utilizing the training samples available at learning. In our approach,
if t testing instances are available at learning, we utilize both training and testing instances to estimate the
expectation term in (13), making use of the equality in (7).

5.2 Practical algorithm for double-weighting multi-source covariate shift

This section describes the implementation of the proposed DW-MSCS, detailed in Algorithm 2. In this
section, we assume that ns training samples (xs,1, ys,1), . . . , (xs,ns

, ys,ns
) from each source s ∈ [S] and t

testing instances xn+1, xn+2, . . . , xn+t are available at learning.

Algorithm 2 The proposed algorithm for multi-source covariate shift adaptation: DW-MSCS

Input: Training samples {(xs,1, ys,1), . . . .(xs,ns
, ys,ns

)}s∈[S]

Testing instances xn+1, xn+2, . . . , xn+t

Hyperparameters {λs}S
s=1 and D

Output: Sets of weights {β̂s}s∈[S] and {α̂s}s∈[S]

Classifier parameter {µ∗
s}S

s=1, Minimax risk R(U)

1: {β̂s}s∈[S], {α̂s}s∈[S] ← solution of (56)

2: τ s ← 1
ns

∑ns

i=1 β̂s(xs,i)Φ(xs,i, ys,i) for s ∈ [S]
3: {µ∗

s}s∈[S] ← solution of (57)
4: R(U)← optimum value of (57)

Computing weights. We present an extension of the kernel mean matching (KMM), multi-source KMM
(MS-KMM), to determine weights {βs ∈ R
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t}s∈[S] for multiple sources by solving the optimization
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where Kx : X −→ Hx is a feature map corresponding with a RKHS Hx with kernel kx(x, x̄) =
〈Kx(x), Kx(x̄)〉H. The optimization problem (56) minimizes the sum of the discrepancy between two em-
pirical means of distributions ps and pte, for s ∈ [S], subject to multiple constraints. The hyperparameter
D ≥ 1 balances the confidence of the classification rules. The minimization problem in (56) can be written
as a standard quadratic problem, as detailed in Appendix D, that can be solved by applying standard tech-
niques. The appendix also shows a significant decrease in estimation error, similar to that of Theorem 4.2
for multi-source covariate shift.

Learning MRCs. After computing the sets of weights, we learn the parameters of the classifier in (48)
for 0-1-loss (resp. (49) for log-loss) solving (34). We use the set of mean vectors {τ s}s∈[S] defined in (33)
and the set of confidence vector {λs}s∈[S]. We solve the optimization problem in (34) by approximating the
expectation using the t testing instances xn+1, xn+2, . . . , xn+t as

min
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)

(57)

that is an unconstrained convex optimization problem and can be addressed in practice using conventional op-
timization methods such as stochastic subgradient methods. We determine both hyperparameters {λs}s∈[S]

and D following the same approach as in (Segovia-Martín et al., 2023), detailed in Appendix E.
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Complexity. The computational complexity of the step for MS-KMM that obtains weights is similar to
existing methods Sun et al. (2011), that compute KMM S times. The main difference in the proposed
methods is that (56) has tS additional variables and t(S + 1) additional constraints corresponding to the
weights {αs}S

s=1. Solving the optimization in (57) to obtain the classifier parameters has similar complexity
as that for conventional methods, since we consider Sm variables and conventional methods compute S times
a convex optimization problem with m variables.

5.3 Practical algorithm for double-weighting multi-source label shift

This section describes the implementation of the proposed DW-MSLS, detailed in Algorithm 3. In this
section, we assume that ns training samples (xs,1, ys,1), (xs,2, ys,2), . . . , (xs,ns

, ys,ns
) from each source s ∈ [S]

and t testing instances xn+1, xn+2, . . . , xn+t are available at learning.

Algorithm 3 The proposed algorithm for multi-source label shift adaptation: DW-MSCS

Input: Training samples {(xs,1, ys,1), . . . .(xs,ns
, ys,ns

)}s∈[S]

Testing instances xn+1, xn+2, . . . , xn+t

Hyperparameters {λs}S
s=1 and D

Output: Sets of weights {β̂s}s∈[S] and {α̂s}s∈[S]

Classifier parameter {µ∗
s}S

s=1, and Minimax risk R(U)
1: p̂te(y)/p̂s(y)← solution of (53) for s ∈ [S]

2: β̂s, α̂s ← reference solution in (58)

3: τ s ← 1
ns

∑ns

i=1 β̂s(yi)Φ(xs,i, ys,i) for s ∈ [S]
4: {µ∗

s}s∈[S] ← solution of (59)
5: R(U)← optimum value of (59)

Computing weights. We obtain the set of weights {αs}s∈[S] and {βs}s∈[S] considering the reference
solution in (50). The weights are obtained estimating the ratios pte(y)/ps(y) for each source s ∈ [S], and
the ratios are estimated solving (53) for each source s ∈ [S]. The set of weights {αs}s∈[S] and {βs}s∈[S] are
computed as

βs(y) = min
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(58)

for y ∈ Y and s ∈ [S].

Learning MRCs. After computing the sets of weights, we learn the parameters of the classifier in (51) for
0-1-loss (resp. (52) for log-loss. We solve the optimization problem in (34) by approximating the expectation
using the t testing instances xn+1, xn+2, . . . , xn+t as

min
{µs}s∈[S]

−
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)

(59)

that is an unconstrained convex optimization problem and can be addressed in practice using conventional
optimization methods such as stochastic subgradient methods. We determine hyperparameters D and {λ}S

s=1

following the same approach as in for Algorithm 2, detailed in Appendix E.

Complexity and implementation without testing instances. The computational complexity of the
proposed methods for multi-source label shift adaptation is similar to existing methods. In particular, the
computational complexity of the step for KMM in (53) that obtains weights is similar to existing methods
Zhang et al. (2015), that compute all the weights in a single optimization problem.

Solving the optimization in (57) to obtain the classifier parameters has similar complexity as that for con-
ventional methods, since we consider Sm variables and conventional methods compute S times a convex
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optimization problem with m variables. The main difference is that existing reweighted methods estimate
the expectation term in (34) utilizing the training samples available at learning. In our approach, if t testing
instances are available at learning, we utilize the testing instances to estimate the expectation term in (34).

6 Experiments

This section shows experimental results for the proposed approaches in comparison with the state-of-the-art
methods. The source code for the methods presented is available in the supplementary materials. The results
are complemented by those in Appendix E that provide further implementation details.

6.1 Experiments for single-source label shift adaptation

This subsection shows experimental results for the proposed approach for label shift adaptation.

Baseline methods. As baseline, we employ logistic regression (No Adapt.), which ignore label shift. We
also consider four label shift adaptation methods: Reweighted where we perform importance weighting
using the true marginal ratios; DW where we perform double-weighting using the true marginal ratios
to compute the reference solution in (27); black box shift estimation (BBSE) (Lipton et al., 2018) that
compute marginal ratios using an invertible confusion matrix; regularized learning under label shift (RLLS)
(Azizzadenesheli et al., 2019) that adds a regularization term to the weight computation problem; and target
shift (TarS) (Zhang et al., 2013) that obtain weights solving a KMM problem.

Experimental details. The methods BBSE (Lipton et al., 2018), RLLS (Azizzadenesheli et al., 2019), and
TarS (Zhang et al., 2013) have been implemented as detailed in their references. For the proposed method,
the corresponding hyperparameters are obtained following the approach described in (Segovia-Martín et al.,
2023), as detailed in Appendix E.

6.1.1 Experiment with synthetic data

In the experiments using synthetic data, we show how the proposed approach can achieve label shift adapt-
ation in a scenario where the existing reweighted approaches are challenged. For such results, the training
and testing data are drawn from Gaussian distributions

p(x|y = 1) = N
(

x; [0.5, 0]
T

, 0.1I
)

p(x|y = 2) = N
(

x; [−0.5, 0]
T

, 0.1I
)

(60)

and labels are y = 1 if x(1)x(2) ≥ 0, y = 2 otherwise. We fix pte(y = 1) = pte(y = 2) = 0.50 and
we consider training distribution of the form ptr(y = 1) = δ, ptr(y = 2) = 1 − δ. We use values
δ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} to simulate different relations between the marginals
of training and testing labels. We assume that the true marginal probabilities pte(y) and ptr(y) are known,
and compute weights as β(y) = pte(y)/ptr(y) for the reweighted approach, and as in (27) for the proposed
double-weighting approach. In addition, for each type of label shift (value of δ), we carried out 200 random
repetitions with 100 training samples and 100 testing samples.

