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Abstract

Datasets labelled by human annotators are widely used
in the training and testing of machine learning models. In
recent years, researchers are increasingly paying attention
to label quality. However, it is not always possible to ob-
jectively determine whether an assigned label is correct or
not. The present work investigates this ambiguity in the an-
notation of autonomous driving datasets as an important
dimension of data quality. Our experiments show that ex-
cluding highly ambiguous data from the training improves
model performance of a state-of-the-art pedestrian detec-
tor in terms of LAMR, precision and F1-score, thereby sav-
ing training time and annotation costs. Furthermore, we
demonstrate that in order to safely remove ambiguous in-
stances and ensure the retained representativeness of the
training data an understanding of the properties of the
dataset and class under investigation is crucial.

1. Introduction
A crucial, yet difficult task in computer vision for au-
tonomous driving and driver assistance systems is the detec-
tion of vulnerable road users, such as pedestrians, cyclists
or motorcyclists, and including persons with impaired vi-
sion, hearing or mobility. To this day, this group carries
the highest risk of injuries and casualties in traffic acci-
dents [7]. Therefore, the development of systems ensur-
ing and improving the protection of these road users is an
important step towards enhancing traffic safety for all par-
ticipants. However, the detection of persons in street scene
images is challenging given the individuality and diversity
of human appearance.

In the past decade, the capabilities of computer vision
systems have seen remarkable progress through the employ-

ment of deep learning models, which require vasts amounts
of data for training and testing. This data comes in two dif-
ferent forms: (un-annotated) raw data and annotated data.
For object detection, the annotations indicate the identity of
the objects through class labels, as well as their localiza-
tion, most commonly in the form of bounding boxes. They
can also include further information, such as orientation, or
whether the object is partly occluded. Our experiments fo-
cus on supervised learning, where the quality of the labelled
data is already an important consideration at training time.
However, even in the case of unsupervised learning, in or-
der to monitor and ensure the trained model’s performance,
annotated data as a ground truth is needed. For this rea-
son, annotation quality is crucial for both training regimes,
supervised as well as unsupervised. It is possible to syn-
thetically generate ground-truth images for both testing and
training, but these lack behind real street scene images in di-
versity [19][27]. Therefore, images labelled by human an-
notators are still considered the “gold standard” for ground-
truth data.

Human annotation however comes with its own chal-
lenges. As humans, we are not immune to errors. A small
percentage of the data, even in easy cases, will be labelled
incorrectly by human annotators. Moreover, some instances
are inherently difficult to label, which often leads to dis-
agreement between different annotators. We refer to im-
ages and instances, where the correct label is not entirely
obvious as “ambiguous”. The following section investigates
this ambiguity as an important aspect of data quality for the
case of vulnerable road users. The results of our experi-
ments, which are presented in section 3, demonstrate that
improved model performance can be achieved by removing
highly ambiguous instances from the training set.



2. Related Work
Awareness of issues with the reliability of ground truth la-
bels has risen in recent years, marked by publications con-
cerned with the correctness of the annotations in large pub-
lic datasets and benchmarks, such as ImageNet and CIFAR-
10 [3] [14] [16] [20]. At the same time, a large number
of publications is concerned with how to handle noisy la-
bels in object classification and detection, and how to train
networks, which are robust against noise [2] [1] [11] [15]
[21] [23] [24] [26]. However, the definition of label noise
used in this field of research implies that there is an under-
lying true label, which can be observed. Due to the chal-
lenges detailed in the following sections and the resulting
subjectivity in the labelling of difficult tasks, this is not al-
ways the case. In comparison to studies on label noise, a
much smaller number of publications exists, which is con-
cerned with incorporating ambiguity information into the
training data. Starting with Gao et al. (2017) [10], neu-
ral networks have been employed in distribution learning
models, to learn a label distribution instead of binary or
multi-class labels. Distribution learning approaches do not
always utilize the variability in the annotations to derive the
ground truth distributions, but oftentimes they are modeled
implicitly from neighboring classes [5] [13], from features
extracted by a neural network [29], or most recently, using
transformers [28]. A reason for this is that information on
the variability of annotator answers is not readily available
for most datasets [9].