Results. Figure 3 shows box-plots corresponding to the classification error of existing and proposed ap-
proaches. The results in the figure show how methods that do not take into account label shifts obtain poor
performances. In addition, the figure show that reweighted methods obtain poor performances in the cases
where δ takes small values (ptr(y) is small) because the ratios β(y) = pte(y)/ptr(y) become large, as discussed
in Section 3.1. The proposed methods can adapt to label shifts in situations where the shift between train-
ing and testing distribution challenges reweighted approaches. In particular, the double-weighting approach
allows us to consider smaller weights β(y) in those situations by reducing the corresponding weight α(y).

6.1.2 Experiments with real datasets

In the second set of experiments, we assess the performance of the proposed methods in comparison with
existing techniques using real datasets publicly available in the UCI repository Dua & Graff (2017). We
generate label shifts in the datasets following (Lipton et al., 2018). In the “tweak-one” shift, the training
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Figure 3: Classification error for the synthetic experiment using different approaches. The boxplot shows
the different classification error with different proportions of the labels ratios for the training sets.

distribution is uniform over the set of possible labels, ptr(y) = 1/|Y|, while in the testing distribution, we
assign probability pte(y) = δ to half of the classes (rounded up). We set δ = 0.05 for 10 repetitions and
δ = 0.10 for another 10 repetitions. In the “knock-out” shift, the testing distribution is uniform over the
set of possible labels, while in the training distribution, we remove a proportion δ of the samples from the
selected classes. We set δ = 0.9 and select half of the classes (rounded up) for all 20 repetitions. In the
“Dirichlet” shift, the training distribution is uniform over the set of possible labels, while in the testing
distribution follow a Dirichlet distribution with parameter γ = 0.1. Note that we conducted experiments
using Dirichlet shift exclusively on multiclass datasets. For the experiments using “redwine”, we considered
only three of the labels (2, 3, 4), discarding those with a small number of samples (0, 1, 5).

Table 1: Classification errors in 16 scenarios show that the proposed methods can more adequately adapt to
multi-source covariate shift. The bold values represent the lowest classification error in each scenario.

Datasets
Type of No Exact prob. Estimated prob.
Shift Adaptation Reweighted DW TarS BBSE RLLS DW-LS

adult
tweak-one .43 ± .01 .08 ± .02 .07 ± .02 .07 ± .02 .29 ± .01 .24 ± .24 .07 ± .02

knock-out .38 ± .02 .27 ± .03 .26 ± .02 .30 ± .04 .42 ± .05 .43 ± .06 .28 ± .03

diabetes
tweak-one .45 ± .02 .08 ± .03 .11 ± .03 .09 ± .03 .33 ± .05 .37 ± .15 .08 ± .03

knock-out .40 ± .01 .32 ± .03 .29 ± .02 .33 ± .03 .45 ± .06 .46 ± .05 .29 ± .02

mammo
tweak-one .37 ± .01 .08 ± .02 .08 ± .02 .12 ± .02 .11 ± .02 .18 ± .25 .11 ± .01

knock-out .31 ± .01 .21 ± .02 .20 ± .01 .21 ± .02 .44 ± .11 .44 ± .11 .23 ± .09

usenet2
tweak-one .50 ± .02 .33 ± .01 .30 ± .02 .34 ± .01 .29 ± .01 .32 ± .11 .24 ± .02

knock-out .38 ± .03 .41 ± .05 .37 ± .02 .39 ± .03 .39 ± .03 .39 ± .03 .38 ± .02

credit
tweak-one .48 ± .02 .14 ± .01 .11 ± .01 .19 ± .01 .32 ± .05 .29 ± .17 .16 ± .03

knock-out .27 ± .03 .23 ± .06 .21 ± .05 .24 ± .06 .25 ± .08 .27 ± .09 .22 ± .05

20news
tweak-one .64 ± .03 .59 ± .06 .44 ± .05 .58 ± .08 .59 ± .07 .57 ± .07 .58 ± .09
knock-out .64 ± .02 .63 ± .04 .61 ± .03 .64 ± .04 .64 ± .02 .65 ± .03 .66 ± .03
dirichlet .66 ± .04 .65 ± .05 .61 ± .02 .65 ± .04 .65 ± .04 .65 ± .05 .64 ± .02

redwine
tweak-one .66 ± .13 .41 ± .22 .24 ± .06 .48 ± .22 .55 ± .26 .59 ± .25 .52 ± .25
knock-out .60 ± .03 .51 ± .04 .49 ± .03 .55 ± .07 .58 ± .07 .58 ± .07 .55 ± .09

dirichlet .65 ± .07 .56 ± .13 .51 ± .07 .58 ± .12 .58 ± .12 .58 ± .12 .57 ± .12

Results. Table 1 shows the averaged classification error across various datasets and scenarios of single-
source label shift, along with their respective standard deviations. The second column of Table 1 describes
the different types of label shifts described above.

Overall, the experimental results show how the proposed methods provide improved adaptation to single-
source label shift in binary and multiclass classification setting in situations where the distribution of training
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is uniform while that of testing is not and vice versa. The label shift adaptation improvement for the proposed
DW methods compared to reweighted methods is also observed when the training and testing distributions
are assumed to be known. Note that for “knock-out” shift, the ratios pte(y)/ptr(y) become large since ptr(y)
is small for certain labels y ∈ Y. In these cases, reweighted methods achieve poor performance compared
with the double-weighting approach that can reduce the large values β(y) by reducing the corresponding
value α(y). The results agree with the theoretical results in Corollary 3.3 that show how the proposed
methodology results in increased effective sample size in comparison with the reweighted approach.

6.2 Experiments for multi-source covariate shift adaptation

This subsection shows experimental results for the proposed approach for multi-source covariate shift adapt-
ation in comparison with the state-of-the-art methods.

Baseline methods. Three single-source baselines are employed: logistic regression (LR), which ignore
multi-source covariate shift, KMM (Huang et al., 2006; Gretton et al., 2008) and double-weighting covariate
shift (DW-GCS) (Segovia-Martín et al., 2023), where we compute a classification rule from each of the
training sources and evaluate the classification rule that achieves the smallest classification error on the testing
domain. We also compare with the performance obtained by the 2-stage weighting for MS domain adaptation
(2SW-MDA) method that extends the reweighted approach for multi-source covariate shift (Sun et al., 2011),
and the MS distributionally robust learning (MS-DRL) method that considers the same combination of
classifiers learned independently on each of the sources (Wang et al., 2023).

Experimental details. The methods KMM (Huang et al., 2006), DW-GCS (Segovia-Martín et al., 2023),
2SW-MDA (Sun et al., 2011), and MS-DRL (Wang et al., 2023) have been implemented as detailed in their
references. In addition, we implement a practical version of the theoretical work proposed in (Mansour et al.,
2008), called combination-weighted KMM (CW KMM), where the initial set of classifiers {hs}s∈[S] are
learned using KMM. Then, we combine the classifiers to obtain a new classification rule of the form
h(y|x) =

∑S

s=1 γs(x)hs(y|x), with γs(x) = ps(x)/
∑S

i=1 pi(x) for s ∈ [S], where the training probabilities
ps(x) are estimated using kernel density estimation (KDE) (Sugiyama & Kawanabe, 2012). For the existing
methods, we consider the default hyperparameter values provided by the authors. For the proposed method,
the corresponding hyperparameters are obtained following the approach described in (Segovia-Martín et al.,
2023), as detailed in Appendix E.

6.2.1 Experiment with synthetic data

In the experiments using synthetic data, we show how the proposed approach can achieve multi-source
covariate shift adaptation in a scenario where the existing approaches are challenged. For such results, the
training and testing data are drawn from Gaussian distributions

p1(x) = N
(

x; [−0.5, 0]
T

, 0.52I
)

p2(x) = N
(

x; [0.5, 0]
T

, 0.52I
)

pte(x) = N
(

x; [0, 0]
T

, 0.52I
)

(61)

and labels are

y =

{

sign(x(2)) if x(1) ≥ 0
−sign(x(2)) if x(1) < 0.

(62)

Notice that this synthetic data can be easily classified switching between classifiers hx(1)≥0 and

hx(1)<0depending on the sign of x(1). However the synthetic data is quite difficult to classify without knowing
the change of sign corresponding to x(1). We carried out 100 random repetitions with 200 samples from each
source and 200 testing samples and considered linear feature mapping. In addition, as a benchmark, we
implemented an LR referred to as LR ideal that classifies using hx(1)≥0 when x(1) ≥ 0, and using hx(1)<0

when x(1) < 0, i.e., has access to the optimal assignment of the testing instances to their respective classifier.

Results. Figure 4 shows box-plots corresponding to the classification error of existing and proposed ap-
proaches. Existing approaches obtain initial classifiers learned from each source and then combine them
regardless of the testing instance x we want to classify, i.e., consider final classification rules of the form
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Figure 4: Classification error for the synthetic experiment using different approaches. The boxplot shows how
considering classification rules that involve instance-dependent weighted combinations of feature mappings
is needed (DW-MSCS). Note that LR ideal is a lower bound as it is the ideal case when we know the optimal
assignment of testing instances to their respective classifier.

h = γ1h1 + γ2h2, with γ1, γ2 ≥ 0, γ1 + γ2 = 1 The figure shows how those approaches obtain poor perform-
ances since the assignment of the testing instances to their respective classifier is not properly conducted.
The proposed methods can adapt to multi-source covariate shift considering classification rules that involve
instance-dependent weighted combinations of feature mappings, i.e., the final classification rules are given
in terms of combinations of γ1(x) and γ2(x), with γ1(x), γ2(x) ≥ 0, γ1(x) + γ2(x) = 1 for all x ∈ X . This
way, the classifiers learned assign labels to each testing instance x using the sources that are more likely to
classify that instance.

6.2.2 Experiments with real datasets

In the second set of experiments, we assess the performance of the proposed methods in comparison with
existing techniques using real datasets. We consider Spam Detection, 20 Newsgroups, and Sentiment classi-
fication datasets. For the experiments using “Spam detection” dataset, we consider a binary classification
problem, where we select the labeled email set as the testing set, and the three annotated email sets as
the training sources similar to done in (Duan et al., 2012). For the experiments using “20 Newsgroups”
dataset, we consider 6 binary problems and 3 multiclass problems. Each of the training sources is generated
by selecting the samples from two subcategories selected randomly for each binary task, and the testing
set by selecting the samples from all the subcategories. For the experiments using “Sentiment” dataset, we
consider 5 binary problems. Each of the training sources is generated by selecting the samples from each of
the domains, and the testing set by selecting the samples from all domains.

Results. Table 2 shows the averaged classification error across various datasets and scenarios of multi-source
covariate shift, along with their respective standard deviations. The first column of Table 2 describes the
different classification tasks. The experimental results show that the proposed methods provide improved
adaptation to multi-source covariate shift in binary and multiclass classification settings. Since the testing set
contains samples from an unseen domain for the training sources, in the experiments the support of the testing
distribution is larger than the support of the training distribution. Therefore, methods like 2SW-MDA,
MS-DRL, and CW KMM, that obtain weights using reweighted techniques, result in poor performance
even when compared to LR methods. This is clearly observed in the experiments using the Sentiment
dataset. In such dataset, method 2SW-MDA results in a negative transfer in all cases except for the "All
domains", where all four domains are used as training sources. In the other cases, one domain is removed
(the domain corresponding to the experiment’s name). In these experiments, it is clear that considering
double-weighting and classification rules that involve instance-dependent weighted combinations of feature
mappings substantially improves the model performance.
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Table 2: Classification errors in 21 scenarios show that the proposed methods can more adequately adapt to
multi-source covariate shift. The bold values represent the lowest classification error in each scenario.

Datasets LR KMM DW-GCS 2SW-MDA MS-DRL CW KMM DW-MSCS

Spam detection

500 features .45 ± .07 .45 ± .07 .39 ± .04 .43 ± .07 .50 ± .05 .47 ± .05 .40 ± .04
1000 features .45 ± .07 .44 ± .09 .41 ± .03 .45 ± .07 .49 ± .09 .46 ± .05 .38 ± .03

1500 features .46 ± .07 .46 ± .07 .40 ± .04 .46 ± .07 .46 ± .06 .45 ± .06 .36 ± .04

2000 features .47 ± .08 .45 ± .07 .39 ± .05 .46 ± .06 .49 ± .07 .46 ± .05 .35 ± .04

2500 features .48 ± .07 .47 ± .05 .38 ± .04 .47 ± .06 .49 ± .07 .47 ± .04 .35 ± .03

3000 features .43 ± .07 .45 ± .07 .38 ± .04 .45 ± .05 .50 ± .08 .47 ± .04 .34 ± .03

20 Newsgroups

comp vs rec .46 ± .04 .45 ± .04 .36 ± .03 .42 ± .04 .45 ± .05 .41 ± .11 .32 ± .04

comp vs sci .46 ± .04 .45 ± .04 .39 ± .04 .43 ± .04 .45 ± .04 .43 ± .11 .34 ± .05

comp vs talk .36 ± .06 .34 ± .05 .27 ± .04 .44 ± .03 .36 ± .05 .32 ± .08 .22 ± .03

rec vs sci .46 ± .05 .47 ± .04 .39 ± .04 .46 ± .04 .47 ± .04 .46 ± .03 .36 ± .04

rec vs talk .40 ± .05 .38 ± .03 .35 ± .04 .46 ± .04 .39 ± .05 .35 ± .09 .29 ± .04

sci vs talk .43 ± .04 .42 ± .04 .36 ± .05 .45 ± .06 .39 ± .05 .35 ± .09 .32 ± .03

comp vs rec vs sci .57 ± .05 .57 ± .06 .51 ± .06 .59 ± .04 .57 ± .04 .54 ± .05 .45 ± .05

comp vs rec vs talk .47 ± .05 .47 ± .05 .43 ± .05 .49 ± .06 .51 ± .05 .45 ± .03 .35 ± .03

comp vs sci vs talk .50 ± .05 .51 ± .05 .44 ± .04 .52 ± .05 .57 ± .05 .49 ± .04 .41 ± .04

rec vs sci vs talk .53 ± .06 .52 ± .05 .48 ± .05 .56 ± .05 .56 ± .04 .49 ± .05 .41 ± .05

Sentiment

All Domains .48 ± .06 .43 ± .04 .32 ± .01 .34 ± .02 .49 ± .04 .46 ± .03 .23 ± .01

books .47 ± .04 .48 ± .04 .32 ± .01 .50 ± .02 .50 ± .03 .48 ± .03 .25 ± .02

dvd .48 ± .05 .44 ± .04 .32 ± .01 .48 ± .01 .50 ± .02 .48 ± .02 .24 ± .01

electronics .46 ± .06 .45 ± .04 .32 ± .01 .49 ± .03 .49 ± .03 .47 ± .03 .25 ± .01

kitchen .46 ± .05 .45 ± .04 .33 ± .03 .48 ± .02 .49 ± .02 .47 ± .03 .25 ± .02

6.3 Experiments for multi-source label shift adaptation

This subsection shows experimental results for the proposed approach for multi-source label shift adaptation
in comparison with the state-of-the-art approaches.

Baseline methods. We employ three single-source baselines: LR, which ignore multi-source label shift,
KMM (Zhang et al., 2013) and DW-LS. For the baseline methods, we compute a classification rule from
each of the training sources and evaluate the classification rule that achieves the smallest classification error
on the testing domain. We also compare with the performance obtained by a reweighted method for multi-
source label shift label-dependent weighted combination KMM (LWC KMM) (Zhang et al., 2015), where the
initial set of classifiers {hs}s∈[S] are learned using KMM. Then, we combine the classifiers to obtain a new

classification rule of the form h(y|x) =
∑S

s=1 γs(y)hs(y|x), with γs(y) = ps(y)/
∑S

i=1 pi(y) for s ∈ [S], where
the training probabilities ps(y) are estimated as the ratio of samples with label y from source s, for y ∈ Y,
s ∈ [S]. The methods KMM (Zhang et al., 2013), and LWC KMM have been implemented as detailed in
their references.

Experimental details. We assess the performance of the proposed methods in comparison with existing
techniques using “sentiment analysis” datasets. We consider 4 binary problems, where each of the training
sources is generated by selecting the samples from each of the domains, and the testing set by selecting the
samples from all the domains. We generate label shifts in each training source using Dirichlet distributions
with concentration parameter γ for all classes, while the testing distribution is uniform over the set of labels.
We use values γ ∈ {0.01, 0.1, 1, 10, 100} to simulate different label shifts in each training source, so that
smaller γ corresponds to bigger shifts, similar to done in (Azizzadenesheli et al., 2019). For each type of
multi-source label shift (value of γ) we carry out 20 random repetitions with 1000 training samples in each
source and 150 testing samples.

Results. Table 3 shows the averaged classification error using “sentiment analysis” datasets across different
types of multi-source label shifts, along with their respective standard deviations. The first column of the
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Table 3: Classification errors in 20 scenarios using “sentiment analysis” dataset show that the proposed
methods can more adequately adapt to multi-source label shift. The bold values represent the lowest classi-
fication error in each scenario.