3. Ambiguity in Detection Data
3.1. Definition

Labelling vulnerable road users in street scene images is not
a simple task, and therefore involves a high level of ambi-
guity. This ambiguity arises from several challenges, mak-
ing it difficult to recognize instances as their correct class,
or to distinguish them from their neighboring classes. In-
stances, which are partly or even heavily occluded are hard
to detect for human annotators as well as machine learn-
ing models. The same is true for objects with low visibil-
ity, such as blurry instances or those that are far from the
camera. The wide variety of lighting conditions found in
street scenes poses an additional challenge. This leads to
an ambiguity in the images where the true label is not al-
ways observable. Even when annotated by experts and in
the absence of errors, the assigned labels will therefore re-
tain a degree of subjectivity. This problem has already been
described for the field of medical images as “inter-observer
variability” [15]. Another term often used in the literature is
“label noise” [1], which usually implies that there is a cor-
rect label observable from the data, and annotator answers
deviating from it are incorrect and add noise to the annota-
tion. In contrast to this, we define ambiguous data as any

instances, where different annotators will disagree on what
label to assign, because the true label is not entirely objec-
tively observable. On the example of the class “pedestrian”,
we further examine the sources of this ambiguity in the fol-
lowing. These can be found in properties of the image itself,
or different possible interpretations of the class definitions
in the labelling guide, i.e. the instructions, which are given
to the annotators when labelling the images.

3.2. Sources of Ambiguity

Image Properties Ambiguity can arise from the image it-
self, if the visibility of the instance is impaired due to ad-
verse weather, blurriness or low contrast in the image, par-
tial occlusion by another object, or the object being far away
from the camera. This form of ambiguity will always exist
in street scene images, which are taken from a vehicle driv-
ing outside of controlled conditions “in the wild”. Figure 1
shows examples of this for the class “pedestrian”. While in
the image in 1a the person is easily identifiable, in 1b clas-
sification of the instance is much more difficult. Image 1c
shows an instance which is highly ambiguous due to low
visibility. Without additional data, such as tracking of the
person throughout an image sequence, it is in this case im-
possible to tell with certainty, if in reality this is the image
of a person or not. However, additional information, which
would help us distinguish between ‘real’ pedestrians and
other object classes is usually not given in publicly avail-
able datasets, and not always recorded during the capturing
of the images. Images 1d to 1f illustrate how occlusion,
which is a common challenge in image annotation, caused
different degrees of ambiguity.

Class Definitions In addition to image properties, another
common cause of ambiguity is that of instances falling in
between the definitions of neighboring classes in the la-
belling guide, e.g. a person could be either labelled a pedes-
trian or cyclist depending on whether and how they are us-
ing a bike. To some extent, this can be managed by cov-
ering many possibilities in the labelling instructions. How-
ever, even the most detailed class description will not be
able to cover all possible cases, especially for such a diverse
class as pedestrians. We illustrate this issue using examples
from the neighboring classes ’pedestrian’ and ’rider’ of e.g.
a bike, motorbike or scooter. Very often, the distinction be-
tween the two is made such, that persons who are walking
or standing, are to be labelled as pedestrians, while someone
riding a bike or scooter is classified as a rider. So a person
who is only holding or pushing a bike, but not currently rid-
ing one in the image, is by this definition a pedestrian and
not a rider. But then what about someone who is sitting on
the bike (i.e. strictly speaking not walking or standing), but
for example waiting at a traffic light, should they be consid-
ers as a rider or a pedestrian? Since this is a very common



(a) Low ambiguity: A well recogniz-
able pedestrian instance.

(b) Medium ambiguity: This pedes-
trian is already harder to identify.

(c) High Ambiguity: It is very hard to
identify this instance.

(d) Low ambiguity with occlusion. (e) Medium ambiguity with high oc-
clusion.

(f) High ambiguity caused by high
occlusion.

Figure 1. Image Properties. Medium and high ambiguity corresponds to an ambiguity measure of 0.4 to 0.49 and over 0.65 respectively.
Examples from the ECP Dataset [4].

(a) Low ambiguity: A pedestrian with
a bike and one foot clearly on the
ground.

(b) Medium to high ambiguity: This
rider could also be interpreted as a
pedestrian pushing a bike.

(c) High ambiguity: It is not possi-
ble to tell from the image whether the
person is on a bike or scooter.

(d) Low ambiguity: A rider with both
feet on the vehicle.

(e) Medium ambiguity: The right
foot of the person, which is on the
ground, is barley visible.

(f) High ambiguity: We can not tell
form the image whether or not the left
foot is on the ground.

Figure 2. Neighboring Classes: Pedestrian versus Rider, with the distinctive criterion that a person with at least one foot on the ground is
to be labelled as a pedestrian. Examples from the ECP Dataset [4].



edge case, the widely adapted distinction here is that any-
one who has at least one foot on the ground is to be labelled
as “pedestrian”. However, this brings us to the next prob-
lem, because it is not always clear, whether or not this is the
case in an image. Figure 2 illustrates this on six examples.
According to the above distinction, the person in the im-
age in 2a is clearly identifiable as a pedestrian, because they
have one foot on the ground. Following the same rule, the
instance in 2d is to be labelled a rider, because both feet are
on the vehicle. The remaining four images exhibit different
degrees of ambiguity w.r.t. this distinction. In images 2b
and 2c it is not clear, whether or not the person is on a vehi-
cle. In images 2e and 2f it is difficult to tell if the criterion
of one foot being on the ground is met or not, i.e. if this is
a pedestrian or rider per the definition. For these instances,
we can expect disagreement between the annotators which
of the two neighboring classes to assign.

If we include such cases in the labelling guide as well,
e.g. by always deciding for one of the two classes, if the
legs are not both visible, we will be able to cover more such
instances with the instructions, but we will never be able to
come up with a finite set of rules that is able to cover all
imaginable cases. Moreover, we will want to keep our in-
structions as concise as possible, because the longer the la-
belling guide gets, the more this itself can become a source
of annotation errors. At some point, the annotators will not
be able to correctly remember all the rules we have laid out
for them during the process of the annotation. So there will
always be some remaining edge cases which fall in between
two neighboring classes, and might be labelled differently
depending on the annotators’ interpretations. Awareness of
these challenges and possible pitfalls is crucial, when mak-
ing decisions w.r.t. the labelling instructions and class defi-
nitions.

Since for these reasons a certain degree of ambiguity is
inevitable when annotating a dataset, should all these in-
stances be treated identically during training, regardless of
their different degrees of ambiguity? And how are highly
ambiguous cases to be handled during testing and evalua-
tion of a trained model? Should, for example, the model
receive an equally high penalty for not finding the instance
in Figure 1c in as it should for not correctly detecting the
person in 1a? As a cost-efficient measure, we investigate
the effects of simply removing highly ambiguous instances
from data.

4. How Does Ambiguity Influence the Model
Performance?

4.1. Model and Training

Our experiments were conducted using data from the Eu-
roCity Persons Dataset (ECP) [4], which is a prominent
benchmark for pedestrian detection. Since the test dataset

Subset Height Occlusion Truncation

reasonable > 40 px < 40% < 40%
small 30− 60 px < 40% < 40%
occluded > 40 px 40− 80% < 80%
all > 20 px < 80% < 80%

Table 1. ECP Evaluation Subsets

of the benchmark is not publicly available, we used the
published validation set as our test set. We chose Pede-
stron [12] for evaluation, the highest performing model
from the benchmark, for which the full architecture as well
as pretrained weights are published. This is a Cascade R-
CNN model [6], originally with an HRNet [25] backbone,
which we replaced with MobileNetV2 [22] to achieve still
close-to benchmark performance, but at greatly reduced
training times. Each model was trained for 50 epochs,
which took approximately 4 days on a single NVIDIA RTX
4090. The reasoning for stopping the training early and
choosing a more light-weight backbone was to enable us
to train more iterations of the model in the same time, since
we were interested in the comparative performance of the
model trained on different data, instead of reaching peak
performance. We could however confirm that, while train-
ing the model for 100 more epochs still lead to minor per-
formance gains, the comparative results between the mod-
els stayed the same. The performance of the trained mod-
els was evaluated using the official evaluation measure of
the ECP benchmark, Log Average Miss Rate (LAMR) [8].
In short, the LAMR expresses the trade-off between the
miss rate (ratio of ground truth pedestrians that were not
detected) and false positives per image (other objects the
model falsely detected as pedestrians) for different thresh-
olds of confidence scores returned by the model.