Datasets Dirichlet γ LR KMM DW-LS LWC KMM DW-MSLS

books γ = 0.01 .43 ± .03 .43 ± .02 .44 ± .02 .41 ± .02 .36 ± .06

γ = 0.1 .42 ± .02 .43 ± .02 .41 ± .06 .41 ± .03 .38 ± .08

γ = 1 .42 ± .02 .42 ± .02 .33 ± .03 .41 ± .03 .28 ± .03

γ = 10 .42 ± .02 .42 ± .02 .32 ± .02 .40 ± .02 .26 ± .02

γ = 100 .42 ± .03 .42 ± .02 .30 ± .02 .39 ± .02 .26 ± .02

dvd γ = 0.01 .43 ± .02 .43 ± .02 .43 ± .03 .42 ± .02 .43 ± .07
γ = 0.1 .43 ± .02 .43 ± .02 .40 ± .05 .42 ± .03 .37 ± .08

γ = 1 .42 ± .02 .43 ± .02 .34 ± .04 .41 ± .02 .27 ± .03

γ = 10 .42 ± .02 .42 ± .02 .31 ± .02 .40 ± .02 .26 ± .03

γ = 100 .43 ± .03 .43 ± .02 .30 ± .02 .41 ± .02 .26 ± .02

electronics γ = 0.01 .43 ± .02 .43 ± .02 .45 ± .02 .42 ± .03 .40 ± .06

γ = 0.1 .43 ± .03 .43 ± .02 .40 ± .05 .40 ± .02 .40 ± .08

γ = 1 .43 ± .02 .43 ± .02 .35 ± .03 .40 ± .03 .32 ± .05

γ = 10 .43 ± .02 .43 ± .02 .30 ± .02 .40 ± .02 .28 ± .05

γ = 100 .42 ± .03 .42 ± .02 .30 ± .02 .40 ± .02 .26 ± .03

kitchen γ = 0.01 .43 ± .02 .43 ± .02 .45 ± .04 .41 ± .02 .44 ± .07
γ = 0.1 .43 ± .02 .42 ± .02 .43 ± .05 .42 ± .02 .45 ± .06
γ = 1 .42 ± .02 .42 ± .02 .36 ± .06 .41 ± .02 .31 ± .06

γ = 10 .42 ± .02 .42 ± .02 .31 ± .03 .40 ± .02 .26 ± .02

γ = 100 .42 ± .03 .42 ± .02 .30 ± .03 .40 ± .02 .26 ± .03

Table 3 describes the training source that we removed. The experimental results show how reweighted
approaches struggle to effectively adapt to the label shift between the different sources, so that using a
single-source KMM achieve similar results as that for LWC KMM. In contrast, the proposed methods show
significantly improved adaptation to multi-source label shift, leveraging the information between the different
training sources.

7 Conclusion

In this paper, we presented a unified framework to address general distribution shifts, including label and
multi-source shifts. The learning framework for distribution shift adaptation is based on a double-weighting
approach, considering weight functions at training and testing that depend on the covariates and the labels.
By assigning weights to both training and testing samples, our methods alleviate the problem of existing
methods when the weights functions at training take large values. In the multi-source settings, the proposed
methods leverage the rich complementary information among sources, considering classification rules that
involve sample-dependent weighted combinations of feature mappings. In addition, we present generalization
bounds and empirical results for the proposed methods that show an improved adaptation to single-source
label and multi-source shifts. The proposed unifying view of double-weighting proposed can enable techniques
capable to adapt to a more general range of scenarios affected by distribution shift.
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A Prior Work

In this section, we describe the main existing approaches in the literature that deal with single-source and
multi-source covariate and label shift.

A.1 Covariate shift

Reweighted approach. Most of the techniques for covariate shift adaptation are based on the reweighted
approach (Sugiyama & Kawanabe, 2012; Shimodaira, 2000; Zadrozny, 2004; Cortes et al., 2008; Dudík et al.,
2005; Lin et al., 2002). These methods weight loss functions at training by means of the function β(x) =
pte(x)/ptr(x). Using these weights, reweighted methods can account for the fact that some training instances
are unlikely at testing, and assign low relevance to such instances at training. Reweighted methods assume
the support of ptr contains that of pte (i.e., pte(x) > 0 ⇒ ptr(x) > 0). Even if this condition is satisfied,
such methods may achieve poor performances if the ratio pte(x)/ptr(x) takes large values at certain training
samples. In these cases, the learning process is dominated by few training samples (Cortes & Mohri, 2014).

Robust approach. Robust methods for covariate shift adaptation (Liu & Ziebart, 2014; 2017; Chen et al.,
2016) are derived from a distributionally robust learning framework. These methods weight functions at
testing using the weight function α(x) = ptr(x)/pte(x). Using these weights, such methods obtain classifica-
tion rules that produce less confident predictions for testing instances are unlikely at training. Reweighted
methods assume the support of pte contains that of ptr (i.e., ptr(x) > 0⇒ pte(x) > 0). Even if such condition
is satisfied, robust methods may achieve poor performances if the ratio ptr(x)/pte(x) take large values at
certain testing samples, leading to overconfident classification rules.
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A.2 Label shift

The main existing techniques for label shift adaptation are based on reweighted approach for covariate shift
extended to label shift. These methods exploit the fact that, for any function f , we have that

Epte
f(x, y) = Eptr

β(y)f(x, y), for β(y) =
pte(y)

ptr(y)
(63)

if pte(y) > 0⇒ ptr(y) > 0 for all y ∈ Y.

Using (63), reweighted approaches weight loss functions at training using weight function β(y) defined in
(63). Using weights β(y), reweighted methods assign lower relevance to the training samples whose labels
are unlikely to be observed at testing. The following describes how the different approaches estimate the
weight function β(y).

Black-box predictor approach. Some existing techniques for label shift adaptation (Lipton et al., 2018)
estimate both pte(y) and ptr(y) in order to compute weights in (63). ptr(y) can be easily estimated, and pte(y)
is estimated using a confusion matrix. However, the inverse of the confusion matrix may be arbitrarily close to
a singular matrix for a reduced number of training samples. The regularized approach (Azizzadenesheli et al.,
2019) alleviates the problems regarding the confusion matrix by introducing a regularization term of the form
||β − 1||.
Conditional KMM approach. Certain label shift techniques (Zhang et al., 2013) compute the weight
function β(y) generalizing the conventional KMM method (Huang et al., 2006; Gretton et al., 2008) for
label shift adaptation. In order to obtain the weight function β(y), the method in (Zhang et al., 2013)
considers kernel mean embedding of marginal and conditional distributions (Song et al., 2009).

Black-box predictor and conditional KMM correct the label shift performing a reweighted approach using the
weights β(y) estimated. These methods inherit the problems of standard reweighted methods for covariate
shift adaptation. If the weights β(y) take large values at certain samples with specific labels, the learning
process is dominated by samples with those labels.

A.3 Multi-source covariate shift

Two-stage weighting approach. The main existing techniques for multi-source covariate shift adaptation
(Sun et al., 2011; Nomura & Saito, 2021) extend the existing reweighted approach for covariate shift to
the multi-source case. Two-stage weighting methods weight training samples using the function βs(x) =
pte(x)/ps(x) for each source s ∈ [S] to learn an initial set of classification rules. Then, they rescale functions
βs(x) by a vector γ that multiplies all the weights for each source s ∈ [S] by γs. Using the rescaled weights
γsβs(x), such methods learn a new classification rule over all the training sources. In (Nomura & Saito,
2021), the vector γ is computed in order to reduce the variance of the estimators, while in (Sun et al., 2011),
it is computed in order to minimize potential mismatches between conditional probability distributions.
Two-stage weighting methods inherit the problems of single-source reweighted method. These problems are
related to the assumption that the support of ptr contains that of pte (i.e., pte(x) > 0⇒ ptr(x) > 0). Even if
this condition is satisfied, reweighted methods may exhibit poor performance if the ratio pte(x)/ptr(x) takes
large values at certain training samples. In these cases, the learning process is dominated by a few training
samples (Cortes et al., 2008; Cortes & Mohri, 2014; Sugiyama & Kawanabe, 2012). In addition, two-stage
weighting approaches only share information between sources to rescale all the weights for each source by
the constant vector γ.

Approaches based on classification rules combinations. Certain multi-source domain adaptation
approaches (Yang et al., 2007; Schweikert et al., 2008; Tu & Sun, 2012; Sun & Shi, 2013; Wang et al., 2023)
are based on combining an initial set of pre-learned classifiers {hs}s∈[S] from each of the sources s ∈ [S] in
a post hoc manner. These approaches consider the same combination of information from sources for each
testing sample to derive a new classification rule h =

∑S

s=1 γshs with
∑S

s=1 γs = 1. However, the pre-learned
classifiers associated with each training source do not take into account the other training sources. In addition,
the theoretical work (Mansour et al., 2008; 2009) shows that a linear combination rule may perform poorly
and using instance-dependent combinations of information from sources can result in improved performance.
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A.4 Multi-source label shift

Conditional KMM approach. The techniques presented in (Zhang et al., 2015) extend the KMM ap-
proach for label shift correction proposed in (Zhang et al., 2013). This approach considers a set of clas-
sifiers learned on each source. These classification rules are combined considering the theoretical work of
(Mansour et al., 2008). However, similar to the reweighted methods, KMM methods also inherit the high
variance problems of single-source reweighted methods when the weights obtained take large values at certain
training samples. Moreover, these methods only share information among sources to rescale all the weights
for each source by a constant that represents the overall relevance of such source.

B Proofs for Section 3 and Section 4

In the following, we prove Theorems 4.1 and 4.2, while the proofs of Theorems 3.1 and 3.2 are analogous by
setting S = 1. The proofs of Theorems 4.1 and 4.2 below are done for the case of finite X . The proofs for
infinite X can be carried out analogously using Fenchel duality instead of Lagrange duality, similarly to as
is done in Altun & Smola (2006); Mazuelas et al. (2023).

Proof of Theorem 4.1. Firstly, for each h ∈ T(X ,Y), we have that

maxp∈U ℓ(h, p) = max
p

lTp− I+(p)

s.t.
∑

y∈Y p(x, y) = pte(x), ∀x ∈ X
τ s − λs � ΦT

αs
p � τ s + λs, ∀s ∈ [S]

(64)

where l, p, and Φαs
denote the vectors and matrix with rows ℓ(h, (x, y)), p(x, y), and αs(x, y)Φ(x, y)T,

respectively, for x ∈ X , y ∈ Y, and

I+(p) =

{

0 if p � 0
∞ otherwise.

Optimization problem (64) has Lagrange dual

min
{µs,1}s∈[S],{µs,2}s∈[S],ν(x)

−
S
∑

s=1

(

τ s − λs

)T
µs,1 +

S
∑

s=1

(

τ s + λs

)T
µs,2

+ Epte(x)ν(x) + f∗
(

S
∑

s=1

Φαs
(µs,1 − µs,2)− ν

)

s.t. µs,1, µs,2 � 0, ∀s ∈ [S] (65)

where ν is the vector in R
|X ||Y| with component corresponding with (x, y) for x ∈ X , y ∈ Y given by ν(x),

and f∗ is the conjugate function of f(p) = −lTp + I+(p) given by

f∗(w) = sup
p�0

wTp + lTp =

{

0 if w � −l
∞ otherwise.

Therefore, the Lagrange dual above becomes

min
{µs,1}s∈[S],{µs,2}s∈[S],ν(x)

−∑S

s=1

(

τ s − λs

)T
µs,1 +

∑S

s=1

(

τ s + λs

)T
µs,2 + Epte(x)ν(x)

s.t. {µs,1}S
s=1, {µs,2}S

s=1 � 0, ∀s ∈ [S]
∑S

s=1 Φαs
(x, y)T(µs,1 − µs,2)− ν(x) ≤ −ℓ(h, (x, y)), ∀x ∈ X , y ∈ Y.

It is easy to see that the solution of such optimization problem {µ̄s,1, µ̄s,2}s∈[S] satisfies that µ̄
(i)
s,1µ̄

(i)
s,2 = 0

for s ∈ [S] and any i such that λ
(i)
s > 0. Then λT

s (µ̄s,1 + µ̄s,2) = λT
s |µ̄s,1− µ̄s,2| and taking µs = µs,1−µs,2

the Lagrange dual above is equivalent to

min
{µs}s∈[S],ν(x)

−∑S

s=1 τ T
s µs +

∑S

s=1 λT
s |µs|+ Epte(x)ν(x)

∑S

s=1 Φαs
(x, y)Tµs − ν(x) ≤ −ℓ(h, (x, y)), ∀x ∈ X , y ∈ Y
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that has the same value as maxp∈U ℓ(h, p) since the constraints in (64) are affine and U is non-empty.

Therefore,

min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) = min
h,{µs}s∈[S],ν(x)

−
S
∑

s=1

τ T
s µs +

S
∑

s=1

λT
s |µs|+ Epte(x)ν(x)

S
∑

s=1

Φαs
(x, y)Tµs − ν(x) ≤ −ℓ(h, (x, y)), ∀x ∈ X , y ∈ Y.

For 0-1-loss we have that

S
∑

s=1

Φαs
(x, y)Tµs − ν(x) ≤ −1 + h(y|x), ∀x ∈ X , y ∈ Y

⇒
∑

y∈C

(

S
∑

s=1

Φαs
(x, y)Tµs − ν(x) + 1

)

≤ 1, ∀C ⊆ Y, x ∈ X

⇒ ν(x) ≥ 1 +

∑

y∈C
∑S

s=1 Φαs
(x, y)Tµs − 1

|C| , ∀C ⊆ Y, x ∈ X

⇒ ν(x) ≥ ϕ01({µs}S
s=1, x, {αs}S

s=1), ∀x ∈ X .

Therefore, for each set {µs}s∈[S , we have that any classification rule satisfying

h(y|x) ≥ αs(x, y)Φ(x, y)Tµs − ϕ01({µs}S
s=1, x, {αs}S

s=1) + 1, ∀x ∈ X , y ∈ Y
is solution of

min
h,ν(x)

Epte(x)ν(x) = Epte(x)ϕ01({µs}S
s=1, x, {αs}S

s=1)

S
∑

s=1

Φαs
(x, y)Tµs − ν(x) + 1 ≤ h(y|x), ∀x ∈ X , y ∈ Y

and the result is obtained because for any x ∈ X , we have that

∑

y∈Y

(

S
∑

s=1

αs(x, y)Φ(x, y)Tµs − ϕ01({µs}S
s=1, x, {αs}S

s=1) + 1
)

+
= 1

because otherwise there would exist νx < ϕ01({µs}S
s=1, x, {αs}S

s=1) such that

1 =
∑

y∈Y

(

S
∑

s=1

Φαs
(x, y)Tµs − νx + 1

)

+
= max

C⊆Y

∑

y∈C

(

Φαs
(x, y)Tµs − νx + 1

)

which contradicts the definition of ϕ01({µs}S
s=1, x, {αs}S

s=1).

The case of log-loss is analogous to the case for 0-1-loss above taking into account that

S
∑

s=1

Φαs
(x, y)Tµs − ν(x) ≤ log(h(y|x)), ∀x ∈ X , y ∈ Y

⇒
∑

y∈Y
exp

{

S
∑

s=1

Φαs
(x, y)Tµs − ν(x)

}

≤ 1, ∀x ∈ X

⇒ ν(x) ≥ log





∑

y∈Y
exp

{

S
∑

s=1

Φαs
(x, y)Tµs

}



 , ∀x ∈ X

⇒ ν(x) ≥ ϕlog({µs}S
s=1, x, {αs}S

s=1), ∀x ∈ X .
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The lemma below is used in the proof of Theorem 4.2.

Lemma B.1. Let U be the uncertainty set given by (32) for τ s ∈ R
m, λs ∈ R

m for s ∈ [S], and h be a
classification rule. If

R (U , h) = min
{µs}S

s=1

−
S
∑

s=1

τ T

s µs + Epte(x) max
y∈Y

{

1 +

S
∑

s=1

αs(x, y)Φ(x, y)Tµs − h(y|x)

}

+

S
∑

s=1

λT

s |µs| (66)

Rlog (U , h) = min
{µs}S

s=1

−
S
∑

s=1

τ T

s µs + Epte(x) max
y∈Y

{

S
∑

s=1

αs(x, y)Φ(x, y)Tµs − log h(y|x)

}

+

S
∑

s=1

λT

s |µs| (67)

then, for any p ∈ U

ℓ01(h, p) ≤ R01 (U , h) (68)

ℓlog(h, p) ≤ Rlog (U , h) . (69)

Proof of Lemma B.1. The case U = ∅ is trivial. For the case where U 6= ∅, we will first calculate the
Lagrange dual of the optimization problem minp̂∈U Ep̂q for a general function q : X ×Y → R. Then we will
consider the fact that for any p ∈ U and h ∈ T(X ,Y),

min
p̂∈U

ℓ(h, p̂) ≤ ℓ(h, p) ≤ max
p̂∈U

ℓ(h, p̂)

and

max
p̂∈U

ℓ01(h, p̂) = −min
p̂∈U

Ep̂ {h(y|x)− 1}

max
p̂∈U

ℓlog(h, p̂) = −min
p̂∈U

Ep̂ log h(y|x)

for 0-1-loss and log-loss respectively. First, we have that minp̂∈U Ep̂q is equal to

min
p̂

qTp̂ + I+(p̂)

s.t. −
∑

y∈Y
p̂(x, y) = −pte(x) for all x ∈ X

τ s − λs � ΦT
αs

p̂ � τ s + λs, ∀s ∈ [S] (70)

where p̂, q, {Φαs
}S

s=1 denote the vectors and set of matrices with rows p̂(x, y), q(x, y) and αs(x, y)Φ(x, y)T,
respectively, for x ∈ X , y ∈ Y, and

I+(p̂) =

{

0 if p̂ � 0
∞ otherwise.