4.2. Measuring Ambiguity

In order to analyse the effects of ambiguous data on train-
ing and testing, we need a way to quantify ambiguity within
the annotations. For our experiments, we focused on the an-
notation question whether the instance under consideration
is a human being. Annotators are asked to respond to this
question with either “yes” or “no”, or indicate that they are
unable to give a definite answer (denoted “?” in the fol-
lowing). The frequencies of these answers for a given task,
nyes, nno and n?, are then used to calculate a heuristic mea-
sure for ambiguity from annotator disagreement [17], which
defines the ambiguity α of an instance as

α =

{
1− γ · 2| nyes

n−n? − 1
2 | if n− n? > 0

1 otherwise
(1)



Figure 3. Results for two training sets and three test sets including different degrees of ambiguity. “Original” denotes the original ECP
training and validation sets, “Amb 0.65” and “Amb 0.5” the same subsets pruned above an ambiguity threshold of 0.65 and 0.5.

with
n = nyes + nno + n?,

where γ ≡ 1− n?

n re-scales the distance of the observed dis-
tribution of answers from a uniform distribution by the ratio
of “?”-answers, such that, if only “?”-answers are given by
the annotators for the task, the ambiguity reaches its maxi-
mum value of 1.

For ECP, only hard labels with no information on an-
notator disagreement exist within the published benchmark
data. As a cost-efficient alternative to re-annotating the en-
tire training and validation sets with multiple annotators for
the above question, we employed the approach proposed
by [18] to estimate the answer distributions. The model
pretrained on the ECP Dataset has been proven to estimate
annotator answers for ECP with high accuracy [18]. The
ambiguity measure was then computed from the predicted
answer distributions.

To compare the effects of ambiguity on both, training
and test set, we removed highly ambiguous instances up to
different ambiguity thresholds from the dataset and trained
the model on the entire original data as well as on the ver-
sions of the dataset with applied ambiguity thresholds. We
then evaluated the trained models on test data including in-
stances, again up to different ambiguity thresholds. The re-

sults for two models, one trained on all original data, and
one trained without instances with ambiguity score ≥ 0.65,
which were then tested on three different version of the test
set (all data vs. ambiguity thresholds of 0.65 and 0.5), are
shown in Figure 3. “Reasonable”, “Small”, “Occluded”,
and “All” are the original subsets of the ECP benchmark for
evaluation (see Table 1).

4.3. Results

Removing ambiguous data from the training dataset
improves model performance. Figure 3 shows that the
model trained without highly ambiguous instances achieves
higher performance (lower is better for the LAMR), except
when heavily occluded instances are included in the evalu-
ation. Upon further investigation of the prediction results,
we found that the reason for this better performance is, that
for instances up to moderate occlusion, removing ambigu-
ous instances from the training set improves precision at the
expense of only a small decline in recall. Precision, Recall
and F1-Score for the two different training regimes when
tested on data with and without high ambiguity are given in
Figure 4. We can see that the model trained without highly
ambiguous data also performs better in terms of both preci-
sion, as well as F1-Score. Visual inspection of the detection



(a) Both trained models tested on the original ECP validation set.

(b) Both trained models tested on the ECP validation set pruned by ambiguity measure at 0.5.

Figure 4. Comparison of Recall, Precision and F-1 Score for two different training and test datasets.

errors confirmed that ambiguous data in the training set con-
tributes to the generation of false positive detections. This
trend is observable regardless whether the model was tested
on data including or excluding ambiguous data. The recall
slightly declines in all testing scenarios when the model is
trained without the ambiguous instances, most notably for
the “occluded” test subset. This might indicate that some of
the removed ambiguous instances still convey information,
which can help the model learn more diverse representa-
tions, especially in the presence of occlusion.