Optimization problem (70) has Lagrange dual

max
{µs,1}S

s=1,{µs,2}S
s=1,ν(x)

S
∑

s=1

(τ s − λs)Tµs,1 −
S
∑

s=1

(τ s + λs)Tµs,2 + Epte(x)ν(x)− f∗
(

S
∑

s=1

Φαs
(µs,1 − µs,2) + ν

)

s.t. {µs,1}S
s=1, {µs,2}S

s=1 � 0

where ν denotes the vector in R
|X ||Y| with component corresponding with (x, y) for x ∈ X , y ∈ Y given by

ν(x), and f∗ is the conjugate function of f(p̂) = qTp̂ + I+(p̂) that becomes

f∗(w) =

{

0 if w � q
∞ otherwise.
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Therefore, the previous Lagrange dual becomes

max
{µs,1}S

s=1,{µs,2}S
s=1,ν(x)

S
∑

s=1

(τ s − λs)Tµs,1 −
S
∑

s=1

(τ s + λs)Tµs,2 + Epte(x)ν(x)

s.t. {µs,1}S
s=1, {µs,2}S

s=1 � 0

S
∑

s=1

Φαs
(µs,1 − µs,2) + ν � q for s ∈ [S]

which is equivalent to

max
{µs,1}S

s=1,{µs,2}S
s=1

S
∑

s=1

(τ s − λs)Tµs,1 −
S
∑

s=1

(τ s + λs)Tµs,2

+ Epte(x) min
y∈Y

{

q(x, y)−
S
∑

s=1

αs(x, y)Φ(x, y)T(µs,1 − µs,2)

}

s.t. {µs,1}S
s=1, {µs,2}S

s=1 � 0.

Taking µs = µs,1 − µs,2, for s = 1, 2, . . . , S, the Lagrange dual problem is equivalent to

max
{µs}S

s=1

S
∑

s=1

τ T
s µs + Epte(x) min

y∈Y

{

q(x, y)−
S
∑

s=1

αs(x, y)Φ(x, y)Tµs

}

−
S
∑

s=1

λT
s |µs|

that has the same value as its primal minp̂∈U Ep̂q since the constraints defining U are affine and U 6= ∅. Then,
we have that

max
p̂∈U

ℓ01(h, p̂) = −min
p̂∈U

Ep̂ {h(y|x)− 1}

= min
{µs}S

s=1

−
S
∑

s=1

τ T
s µs + Epte(x) max

y∈Y

{

1 +
S
∑

s=1

αs(x, y)Φ(x, y)Tµs − h(y|x)

}

+
S
∑

s=1

λT
s |µs|

max
p̂∈U

ℓlog(h, p̂) = −min
p̂∈U

Ep̂ log h(y|x)

= min
{µs}S

s=1

−
S
∑

s=1

τ T
s µs + Epte(x) max

y∈Y

{

S
∑

s=1

αs(x, y)Φ(x, y)Tµs − log h(y|x)

}

+ λT|µ|

Proof of Theorem 4.2. Let U∞ be the uncertainty set given by the exact mean vectors
τ ∞,s = Epte

Φαs
(x, y), for s = 1, 2, . . . , S, i.e.,

U∞ = {p ∈ ∆ (X × Y) : EpΦαs
(x, y) = τ ∞,s, for s ∈ [S], and p(x) = pte(x),∀x ∈ X} (71)

It is clear that we have pte(x, y) ∈ U∞, then using Lemma B.1 for 0-1-loss and the definition of h(y|x) in
(37), we have that

R(hU) ≤R01(U∞, hU) = min
{µs}S

s=1

−
S
∑

s=1

τ T
∞,sµs + Epte(x) max

y∈Y

{

1 +
S
∑

s=1

αs(x, y)Φ(x, y)Tµs − h(y|x)

}

≤−
S
∑

s=1

τ T
∞,sµ∗

s + Epte(x) max
y∈Y

{

1 +
S
∑

s=1

αs(x, y)Φ(x, y)Tµ∗
s − h(y|x)

}

(72)

31



Under review as submission to TMLR

≤−
S
∑

s=1

τ T
∞,sµ∗

s + Epte(x) max
y∈Y

{

1 + max
C⊆Y

∑S

s=1

∑

y∈C Φαs
(x, y)Tµ∗

s − 1

|C|

}

(73)

=−
S
∑

s=1

τ T
∞,sµ∗

s + Epte(x)

{

1 + max
C⊆Y

∑S

s=1

∑

y∈C Φαs
(x, y)Tµ∗

s − 1

|C|

}

(74)

≤−
S
∑

s=1

τ T
s µ∞

s + Epte(x)

{

1 + max
C⊆Y

∑

y∈C
∑S

s=1 Φαs
(x, y)Tµ∞

s − 1

|C|

}

+

S
∑

s=1

λT
s |µ∞

s |+
S
∑

s=1

(τ s − τ ∞,s)
T

µ∗
s −

S
∑

s=1

λT
s |µ∗

s|

=R∞ +

S
∑

s=1

λT
s (|µ∞

s | − |µ∗
s|) +

S
∑

s=1

(τ ∞,s − τ s)Tµ∞
s +

S
∑

s=1

(τ s − τ ∞,s)Tµ∗
s

≤R∞ +

S
∑

s=1

λT
s (|µ∞

s | − |µ∗
s|) +

S
∑

s=1

|τ s − τ ∞,s|T |µ∞
s − µ∗

s| . (75)

where, for inequality (72)-(73), we have used the fact that

hU(y|x) ≥
S
∑

s=1

αs(x, y)Φ(x, y)Tµ∗
s −max

C⊆Y

∑

y∈C
∑S

s=1 Φαs
(x, y)Tµ∗

s − 1

|C| .

For log-loss, using Lemma B.1 and the definition of h(y|x) in (38), we have that

R(hU) ≤Rlog(U∞, hU) = min
{µs}S

s=1

−
S
∑

s=1

τ T
∞,sµs + Epte(x) max

y∈Y

{

S
∑

s=1

αs(x, y)Φ(x, y)Tµs − log h(y|x)

}

≤−
S
∑

s=1

τ T
∞,sµ∗

s + Epte(x) max
y∈Y

{

S
∑

s=1

αs(x, y)Φ(x, y)Tµ∗
s − log h(y|x)

}

(76)

≤−
S
∑

s=1

τ T
∞,sµ∗

s + Epte(x) max
y∈Y







log
∑

y∈Y
exp

{

S
∑

s=1

Φαs
(x, y)Tµ∗

s

}







(77)

=−
S
∑

s=1

τ T
∞,sµ∗

s + Epte(x) log
∑

y∈Y
exp

{

S
∑

s=1

Φαs
(x, y)Tµ∗

s

}

(78)

≤−
S
∑

s=1

τ T
s µ∞

s + Epte(x) log
∑

y∈Y
exp

{

S
∑

s=1

Φαs
(x, y)Tµ∞

s

}

+
S
∑

s=1

λT
s |µ∞

s |+
S
∑

s=1

(τ s − τ ∞,s)
T

µ∗
s −

S
∑

s=1

λT
s |µ∗

s|

=R∞ +
S
∑

s=1

λT
s (|µ∞

s | − |µ∗
s|) +

S
∑

s=1

(τ ∞,s − τ s)Tµ∞
s +

S
∑

s=1

(τ s − τ ∞,s)Tµ∗
s

≤R∞ +
S
∑

s=1

λT
s (|µ∞

s | − |µ∗
s|) +

S
∑

s=1

|τ s − τ ∞,s|T |µ∞
s − µ∗

s| . (79)
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Using Hoeffding’s inequality, we have that with probability at least 1− δ

max
s∈[S]

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

βs(xi, yi)Φ(xi, yi)− Epte
αs(x, y)Φ(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤ max

s∈[S]
||Φ||∞

√

2
||βs(x)||2∞

n
log

2

δ

≤ max
s∈[S]

M

√

2
B2

Dn
log

2m

δ

≤M

√

2
B2

Dn
log

2m

δ
(80)

Then, using (80) and Hölder inequality in (79), we have that

R(hU) ≤ R∞ +
S
∑

s=1

λT
s (|µ∞

s | − |µ∗
s|) + M‖µ∞

s − µ∗
s‖1

√

2
B2

Dn
log

2m

δ
(81)

with probability at least 1− δ.

C Main Results of the Section 4 when each domain has different number of training

samples

This section presents the main results of the Section 4 for the case with general number of training samples
in each source.

Reference Solutions. We consider reference solutions of the form

α(x, y) = min

(

δs(x, y),
ps(x, y)

pte(x, y)
Cs

)

, βs(x, y) = min

(

δs(x, y)
pte(x, y)

ps(x, y)
, Cs

)

(82)

for any C > 0, where

δs(x, y) =
ps(x, y)

√
ns

∑S

s′=1 ps′(x, y)
√

ns′

. (83)

Generalization bounds. Using the reference weight functions defined in (82) and (83), we get the following
generalization of Theorem 4.2.

Theorem C.1. Let U be a non-empty uncertainty set given by (32) and hU be an ℓ-MRC for U . If weights
{αs(x, y)}s∈[S] and {βs(x, y)}s∈[S] are given by (82) with Cs = Bs/

√
D for D ≥ 1 and

Bs =
√

ns sup
x∈X

pte(x, y)
∑S

s′=1

√
ns′ps′(x, y)

. (84)

Then, with probability at least 1− δ we have that

R(hU) ≤ R∞ +

S
∑

s=1

λT

s (|µ∞
s | − |µ∗

s|) + M‖µ∞ − µ∗‖1 sup
x∈X ,y∈Y

pte(x, y)
∑S

s′=1

√
ns′ps′(x, y)

√

2

D
log

2m

δ

where

µ∞ =











µ∞
1

µ∞
2
...

µ∞
S











, µ∗ =











µ∗
1

µ∗
2
...

µ∗
S











and M is a constant satisfying ‖Φ(x, y)‖∞ ≤M for all x ∈ X , y ∈ Y.

Proof. The proof is analogous to the proof of Theorem 4.2, considering {αs(x, y)}S
s=1 and {βs(x, y)}S

s=1 as
defined in (82).

Using the weights given by (82) and (83) we have that the ratios Bs/
√

ns do not depend on the source s, so
we can avoid that training sources with a smaller number of training samples penalise more in reducing the
estimation error.
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D Performance guarantees of MS-KMM

The MS-KMM approach in (56) is an empirical version of the population problem given the exact expectation
as

min
{βs(x),αs(x)}S

s=1

S
∑

s=1

∥

∥

∥

∥

Epte
αs(x)Kx(x)− Eps

βs(x)Kx(x)

∥

∥

∥

∥

2

Hx

s.t. 0 ≤ βs(x) ≤ Bs/
√

D, for s ∈ [S]

0 ≤ αs(x) ≤ 1, for s ∈ [S]

Epte(x)α(x) = Eps(x)βs(x), for s ∈ [S]
∣

∣

∣

∣

∣

S
∑

s=1

αs(x)− 1

∣

∣

∣

∣

∣

≤
(

1− 1√
D

)

, for x ∈ X . (85)

Since (82) is a feasible solution of (85), the value at the optimum is zero. Then, the solutions of (85),

{β̂s(x)}s∈[S], {α̂s(x)}s∈[S], provide consistent estimators of expectations because

Epte(x,y)α̂s(x)Φ(x, y) = Eps(x,y)β̂s(x)Φ(x, y) (86)

is satisfied for s ∈ [S] if the kernel kx is characteristic or if Epte(y|x)Φ(x, y) belongs to Hx, analogously as
shown in (Yu & Szepesvári, 2012).

The following theorem presents bounds for the discrepancy between empirical means withing the feature space
for solutions of (85), when we have a limited amount of samples from each source and testing distribution.

Theorem D.1. For s ∈ [S], if β̂s(x) and α̂s(x) are solutions of (85), with probability at least 1− δ we have
that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

β̂s(xs,i)Kx(xs,i)−
1

t

t
∑

j=1

α̂s(xn+j)Kx(xn+j)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hx

≤
(

1 +

√

2 log
2

δ

)

κ

√

√

√

√

√





1

D

(

sup
x∈X

pte(x)
∑S

s′=1

√
ns′ps′(x)

)2

+
1

t



 (87)

where the constant κ satisfies |kx(x, x)| ≤ κ2 for all x ∈ X .

Learning jointly achieves better estimation errors than learning independently. The difference
between the empirical means in feature space of solutions of (85) depend on the maximum of the values of
the weight functions αs(x) and βs(x) associated with each source s ∈ [S]. In (Segovia-Martín et al., 2023),
‖βs(x)‖∞ ≤ Bs/

√
D, with Bs = supx∈X pte(x)/ps(x), resulting in bounds of the order O(

√

Bs/Dns + 1/t).
In methods that obtain weights based on reweighted techniques (Sun et al., 2011; Wang et al., 2023),
‖βs(x)‖∞ ≤ Bs with Bs = supx∈X pte(x)/ps(x) resulting in bounds of the order O(

√

Bs/ns + 1/t).

Therefore, since the Bs defined in (84) is smaller than in for DW-GCS (Segovia-Martín et al., 2023), and
KMM (Huang et al., 2006; Gretton et al., 2008), the proposed MS-KMM significantly decreases the estima-
tion error.

Proof of Theorem D.1. The proof is similar to the proof of Theorem 4.1 in Segovia-Martín et al. (2023).
We consider ns + t independent random variables taking values in the Hilbert space Hx as follows

fs,i =







1
ns

β̂(xs,i)Kx(xs,i) for i = 1, 2, . . . , ns

− 1
t
α̂(xn+i)Kx(xn+i) if s = 0, and i = 1, 2, . . . , t

(88)
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and we will first bound ||∑ns

i=1 fs,i +
∑t

i=1 f0,i||Hx
. We have that,

||fs,i||Hx
≤







1
n

Bs√
D

κ for i = 1, 2, . . . , ns

1
t
κ if s = 0, and i = 1, 2, . . . , t.

(89)

Taking vs = κ2
(

B2
s

Dns
+ 1

t

)

and using the bounded differences inequality, we have that, for all l ≥ √vs

P







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ns
∑

i=1

fs,i +

t
∑

i=1

f0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hx

> l







=P







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ns
∑

i=1

fs,i +

t
∑

i=1

f0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hx

−E
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ns
∑

i=1

fs,i +

t
∑

i=1

f0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hx

> l − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ns
∑

i=1

fs,i +

t
∑

i=1

f0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hx







≤ exp



















−

(

l − E

∣

∣

∣

∣

∣

∣

∑ns

i=1 fs,i +
∑t

i=1 f0,i

∣

∣

∣

∣

∣

∣

Hx

)2

2vs



















. (90)

Finally, using Hölder’s inequality and by independence, we have that

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ns
∑

i=1

fs,i +

t
∑

i=1

f0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Hx

≤

√

√

√

√

√E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ns
∑

i=1

fs,i +

t
∑

i=1

f0,i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

Hx

=

√

√

√

√

ns
∑

i=1

E ||fs,i||2Hx
+

t
∑

i=1

E ||f0,i||2Hx
≤ √vs.

Therefore,

exp

{

−
(

l −√vs

)2

2vs

}

= exp



















−

(

l −
√

κ2
(

B2
s

Dns
+ 1

t

)

)2

2κ2
(

B2
s

Dns
+ 1

t
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so that,
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∣

∣
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∣

∣

∣

∣

∣

1

n

ns
∑

i=1

β̂s(xs,i)Kx(xs,i)−
1

t

t
∑

i=1

α̂s(xn+i)Kx(xn+i)
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∣

∣
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Hx
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√

2 log
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)
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√
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√

√





1

D

(

sup
x∈X

pte(x)
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s′=1

√
ns′ps′(x)

)2

+
1

t



 (91)

with probability at least 1− δ.
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Quadratic version of MS-KMM. The convex optimization in (56) is a quadratic problem since the
squared norm in Hx can be written as

S
∑

s=1

∥

∥

∥

∥

∥

1

t

t
∑

i=1

α(i)
s Kx(xn+i)−

1

ns

ns
∑

i=1

β(i)
s Kx(xs,i)

∥

∥

∥

∥

∥

2

Hx

=

S
∑

s=1





1

t2

t
∑

i,j=1

α(i)
s α(j)

s kx(xn+i, xn+j)+
1

n2
s

ns
∑

i,j=1

β(i)
s β(j)

s kx(xs,i, xs,j)− 2

nst

t
∑

i=1

ns
∑

j=1

α(i)
s β(j)

s kx(xn+i, xs,j)





=
S
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αT
s

t













kx(xn+1, xn+1) · · · kx(xn+1, xn+t)
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. . .
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where Kx is the kernel matrix.