Note that, as can be expected, removing ambiguous data
from the test set improves all metrics for both trained mod-
els. Nonetheless, the implication is less obvious: You can
ignore ambiguous data in both sets, resulting in reduced cost

through lower training times. Simultaneously, annotation
costs can be reduced, because it is possible to estimate the
ambiguity measure reliably for high-ambiguity instances,
and thereby exclude them from the annotation process all
together [18].

There is a strong correlation between ambiguity and oc-
clusion. When comparing the ambiguity measure with the
occlusion tags in the ground truth (see Figure 5), we ob-
serve that higher values of the ambiguity measure corre-
spond to a greater prevalence of occlusion tags within the
dataset. As ambiguity increases, the proportion of tags in-
dicating higher levels of occlusion is also elevated. This is
evident in Figure 5, where the peak of the“occluded > 80”



Figure 5. Distribution of occlusion and truncation tags for different ambiguity thresholds.

tag proportion is at an ambiguity measure value of 0.79.
This explains why the model trained with applied ambiguity
threshold, which achieves higher performance in all other
evaluation subsets in terms of LAMR, is surpassed by the
model trained on the original training set including all am-
biguous data for the occluded subset (see Figure 3). When
removing ambiguous instances, we disproportionately re-
move occluded instances. Hence, the model which has seen
more occluded data in training performs better on this spe-
cific subset, while is still exhibits lower performance on all
other data.

5. Improving Model Performance at Reduced
Training and Annotation Costs

Based on the findings detailed above, we propose the fol-
lowing course of action for treating ambiguity in machine
learning datasets, especially for safety-critical applications:
1. Assess possible sources of ambiguity in the labelling
guide. Deriving simple rules, which are easy to commu-
nicate and cover the most important edge cases can help
reduce ambiguity during the annotation process without
adding possible sources of errors through excess difficulty
for the annotators.
2. Quantify the ambiguity within the data. This can be
done from the raw annotator answers or by estimation from
the labelled data. Choose a method which is cost-efficient,
as well as a quantitative measure which is appropriate for

your use-case and interpretable, e.g. by providing a ranking
of the instances w.r.t. ambiguity.
3. Inspect a subset of the labelled results visually at dif-
ferent ambiguity thresholds. Examine the distributions of
the ambiguity measure over different classes and intra-class
properties to identify possible common sources of ambigu-
ity. Determine if certain properties are over-represented at
higher ambiguity thresholds. If annotators disagree over in-
stances where the correct label seems obvious, this can pos-
sibly be amended by updating the labelling instructions.
4. Prune the dataset by removing highly ambiguous data up
to a threshold determined through the previous steps. If the
dataset is in danger of loosing representativeness, this can
then be addressed through adapted data collection protocols
or augmentation at training time.

6. Conclusion

As we have seen, we will always encounter some degree
of ambiguity in annotated data. Additionally, the described
experiments demonstrate that the prevalence of ambiguous
data has implications for a machine learning model during
both, training and testing. Our experiments show that we
can improve the performance of a state-of-the-art detection
model by simply removing ambiguous data to a certain ex-
tend. When doing so, we can identify two trade-offs, which
need to be considered. Firstly, the very common trade-off
in machine learning between recall and precision is also at



play when adding or removing ambiguous instance from
training data. Secondly, when removing too many ambigu-
ous instances the dataset is at risk of loosing representa-
tiveness. Therefore, an understanding of ambiguity in the
dataset is important to decide which instances to remove,
which to keep and which cases of hard-to-detect objects
might be in the need of additional treatment to prevent them
from being underrepresented in the remaining training set.
As we have shown, a simple ambiguity measure, which can
be estimated or calculated from the raw annotation answers
of multiple workers, enables us to prune the dataset, result-
ing in improved model performance at reduced costs.

7. Future Work
Important topics for future work are the expansion of this
framework onto different object classes as well as model
architectures. We employed only one heuristic measure
for ambiguity based on annotator answer frequencies for
our evaluation. In future work, different measures to
calculate and estimate ambiguity, including more elabo-
rate techniques, should be investigated and compared w.r.t.
how well they reflect ambiguity and are apt to provide a
threshold for improving model performance by pruning the
dataset.
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