Therefore, the optimization problem (56) is equivalent to the quadratic optimization problem

min
{βs,αs}S

s=1

[

βT
1 /n1,−αT

1 /t, . . . , βT
S /nS ,−αT

S /t
]
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β1/n1

−α1/t
...

βT
S /nS

−αT
S /t















s.t. 0 � βs � (Bs/
√

D)1, 0 � αs � 1, for s ∈ [S]
∣

∣

∣β
T
s 1/ns −αT

s 1/t
∣

∣

∣ ≤ ǫ, for s ∈ [S] (92)
∣

∣

∣

∣

∣

S
∑

s=1

α(i)
s − 1

∣

∣

∣

∣

∣

≤
(

1− 1√
D

)

, for i ∈ [t] .

E Implementation details and additional experimental details

This appendix details the datasets and settings used for the experiments in Section 6.

Hyperparameters. In principle, cross-validation can be used to determine both hyperparameters {λs}s∈[S]

(λ for single-source) and D. However, it is important to note that standard cross-validation is not applicable
when dealing with covariate shift (Sugiyama et al., 2007). We hence avoid cross-validation and determine
both parameters as done in (Segovia-Martín et al., 2023). We select the value of D to achieve the lowest
minimax risk R(U), defined as the optimal value of (34) ((13) for single-source), over a certain range D ≥ 1.
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The second set of hyperparameters {λs}S
s=1 are determined solving

min
p,λs

1Tλs

s.t. τ s − λs �
t
∑

i=1

∑

y∈Y
p(y|xn+i)Φαs

(xn+i, y) � τ s + λs

λs, p � 0
∑

y∈Y
p(y|xn+i) = 1/t for i = 1, . . . , t (93)

for s ∈ [S] (S = 1 for single-source), that ensures the uncertainty set considered is non-empty.

Additional synthetic experimental details. For the synthetic experiments presented in Section 6.1.1 we
utilize linear feature mapping Ψ(x) = [1, xT] and implement the no adapt. method using 0-1-loss as shown
in (Mazuelas et al., 2023), and reweighted and DW method using true marginal probabilities and 0-1-loss.

For the synthetic experiments presented in Section 6.2.1 we utilize linear feature mapping Ψ(x) = x and
implement the existing DW-GCS method estimating weights using double-weighting kernel mean matching
(DW-KMM) as shown in (Segovia-Martín et al., 2023), 2SW-MDA method estimating weights using KMM
as shown in (Huang et al., 2006), and the proposed DW-MSCS method estimating weights using (56).

Additional real datasets experimental details. For the experiments in Section 6.1.2, we have considered
7 binary and multiclass classification datasets: “Adult”, “Diabetes”, “Mammographic”, “Usenet2”, “Credit”,
available at the UCI repository (Dua & Graff, 2017), “20 Newsgroups”, available at http://qwone.com/

~jason/20Newsgroups/,and “Redwine”, available at (Cortez et al., 2009). For the experiments using “20
Newsgroups” dataset, we utilize the 300 features with highest Pearson’s correlation. We considered linear
feature mappings Ψ(x) = [1, xT] and 0-1-loss.

Table 4: Datasets used in the experiments of Section 6.1.2.

Dataset Type of Shift Covariates Samples
Samples Selected
training testing

Adult
tweak-one

14 48842
500 500

knock-out 330 500

Diabetes
tweak-one

8 768
100 100

knock-out 94 192

Mammographic
tweak-one

99 1500
100 100

knock-out 151 276

Usenet2
tweak-one

99 1500
250 250

knock-out 179 360

Credit
tweak-one

15 690
100 100

knock-out 112 198

20 Newsgroups
tweak-one

500 9016 6017
300 300

knock-out 330 400
dirichlet 300 300

Redwine
tweak-one

15 690
100 100

knock-out 101 189
dirichlet 100 100

Table 4 details the characteristics of the datasets used in the experiments of Section 6.1.2. The table also
shows the number of training and testing samples selected for each of the experiments.

For the experiments in Section 6.2.2, we have considered three multi-source classification datasets: “20
Newsgroups”, available at http://qwone.com/~jason/20Newsgroups/, “Sentiment Analysis”, available at
https://www.cs.jhu.edu/~mdredze/datasets/sentiment/, and “Spam detection”, available at http://
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Table 5: Summary of sources using “20Newsgroups” dataset.

Sources comp rec sci talk

Source 1 comp.graphics rec.autos sci.crypt talk.politics.guns
Source 2 comp.os.ms-windows.misc rec.motorcycles sci.electronics talk.politics.mideast
Source 3 comp.sys.ibm.pc.hardware rec.sport.baseball sci.med talk.politics.misc
Source 4 comp.sys.mac.hardware rec.sport.hockey sci.space talk.religion.misc

www.ecmlpkdd2006.org/challenge.html. These datasets have been previously used in single-source
and multi-source covariate shift papers (Mansour et al., 2008; Ben-David et al., 2010; Sun et al., 2011;
Duan et al., 2012; Sun et al., 2015; Wang et al., 2023). For the experiments using “Spam detection” dataset,
we utilize multiple number of features with highest Pearson’s correlation, and randomly sample 200 training
samples from each source and 200 testing samples in each repetition. For the experiments using “Sentiment”
dataset, the features were defined as the set of unigrams that appear five times or more in all domains. We
used a binary feature vector encoding the presence of those unigrams, as done in (Mansour et al., 2008). We
randomly sample 1,000 training samples from each source and 150 testing samples in each repetition.

Table 6: Datasets used in the experiments of Section 6.2.2.

Dataset Sources Covariates Samples
Ratio of

σ
majority class

Spam detection

500 features 3 500 200/200/200 200 0.5000 12.6828
1000 features 3 1000 200/200/200 200 0.5000 15.3386
1500 features 3 1500 200/200/200 200 0.5000 16.9269
2000 features 3 2000 200/200/200 200 0.5000 17.7283
2500 features 3 2500 200/200/200 200 0.5000 19.1219
3000 features 3 3000 200/200/200 200 0.5000 21.5424
20 Newsgroups

comp vs rec 3 1,000 ≈1,174/1,174/1,174 3,143 0.4937 18.7058
comp vs sci 3 1,000 ≈1,172/1,172/1,172 3,128 0.4952 18.6501
comp vs talk 3 1,000 ≈1,066/1,066/1,066 2,856 0.5435 20.4118
rec vs sci 3 1,000 ≈1,188/1,188/1,188 3,161 0.5015 19.1100
rec vs talk 3 1,000 ≈1,082/1,082/1,082 2,889 0.5497 21.2683
sci vs talk 3 1,000 ≈1,080/1,080/1,080 2,874 0.5483 20.8485
comp vs rec vs sci 3 1,000 ≈1,767/1,767/1,767 4,716 0.3368 37.1962
comp vs rec vs talk 3 1,000 ≈1,661/1,661/1,661 4,444 0.3579 37.6344
comp vs sci vs talk 3 1,000 ≈1,659/1,659/1,659 4,429 0.3565 37.5618
rec vs sci vs talk 3 1,000 ≈1,675/1,675/1,675 4,462 0.3555 38.0282
Sentiment

All domains 4 3,034 2,000/2,000/2,000/2,000 8,000 0.5000 10.3441
books 3 3,034 2,000/2,000/2,000 8,000 0.5000 10.3441
dvd 3 3,034 2,000/2,000/2,000 8,000 0.5000 10.3441
electronics 3 3,034 2,000/2,000/2,000 8,000 0.5000 10.3441
kitchen 3 3,034 2,000/2,000/2,000 8,000 0.5000 10.3441

Table 5 details the procedure followed for the creation of the different sources in the “20Newsgroups” dataset.
For this experiments, we first generated four sources as shown in Table 5. Then, we generated three training
sources subsampling 100 samples from one of the sources and 50 samples from other two sources. For the
testing set, we subsampled 40 samples from the three sources from which we sampled 100 samples at training
and 30 more samples from the fourth source.

Table 6 details the characteristics of the datasets used in the experiments. The table also shows the parameter
σ used in the computation of the kernel matrix K for the KMM, DW-GCS, 2SW-MDA, CW KMM and
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DW-MSCS methods, which is determined using the common heuristic based on nearest neighbors with
K = 50.

For the experiments in Section 6.3 we also considered “Sentiment analysis” dataset, described in Table 6,
defining the features as for multi-source covariate shift. We considered linear feature mappings of the form
Ψ(x) = [1, xT] and implemented existing reweighted methods using log-loss, and DW-MSLS using 0-1-loss.
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